JP4317120B2 - Metal film production apparatus and metal film production method - Google Patents

Metal film production apparatus and metal film production method Download PDF

Info

Publication number
JP4317120B2
JP4317120B2 JP2004349285A JP2004349285A JP4317120B2 JP 4317120 B2 JP4317120 B2 JP 4317120B2 JP 2004349285 A JP2004349285 A JP 2004349285A JP 2004349285 A JP2004349285 A JP 2004349285A JP 4317120 B2 JP4317120 B2 JP 4317120B2
Authority
JP
Japan
Prior art keywords
substrate
support base
flow path
chamber
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004349285A
Other languages
Japanese (ja)
Other versions
JP2006161060A (en
Inventor
慶一 堀
隆之 入江
浩徳 野口
宏次 佐竹
仁志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2004349285A priority Critical patent/JP4317120B2/en
Publication of JP2006161060A publication Critical patent/JP2006161060A/en
Application granted granted Critical
Publication of JP4317120B2 publication Critical patent/JP4317120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、気相成長法により基板の表面に金属膜を作製する金属膜作製装置及び金属膜作製方法に関する。   The present invention relates to a metal film production apparatus and a metal film production method for producing a metal film on a surface of a substrate by a vapor deposition method.

従来、気相成長法により金属膜、例えば、銅の薄膜を作製する場合、銅・ヘキサフロロアセチルアセトナト・トリメチルビニルシラン等の液体の有機金属錯体を原料として用い、原料を溶媒に溶かし、熱的な反応を利用して気化して基板に成膜を実施している。   Conventionally, when producing a metal film, for example, a copper thin film by vapor deposition, a liquid organometallic complex such as copper, hexafluoroacetylacetonate, and trimethylvinylsilane is used as a raw material. The film is formed on the substrate by vaporizing using a simple reaction.

近年、銅等の金属のターゲット材から塩素ラジカルにより塩化物(前駆体)を生成し、生成された塩化物を還元することで成膜を行う塩素化金属還元法という新しいCVD法が開発されており、金属膜への適用が検討されている(特許文献1参照)。   In recent years, a new CVD method called a chlorinated metal reduction method has been developed, in which a chloride (precursor) is generated from a metal target material such as copper by chlorine radicals, and the generated chloride is reduced to form a film. Therefore, application to metal films has been studied (see Patent Document 1).

特開2003−226973号公報JP 2003-226773 A

銅膜等の金属膜が適用される電子デバイスの量産化、高密度化に伴い、銅膜等が成膜される基板も大型化されると共に、成膜される銅膜等に要求される条件も厳しいものとなっており、例えば、膜厚の均一性の条件も更に向上させることが望まれている。   With the mass production and higher density of electronic devices to which metal films such as copper films are applied, the substrate on which the copper film is formed becomes larger and the conditions required for the formed copper film, etc. For example, it is desired to further improve the condition of film thickness uniformity.

本発明は上記課題に鑑みなされたもので、成膜される膜厚の均一性が優れた金属膜作製装置及び金属膜作製方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a metal film manufacturing apparatus and a metal film manufacturing method that are excellent in uniformity of film thickness to be formed.

上記課題を解決する第1の発明に係る金属膜作製装置は、
チャンバと、
前記チャンバの底部に設けられ、内部に流路が形成された支持台と、
前記支持台上に固着され、基板が吸着される吸着台と、
前記支持台の流路に接続され、前記流路に所定温度に制御された冷媒を供給する冷媒供給手段と、
前記チャンバの上方に設けられ、前記基板に対向して設けられた金属部材と、
前記金属部材の近傍に、ハロゲンを含有する原料ガスを供給する原料ガス供給手段と、
前記チャンバ内部に供給された前記原料ガスのプラズマを発生させて、前記ハロゲンのラジカルを生成すると共に、前記金属部材をエッチングして、前記金属部材に含まれる金属成分と前記ハロゲンからなる前駆体を生成するプラズマ発生手段とを備え、
前記支持台の流路は、前記支持台の周縁部に設けた複数の第1流路と、前記支持台の中心に設けた1つの第2流路と、前記支持台の上面に平行に放射状に形成され、前記複数の第1流路と前記1つの第2流路とを連通する複数の第3流路とを有し、
前記冷媒供給手段から供給される冷媒が、前記複数の第1流路から前記複数の第3流路を経て、前記1つの第2流路へ流通されることを特徴とする。
A metal film manufacturing apparatus according to the first invention for solving the above-mentioned problems is as follows.
A chamber;
A support provided at the bottom of the chamber and having a flow path formed therein;
A suction stand fixed on the support base, on which the substrate is sucked;
Refrigerant supply means connected to the flow path of the support base and supplying a refrigerant controlled to a predetermined temperature to the flow path;
A metal member provided above the chamber and facing the substrate;
A source gas supply means for supplying a source gas containing halogen in the vicinity of the metal member;
Plasma of the source gas supplied into the chamber is generated to generate the radicals of the halogen, and the metal member is etched to form a precursor composed of the metal component contained in the metal member and the halogen. Plasma generating means for generating,
The flow path of the support base is a plurality of first flow paths provided at the peripheral edge of the support base, one second flow path provided at the center of the support base, and a radial shape parallel to the upper surface of the support base. A plurality of third channels that communicate with the plurality of first channels and the one second channel,
The refrigerant supplied from the refrigerant supply means is circulated from the plurality of first flow paths to the one second flow path through the plurality of third flow paths.

上記課題を解決する第2の発明に係る金属膜作製装置は、
チャンバと、
前記チャンバの底部に設けられ、内部に流路が形成された支持台と、
前記支持台上に固着され、基板が吸着される吸着台と、
前記支持台の流路に接続され、前記流路に所定温度に制御された冷媒を供給する冷媒供給手段と、
前記チャンバの上方に設けられ、前記基板に対向して設けられた金属部材と、
前記金属部材の近傍に、ハロゲンを含有する原料ガスを供給する原料ガス供給手段と、
前記チャンバ内部に供給された前記原料ガスのプラズマを発生させて、前記ハロゲンのラジカルを生成すると共に、前記金属部材をエッチングして、前記金属部材に含まれる金属成分と前記ハロゲンからなる前駆体を生成するプラズマ発生手段とを備え、
前記支持台の流路は、前記支持台の周縁部に設けた1つ又は複数の第1流路と、前記支持台の中心に設けた1つの第2流路と、前記支持台の上面に平行に渦巻状に形成され、前記1つ又は複数の第1流路と前記1つの第2流路とを連通する1つ又は複数の第3流路とを有し、
前記冷媒供給手段から供給される冷媒が、前記1つ又は複数の第1流路から前記1つ又は複数の第3流路を経て、前記1つの第2流路へ流通されることを特徴とする。
A metal film manufacturing apparatus according to a second invention for solving the above-mentioned problems is as follows.
A chamber;
A support provided at the bottom of the chamber and having a flow path formed therein;
A suction stand fixed on the support base, on which the substrate is sucked;
Refrigerant supply means connected to the flow path of the support base and supplying a refrigerant controlled to a predetermined temperature to the flow path;
A metal member provided above the chamber and facing the substrate;
A source gas supply means for supplying a source gas containing halogen in the vicinity of the metal member;
Plasma of the source gas supplied into the chamber is generated to generate the radicals of the halogen, and the metal member is etched to form a precursor composed of the metal component contained in the metal member and the halogen. Plasma generating means for generating,
The flow path of the support base includes one or a plurality of first flow paths provided at a peripheral portion of the support base, one second flow path provided at the center of the support base, and an upper surface of the support base. One or more third flow paths that are formed in a spiral shape in parallel and communicate with the one or more first flow paths and the one second flow path;
The refrigerant supplied from the refrigerant supply means is circulated from the one or more first flow paths to the one second flow path through the one or more third flow paths. To do.

上記課題を解決する第の発明に係る金属膜作製方法は、
チャンバに基板を設置し、
前記チャンバ内に配設された金属部材の近傍に、ハロゲンを含有する原料ガスを供給すると共に、前記原料ガスのプラズマを発生させて、前記ハロゲンのラジカルを生成し、
前記ハロゲンのラジカルにより、前記金属部材をエッチングして、前記金属部材に含まれる金属成分と前記ハロゲンからなる前駆体を生成し、
前記金属部材より低い温度に前記基板を制御すると共に、前記基板を吸着する吸着台が固着された支持台の内部を流通する冷媒を、前記支持台の上面近傍で、前記支持台の外周側から前記支持台の中心へ流通させて、前記基板の面内の温度分布を、周縁部で低く、中央部で高くし、
前記基板に前記前駆体を吸着させると共に、吸着された前記前駆体を前記ハロゲンのラジカルにより還元して、金属膜を作製することを特徴とする。
A metal film manufacturing method according to a third invention for solving the above-described problems is as follows.
Place the substrate in the chamber,
In the vicinity of the metal member disposed in the chamber, a source gas containing halogen is supplied, and plasma of the source gas is generated to generate radicals of the halogen,
Etching the metal member with the halogen radicals to produce a precursor comprising the metal component and the halogen contained in the metal member;
The substrate is controlled to a temperature lower than that of the metal member, and the refrigerant flowing through the inside of the support table to which the adsorption table for adsorbing the substrate is fixed is passed from the outer peripheral side of the support table in the vicinity of the upper surface of the support table. The temperature distribution in the surface of the substrate is made low at the peripheral part and high at the central part by circulating to the center of the support base ,
The precursor is adsorbed on the substrate, and the adsorbed precursor is reduced with a radical of the halogen to produce a metal film.

第1〜第の発明によれば、中央部の基板温度を高くし、基板中央部での還元作用を弱くして、成膜の進行を抑制し、逆に、周縁部の基板温度を低くし、周縁部での還元作用を強くして、周縁部での成膜の進行を促進するので、従来膜厚が厚かった基板中央部での膜厚を薄くし、従来膜厚が薄かった基板周縁部での膜厚を厚くして、成膜の均一性を向上させることができる。 According to the first to third inventions, the substrate temperature at the central portion is increased, the reduction action at the central portion of the substrate is weakened, the progress of film formation is suppressed, and conversely, the substrate temperature at the peripheral portion is decreased. In addition, since the reduction action at the peripheral portion is strengthened and the progress of film formation at the peripheral portion is promoted, the film thickness at the central portion of the substrate where the conventional film thickness is large is reduced, and the substrate where the conventional film thickness is thin The film thickness at the peripheral edge can be increased to improve the film formation uniformity.

本発明では、塩素化金属還元法を用いて、銅等の金属膜を形成する際、成膜される基板の面内の温度分布、成膜反応に用いられる反応種の流れに着目し、これらを適切に制御できるように構成を工夫することで、成膜の均一性をより優れたものにするものである。特に、塩素化金属還元法を用いて成膜される金属膜は、基板中央部の膜厚が厚く、基板周縁部の膜厚が薄くなる傾向がある。これは、塩素化金属還元法を用いて成膜を行う際、基板の中央部ではエッチング作用より還元作用が強く作用して、成膜が促進されるのに対して、基板の周縁部では、還元作用よりエッチング作用が強く作用して、成膜が抑制されるためと考えられる。従って、成膜される基板の面内の温度分布であれば、中央部の基板温度を高くし、基板中央部での還元作用を弱くして、成膜の進行を抑制し、逆に、周縁部の基板温度を低くし、基板周縁部での還元作用を強くして、基板周縁部での成膜の進行を促進することで、成膜の均一性を向上させることができる。又、成膜反応に用いられる反応種の流れであれば、基板中央部より周縁部に流れる反応種の流れを強くするようにしたり、基板周縁部に流れる反応種の滞留時間を長くするようにしたり、基板全面で反応種の滞留時間を同等にするようにすることで、基板周縁部での成膜反応を多くし、基板周縁部での膜厚を厚くしたり、基板全面での成膜反応の量を同等にしたりして、成膜の均一性を向上させることができる。
そこで、本発明に係る金属膜作製装置及び金属膜作製方法の実施形態を、以下に示す図面を用いて、詳細に説明を行う。
In the present invention, when forming a metal film such as copper by using a chlorinated metal reduction method, attention is paid to the temperature distribution in the surface of the substrate to be formed and the flow of reactive species used in the film forming reaction. By devising the configuration so that the film thickness can be appropriately controlled, the uniformity of the film formation is improved. In particular, a metal film formed using the chlorinated metal reduction method tends to have a thick film at the center of the substrate and a thin film at the peripheral edge of the substrate. This is because when the film is formed using the chlorinated metal reduction method, the reduction action acts more strongly than the etching action in the central part of the substrate, and the film formation is promoted. This is probably because the etching action is stronger than the reduction action and the film formation is suppressed. Accordingly, if the temperature distribution is in the plane of the substrate on which the film is formed, the substrate temperature at the central part is increased, the reducing action at the central part of the substrate is weakened, and the progress of the film formation is suppressed. The uniformity of film formation can be improved by lowering the substrate temperature of the portion, strengthening the reducing action at the peripheral edge of the substrate, and promoting the progress of film formation at the peripheral edge of the substrate. In addition, if the flow of reactive species used in the film formation reaction, the flow of reactive species flowing from the central portion of the substrate to the peripheral portion is strengthened, or the residence time of the reactive species flowing to the peripheral portion of the substrate is increased. In addition, by making the residence time of the reactive species equal on the entire surface of the substrate, the film formation reaction on the peripheral edge of the substrate is increased, the film thickness on the peripheral edge of the substrate is increased, or the film is formed on the entire surface of the substrate. The uniformity of film formation can be improved by equalizing the amount of reaction.
Therefore, an embodiment of a metal film manufacturing apparatus and a metal film manufacturing method according to the present invention will be described in detail with reference to the drawings shown below.

本実施例の金属膜作製装置は、図1に示すように、円筒状に形成された絶縁材料製(例えば、セラミックス等)のチャンバ1と、チャンバ1の底部に設けられた円柱状の支持台2と、支持台2上に設けられ、基板3の吸着を行う吸着台4とを有する。吸着台4としては、例えば、静電気力を用いた、所謂、静電チャック等が用いられる。支持台2の内部には、冷媒が流通する流路5が設けられており、冷媒が冷媒供給装置6(冷媒供給手段)から供給される。支持台2は、冷媒供給装置6から供給される冷媒により、所定温度(例えば、基板3が100℃乃至200℃に維持される温度)に制御され、更に、冷媒の流路の配置を工夫することで(後述する図2、図3参照)、支持台2の上面の温度分布、そして、基板3の面内の温度分布を所望の状態へ制御している。なお、冷媒供給装置6に用いられる冷媒としては、上記温度範囲の制御が可能なものであれば、どのような冷媒でもよいが、例えば、高温で(上記温度範囲)の蒸気圧が低く、高温での温度制御に使用可能なパーフルオロポリエーテル等が用いられる。   As shown in FIG. 1, the metal film manufacturing apparatus of the present embodiment includes a chamber 1 made of an insulating material (for example, ceramics) formed in a cylindrical shape, and a columnar support base provided at the bottom of the chamber 1. 2 and an adsorption table 4 provided on the support table 2 for adsorbing the substrate 3. As the suction stand 4, for example, a so-called electrostatic chuck using electrostatic force is used. A flow path 5 through which a refrigerant flows is provided inside the support base 2, and the refrigerant is supplied from a refrigerant supply device 6 (refrigerant supply means). The support base 2 is controlled to a predetermined temperature (for example, a temperature at which the substrate 3 is maintained at 100 ° C. to 200 ° C.) by the refrigerant supplied from the refrigerant supply device 6, and further, the arrangement of the refrigerant flow paths is devised. Thus (see FIGS. 2 and 3 described later), the temperature distribution on the upper surface of the support base 2 and the temperature distribution in the surface of the substrate 3 are controlled to a desired state. The refrigerant used in the refrigerant supply device 6 may be any refrigerant as long as the above temperature range can be controlled. For example, the vapor pressure at a high temperature (the above temperature range) is low and the temperature is high. Perfluoropolyether etc. that can be used for temperature control in are used.

チャンバ1の上方においては、チャンバ1の上面が開口部とされており、開口部が絶縁材料製(例えば、セラミックス製)の円盤状の天井板7によって塞がれている。天井板7の上方には、天井板7の上面と平行な渦巻状のコイルからなるプラズマアンテナ8が設けられており、プラズマアンテナ8には整合器9、電源10が接続される。プラズマアンテナ8、整合器9及び電源10によりプラズマ発生手段が構成されており、整合器9、電源10からプラズマアンテナ8へ高周波(RF)を給電することで、チャンバ1内部のガスをプラズマ化する。なお、天井板7によって塞がれたチャンバ1の内部は、図示しない真空装置により所定の圧力に維持される。   Above the chamber 1, the upper surface of the chamber 1 is an opening, and the opening is closed by a disk-shaped ceiling plate 7 made of an insulating material (for example, ceramic). Above the ceiling plate 7, a plasma antenna 8 made of a spiral coil parallel to the upper surface of the ceiling plate 7 is provided. A matching unit 9 and a power source 10 are connected to the plasma antenna 8. The plasma antenna 8, the matching unit 9 and the power source 10 constitute a plasma generating means. By supplying high frequency (RF) from the matching unit 9 and the power source 10 to the plasma antenna 8, the gas inside the chamber 1 is turned into plasma. . Note that the interior of the chamber 1 closed by the ceiling plate 7 is maintained at a predetermined pressure by a vacuum device (not shown).

更に、チャンバ1の上方においては、チャンバ1の内部の金属部材11の近傍に、ハロゲン含有する原料ガス(例えば、ヘリウム(He)、アルゴン(Ar)等により濃度が≦50%、好ましくは10%程度に希釈された塩素(Cl2)ガス)を供給するノズル12が、チャンバ1の筒部に複数設けられており、ノズル12の上方であり、天井板7の下方には、チャンバ1の内壁から延設された複数の棒部材11aを有する金属部材11が設けられている。各ノズル12には、各々流量制御器13が接続されて、原料ガス供給手段として構成されており、制御装置14から制御命令により原料ガスの流量が制御される。又、金属部材11は、複数の棒状の金属製(例えば、銅製)の棒部材11aから構成されており、各棒部材11aは、その先端部が隣接する棒部材11aの先端部と接触することなく、チャンバ1の中心に向かって延びるように、その各基端部をチャンバ1の内壁に固定されている。これにより、各棒部材11aは電気的に独立した構造となり、プラズマアンテナ8からチャンバ1内に入射される電磁界を、遮蔽することがないようにしている。 Further, above the chamber 1, in the vicinity of the metal member 11 inside the chamber 1, the concentration is ≦ 50%, preferably 10% by halogen-containing source gas (for example, helium (He), argon (Ar)). A plurality of nozzles 12 for supplying chlorine (Cl 2 ) gas diluted to a certain degree are provided in the cylindrical portion of the chamber 1, above the nozzles 12, and below the ceiling plate 7, on the inner wall of the chamber 1. A metal member 11 having a plurality of bar members 11a extending from the metal member 11 is provided. A flow rate controller 13 is connected to each nozzle 12 to constitute a raw material gas supply means, and the flow rate of the raw material gas is controlled by a control command from the controller 14. The metal member 11 is composed of a plurality of rod-shaped metal (for example, copper) rod members 11a, and each rod member 11a is in contact with the tip portion of the adjacent rod member 11a. Rather, each base end is fixed to the inner wall of the chamber 1 so as to extend toward the center of the chamber 1. As a result, each bar member 11a has an electrically independent structure so that the electromagnetic field incident on the chamber 1 from the plasma antenna 8 is not shielded.

上述した金属膜作製装置では、チャンバ1の内部にノズル12から原料ガスを供給し、プラズマアンテナ8から電磁波をチャンバ1の内部に入射することで、Cl2ガスがイオン化されてCl2ガスプラズマ(原料ガスプラズマ)15が発生する。プラズマアンテナ8の下方には導電体である金属部材11が存在しているが、金属部材11はプラズマアンテナ8の電気の流れ方向に対して不連続な状態で配置されているので、金属部材11と基板3との間、即ち、金属部材11の下側にCl2ガスプラズマ15が安定して発生するようになっている。Cl2ガスプラズマ15によるClラジカルにより、金属部材11にエッチング反応が生じ、前駆体(CuxCly)16が生成される。このとき、金属部材11はCl2ガスプラズマ15により、基板3の温度よりも高い所定温度(例えば、200℃乃至400℃)に維持されている。 In the metal film manufacturing apparatus described above, the source gas is supplied from the nozzle 12 into the chamber 1 and the electromagnetic wave is incident from the plasma antenna 8 into the chamber 1, whereby the Cl 2 gas is ionized and the Cl 2 gas plasma ( Source gas plasma) 15 is generated. Although the metal member 11 which is a conductor exists below the plasma antenna 8, the metal member 11 is disposed in a discontinuous state with respect to the electric flow direction of the plasma antenna 8. A Cl 2 gas plasma 15 is stably generated between the substrate 3 and the substrate 3, that is, below the metal member 11. Due to Cl radicals by the Cl 2 gas plasma 15, an etching reaction occurs in the metal member 11, and a precursor (Cu x Cl y ) 16 is generated. At this time, the metal member 11 is maintained at a predetermined temperature (for example, 200 ° C. to 400 ° C.) higher than the temperature of the substrate 3 by the Cl 2 gas plasma 15.

チャンバ1の内部で生成された前駆体16は、金属部材11よりも低い温度に制御された基板3に運ばれる。基板3に運ばれる前駆体16は基板3に吸着され、更に、吸着された前駆体16が、基板3近傍に供給されたClラジカルによる還元反応によりCuのみとされて、基板3の表面にCu薄膜17が生成される。このとき、反応に関与しないガス及びエッチング生成物は、排気口18から排気される。   The precursor 16 generated inside the chamber 1 is conveyed to the substrate 3 controlled to a temperature lower than that of the metal member 11. The precursor 16 transported to the substrate 3 is adsorbed on the substrate 3, and the adsorbed precursor 16 is made only Cu by a reduction reaction by Cl radicals supplied in the vicinity of the substrate 3, and Cu is formed on the surface of the substrate 3. A thin film 17 is produced. At this time, gases and etching products not involved in the reaction are exhausted from the exhaust port 18.

このときの主な反応は、次式で表すことができる。なお、以下の反応式において、Cl*は、塩素ラジカルを表し、(s)は固体状態、(g)はガス状態、(ad)は吸着状態を表す。なお、前駆体16としては、CuClだけでなく、組成比の異なるCuxClyも生成されるが、ここでは代表的な生成種のみを示して、反応式を簡潔にした。
(1)プラズマの解離反応
Cl2→2Cl*
(2)エッチング反応
Cu(s)+Cl*→CuCl(g)
(3)基板への吸着反応
CuCl(g)→CuCl(ad)
(4)成膜反応
CuCl(ad)+Cl*→Cu(s)+Cl2
The main reaction at this time can be expressed by the following equation. In the following reaction formula, Cl * represents a chlorine radical, (s) represents a solid state, (g) represents a gas state, and (ad) represents an adsorption state. In addition, as the precursor 16, not only CuCl but also Cu x Cl y having a different composition ratio is generated. Here, only representative generation species are shown, and the reaction formula is simplified.
(1) Plasma dissociation reaction Cl 2 → 2Cl *
(2) Etching reaction Cu (s) + Cl * → CuCl (g)
(3) Adsorption reaction to substrate CuCl (g) → CuCl (ad)
(4) Film formation reaction CuCl (ad) + Cl * → Cu (s) + Cl 2

上記反応において、成膜速度は、基板表面近傍に存在する反応種(CuCl、Cl*)の流れの強弱や基板温度の高低等の因子に左右され、当然ながら、基板面内の均一性もこのような因子に左右される。逆に、このような因子を制御することが、優れた均一性とするための重要な点であり、本発明では、このような因子を制御するため、後述するような構成を備えている。 In the above reaction, the film formation rate depends on factors such as the strength of the flow of reactive species (CuCl, Cl * ) existing near the substrate surface and the substrate temperature, and naturally the uniformity within the substrate surface is also this. It depends on such factors. Conversely, controlling such a factor is an important point for achieving excellent uniformity. In the present invention, the configuration described below is provided to control such a factor.

なお、上述した金属膜作製装置において、原料ガスとしては、He、Ar等で希釈されたCl2ガスを例に挙げて説明したが、Cl2ガスを単独で用いたり、HClガスを適用することも可能である。HClガスを適用した場合、原料ガスプラズマはHClガスプラズマが生成されるが、金属部材11のエッチングにより生成される前駆体はCuxClyである。従って、原料ガスは塩素を含有するガスであればよく、HClガスとCl2ガスとの混合ガスを用いることも可能である。又、原料ガスに含有されるハロゲンとしては、塩素以外に、フッ素(F)、臭素(Br)及びヨウ素(I)等を適用することが可能である。 In the metal film manufacturing apparatus described above, the source gas has been described by taking Cl 2 gas diluted with He, Ar, etc. as an example, but Cl 2 gas is used alone or HCl gas is applied. Is also possible. When HCl gas is applied, HCl gas plasma is generated as the source gas plasma, but the precursor generated by etching the metal member 11 is Cu x Cl y . Therefore, the source gas may be any gas containing chlorine, and a mixed gas of HCl gas and Cl 2 gas can also be used. In addition to chlorine, fluorine (F), bromine (Br), iodine (I), and the like can be applied as the halogen contained in the source gas.

又、金属部材11の材質も、銅(Cu)に限らず、ハロゲン化物形成金属、好ましくは塩化物形成金属であれば、銀(Ag)、金(Au)、白金(Pt)、タンタル(Ta)、チタン(Ti)、タングステン(W)等を用いることが可能である。この場合、前駆体はAg、Au、Pt、Ta、Ti、W等のハロゲン化物(塩化物)となり、基板3の表面に生成される薄膜はAg、Au、Pt、Ta、Ti、W等になる。
更に、金属部材11とノズル12との位置関係についても、必ずしも、金属部材11がノズル12の上方に位置する(図1参照)必要はなく、例えば、金属部材11をノズル12の下方に配置してもよい。
Further, the material of the metal member 11 is not limited to copper (Cu), but may be silver (Ag), gold (Au), platinum (Pt), tantalum (Ta) if it is a halide forming metal, preferably a chloride forming metal. ), Titanium (Ti), tungsten (W), or the like. In this case, the precursor is a halide (chloride) such as Ag, Au, Pt, Ta, Ti, W, and the thin film formed on the surface of the substrate 3 is Ag, Au, Pt, Ta, Ti, W, or the like. Become.
Furthermore, regarding the positional relationship between the metal member 11 and the nozzle 12, the metal member 11 does not necessarily have to be positioned above the nozzle 12 (see FIG. 1). For example, the metal member 11 is disposed below the nozzle 12. May be.

ここで、図2を用いて、支持台2の構成を説明する。
図2(a)は、側面方向の支持台2の構成を示す図であり、図2(b)は、上面方向の支持台2の構成を示す図である。
Here, the structure of the support base 2 is demonstrated using FIG.
2A is a diagram illustrating a configuration of the support base 2 in the side surface direction, and FIG. 2B is a diagram illustrating a configuration of the support base 2 in the top surface direction.

本実施例の金属膜作製装置において、支持台2の内部には、図2(a)、(b)に示すように、支持台2の周縁部近傍に、支持台2の高さ方向に沿って形成された複数の流路5a(第1流路)と、支持台2の中心に、支持台2の高さ方向に沿って形成された1つの流路5b(第2流路)と、支持台2の上面に平行に放射状に形成され、複数の流路5aと1つの流路5bとを連通させる複数の流路5c(第3流路)とが設けられており、冷媒供給装置6から供給される冷媒は、図2(a)の矢印で示す向きに流動される。つまり、支持台2の上面側において、支持台2の周縁部側の複数の流路5aから冷媒が流入され、流入された冷媒が、複数の流路5cを半径方向に中心に向かって流通され、そして、中央の1つの流路5bから流出される構成である。冷媒供給装置6から供給される冷媒は、冷媒供給装置にて、所定の温度に制御されて支持台2へ供給されるが、冷媒の流量、換言すれば、流路5a〜5cを通過する冷媒の単位時間当たりの冷媒量を、所定流量以下に設定しており、そのため、支持台2の上面側において、周縁部側の温度が低く、中央部の温度が高くなるような、半径方向に変化する温度分布を形成することが可能となる。   In the metal film manufacturing apparatus of the present embodiment, inside the support base 2, along the height direction of the support base 2, in the vicinity of the periphery of the support base 2, as shown in FIGS. A plurality of flow paths 5a (first flow paths) formed at the center of the support base 2 along the height direction of the support base 2, and a second flow path 5b (second flow path). A plurality of flow paths 5c (third flow paths) that are formed radially in parallel with the upper surface of the support base 2 and communicate with the plurality of flow paths 5a and one flow path 5b are provided. Is supplied in the direction indicated by the arrow in FIG. That is, on the upper surface side of the support base 2, the refrigerant flows in from the plurality of flow paths 5 a on the peripheral edge side of the support base 2, and the flowed refrigerant flows through the plurality of flow paths 5 c toward the center in the radial direction. And it is the composition which flows out from one central flow path 5b. The refrigerant supplied from the refrigerant supply device 6 is controlled to a predetermined temperature and supplied to the support 2 by the refrigerant supply device, but the refrigerant flows, in other words, the refrigerant that passes through the flow paths 5a to 5c. The amount of refrigerant per unit time is set to be equal to or less than a predetermined flow rate. Therefore, on the upper surface side of the support base 2, the temperature changes in the radial direction so that the temperature on the peripheral edge side is low and the temperature on the central part is high. It is possible to form a temperature distribution.

支持台2の内部に設けた流路5を上記構成とすることで、周縁部側の温度が低く、中央部の温度が高くなるような温度分布を支持台2の上面に付与することなり、その結果、吸着台4を介して保持される基板3にも、同様な温度分布を付与することができる。従って、基板3自体が、周縁部の温度が低く、中央部の温度が高くなるような温度分布を有するので、基板中央部での成膜の進行を抑制し、基板周縁部での成膜の進行を促進して、成膜の均一化をより向上させることができる。   By providing the flow path 5 provided inside the support base 2 with the above configuration, a temperature distribution is provided on the upper surface of the support base 2 such that the temperature at the peripheral edge side is low and the temperature at the center is high, As a result, a similar temperature distribution can be imparted to the substrate 3 held via the suction table 4. Therefore, since the substrate 3 itself has a temperature distribution such that the temperature at the peripheral portion is low and the temperature at the central portion is high, the progress of film formation at the central portion of the substrate is suppressed, and the film formation at the peripheral portion of the substrate is suppressed. The progress can be promoted to further improve the uniformity of the film formation.

上記構成の金属膜作製装置では、Cl2ガスを用いているため、反応効率が大幅に向上して成膜速度が速くなると共に、コストを大幅に減少させることができ、又、基板3を金属部材11よりも低い温度に制御しているため、塩素等の不純物の残留を少なくした高品質なCu薄膜17を生成することができる。そして、これらの利点に加えて、更に、図2に示すような構成により、基板面内の温度分布を制御しているため、均一性の優れた膜厚を成膜することができる。 In the metal film manufacturing apparatus having the above-described configuration, since Cl 2 gas is used, the reaction efficiency is greatly improved, the film formation speed is increased, the cost can be significantly reduced, and the substrate 3 is made of metal. Since the temperature is controlled to be lower than that of the member 11, a high-quality Cu thin film 17 with less residual impurities such as chlorine can be generated. In addition to these advantages, the temperature distribution in the substrate surface is controlled by the configuration as shown in FIG. 2, so that a film having excellent uniformity can be formed.

本実施例の金属膜作製装置は、実施例1において説明した図1の金属膜作製装置において、支持台2を図3に示す支持台20としたものである。従って、支持台20以外の構成は、実施例1と同等であるので、ここでは、支持台20の構成を説明する。
なお、図3は、上面方向の支持台2の構成を示す図である。
The metal film production apparatus of this example is the same as the metal film production apparatus of FIG. 1 described in Example 1, except that the support base 2 is a support base 20 shown in FIG. Therefore, since the configuration other than the support base 20 is the same as that of the first embodiment, the configuration of the support base 20 will be described here.
FIG. 3 is a diagram showing the configuration of the support base 2 in the upper surface direction.

本実施例の金属膜作製装置において、支持台20の内部には、支持台20の周縁部近傍に、支持台20の高さ方向に沿って形成された1つの流路21a(第1流路)と、支持台20の中心に、支持台20の高さ方向に沿って形成された1つの流路21b(第2流路)と、支持台20の上面に平行に渦巻状に形成され、1つの流路21aと1つの流路21bとを連通させる1つの流路21c(第3流路)とが設けられており、冷媒供給装置6から供給される冷媒は、図3の矢印で示す向きに流動される。つまり、支持台20の上面側において、支持台20の周縁部側の流路21aから冷媒が流入され、流入された冷媒が、渦巻状の流路21cを流路に沿って中心に向かって流通され、そして、中央の流路21bから流出される構成である。従って、実施例1の支持台2と同様に、支持台20の上面側において、周縁部側の温度が低く、中央部の温度が高くなるような、半径方向に変化する温度分布を形成することが可能となる。   In the metal film manufacturing apparatus of the present embodiment, one flow path 21 a (first flow path) formed in the vicinity of the periphery of the support base 20 along the height direction of the support base 20 in the support base 20. ), One flow path 21b (second flow path) formed in the center of the support base 20 along the height direction of the support base 20, and a spiral shape parallel to the upper surface of the support base 20, One flow path 21c (third flow path) that connects one flow path 21a and one flow path 21b is provided, and the refrigerant supplied from the refrigerant supply device 6 is indicated by an arrow in FIG. Flowed in the direction. That is, on the upper surface side of the support base 20, the refrigerant flows in from the flow path 21a on the peripheral edge side of the support base 20, and the flowed refrigerant flows through the spiral flow path 21c toward the center along the flow path. And is discharged from the central flow path 21b. Therefore, similarly to the support base 2 of the first embodiment, a temperature distribution that varies in the radial direction is formed on the upper surface side of the support base 20 such that the temperature on the peripheral edge side is low and the temperature on the central part is high. Is possible.

支持台20の内部に設けた流路21を上記構成とすることで、周縁部側の温度が低く、中央部の温度が高くなるような温度分布を支持台20の上面に付与することなり、その結果、吸着台4を介して保持される基板3にも、同様な温度分布を付与することができる。従って、基板3自体が、周縁部の温度が低く、中央部の温度が高くなるような温度分布を有するので、基板中央部での成膜の進行を抑制し、基板周縁部での成膜の進行を促進して、成膜の均一化をより向上させることができる。   By providing the flow path 21 provided inside the support table 20 with the above-described configuration, a temperature distribution is provided on the upper surface of the support table 20 such that the temperature at the peripheral edge side is low and the temperature at the center is high, As a result, a similar temperature distribution can be imparted to the substrate 3 held via the suction table 4. Therefore, since the substrate 3 itself has a temperature distribution such that the temperature at the peripheral portion is low and the temperature at the central portion is high, the progress of film formation at the central portion of the substrate is suppressed, and the film formation at the peripheral portion of the substrate is suppressed. The progress can be promoted to further improve the uniformity of the film formation.

なお、本実施例では、流入側の流路21aを1つだけ設けているが、実施例1と同様に、流入側の流路を複数設けるようにしてもよい。   In the present embodiment, only one inflow channel 21a is provided, but a plurality of inflow channels may be provided as in the first embodiment.

本実施例(参考実施例)の金属膜作製装置は、図1の金属膜作製装置において、吸着台4を図4に示す構成としたものである。従って、吸着台4以外の構成は、実施例1と同等であるので、ここでは、吸着台4の構成を説明する。 The metal film production apparatus of the present example (reference example) is the same as the metal film production apparatus of FIG. Therefore, since the configuration other than the suction table 4 is the same as that of the first embodiment, the configuration of the suction table 4 will be described here.

本実施例の金属膜作製装置において、吸着台4には、図4に示すように、基板3と接する吸着台4上面の中央部に、深さの浅い凹部4aを設けたものである。上面から見た凹部4aの形状は矩形でもよいが、望ましくは円形がよい。吸着台4上面の中央部に凹部4aを設けることで、中央部において、吸着台4と基板3との間に間隙を設けることになる。   In the metal film manufacturing apparatus of the present embodiment, the suction table 4 is provided with a concave portion 4a having a shallow depth at the center of the upper surface of the suction table 4 in contact with the substrate 3, as shown in FIG. The shape of the concave portion 4a viewed from the top surface may be a rectangle, but preferably a circle. By providing the concave portion 4 a at the center of the upper surface of the suction table 4, a gap is provided between the suction table 4 and the substrate 3 at the center.

基板3は、吸着台4を介して支持台2により冷却されており、通常、吸着台4は、支持台2による基板3の冷却効率を向上させるために、吸着台4へ基板3を密着させて、接触性を向上させることで、基板3との熱伝導性を向上させている。ところが、本実施例においては、吸着台4に凹部4aを設けることにより、基板3と吸着台4との間に間隙が形成され、基板3の中央部における熱伝導性が低下することになる。   The substrate 3 is cooled by the support table 2 via the suction table 4. Normally, the suction table 4 brings the substrate 3 into close contact with the suction table 4 in order to improve the cooling efficiency of the substrate 3 by the support table 2. Thus, the thermal conductivity with the substrate 3 is improved by improving the contact property. However, in the present embodiment, by providing the suction table 4 with the recess 4a, a gap is formed between the substrate 3 and the suction table 4, and the thermal conductivity at the center of the substrate 3 is lowered.

吸着台4に中央部に凹部4aを設けた構成とすることで、基板3の中央部での冷却効率を抑制して、周縁部側の温度が低く、中央部の温度が高くなるような温度分布を基板3に付与することなり、その結果、基板中央部での成膜の進行を抑制し、基板周縁部での成膜の進行を促進して、成膜の均一化をより向上させることができる。   By adopting a configuration in which the suction table 4 is provided with the recess 4a at the center, the cooling efficiency at the center of the substrate 3 is suppressed, and the temperature at the peripheral side is low and the temperature at the center is high. The distribution is given to the substrate 3, and as a result, the progress of the film formation at the center of the substrate is suppressed, the progress of the film formation at the peripheral edge of the substrate is promoted, and the uniformity of the film formation is further improved. Can do.

本実施例(参考実施例)の金属膜作製装置も、図1の金属膜作製装置において、吸着台4を図5に示す構成としたものである。従って、吸着台4以外の構成は、実施例1と同等であるので、ここでも、吸着台4の構成を説明する。 The metal film production apparatus of the present example (reference example) also has a configuration in which the adsorption table 4 is configured as shown in FIG. 5 in the metal film production apparatus of FIG. Therefore, since the configuration other than the suction table 4 is the same as that of the first embodiment, the configuration of the suction table 4 will also be described here.

本実施例の金属膜作製装置において、吸着台4には、図5に示すように、基板3と接する吸着台4上面の中央部に、表面粗さが周縁部より粗い粗面部4bが設けられている。粗面部4bの形状も矩形でもよいが、望ましくは円形がよい。吸着台4上面の中央部に粗面部4bを設けることで、中央部において、吸着台4と基板3との間に間隙を設けることになる。従って、吸着台4に粗面部4bを設けることにより、実施例3と同様に、基板3と吸着台4との密着性が低下し、基板3の中央部における熱伝導性が低下することになる。   In the metal film manufacturing apparatus of the present embodiment, the suction table 4 is provided with a rough surface portion 4b having a surface roughness rougher than that of the peripheral portion at the center of the upper surface of the suction table 4 in contact with the substrate 3, as shown in FIG. ing. The rough surface portion 4b may have a rectangular shape, but preferably has a circular shape. By providing the rough surface portion 4b at the center of the upper surface of the suction table 4, a gap is provided between the suction table 4 and the substrate 3 at the center. Accordingly, by providing the suction surface 4 with the rough surface portion 4b, the adhesion between the substrate 3 and the suction table 4 is reduced, and the thermal conductivity at the center of the substrate 3 is reduced, as in the third embodiment. .

吸着台4に粗面部4bを設けた構成とすることで、基板3の中央部での冷却効率を抑制して、周縁部側の温度が低く、中央部の温度が高くなるような温度分布を基板3に付与することなり、その結果、基板中央部での成膜の進行を抑制し、基板周縁部での成膜の進行を促進して、成膜の均一化をより向上させることができる。   By adopting a structure in which the suction table 4 is provided with the rough surface portion 4b, the cooling efficiency at the central portion of the substrate 3 is suppressed, and the temperature distribution is such that the temperature on the peripheral portion side is low and the temperature on the central portion is high. As a result, it is possible to suppress the progress of film formation at the central portion of the substrate, promote the progress of film formation at the peripheral edge of the substrate, and further improve the uniformity of the film formation. .

通常、吸着台4の表面の粗さは、Ra=0.2μm程度に加工されるが、本実施例では、発明者等の知見によると、粗面部4bの表面粗さを、Ra=0.6〜1.0μm程度に加工した場合、所望の結果を得ることができた。   Normally, the surface roughness of the adsorption table 4 is processed to Ra = 0.2 μm. However, in this embodiment, according to the knowledge of the inventors, the surface roughness of the rough surface portion 4b is set to Ra = 0. When processed to about 6 to 1.0 μm, desired results could be obtained.

なお、吸着台4の表面粗さは、中央部から周縁部への半径方向に、段階的に、粗から密へ変化するように形成するようにしてもよい。   In addition, you may make it form the surface roughness of the adsorption stand 4 so that it may change from coarse to dense stepwise in the radial direction from the center part to the peripheral part.

又、上述した実施例3、4において、吸着台4下部の支持台としては、実施例1の支持台2、実施例2の支持台20のいずれのものを用いてもよいし、又、上面に温度分布を持たない従来の支持台を用いてもよい。   In the third and fourth embodiments described above, any of the support table 2 of the first embodiment and the support table 20 of the second embodiment may be used as the support table at the lower part of the suction table 4, or the upper surface thereof. Alternatively, a conventional support base having no temperature distribution may be used.

上記実施例1〜4においては、基板の面内の温度分布を適切に設定することで、成膜の均一性を向上させるものであるが、本実施例を含め、下記実施例6〜8では、成膜反応に用いられる反応種の流れを適切に設定できる構成とすることで、成膜の均一性を向上させるものである。   In the above Examples 1 to 4, the temperature distribution in the surface of the substrate is appropriately set to improve the uniformity of film formation. However, in Examples 6 to 8 below, including this example, By adopting a configuration in which the flow of reactive species used for the film formation reaction can be appropriately set, the film formation uniformity is improved.

そこで、本実施例の金属膜作製装置を図6を用いて説明を行う。
なお、本実施例の金属膜作製装置を含め、下記実施例6〜8の金属膜作製装置は、図1の金属膜作製装置と略同等の構成であるので、重複する説明は省略して、相違する構成について説明をおこなう。
Therefore, the metal film manufacturing apparatus of this embodiment will be described with reference to FIG.
In addition, since the metal film production apparatus of the following Examples 6-8 including the metal film production apparatus of a present Example is a structure substantially the same as the metal film production apparatus of FIG. 1, the overlapping description is abbreviate | omitted, A different configuration will be described.

本実施例(参考実施例)の金属膜作製装置は、基板3の下部中央、具体的には、支持台2の内部の中央部分に、LFアンテナ31(電磁場生成手段)を設けた点が、図1に示した金属膜作製装置と異なる構成である。LFアンテナ31には、図示しない整合器及び電源が接続されており、LFアンテナ31に低周波(LF)を給電することで、基板3の中央部の上方の空間に、略円錐状の電界分布となる電磁場32が形成される。通常、プラズマアンテナ8には、GHzレベルの高周波(RF)が給電されるが、これに対して、LFアンテナ31には、より低周波、例えば、MHz〜KHzレベルの周波数が給電される。 The metal film production apparatus of the present example (reference example) is that the LF antenna 31 (electromagnetic field generating means) is provided at the lower center of the substrate 3, specifically, at the central part inside the support base 2. The configuration is different from that of the metal film manufacturing apparatus shown in FIG. A matching unit and a power source (not shown) are connected to the LF antenna 31, and by supplying a low frequency (LF) to the LF antenna 31, a substantially conical electric field distribution is formed in the space above the center of the substrate 3. An electromagnetic field 32 is formed. Usually, the plasma antenna 8 is fed with a high frequency (RF) of GHz level, whereas the LF antenna 31 is fed with a lower frequency, for example, a frequency of MHz to KHz level.

上記構成を用いて、基板3の中央部の上方の空間に電磁場32を形成すると、成膜反応に用いられる反応種33(例えば、CuCl、Clのイオン等)は、形成された電磁場32の外周に沿って周囲に分散され、基板3の周縁部への流れがより強くなる。この結果、基板周縁部での成膜反応を多くし、基板周縁部での薄膜化を抑制して、成膜の均一性を向上させることができる。   When the electromagnetic field 32 is formed in the space above the central portion of the substrate 3 using the above configuration, the reactive species 33 (for example, CuCl, Cl ions, etc.) used for the film formation reaction are generated on the outer periphery of the formed electromagnetic field 32. And the flow to the periphery of the substrate 3 becomes stronger. As a result, it is possible to increase the film formation reaction at the peripheral edge of the substrate, suppress the thinning at the peripheral edge of the substrate, and improve the uniformity of the film formation.

なお、LFアンテナ31の形状としては、形成する電磁場32の形状を考慮して、適切なものが設定される。又、成膜に用いられる反応種33によって、LFアンテナ31の形状、給電する周波数、パワー等が最適に設定される。   As the shape of the LF antenna 31, an appropriate one is set in consideration of the shape of the electromagnetic field 32 to be formed. In addition, the shape of the LF antenna 31, the feeding frequency, power, and the like are optimally set depending on the reactive species 33 used for film formation.

図7に示す本実施例(参考実施例)の金属膜作製装置も、実施例5と同様に、成膜の均一性を向上させるため、成膜反応に用いられる反応種の流れを適切に設定できる構成としたものであるが、その具体的構成が、実施例5とは大きく相違するものである。 The metal film production apparatus of this example (reference example) shown in FIG. 7 also sets the flow of reactive species used for the film formation reaction appropriately in order to improve the film formation uniformity as in Example 5. The specific configuration is significantly different from that of the fifth embodiment.

具体的には、図7に示すように、基板3の周囲、詳細には、吸着台4の周囲に、基板3の周囲を囲う絶縁材料製(例えば、セラミクス等)のリング状のリング部材41を設けたものである。   Specifically, as shown in FIG. 7, a ring-shaped ring member 41 made of an insulating material (for example, ceramics or the like) surrounding the periphery of the substrate 3 around the substrate 3, specifically, around the suction table 4. Is provided.

上記構成とすると、リング部材41により基板3の周縁部に、反応種33の流れの淀みが発生し、基板3の周縁部における反応種33の流速を低下させることになる。この結果、基板3の周縁部での反応種33の滞留時間が長くなり、基板周縁部での成膜反応を多くし、基板周縁部での薄膜化を抑制して、成膜の均一性を向上させることができる。   With the above configuration, the ring member 41 causes the stagnation of the flow of the reactive species 33 at the peripheral portion of the substrate 3, thereby reducing the flow rate of the reactive species 33 at the peripheral portion of the substrate 3. As a result, the residence time of the reactive species 33 at the peripheral edge of the substrate 3 is lengthened, the film forming reaction at the peripheral edge of the substrate is increased, the thinning at the peripheral edge of the substrate is suppressed, and the film formation uniformity is improved. Can be improved.

図8に示す本実施例(参考実施例)の金属膜作製装置は、実施例6の金属膜作製装置と略同等の構成のものであり、実施例6と同様に、基板3周縁部の反応種33の滞留時間を長くすることにより、基板3周縁部での薄膜化を抑制して、成膜の均一性を向上させるものである。実施例6の場合には、反応種33の滞留時間が長くなり過ぎると、逆に、基板3周縁部での膜厚が厚くなりすぎる可能性があるため、それを適切に制御しようとした構成が本実施例に示したものである。 The metal film production apparatus of this example (reference example) shown in FIG. 8 has a configuration substantially the same as that of the metal film production apparatus of Example 6, and the reaction at the peripheral edge of the substrate 3 is similar to Example 6. By increasing the residence time of the seed 33, the film thickness at the periphery of the substrate 3 is suppressed and the uniformity of film formation is improved. In the case of Example 6, if the residence time of the reactive species 33 becomes too long, on the contrary, the film thickness at the peripheral edge of the substrate 3 may become too thick. Is shown in this example.

具体的には、図8に示すように、基板3の周囲、詳細には、吸着台4の周囲に、基板3の周囲を囲う絶縁材料製(例えば、セラミクス等)のリング状の多孔リング部材42を設け、多孔リング部材42を貫通するように形成された複数の貫通孔42aにより、反応種33が滞留しすぎないように、多孔リング部材42の外側に、反応種33の流れを導くようにしたものである。 Specifically, as shown in FIG. 8, a ring-shaped porous ring member made of an insulating material (for example, ceramics) surrounding the substrate 3 around the substrate 3, specifically, around the adsorption table 4. 4 2 is provided by a plurality of through holes 42a formed so as to penetrate the porous ring member 42, as reactive species 33 is not too stays, on the outside of the porous ring member 42, directing the flow of reactive species 33 It is what I did.

上記構成とすると、多孔リング部材42により基板3の周縁部に、反応種33の流れの淀みが発生するが、貫通孔42aにより反応種の流れに対する流動抵抗が適切に調整されて、過剰な反応種33は貫通孔42aを通過して、多孔リング部材42の外側へ流れ出し、基板3の周縁部における反応種33の流速を適切に低下させることになる。この結果、基板3の周縁部での反応種33の滞留時間が適切な長さとなり、基板周縁部での成膜反応を適切にし、基板周縁部での薄膜化を抑制して、成膜の均一性を向上させることができる。   With the above configuration, the stagnation of the flow of the reactive species 33 is generated at the peripheral edge of the substrate 3 by the porous ring member 42, but the flow resistance against the flow of the reactive species is appropriately adjusted by the through-hole 42a, and excessive reaction occurs. The seed 33 passes through the through hole 42 a and flows out to the outside of the porous ring member 42, and appropriately reduces the flow rate of the reactive seed 33 at the peripheral edge of the substrate 3. As a result, the residence time of the reactive species 33 at the peripheral portion of the substrate 3 becomes an appropriate length, the film forming reaction at the peripheral portion of the substrate is made appropriate, and the thinning at the peripheral portion of the substrate is suppressed, so Uniformity can be improved.

図9に示す本実施例(参考実施例)の金属膜作製装置も、実施例6、7と同様に、成膜の均一性を向上させるため、成膜反応に用いられる反応種の流れを適切に設定できる構成としたものであるが、本実施例では、基板全面における反応種の滞留時間を同等とすることに着目しており、その具体的構成が、実施例実施例6、7とは大きく相違するものである。 The metal film production apparatus of this example (reference example) shown in FIG. 9 also has an appropriate flow of reaction species used for the film formation reaction in order to improve the film formation uniformity as in the case of Examples 6 and 7. However, in this embodiment, attention is focused on equalizing the residence time of the reactive species on the entire surface of the substrate, and the specific configuration is different from those in Embodiments 6 and 7. It is a big difference.

具体的には、金属部材11の下方側であり、基板3の上方側に、基板3と平行に、複数の貫通孔43aが設けられた絶縁材料製(例えば、セラミクス等)の円盤状の流量分配板43を設けている。又、複数の貫通孔43aは、中央部で、その開口面積が大きく、周縁部で、その開口面積が小さくなるように形成されている。   Specifically, a disk-shaped flow rate made of an insulating material (for example, ceramics) provided with a plurality of through holes 43a on the lower side of the metal member 11 and on the upper side of the substrate 3 in parallel with the substrate 3. A distribution plate 43 is provided. The plurality of through-holes 43a are formed so that the opening area is large at the central part and the opening area is small at the peripheral part.

上記構成とすると、基板3上方の中央部においては、反応種33の流れを多く分配して、基板3の表面に沿った反応種33の流速の周方向変化を低減することができる。この結果、基板3の表面上を、その中央部から周縁部に流れる反応種33の滞留時間が、基板3の半径方向で同等となり、基板3の表面全面において、成膜反応の量を同等にして、成膜の均一性を向上させることができる。   With the above configuration, in the central portion above the substrate 3, the flow of the reactive species 33 can be distributed in a large amount, and the change in the circumferential direction of the flow velocity of the reactive species 33 along the surface of the substrate 3 can be reduced. As a result, the residence time of the reactive species 33 flowing from the central part to the peripheral part on the surface of the substrate 3 is equal in the radial direction of the substrate 3, and the amount of film formation reaction is equalized on the entire surface of the substrate 3. Thus, the uniformity of film formation can be improved.

なお、流量分配板43は、反応種33が付着しないように、金属部材11と同等の温度、若しくは、少なくとも、基板3より高い温度に制御されている。但し、このような条件であっても、反応種33が付着する可能性はあるため、定期的にクリーニングを行うことが望ましい。   The flow distribution plate 43 is controlled to a temperature equivalent to that of the metal member 11 or at least higher than that of the substrate 3 so that the reactive species 33 do not adhere. However, even under such conditions, there is a possibility that the reactive species 33 may adhere, so it is desirable to perform cleaning periodically.

本発明は、主に、塩素化金属還元法を用いて、金属膜を形成する際に適用されるものであるが、必ずしも、塩素化金属還元法だけに限定されるものではなく、他の成膜方法、例えば、CVD法、PVD法等にも適用可能なものである。   The present invention is mainly applied when a metal film is formed by using a chlorinated metal reduction method, but is not necessarily limited to the chlorinated metal reduction method. The present invention can also be applied to a film method such as a CVD method or a PVD method.

本発明に係る金属膜作装置の実施形態の一例(実施例1)を示す概略図である。It is a schematic diagram illustrating an example (Example 1) of an embodiment of the metal film works made device according to the present invention. 図1に示した支持台の構成を示す図である。It is a figure which shows the structure of the support stand shown in FIG. 本発明に係る金属膜作装置の実施形態の他の一例(実施例2)を示す図である。Another example of embodiment of the metal film works made device according to the present invention (Example 2) shows. 本発明に係る金属膜作装置の実施形態の他の一例(実施例3)を示す図である。Another example of embodiment of the metal film works made device according to the present invention (Example 3) shows. 本発明に係る金属膜作装置の実施形態の他の一例(実施例4)を示す図である。Another example of embodiment of the metal film works made device according to the present invention (Example 4) shows. 本発明に係る金属膜作装置の実施形態の他の一例(実施例5)を示す図である。It is a diagram illustrating another example embodiment of the metal film works made device according to the present invention (Example 5). 本発明に係る金属膜作装置の実施形態の他の一例(実施例6)を示す図である。It is a diagram illustrating another example embodiment of the metal film works made device according to the present invention (Example 6). 本発明に係る金属膜作装置の実施形態の他の一例(実施例7)を示す図である。It is a diagram illustrating another example embodiment of the metal film works made device according to the present invention (Example 7). 本発明に係る金属膜作装置の実施形態の他の一例(実施例8)を示す図である。It is a diagram illustrating another example embodiment of the metal film works made device according to the present invention (Example 8).

1 チャンバ
2 支持台
3 基板
3a 凹部
3b 粗面部
4 吸着台
5(5a、5b、5c) 流路
6 冷媒供給装置
7 天井板
8 プラズマアンテナ
9 整合器
10 電源
11 金属部材
12 ノズル
13 流量制御器
14 制御装置
15 プラズマガス
16 前駆体
17 金属膜
18 排気口
21(21a、21b、21c) 流路
31 LFアンテナ
32 電磁場
41 リング部材
42 多孔リング部材
43 流量分配板
DESCRIPTION OF SYMBOLS 1 Chamber 2 Support stand 3 Substrate 3a Concave part 3b Rough surface part 4 Adsorption stand 5 (5a, 5b, 5c) Flow path 6 Refrigerant supply device 7 Ceiling plate 8 Plasma antenna 9 Matching device 10 Power supply 11 Metal member 12 Nozzle 13 Flow controller 14 Control device 15 Plasma gas 16 Precursor 17 Metal film 18 Exhaust port 21 (21a, 21b, 21c) Flow path 31 LF antenna 32 Electromagnetic field 41 Ring member 42 Porous ring member 43 Flow distribution plate

Claims (3)

チャンバと、
前記チャンバの底部に設けられ、内部に流路が形成された支持台と、
前記支持台上に固着され、基板が吸着される吸着台と、
前記支持台の流路に接続され、前記流路に所定温度に制御された冷媒を供給する冷媒供給手段と、
前記チャンバの上方に設けられ、前記基板に対向して設けられた金属部材と、
前記金属部材の近傍に、ハロゲンを含有する原料ガスを供給する原料ガス供給手段と、
前記チャンバ内部に供給された前記原料ガスのプラズマを発生させて、前記ハロゲンのラジカルを生成すると共に、前記金属部材をエッチングして、前記金属部材に含まれる金属成分と前記ハロゲンからなる前駆体を生成するプラズマ発生手段とを備え、
前記支持台の流路は、前記支持台の周縁部に設けた複数の第1流路と、前記支持台の中心に設けた1つの第2流路と、前記支持台の上面に平行に放射状に形成され、前記複数の第1流路と前記1つの第2流路とを連通する複数の第3流路とを有し、
前記冷媒供給手段から供給される冷媒が、前記複数の第1流路から前記複数の第3流路を経て、前記1つの第2流路へ流通されることを特徴とする金属膜作製装置。
A chamber;
A support provided at the bottom of the chamber and having a flow path formed therein;
A suction stand fixed on the support base, on which the substrate is sucked;
Refrigerant supply means connected to the flow path of the support base and supplying a refrigerant controlled to a predetermined temperature to the flow path;
A metal member provided above the chamber and facing the substrate;
A source gas supply means for supplying a source gas containing halogen in the vicinity of the metal member;
Plasma of the source gas supplied into the chamber is generated to generate the radicals of the halogen, and the metal member is etched to form a precursor composed of the metal component contained in the metal member and the halogen. Plasma generating means for generating,
The flow path of the support base is a plurality of first flow paths provided at the peripheral edge of the support base, one second flow path provided at the center of the support base, and a radial shape parallel to the upper surface of the support base. A plurality of third channels that communicate with the plurality of first channels and the one second channel,
The metal film manufacturing apparatus, wherein the refrigerant supplied from the refrigerant supply means is circulated from the plurality of first flow paths to the one second flow path through the plurality of third flow paths.
チャンバと、
前記チャンバの底部に設けられ、内部に流路が形成された支持台と、
前記支持台上に固着され、基板が吸着される吸着台と、
前記支持台の流路に接続され、前記流路に所定温度に制御された冷媒を供給する冷媒供給手段と、
前記チャンバの上方に設けられ、前記基板に対向して設けられた金属部材と、
前記金属部材の近傍に、ハロゲンを含有する原料ガスを供給する原料ガス供給手段と、
前記チャンバ内部に供給された前記原料ガスのプラズマを発生させて、前記ハロゲンのラジカルを生成すると共に、前記金属部材をエッチングして、前記金属部材に含まれる金属成分と前記ハロゲンからなる前駆体を生成するプラズマ発生手段とを備え、
前記支持台の流路は、前記支持台の周縁部に設けた1つ又は複数の第1流路と、前記支持台の中心に設けた1つの第2流路と、前記支持台の上面に平行に渦巻状に形成され、前記1つ又は複数の第1流路と前記1つの第2流路とを連通する1つ又は複数の第3流路とを有し、
前記冷媒供給手段から供給される冷媒が、前記1つ又は複数の第1流路から前記1つ又は複数の第3流路を経て、前記1つの第2流路へ流通されることを特徴とする金属膜作製装置。
A chamber;
A support provided at the bottom of the chamber and having a flow path formed therein;
A suction stand fixed on the support base, on which the substrate is sucked;
Refrigerant supply means connected to the flow path of the support base and supplying a refrigerant controlled to a predetermined temperature to the flow path;
A metal member provided above the chamber and facing the substrate;
A source gas supply means for supplying a source gas containing halogen in the vicinity of the metal member;
Plasma of the source gas supplied into the chamber is generated to generate the radicals of the halogen, and the metal member is etched to form a precursor composed of the metal component contained in the metal member and the halogen. Plasma generating means for generating,
The flow path of the support base includes one or a plurality of first flow paths provided at a peripheral portion of the support base, one second flow path provided at the center of the support base, and an upper surface of the support base. One or more third flow paths that are formed in a spiral shape in parallel and communicate with the one or more first flow paths and the one second flow path;
The refrigerant supplied from the refrigerant supply means is circulated from the one or more first flow paths to the one second flow path through the one or more third flow paths. Metal film manufacturing equipment.
チャンバに基板を設置し、
前記チャンバ内に配設された金属部材の近傍に、ハロゲンを含有する原料ガスを供給すると共に、前記原料ガスのプラズマを発生させて、前記ハロゲンのラジカルを生成し、
前記ハロゲンのラジカルにより、前記金属部材をエッチングして、前記金属部材に含まれる金属成分と前記ハロゲンからなる前駆体を生成し、
前記金属部材より低い温度に前記基板を制御すると共に、前記基板を吸着する吸着台が固着された支持台の内部を流通する冷媒を、前記支持台の上面近傍で、前記支持台の外周側から前記支持台の中心へ流通させて、前記基板の面内の温度分布を、周縁部で低く、中央部で高くし、
前記基板に前記前駆体を吸着させると共に、吸着された前記前駆体を前記ハロゲンのラジカルにより還元して、金属膜を作製することを特徴とする金属膜作製方法。
Place the substrate in the chamber,
In the vicinity of the metal member disposed in the chamber, a source gas containing halogen is supplied, and plasma of the source gas is generated to generate radicals of the halogen,
Etching the metal member with the halogen radicals to produce a precursor comprising the metal component and the halogen contained in the metal member;
The substrate is controlled to a temperature lower than that of the metal member, and the refrigerant flowing through the inside of the support table to which the adsorption table for adsorbing the substrate is fixed is passed from the outer peripheral side of the support table in the vicinity of the upper surface of the support table. The temperature distribution in the surface of the substrate is made low at the peripheral part and high at the central part by circulating to the center of the support base ,
A method for producing a metal film, comprising: adsorbing the precursor to the substrate; and reducing the adsorbed precursor with the radical of the halogen to produce a metal film.
JP2004349285A 2004-12-02 2004-12-02 Metal film production apparatus and metal film production method Expired - Fee Related JP4317120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349285A JP4317120B2 (en) 2004-12-02 2004-12-02 Metal film production apparatus and metal film production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349285A JP4317120B2 (en) 2004-12-02 2004-12-02 Metal film production apparatus and metal film production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009068220A Division JP2009191365A (en) 2009-03-19 2009-03-19 Metal film production device, and metal film production method

Publications (2)

Publication Number Publication Date
JP2006161060A JP2006161060A (en) 2006-06-22
JP4317120B2 true JP4317120B2 (en) 2009-08-19

Family

ID=36663414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349285A Expired - Fee Related JP4317120B2 (en) 2004-12-02 2004-12-02 Metal film production apparatus and metal film production method

Country Status (1)

Country Link
JP (1) JP4317120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065772B2 (en) * 2007-06-08 2012-11-07 株式会社神戸製鋼所 Plasma processing apparatus member and manufacturing method thereof
JP5044353B2 (en) * 2007-10-10 2012-10-10 株式会社テラミクロス Manufacturing method of semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228476A (en) * 1989-02-28 1990-09-11 Sumitomo Metal Ind Ltd Plasma processing device
JP2726005B2 (en) * 1994-07-20 1998-03-11 株式会社ジーティシー Film forming apparatus and film forming method
JP3742349B2 (en) * 2002-02-15 2006-02-01 株式会社日立製作所 Plasma processing equipment
JP2003239074A (en) * 2002-02-19 2003-08-27 Mitsubishi Heavy Ind Ltd Wafer supporting device, and metal film manufacturing apparatus

Also Published As

Publication number Publication date
JP2006161060A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
TWI670783B (en) Methods and systems to enhance process uniformity
JP5274229B2 (en) Plasma CVD apparatus and method
TWI430356B (en) Apparatus for the removal of a metal oxide from a substrate and methods therefor
US7588799B2 (en) Metal film production apparatus
US20090285998A1 (en) Plasma processing apparatus, electrode plate for plasma processing apparatus, and electrode plate manufacturing method
JP2010258428A (en) Plasma processing apparatus and plasma processing method
JP2021128956A (en) Mounting table, plasma processing device, and cleaning processing method
JP4317120B2 (en) Metal film production apparatus and metal film production method
JP2009191365A (en) Metal film production device, and metal film production method
JPWO2010079753A1 (en) Plasma processing equipment
JP3771865B2 (en) Metal film production apparatus and metal film production method
JP3692326B2 (en) Metal film production apparatus and metal film production method
JP2008081757A (en) Treatment apparatus
JP4317156B2 (en) Metal film production equipment
JP3771864B2 (en) Metal film production apparatus and metal film production method
JP4387333B2 (en) Vacuum processing equipment
JP4411249B2 (en) Processing member processing apparatus and processing member processing method
JP4374332B2 (en) Thin film production apparatus and thin film production method
JP2008081755A (en) Treatment apparatus and treatment method
JP3910957B2 (en) Metal film production apparatus and metal film production method
JP3649687B2 (en) Metal film production apparatus and metal film production method
JP2009174057A (en) Device and method for producing metallic film
JP4350686B2 (en) Method and apparatus for producing metal nitride film
JP3900496B2 (en) Metal film manufacturing method and metal film manufacturing apparatus
JP4434092B2 (en) Method for manufacturing capacitor structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061030

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081125

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20081216

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees