JP4317006B2 - Light diffusion film having controlled scattering characteristics, optical element using the same, and liquid crystal display device - Google Patents

Light diffusion film having controlled scattering characteristics, optical element using the same, and liquid crystal display device Download PDF

Info

Publication number
JP4317006B2
JP4317006B2 JP2003500607A JP2003500607A JP4317006B2 JP 4317006 B2 JP4317006 B2 JP 4317006B2 JP 2003500607 A JP2003500607 A JP 2003500607A JP 2003500607 A JP2003500607 A JP 2003500607A JP 4317006 B2 JP4317006 B2 JP 4317006B2
Authority
JP
Japan
Prior art keywords
film
light
liquid crystal
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003500607A
Other languages
Japanese (ja)
Other versions
JPWO2002097483A1 (en
Inventor
隆正 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Publication of JPWO2002097483A1 publication Critical patent/JPWO2002097483A1/en
Application granted granted Critical
Publication of JP4317006B2 publication Critical patent/JP4317006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Description

【0001】
発明の技術分野
本発明は制御された散乱特性を有する光拡散フィルムおよびそれを用いた光学素子および液晶表示装置に関する。
【0002】
背景技術
反射型の液晶表示装置あるいは半透過型の液晶表示装置では、一般に、入射光が液晶層を透過し反射膜で反射され再び液晶層を透過して視者の目に表示画像が入る際に、液晶層の表面に及び/又は液晶層と反射膜の間に光散乱フィルムを配置して光を散乱させることにより、広い視野角で画像の視認を可能にしている。光散乱はまた光拡散とも言われる。
【0003】
光散乱を得る方法としては、例えば、プラスチックフィルムに透明微粒子を分散含有させて光を散乱させる方法や、プラスチックフィルムの表面を粗面化して光を散乱させる方法が代表的である。
【0004】
また、複屈折特性が異なる微小領域を分散分布させてなる複屈折フィルムの重畳体からなり、複屈折性フィルムを微小領域との屈折率差を利用して、光を散乱させる方法が提案されている(特開平11−174211号公報)。
【0005】
高分子フィルム中に同じ高分子からなる微小結晶領域が分散分布してなり、その微小領域と他部分との屈折率が相違して光散乱性を示すフィルムも提案されている(特開平11−326610号公報、特開2000−266936号公報、特開2000−275437号公報など)。
【0006】
しかしながら、上記のような光散乱方法は、いずれも基本的に光を等方的に散乱させるものであるので、バックライトを用いない反射式液晶画面では画像が暗くなる欠点がある。
【0007】
これに対して、高分子フィルム中に屈折率の高い領域をフィルムの厚さ方向に円柱状に多数形成した光拡散フィルムが販売されている。この拡散フィルムによれば、一方向の散乱と逆方向の透過性を両立させ、また選択的な視野角/拡散性能も実現できると謳われている。
【0008】
確かにこの拡散フィルムによれば、等方散乱タイプの従来の散乱フィルムなどと比べて、特定の視野角において相対的に明るい画像を得ることができる。
【0009】
しかしながら、携帯電話などのように入射光の少ないところでも使用される液晶表示装置では、特に反射型あるいは半透過型液晶表示装置においてさらに高い明度の画像が望まれる。
【0010】
本発明はこのような従来技術の課題を解決せんとするものであり、従来以上に視野角においてより明るい画像を提供するような選択的光拡散性、さらには集光性を有する光拡散フィルム、それを用いた光学フィルムおよび液晶表示装置を提供することを目的とするものである。
【0011】
発明の開示
本発明は、上記の目的を達成するために、下記を提供する。
(1)光を散乱透過させる屈折率の異なる二相からなる光拡散フィルムにおいて、屈折率の大きい一相がフィルムの厚さ方向に延在する柱状構造を有し円筒レンズとして機能する多数の領域を含み、前記多数の領域は柱状構造の横断面形状が長尺状の領域を含み、前記長尺状領域の前記横断面の長軸および短軸の平均アスペクト比が1.5:1〜5:1の範囲内であり、かつ前記長尺状領域がフィルムの特定方向に配向していることを特徴とする光拡散フィルム。
(2)前記多数の領域は柱状構造の軸線が互に平行であり、かつその軸線がフィルムの法線方向に対して傾斜している(1)に記載の光拡散フィルム。
(3)前記多数の領域は柱状構造の軸線がフィルムの法線方向である(1)に記載の光拡散フィルム。
(4)前記フィルムの屈折率の異なる二相の屈折率の差が0.005〜0.2の範囲内である(1)〜(3)のいずれかに記載の光拡散フィルム。
(5)前記フィルムが感光性を有する高分子材料から製造されたものである(1)〜(4)のいずれかに記載の光拡散フィルム。
(6)(1)〜(5)のいずれかに記載の光拡散フィルムを用いたことを特徴をする光学素子。
(7)(6)に記載の光学素子を用いたことを特徴とする液晶表示装置。
(8)光拡散フィルムの前記領域の横断面の前記長軸方向が液晶表示装置の視点方向から見て左右方向になるように、光拡散フィルムが配置されている(7)に記載の液晶表示装置。
(9)光拡散フィルムの前記領域の柱状構造の軸線方向がフィルム法線方向に対して傾斜しかつその傾斜方向が視点に対して遠ざかる方向である(8)に記載の液晶表示装置。
(10) 液晶表示装置が偏光フィルムを含み、偏光フィルムの偏光軸が液晶表示画面の視点方向から見て左右いずれか方向に傾けて設置され、光拡散フィルムの前記領域の横断面の前記短軸方向が偏光フィルムの前記偏光軸方向に配置されている(7)に記載の液晶表示装置。
(11)感放射線性高分子フィルムの表面に、孔パターンを有するマスクとなる層を形成し、前記マスクの上方から法線に対して0〜50度の範囲から選択された照射角で感放射線性フィルムに前記マスクを通して放射線を照射することによって、高屈折率の柱状構造を形成することを含むことを特徴とする、(1)〜(5)のいずれか1項に記載の光拡散フィルムの製造方法。
【0012】
発明の実施の形態本
発明を説明するために、従来の光拡散フィルムにおける光拡散現象を先に図を参照して説明することが便宜である。
図1Aは高屈折率領域を円筒状に形成した従来の光拡散フィルム1の横断面図である。高分子フィルム2中に光の波長に近い直径を有する円柱状の高屈折率領域3がフィルム表面に垂直に形成されている。このような円筒状高屈折率領域3は円柱レンズとして機能し、フィルムに垂直に即ち円柱の軸線に平行に入射した光は例えば半値幅約10〜20度のガウス分布の散乱を示すことができる。図1Aの光拡散フィルム1においてフィルム1に対する入射角が大きくなって、円柱の軸線に対して大きく傾斜した角度で入射するようになると、光は散乱性を失い、高い透過性を示すようになる。例えば、フィルム表面に対して45度〜60度の角度で入射した光は殆ど散乱されず、透過する。
【0013】
図1Bは、フィルム表面に垂直の角度(入射角ゼロ度)で入射した光がこのフィルムを透過したとき出射角θの透過光の強度を示す。透過光強度はガウス分布をしているが、この半値幅をもって散乱の広がり、選択性を表すことができる。図1Bでは半値幅は10°である。
【0014】
図1Cは高分子フィルムにフィラーを分散させたタイプの従来の散乱フィルムの模式横断面を、図1Dはその透過光の図1Bと同様の散乱強度を示す。図1Bと図1Dを比較すると、図1Aの光拡散フィルム1が選択的な散乱特性(特定幅内の散乱)を示すことが示されている。
【0015】
図2は図1Aの拡散フィルムの入射光の方向および入射角に依存する散乱特性を表示したものである。座標の中心は、フィルム表面に垂直に光が入射する場合を表し、この座標中心に描かれた図形(円4)はフィルム表面に垂直に光が入射する場合の透過散乱光の指向性と強度を示す。円4は散乱光が等方的に散乱することを表し、円の大きさは散乱強度が大きいことを表すので、出射光は入射光軸に対してあまり大きくない角度(例えば10〜20°)で強く散乱したことを示している。座標軸のx軸上の楕円状の図形5,6は、フィルム表面に垂直な方向からフィルムのx軸方向(図1の図面法線方向をx軸方向とする)に角度θ(x)だけ傾斜して光が入射する場合の透過散乱光の指向性と強度を示す。この透過散乱光5,6は、全体として散乱強度が垂直入射の場合より弱く、しかもy軸方向に比べてx軸方向の散乱が少ないことが見られる。同様に、座標軸のy軸上の円または楕円状の図形7,8は、フィルム表面に垂直な方向からフィルム上のx軸に垂直なy軸方向に角度θ(y)だけ傾斜して光が入射する場合の透過散乱光の指向性と強度を示す。この透過散乱光7,8は、全体として散乱強度が垂直入射の場合より弱く、しかもx軸方向に比べてy軸方向の散乱が少ないことが見られる。図2を参照すると、フィルム表面に垂直な方向から光が入射した場合(入射角ゼロ度)4には、一定の範囲の強い散乱が観測されるが、入射角が大きくなると楕円5〜8の径が小さく成っており、即ち、光散乱が減少し殆どの光が透過することが読み取られる。また、傾斜して入射する場合5〜8、入射方向に対して平行方向よりも横方向に余計に散乱することも示されている。
【0016】
図3Aは、図1Aと同様の円柱状領域(円筒レンズ)23を高分子フィルム22の表面に対して法線方向ではなく、フィルムのy軸方向(図3Aの左方向がy軸正方向とする)に角度θだけ傾斜させて形成した拡散フィルム21の横断面を示す。このフィルムの光散乱は、円柱状領域23の軸線方向から入射した場合が図1Aの拡散フィルムの法線方向から入射した場合に相当する特性を示す。結果として、フィルム表面を基準に図2と同様に散乱特性を表現すると、図3Bになる。
【0017】
図3Bにおいて、フィルムのy軸正方向の角度θから入射した場合の透過光24は、図1Bのフィルムの法線方向から入射した場合に相当するので円形散乱を示す。フィルムの法線方向から入射した場合の透過光25は、図2のフィルムのy軸マイナス角度θから入射した場合に相当して、透過光24よりは散乱強度が小さいがx軸方向への指向性が強い楕円状散乱を示す。フィルムのy軸負方向の角度θから入射した場合の透過光26は、円筒レンズの軸線に対して入射角が大きく傾斜して円筒レンズの横断方向から入射するので、散乱(強度)が小さくなっている。また、フィルムのx軸方向から入射した場合の透過光27、28は、図3Bに見られるように、傾斜した楕円状の散乱特性を示し、いずれの透過光27,28もy軸方向への指向性が強くなる傾向を示している。
【0018】
その結果、図3A及び図3Bの拡散フィルムを反射膜と組み合わせて使用したとき、y軸負方向を視者(目視方向)とすると、正面(y軸正方向)からの入射光は一定の角度範囲で強く散乱され、従って視者方向にも一定の強い散乱があり、かつ反射光は散乱が少ない。また、左右(x軸正負方向)からの入射光は一定強度で散乱され、また視者方向への集光効果もあり、しかもその透過光の反射光も散乱は少ないといえる。以上のことから、図3A及び図3Bの拡散フィルムを具備した液晶表示装置、例えば、携帯電話の表示画面をy軸負方向ないし正面から見るとき、正面(y軸正方向)あるいは左右(x軸正負方向)からの入射光(照明光)は視者の方向に一定の集光効果をもって散乱するので、図2の等方的散乱フィルムの場合と比べて視者からは明るい画面が観測されることになる。
【0019】
本発明者が知る限りでは、従来技術では、図3Aの態様の拡散フィルムが図1の拡散フィルムを含む他の拡散フィルムと比べて、選択散乱特性および集光効果が優れていることまでは報告されていない。しかし、従来技術の開示の態様には高分子フィルムに円筒状領域を傾斜して形成して拡散フィルムとして使用できるとの開示が含まれている。いま仮に、その傾斜方向を全て同じに形成した場合には、図3Aの態様の拡散フィルムになる。
【0020】
これに対して、本発明は、高分子フィルム中に断面形状が長尺状の円柱構造の高屈折率領域をフィルム膜厚方向に延在するように多数形成し、かつその長尺状の領域をフィルムの特定方向に配向させた拡散フィルム、好ましくはその長尺状の円柱構造をフィルム表面に傾斜して平行に形成した拡散フィルムを提供するものであり、その特定の構成及び効果は従来技術では開示または示唆されていないものである。
【0021】
図4は、そのような本発明の拡散フィルムの1例のフィルム表面を示すものである。拡散フィルム31は高分子フィルム32中に分散して形成された高屈折率領域33を多数有し、かつこの高屈折率領域33は長尺状であり、かつフィルムの特定方向に配向している。図4において、高屈折率の長尺状領域33の長軸が配向された方向をフィルムのx軸方向、短軸方向をフィルムのy軸方向とする。
【0022】
本発明の拡散フィルム31において高屈折率の長尺状領域33を傾斜させる場合、傾斜方向はy軸方向が好ましい。図5Bは、図4のような表面パターンを有し、図5Aに示す如くy軸方向に角度θ(約20°)だけ傾斜した長尺状領域(アスペクト比約2:1)33を有する拡散フィルムについての、図2と同様の散乱特性を模式的に示すものである。
【0023】
図5Bにおいて、フィルムのy軸正方向からの入射光は長尺状断面の柱状構造によって散乱されるとき、高屈折率の長尺状領域33の長軸方向が短軸方向より光透過性が高いために、フィルムを透過した光の散乱特性は楕円34で表されるようにy軸方向への指向性が強い散乱を示し、かつこの散乱光の楕円は同じ傾きの円柱状構造を透過した場合よりも余計にy軸方向への指向性散乱特性である。フィルムの法線方向から入射した場合にもなおy軸方向への指向性散乱特性35を示すことができる。フィルムの左右方向(x軸方向)から入射した光についても同様であり、図3Bの場合の散乱特性をy軸方向に長くなるように変形した散乱特性36、37が得られる。いずれの場合も、視者方向(y軸負方向)への散乱光強度は図3Bの場合より強くなっている。図5Bにはxy座標の第1象限および第2象限の方向からの入射光についての透過散乱特性38も示した。これらの透過散乱特性38も、視角方向(y軸負方向)への散乱光強度が強く表れている。従って、拡散フィルムを表示画面とすると、視者に対して、視者の背後以外の全ての方向、特に正面方向の広い角度からの入射光(照明光)が、高屈折領域が円柱状構造の場合よりもより強く視角方向(y軸負方・向)へ散乱集光することが示されている。さらに、視角方向(y軸負方向)の透過散乱特性39は、むしろy軸方向に短くなる傾向を示しており、このことは透過率が高いと解釈でき、上記の如く、視者の背後以外の全ての方向から選択的に散乱集光した光を、反射膜で反射された後、無駄に散乱することなく視角に反射してくることを意味する。従って、この点も反射画像の明るさの向上に寄与する。
【0024】
本発明の拡散フィルムは、上記の如く、柱状構造がフィルム表面に対して傾斜していることが好ましいが、必ずしも傾斜している必要はなく、フィルムの法線方向に形成されていてもよい。
【0025】
図6Bは、図4に示したような表面パターンに高屈折率領域43を高分子フィルム42中に形成しかつ図6Aに示す如く柱状構造をフィルム法線方向に形成した拡散フィルム41の、図2と同様の散乱特性を模式的に示すものである。
【0026】
この場合、フィルムに垂直に入射した光は、前述のように楕円の長軸方向の光透過性が短軸方向より高いので、楕円の短軸方向、即ち、フィルムのy軸方向(図の左右方向)により多く散乱する(透過光散乱特性44)。y軸方向に傾斜して入射した光のy軸方向の散乱は、柱状構造に対して斜めに入射する分だけ法線方向入射の場合より少ないが、やはりy軸方向に散乱する(透過光散乱特性45,46)。一方、フィルムのx軸方向(図の法線方向)から傾斜して入射する光は、柱状構造に対して長軸方向に入射するため、短軸方向(y軸方向)への散乱はずっと少なくなり、全体として散乱が少なくなる(透過光散乱特性47,48)。
【0027】
図6の場合にも、散乱特性は、高屈折率領域が円形から長尺状に変化したことにより、視角方向への散乱が多い散乱特性、特に視者に対して正面方向からの入射光の選択的散乱が高い散乱特性44、45が得られる。
【0028】
本発明の拡散フィルムにおける長尺状の横断面形状を有する柱状構造の形成方法は特に限定されず、従来公知の全ての方法から選択採用できるが、感放射線性を有する高分子フィルムに選択的に放射線照射して、高屈折率の柱状構造を形成する方法が好ましい。高分子フィルムは放射線照射前にはプレポリマーまたはモノマーでもよく、放射線照射後に必要に応じて加熱などの方法で重合させてもよい。感放射線性高分子フィルムに柱状構造を形成することは、感放射線性高分子フィルムの表面にマスクとなる層を形成し、このマスク層に長尺状孔パターンを形成し、その長尺状孔パターンを通して感放射線性高分子フィルムに放射線を所定の角度で照射することによって、行うことができる。マスクの形成方法はフォトリソグラフィー法で知られている。そのほか、感放射線性高分子フィルムに放射線を走査照射して直接に感放射線領域を形成してもよい。また、高分子フィルムにレーザービームその他の方法で穿孔して、孔内に高屈折率材料を充填させる方法でもよい。
【0029】
放射線照射により高屈折率領域を形成する感放射線性高分子フィルムの材料は、特に限定されないが、例えば、DuPont社よりOMNIDEX(登録商標)、HRF150およびHRF600として市販されているものを使用できる。
【0030】
高分子フィルム母材および高屈折率領域の屈折率は、本発明では特に限定されず、使用する光学素子などの他の部材とのマッチングを考慮して決められるが、一般的には1.48付近の屈折率が好適に利用される。複屈折率があると着色するので、好ましくないが、複屈折率が許容される用途であれば複屈折率が存在してもよい。高分子フィルム母材および高屈折率領域それ自体は光透過性の高い材料が好ましい。高分子フィルム母材と高屈折率領域の屈折率の差は大きいほど好適であるが、一般的には0.005〜0.2の範囲内の屈折率差に設定される。屈折率差が0.005未満では充分な散乱特性を得ることが容易ではない。好ましくは0.005〜0.1の範囲内である。
【0031】
高分子フィルム母材と高屈折率領域の屈折率は、これら二相の界面で急激に変化してもよいが、漸進的に変化するほうが、望ましい散乱特性が得られるので好ましい。
【0032】
本発明の拡散フィルムに形成する長尺状高屈折率領域の寸法(フィルム表面における寸法)は、光の波長との関係から、短軸および長軸共に、数10nm〜数100μm,好ましくは50nm〜100μm、特に100nm〜50μmである。この寸法が大きすぎても小さすぎても、光が透過して所望の散乱特性が得られない。
【0033】
本発明の拡散フィルムに形成する長尺状高屈折率領域の横断面の長軸と短軸の平均寸法比(平均アスペクト比)は、1:1より大きいことが必須であるが、通常は1.2:1〜10:1の範囲から選択され、好ましくは1.5:1〜5:1の範囲内であることが必要であり、特に2:1付近であることが好ましい。平均アスペクト比が10:1を超えると散乱特性が低下する。また、長尺状高屈折率領域の形状は、楕円が好ましいが、矩形、棒状、卵形などでもよい。なお、本発明の拡散フィルムに形成する高屈折率領域は、長尺状領域とともに等軸領域、典型的には円形領域を含んでいてもよい。長尺状高屈折率領域だけが存在する場合も、長尺状領域と等軸領域と両方の高屈折率領域が混在する場合も、フィルムの特定方向における高屈折率領域の横断面の平均の長軸と短軸の寸法比(平均アスペクト比)が上記の範囲内にあることが好ましい。
【0034】
本発明の拡散フィルムに形成する長尺状高屈折率領域の寸法およびアスペクト比は、個々の長尺状高屈折率領域で異なってもよいし、全てが同じでもよい。しかし、寸法およびアスペクト比をランダムにする方が、モアレを防止でき、また散乱特性を良好にする効果があるので好ましい。
【0035】
本発明の拡散フィルムに形成する長尺状高屈折率領域は、フィノレムの特定方向に配向させることを特徴としているが、全ての長尺状高屈折率領域が同一方向に配向する必要はなく、平均として配向していれば所望の散乱効果は得ることができるものである。
【0036】
本発明の拡散フィルムに形成する長尺状高屈折率領域の柱状構造のフィルムに対する傾斜角度は、一般的には0〜50度の範囲内、好ましくは10〜20度の範囲内である。先に図面を参照して説明したように、長尺状高屈折率領域はフィルムの法線方向から傾斜している方が選択散乱、集光特性が優れているので好ましい。長尺状高屈折率領域の傾斜角度、即ち、柱状構造の傾斜角度は、一般的に散乱特性からもまた製法的に同じにすることが容易であることからも好ましいが、異なる角度に傾斜した柱状構造が混在していても、平均としての傾斜角度によって大略の散乱特性を表すことができるし、傾斜角度の分散は視角依存の選択散乱集光特性を、より広い視角で所望にする作用があるので、好ましい場合がある。さらには、意図的に2以上の異なる傾斜角度(例えば交差状)の柱状構造の長尺状高屈折率領域を組み合わせて、特異的な散乱特性を得るようにしてもよい。
【0037】
本発明の拡散フィルムの膜厚は、限定されないが、約2μm〜約100μmの範囲内が一般的である。
【0038】
本発明の拡散フィルムは、好適には、液晶表示装置、特に反射型および半透過型の液晶表示装置の拡散フィルムとして有用である。
【0039】
図7および図8に液晶表示装置の例を示す。電極62,64を形成したガラス基板61、65間に液晶層63が存在し、拡散フィルム66は一般的に光入射側のガラス基板65の上に配置されるか(図7)、または光反射側のガラス基板61の下に反射膜67の表面に配置される(図8)。位相差板68、偏光フィルム69は用いる場合、一般に拡散フィルム66の外側に設置される(図示しないが図8も同じ)。拡散フィルム66は両方に配置してもよく、また液晶表示装置の構成は図示の例に限定されない。
【0040】
また、バックライトにより液晶層背面から光が照射される場合には、バックライトと液晶層との間、即ち入射光側に通常光拡散フィルム層が設けられる。このバックライト方式の液晶表示装置とされる場合、本発明の光学フィルムを反射偏光子と組み合わせることにより好ましい結果が得られる。図9に、バックライト方式の液晶表示装置において、本発明の光学フィルムと反射偏光子とを組み合わせた例を示す。
【0041】
反射偏光子を、携帯電話・PDA等の液晶表示装置に用いるためには、反射時の明るさを確保する必要がある。反射偏光子を用いる場合、透過時の輝度を上げることに執着すると反射時の輝度が下がる。携帯電話・PDA等の液晶表示装置において、透過、反射の両状態にあっても明るく視認性の優れた画像を実現できる光拡散フィルムとして機能する光学フィルムは好ましいものである。
【0042】
図9において、71は光拡散フィルムであり、72は反射偏光子、73はアクリル系粘着剤、74は導光板、75は光源である。通常光拡散フィルム71の上に図8の液晶表示装置のガラス基板61が接着される。導光板74からの光は図示されていないBEF(集光シート)により集光されて、反射偏光子72に入射される。入射した光は、反射偏光子72によりP波のみが透過されS波は反射される。さらに、BEF等で反射された光のP波を透過しS波を反射する。これを繰り返すうちにS波は、P波に変換され従来利用されなかったS波を、利用できるようになる。すなわち通常液晶表示装置に設けられる偏光フィルムにより、S波はカットされるが、反射偏光子の使用により従来偏光フィルムでカットされていたS波も有効に利用することができるようになる。なお、本発明においては、必ずしもバックライトにBEFを利用する必要はなく、集光した光でなくてもよい。また、バックライトによる照明を行わない場合においても、反射偏光子は反射膜としての機能を有するため、全反射膜などの反射膜に比べれば幾分性能は落ちるが、十分反射型液晶表示装置として利用することができる。
【0043】
また、図10に示すように、本発明の光学フィルムを光拡散フィルム76として用い、これを従来知られた等方散乱性の光拡散フィルム77と組み合わせて用いることにより、正面方向の明るさが明るく、広視野角を有する液晶表示装置を得ることができる。この等方散乱性光拡散フィルムは、フィルム状とされたものでなくてもよい。例えば、本発明の光学フィルムを反射膜、ガラス基板などに接着あるいは粘着する際、接着剤あるいは粘着剤として、ベースポリマーと屈折率の異なる例えば球状のフィラーを含有する接着剤あるいは粘着剤を用い、これを用いて光学フィルムを反射膜、ガラス基板などに接着あるいは粘着し、光拡散性の接着剤層あるいは粘着剤層を形成することによってもよい。等方散乱性の光拡散フィルムあるいは光拡散層と本発明の光学フィルムとを組み合わせることにより、等方散乱性の光拡散フィルムにより周辺からの光はブロードに拡散され、このブロードに拡散された光をも含め本発明の光学フィルムにより正面方向に光の集光が行われる。これにより、本発明の光学フィルムの効果と従来の等方散乱性のフィルムとの効果が相侯って、正面方向から液晶画面を観察の際には視認性がよく、明るい画像を観察することができるとともに、広い視野角を有する液晶表示装置を形成することができる。
【0044】
液晶表示装置の例として携帯電話を参照して説明すると、図4,図5に示したような拡散フィルムを使用し、図11Bの如く、携帯電話81の表示画面82の左右方向に長尺状高屈折率領域83の長軸方向が配向し、また柱状構造83の傾斜が柱状構造のフィルム表面側端部が画面の上方に、柱状構造のフィルム底面側端部が画面の下方に向くように拡散フィルムを設置することが、最適の散乱特性を得ることができるので好ましい。このような携帯電話では、視者86が携帯電話81を目視するとき、視者の背後上方から正面の上方までの広い範囲から入射した光が、液晶表示素子で反射されるとき、主として視者86の方向に選択的に散乱集光反射することができる。このような散乱反射特性は、携帯電話などの表示画面を見る場合の最も多い利用態様において、画像の明るさを向上させるものである。
【0045】
図12は本発明の別の液晶表示装置の例を示す。液晶表示装置91は偏光板(図7の69参照)を含むタイプが多いが、その場合、偏光板はその偏光軸の方向93を表示画面92の視者からみて上下方向94からある角度θ(例えば約35〜45°)だけ左右どちらかに傾けて設置されることが多い。偏光板は偏光軸方向の光を利用するので、本発明の散乱フィルムも偏光軸方向の散乱が強くなるように、長尺状領域(円柱構造の横断面)95の短軸方向が偏光板の偏光軸方向に設定されることが望ましい。なおこの場合も長尺状領域と偏光軸との配向の整合性は完全であることは好ましいが、実質的であればよい。
【0046】
上記したごとき特性は、バックライトから液晶表示装置に照射光が入射される場合も同様であり、したがって、透過、反射の両状態において、明るく視認性の優れた画像を実現できる。また、上記したように、反射偏光子あるいは等方散乱性光拡散フィルムを本発明の光拡散フィルムとともに用いた場合にも、正面方向で従来の光拡散フィルムを用いた場合に比べより明るい表示画像を得ることが可能になるとともに、視野角の広い表示を行うことができる。
【0047】
以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例により何等限定されるものではない。
【0048】
実施例
実施例1
図13を参照する。感光性ポリマーとしてポリエチレンテレフタレートフィルム101上に塗布された厚さ50μmのDuPont製OMNIDEX,HRF600を用い、この感光性ポリマー層102の表面に図4の如く楕円形孔パターンを有するマスク103をハードコンタクト法で密着させた。ただし、マスクの楕円形孔パターンは、長軸および短軸の比が2:1、長軸寸法が500nm〜30μmの範囲内で平均が2μmであった。楕円形孔は一軸方向に配向していた。
【0049】
水銀ランプから得られた紫外線をレンズ系で平行光に集光して、マスク103の上方から法線に対してθ=0〜50度の範囲の照射角度から選択して照射した。照射時間は数秒から数分とした。その後、120℃で1時間加熱処理した。
【0050】
その結果、マスクの孔パターンに従った断面構造を有し、フィルム法線方向に対して所定の傾斜角度の柱状構造を成す高屈折率領域を有する拡散フィルムが得られた。拡散フィルムの高分子マトリックスの屈折率は1.47、高屈折率領域の屈折率は1.52であった。
【0051】
こうして得られた拡散フィルムの透過散乱特性を、図14に示すように、拡散フィルム105の一方側から入射106させ、フィルムの反対側に光ディテクター107を配置し、光ディテクター107の位置を変えて出射光の方向および角度(入射光の進行方向に対する方向および角度)と透過光強度の関係を求めた。また、入射光の入射方向および角度を変えて、それぞれについて同様に、出射光の方向および角度(入射光の進行方向に対する方向および角度)と透過光強度の関係を求めた。入射光および出射光の方向および角度の定義は、先に図1〜6を参照して説明したとおりとした。
【0052】
その結果、例えば、感光性ポリマーに対する光照射角度20度の拡散フィルムについて、得られた透過散乱特性を図5Bに示す。即ち、フィルム表面において、楕円の長軸方向をx軸方向、柱状構造の軸線方向に入射する方向をy軸正の方向とすると、y軸負の方向では殆ど散乱のない透明な状態であった。一方、x軸正方向からy軸正方向を経てx軸負方向へ至る上半分の光は、正面方向に散乱が集中するように異方性を持った散乱が生じている。これらのため、入射した光は効率よく正面に集光され、正面輝度が向上していた。
【0053】
実施例2
実施例1と同様の感光性ポリマーに、楕円形状の長短軸比が1.5:1のマスクを用い、光照射角度θを20度とした以外、実施例1と同様にして、拡散フィルムを作成した。
【0054】
実施例1と同様に透過散乱特性を評価した。
【0055】
実施例1と同様に、効率よく正面に入射光を集光できていた。
【0056】
実施例3
実施例1と同様の感光性ポリマーに、楕円形状の長短軸比が2:1のマスクを用い、光照射角度θを10度とした以外、実施例1と同様にして、拡散フィルムを作成した。
【0057】
実施例1と同様に透過散乱特性を評価した。
【0058】
実施例1と同様に、効率よく正面に入射光を集光できていた。
【0059】
実施例4
実施例1と同様の感光性ポリマーに、楕円形状の長短軸比が1.5:1のマスクを用い、光照射角度θを10度とした以外、実施例1と同様にして、拡散フィルムを作成した。
【0060】
実施例1と同様に透過散乱特性を評価した。
【0061】
実施例1と同様に、効率よく正面に入射光を集光できていた。
【0062】
実施例5
実施例1と同様の感光性ポリマーに、楕円形状の長短軸比が1.5:1のマスクを用い、光照射角度θを0度とした以外、実施例1と同様にして、拡散フィルムを作成した。
【0063】
実施例1と同様に透過散乱特性を評価した。
【0064】
得られた透過散乱特性を図6Bに示す。即ち、フィルム表面において楕円短軸方向(フィルムy軸方向)から入射した光は、フィルムy軸方向に伸びた散乱をしていた。この方向の光は効率よく正面に光を集光することができる。携帯電話の小型情報機器の液晶ディスプレイでは正面の光を効率よく集光することがポイントになっているので、実施例5の拡散フィルムはこの方向の光を効率よく集光できている。
【0065】
産業上の利用可能性
本発明によれば、高分子フィルム中に長尺状断面を持つ柱状構造の高屈折率領域を形成した拡散フィルムが提供され、正面に散乱が集中するように異方性を持った散乱が生じる効果があり、さらには正面視角方向は透明であるため、液晶表示パネルなどに拡散フィルムとして使用した場合、視角方向の正面輝度が向上する効果がある。またこのような効果を有する拡散フィルムを用いた光学素子および液晶表示装置も提供される。
【図面の簡単な説明】
図1A−1Dは高分子フィルム中に円柱構造の高屈折率領域を有する拡散フィルムと、高分子フィルム中にフィラーを充填した拡散フィルムの、断面図および垂直入射光の透過散乱特性図である。
図2は高分子フィルム中に円柱構造の高屈折率領域をフィルム法線方向に有する拡散フィルムの入射角依存の透過散乱特性図である。
図3A及び図3Bは高分子フィルム中に円柱構造の高屈折率領域をフィルム法線方向に対して傾斜して有する拡散フィルムの断面図と入射角依存の透過散乱特性図である。
図4は高分子フィルム中に楕円断面の柱状構造の高屈折率領域を有する拡散フィルムの平面図である。
図5A及び図5Bは高分子フィルム中に楕円断面の柱状構造の高屈折率領域をフィルム法線方向に対して傾斜して有する拡散フィルムの断面図と入射角依存の透過散乱特性図である。
図6A及び図6Bは高分子フィルム中に楕円断面の柱状構造の高屈折率領域をフィルム法線方向に有する拡散フィルムの断面図と入射角依存の透過散乱特性図である。
図7は液晶表示装置の模式断面図である。
図8は別の液晶表示装置の模式断面図である。
図9は光学フィルムと反射偏光子の積層フィルムの光拡散・透過特性を説明するための説明図である。
図10は本発明の光学フィルムと等方光拡散フィルムとの積層フィルムである。
図11A及び図11Bは携帯電話に拡散フィルムを使用した例を示す正面図および部分側面図である。
図12は本発明を偏光フィルムを用いた液晶表示装置に適用する場合の例を示す。
図13は実施例における感光性ポリマーの露光方法を説明する図である。
図14は実施例における拡散フィルムの透過散乱特性の評価方法を説明する図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
  The present invention relates to a light diffusing film having controlled scattering characteristics, an optical element using the same, and a liquid crystal display device.
[0002]
Background art
  In a reflective liquid crystal display device or a transflective liquid crystal display device, in general, when incident light is transmitted through a liquid crystal layer, reflected by a reflective film, and transmitted through the liquid crystal layer again, a display image enters the eyes of the viewer. A light scattering film is disposed on the surface of the liquid crystal layer and / or between the liquid crystal layer and the reflective film to scatter the light, thereby making it possible to view an image with a wide viewing angle. Light scattering is also referred to as light diffusion.
[0003]
  As a method for obtaining light scattering, for example, a method of dispersing light by dispersing transparent fine particles in a plastic film and a method of scattering light by roughening the surface of the plastic film are typical.
[0004]
  In addition, a method has been proposed in which a birefringent film is formed by superimposing birefringent films in which microregions having different birefringence characteristics are distributed and distributed, and the birefringent film is scattered using the difference in refractive index from the microregions. (Japanese Patent Laid-Open No. 11-174211).
[0005]
  There has also been proposed a film in which microcrystalline regions made of the same polymer are dispersed and distributed in a polymer film, and the microregions and the other portions have different refractive indexes and exhibit light scattering properties (Japanese Patent Laid-Open No. Hei 11-). No. 326610, JP-A 2000-266936, JP-A 2000-275437, etc.).
[0006]
  However, all the light scattering methods as described above basically scatter light isotropically, so that there is a drawback that an image becomes dark on a reflective liquid crystal screen that does not use a backlight.
[0007]
  On the other hand, a light diffusion film in which a large number of regions having a high refractive index are formed in a cylindrical shape in the thickness direction of the polymer film is on the market. According to this diffusion film, it is said that both unidirectional scattering and reverse transmission can be achieved, and that a selective viewing angle / diffusion performance can be realized.
[0008]
  Certainly, according to this diffusion film, a relatively bright image can be obtained at a specific viewing angle as compared with a conventional scattering film of an isotropic scattering type.
[0009]
  However, in a liquid crystal display device that is used even in a place with little incident light, such as a mobile phone, an image with higher brightness is desired particularly in a reflective or transflective liquid crystal display device.
[0010]
  The present invention is to solve such problems of the prior art, a selective light diffusibility that provides a brighter image at a viewing angle than conventional, and a light diffusing film having a light collecting property, An object of the present invention is to provide an optical film and a liquid crystal display device using the same.
[0011]
Disclosure of the invention
  In order to achieve the above object, the present invention provides the following.
  (1) In a light diffusing film consisting of two phases having different refractive indexes for scattering and transmitting light, a large number of regions having a columnar structure in which one phase having a large refractive index extends in the thickness direction of the film and functioning as a cylindrical lens And the plurality of regions include regions where the cross-sectional shape of the columnar structure is long, and the average aspect ratio of the long and short axes of the cross-section of the long region is 1.5: 1 to 5 1: A light diffusing film, wherein the long region is oriented in a specific direction of the film.
  (2) The light diffusion film according to (1), wherein the axis of the columnar structure is parallel to each other, and the axis is inclined with respect to the normal direction of the film.
  (3) The light diffusion film according to (1), wherein the axis of the columnar structure is in the normal direction of the film in the multiple regions.
  (4) The light-diffusion film in any one of (1)-(3) whose difference of the refractive index of the two phases from which the refractive index of the said film differs is in the range of 0.005-0.2.
  (5) The light diffusion film according to any one of (1) to (4), wherein the film is manufactured from a polymer material having photosensitivity.
  (6) An optical element characterized by using the light diffusion film according to any one of (1) to (5).
  (7) A liquid crystal display device using the optical element according to (6).
  (8) The liquid crystal display according to (7), wherein the light diffusing film is disposed so that the major axis direction of the cross section of the region of the light diffusing film is a left-right direction when viewed from the viewpoint direction of the liquid crystal display device. apparatus.
  (9) The liquid crystal display device according to (8), wherein the axial direction of the columnar structure in the region of the light diffusion film is inclined with respect to the film normal direction and the inclined direction is away from the viewpoint.
  (10) The liquid crystal display device includes a polarizing film, the polarizing axis of the polarizing film is installed to be tilted in either the left or right direction when viewed from the viewpoint direction of the liquid crystal display screen, and the short axis of the transverse section of the region of the light diffusion film The liquid crystal display device according to (7), wherein the direction is arranged in the polarization axis direction of the polarizing film.
  (11) A layer serving as a mask having a hole pattern is formed on the surface of the radiation-sensitive polymer film, and the radiation is sensitive at an irradiation angle selected from a range of 0 to 50 degrees with respect to the normal from above the mask. The light diffusing film according to any one of (1) to (5), which comprises forming a columnar structure with a high refractive index by irradiating a radiation film through the mask with radiation. Production method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
  In order to explain the invention, it is convenient to first explain the light diffusion phenomenon in the conventional light diffusion film with reference to the drawings.
  FIG. 1A is a cross-sectional view of a conventional light diffusion film 1 in which a high refractive index region is formed in a cylindrical shape. A cylindrical high refractive index region 3 having a diameter close to the wavelength of light is formed in the polymer film 2 perpendicular to the film surface. Such a cylindrical high refractive index region 3 functions as a cylindrical lens, and light incident perpendicularly to the film, that is, parallel to the axis of the cylinder, can exhibit, for example, a Gaussian distribution with a half width of about 10 to 20 degrees. . In the light diffusing film 1 of FIG. 1A, when the incident angle with respect to the film 1 becomes large and enters at an angle greatly inclined with respect to the axis of the cylinder, the light loses the scattering property and exhibits high transparency. . For example, light incident at an angle of 45 to 60 degrees with respect to the film surface is hardly scattered and is transmitted.
[0013]
  FIG. 1B shows the intensity of transmitted light at an exit angle θ when light incident at an angle perpendicular to the film surface (incident angle zero degree) is transmitted through the film. The transmitted light intensity has a Gaussian distribution. With this half-value width, scattering spread and selectivity can be expressed. In FIG. 1B, the full width at half maximum is 10 °.
[0014]
  FIG. 1C is a schematic cross section of a conventional scattering film of a type in which a filler is dispersed in a polymer film, and FIG. 1D shows the scattering intensity of the transmitted light similar to FIG. 1B. Comparing FIG. 1B and FIG. 1D shows that the light diffusion film 1 of FIG. 1A exhibits selective scattering characteristics (scattering within a specific width).
[0015]
  FIG. 2 shows the scattering characteristics depending on the direction and angle of incident light of the diffusion film of FIG. 1A. The center of the coordinates represents the case where light is incident on the film surface vertically, and the figure (circle 4) drawn at the center of the coordinates is the directivity and intensity of the transmitted scattered light when the light is incident vertically on the film surface. Indicates. The circle 4 represents that the scattered light is scattered isotropically, and the size of the circle represents that the scattering intensity is large, so that the outgoing light is not so large with respect to the incident optical axis (for example, 10 to 20 °). It shows strong scattering. Ellipse-shaped figures 5 and 6 on the x-axis of the coordinate axis are inclined by an angle θ (x) from the direction perpendicular to the film surface to the x-axis direction of the film (the normal direction in FIG. 1 is the x-axis direction). Then, the directivity and intensity of the transmitted scattered light when light is incident are shown. It can be seen that the transmitted scattered light 5 and 6 as a whole has a weaker scattering intensity than that in the case of normal incidence, and is less scattered in the x-axis direction than in the y-axis direction. Similarly, the circles or ellipses 7 and 8 on the y-axis of the coordinate axis are inclined by an angle θ (y) from the direction perpendicular to the film surface to the y-axis direction perpendicular to the x-axis on the film. The directivity and intensity of transmitted scattered light when incident is shown. It can be seen that the transmitted scattered light 7 and 8 as a whole has a weaker scattering intensity than that in the case of normal incidence, and is less scattered in the y-axis direction than in the x-axis direction. Referring to FIG. 2, when light is incident from a direction perpendicular to the film surface (incident angle zero degree) 4, strong scattering in a certain range is observed, but when the incident angle increases, ellipses 5 to 8 are observed. It can be seen that the diameter is small, that is, light scattering is reduced and most of the light is transmitted. It is also shown that 5 to 8 in the case of incident at an angle, extra scattering in the lateral direction rather than the parallel direction with respect to the incident direction.
[0016]
  3A shows a columnar region (cylindrical lens) 23 similar to FIG. 1A in the normal direction with respect to the surface of the polymer film 22, but in the y-axis direction of the film (the left direction in FIG. 3A is the positive y-axis direction). The angle θ0The cross section of the diffusion film 21 formed by inclining only is shown. The light scattering of this film exhibits characteristics corresponding to the case where the light is incident from the axial direction of the cylindrical region 23 and the light incident from the normal direction of the diffusion film in FIG. 1A. As a result, when the scattering characteristics are expressed in the same manner as in FIG. 2 with reference to the film surface, FIG. 3B is obtained.
[0017]
  In FIG. 3B, the angle θ in the positive y-axis direction of the film0The transmitted light 24 in the case where the light enters from the direction corresponds to the case where the light enters from the normal direction of the film in FIG. The transmitted light 25 when incident from the normal direction of the film is the y-axis minus angle θ of the film of FIG.0Corresponds to the case of the incident light from the elliptical scatter having a lower scattering intensity than the transmitted light 24 but a strong directivity in the x-axis direction. Angle θ in the negative y-axis direction of the film0Since the incident light is incident from the transverse direction of the cylindrical lens with a large incident angle with respect to the axis of the cylindrical lens, scattering (intensity) is reduced. Further, the transmitted lights 27 and 28 when incident from the x-axis direction of the film show inclined elliptical scattering characteristics as seen in FIG. 3B, and both transmitted lights 27 and 28 are directed in the y-axis direction. It shows a tendency to become more directional.
[0018]
  As a result, when the diffusing film of FIGS. 3A and 3B is used in combination with a reflective film, the incident light from the front (y-axis positive direction) is at a certain angle, assuming that the negative y-axis direction is the viewer (viewing direction). It is strongly scattered in the range, so there is also a certain strong scattering in the viewer direction and the reflected light is less scattered. Further, incident light from the left and right (x-axis positive and negative directions) is scattered at a constant intensity, has a condensing effect in the viewer direction, and the reflected light of the transmitted light is less scattered. From the above, when viewing the display screen of a liquid crystal display device having the diffusion film of FIGS. 3A and 3B, for example, a mobile phone, from the negative y-axis direction or from the front, the front (y-axis positive direction) or the left and right (x-axis) Since the incident light (illumination light) from the positive and negative directions is scattered in the viewer's direction with a certain light collection effect, a brighter screen is observed from the viewer as compared to the isotropic scattering film of FIG. It will be.
[0019]
  As far as the present inventor knows, in the prior art, it has been reported that the diffusion film of the embodiment of FIG. 3A is superior in selective scattering characteristics and light collection effect compared to other diffusion films including the diffusion film of FIG. It has not been. However, the disclosure of the prior art includes the disclosure that the polymer film can be formed as an inclined cylindrical region and used as a diffusion film. If the inclined directions are all the same, the diffusion film in the mode of FIG. 3A is obtained.
[0020]
  On the other hand, the present invention forms a large number of high refractive index regions of a cylindrical structure having a long cross-sectional shape in a polymer film so as to extend in the film thickness direction, and the long region. Is a diffusion film in which the film is oriented in a specific direction of the film, preferably a diffusion film in which the long cylindrical structure is inclined and formed parallel to the film surface. Is not disclosed or suggested.
[0021]
  FIG. 4 shows the film surface of one example of such a diffusion film of the present invention. The diffusion film 31 has a large number of high refractive index regions 33 formed by being dispersed in the polymer film 32, and the high refractive index regions 33 are long and oriented in a specific direction of the film. . In FIG. 4, the direction in which the long axis of the long region 33 having a high refractive index is oriented is the x-axis direction of the film, and the short axis direction is the y-axis direction of the film.
[0022]
  When the long region 33 having a high refractive index is inclined in the diffusion film 31 of the present invention, the inclination direction is preferably the y-axis direction. 5B has a surface pattern as shown in FIG. 4 and an angle θ in the y-axis direction as shown in FIG. 5A.0FIG. 3 schematically shows scattering characteristics similar to those of FIG. 2 for a diffusion film having a long region (aspect ratio of about 2: 1) 33 inclined by (about 20 °).
[0023]
  In FIG. 5B, when the incident light from the positive y-axis direction of the film is scattered by the columnar structure having a long cross section, the long axis direction of the high refractive index long region 33 is more light transmissive than the short axis direction. Since the scattering characteristics of the light transmitted through the film are high, the scattering characteristics of the light with high directivity in the y-axis direction are represented by the ellipse 34, and the elliptical light of the scattered light is transmitted through the cylindrical structure with the same inclination. This is a directional scattering characteristic in the y-axis direction that is more than the case. Even when incident from the normal direction of the film, the directional scattering characteristic 35 in the y-axis direction can still be shown. The same applies to light incident from the left-right direction (x-axis direction) of the film, and scattering characteristics 36 and 37 obtained by deforming the scattering characteristics in the case of FIG. 3B so as to be longer in the y-axis direction are obtained. In either case, the scattered light intensity in the viewer direction (y-axis negative direction) is higher than that in the case of FIG. 3B. FIG. 5B also shows the transmission and scattering characteristics 38 for incident light from the directions of the first and second quadrants of the xy coordinates. These transmitted and scattered characteristics 38 also show a strong scattered light intensity in the viewing angle direction (y-axis negative direction). Therefore, when the diffusing film is used as a display screen, incident light (illumination light) from a wide angle in all directions other than the back of the viewer, particularly the front direction, with respect to the viewer, the high refractive region has a cylindrical structure. It is shown that the light is scattered and collected more strongly in the viewing angle direction (y-axis negative direction) than in the case. Further, the transmission / scattering characteristic 39 in the viewing angle direction (y-axis negative direction) tends to be rather short in the y-axis direction, which can be interpreted as having a high transmittance. This means that the light selectively scattered and collected from all directions is reflected at the viewing angle without being scattered unnecessarily after being reflected by the reflective film. Therefore, this point also contributes to improvement of the brightness of the reflected image.
[0024]
  In the diffusion film of the present invention, as described above, the columnar structure is preferably inclined with respect to the film surface, but is not necessarily inclined, and may be formed in the normal direction of the film.
[0025]
  6B shows a diffusion film 41 in which a high refractive index region 43 is formed in the polymer film 42 in the surface pattern as shown in FIG. 4 and a columnar structure is formed in the film normal direction as shown in FIG. 6A. 2 schematically shows the same scattering characteristics as in FIG.
[0026]
  In this case, since the light incident perpendicularly to the film has a higher light transmittance in the major axis direction of the ellipse than the minor axis direction as described above, the minor axis direction of the ellipse, that is, the y-axis direction of the film (left and right in the figure). (Scattered light scattering characteristics 44). The scattering of the light incident in the y-axis direction is less in the y-axis direction than the incident in the normal direction by the amount incident obliquely on the columnar structure, but is also scattered in the y-axis direction (transmitted light scattering) Characteristics 45, 46). On the other hand, light incident from the x-axis direction of the film (normal direction in the figure) is incident on the columnar structure in the long-axis direction, so that the scattering in the short-axis direction (y-axis direction) is much less. As a result, scattering is reduced as a whole (transmitted light scattering characteristics 47 and 48).
[0027]
  In the case of FIG. 6 as well, the scattering characteristics are such that the high refractive index region changes from a circular shape to a long shape, and thus the scattering properties that cause a large amount of scattering in the viewing angle direction, particularly the incident light from the front direction with respect to the viewer. Scattering characteristics 44 and 45 with high selective scattering are obtained.
[0028]
  The method for forming a columnar structure having a long cross-sectional shape in the diffusion film of the present invention is not particularly limited, and can be selected and adopted from all conventionally known methods, but selectively to a polymer film having radiation sensitivity. A method of forming a columnar structure having a high refractive index by irradiation with radiation is preferable. The polymer film may be a prepolymer or a monomer before irradiation, and may be polymerized by a method such as heating as necessary after irradiation. Forming a columnar structure in the radiation-sensitive polymer film is formed by forming a mask layer on the surface of the radiation-sensitive polymer film, forming a long hole pattern in the mask layer, and This can be done by irradiating the radiation-sensitive polymer film with radiation through a pattern at a predetermined angle. A mask forming method is known by a photolithography method. In addition, the radiation sensitive region may be formed directly by irradiating the radiation sensitive polymer film with radiation. Alternatively, the polymer film may be perforated with a laser beam or other method, and the hole may be filled with a high refractive index material.
[0029]
  Although the material of the radiation sensitive polymer film which forms a high refractive index area | region by irradiation is not specifically limited, For example, what is marketed by DuPont as OMNIDEX (trademark), HRF150, and HRF600 can be used.
[0030]
  The refractive index of the polymer film base material and the high refractive index region is not particularly limited in the present invention, and is determined in consideration of matching with other members such as an optical element to be used. A nearby refractive index is preferably used. If there is a birefringence, it will be colored, which is not preferable, but a birefringence may exist if the birefringence is acceptable. The polymer film base material and the high refractive index region itself are preferably materials having high light transmittance. The larger the difference in refractive index between the polymer film base material and the high refractive index region, the better. However, the refractive index difference is generally set within the range of 0.005 to 0.2. If the refractive index difference is less than 0.005, it is not easy to obtain sufficient scattering characteristics. Preferably it exists in the range of 0.005-0.1.
[0031]
  The refractive index of the polymer film base material and the high refractive index region may change abruptly at the interface between these two phases, but it is preferable that the refractive index changes gradually because desirable scattering characteristics can be obtained.
[0032]
  The dimension of the long high refractive index region (dimension on the film surface) formed on the diffusion film of the present invention is several tens nm to several hundreds μm, preferably 50 nm to both the minor axis and the major axis from the relationship with the wavelength of light. 100 μm, in particular 100 nm to 50 μm. If this dimension is too large or too small, light is transmitted and desired scattering characteristics cannot be obtained.
[0033]
  The average dimension ratio (average aspect ratio) between the major axis and the minor axis of the transverse section of the long high refractive index region formed in the diffusion film of the present invention is essential to be greater than 1: 1, but is usually 1 .. selected from the range of 2: 1 to 10: 1, preferably within the range of 1.5: 1 to 5: 1, particularly preferably around 2: 1. When the average aspect ratio exceeds 10: 1, the scattering characteristics are degraded. Further, the shape of the long high refractive index region is preferably an ellipse, but may be a rectangle, a rod, an egg, or the like. In addition, the high refractive index area | region formed in the diffusion film of this invention may contain the equiaxed area | region, typically a circular area | region with the elongate area | region. Whether there is only a long high-refractive index region or a mixture of both long and equiaxed regions and high-refractive index regions, the average cross-section of the high-refractive index region in a specific direction of the film The dimensional ratio (average aspect ratio) between the major axis and the minor axis is preferably within the above range.
[0034]
  The dimension and aspect ratio of the long high refractive index region formed in the diffusion film of the present invention may be different in each long high refractive index region, or all may be the same. However, it is preferable to make the dimensions and aspect ratios random because moire can be prevented and the scattering characteristics are improved.
[0035]
  The long high refractive index region formed in the diffusion film of the present invention is characterized by being oriented in a specific direction of the finolem, but it is not necessary that all the long high refractive index regions be oriented in the same direction, If it is oriented as an average, the desired scattering effect can be obtained.
[0036]
  The inclination angle with respect to the columnar structure film of the long high refractive index region formed in the diffusion film of the present invention is generally in the range of 0 to 50 degrees, preferably in the range of 10 to 20 degrees. As described above with reference to the drawings, it is preferable that the long high refractive index region is inclined from the normal direction of the film because selective scattering and light collecting characteristics are excellent. The inclination angle of the long high-refractive index region, that is, the inclination angle of the columnar structure is generally preferable because it is easy to make it the same in terms of scattering characteristics and manufacturing method, but inclined at different angles. Even if there are mixed columnar structures, the approximate scattering characteristics can be represented by the average tilt angle, and the dispersion of the tilt angle has the effect of making the viewing angle dependent selective scattering light condensing characteristics desired over a wider viewing angle. There are cases where it is preferable. Furthermore, a specific scattering characteristic may be obtained by intentionally combining a long high refractive index region having a columnar structure with two or more different inclination angles (for example, intersecting shapes).
[0037]
  Although the film thickness of the diffusion film of this invention is not limited, The inside of the range of about 2 micrometers-about 100 micrometers is common.
[0038]
  The diffusion film of the present invention is preferably useful as a diffusion film for liquid crystal display devices, particularly for reflective and transflective liquid crystal display devices.
[0039]
  7 and 8 show examples of the liquid crystal display device. A liquid crystal layer 63 exists between the glass substrates 61 and 65 on which the electrodes 62 and 64 are formed, and the diffusion film 66 is generally disposed on the glass substrate 65 on the light incident side (FIG. 7) or light reflection. It arrange | positions on the surface of the reflecting film 67 under the glass substrate 61 of the side (FIG. 8). When the retardation film 68 and the polarizing film 69 are used, they are generally installed outside the diffusion film 66 (not shown but the same applies to FIG. 8). The diffusion film 66 may be disposed on both, and the configuration of the liquid crystal display device is not limited to the illustrated example.
[0040]
  When light is irradiated from the back surface of the liquid crystal layer by the backlight, a normal light diffusion film layer is provided between the backlight and the liquid crystal layer, that is, on the incident light side. In the case of the backlight type liquid crystal display device, a preferable result can be obtained by combining the optical film of the present invention with a reflective polarizer. FIG. 9 shows an example in which the optical film of the present invention and a reflective polarizer are combined in a backlight type liquid crystal display device.
[0041]
  In order to use the reflective polarizer in a liquid crystal display device such as a mobile phone or a PDA, it is necessary to ensure brightness at the time of reflection. In the case of using a reflective polarizer, if it is obsessed with increasing the luminance during transmission, the luminance during reflection decreases. In a liquid crystal display device such as a cellular phone or PDA, an optical film that functions as a light diffusion film capable of realizing a bright and excellent image even in both transmission and reflection states is preferable.
[0042]
  In FIG. 9, 71 is a light diffusion film, 72 is a reflective polarizer, 73 is an acrylic adhesive, 74 is a light guide plate, and 75 is a light source. A glass substrate 61 of the liquid crystal display device shown in FIG. Light from the light guide plate 74 is collected by a BEF (light collecting sheet) (not shown) and is incident on the reflective polarizer 72. For the incident light, only the P wave is transmitted by the reflective polarizer 72 and the S wave is reflected. Furthermore, the P wave of the light reflected by BEF or the like is transmitted and the S wave is reflected. As this is repeated, the S wave is converted to a P wave, and an S wave that has not been used in the past can be used. That is, the S wave is cut by the polarizing film usually provided in the liquid crystal display device, but the S wave that has been cut by the conventional polarizing film can be effectively used by using the reflective polarizer. In the present invention, it is not always necessary to use BEF for the backlight, and it may not be the condensed light. Even when the backlight is not illuminated, the reflective polarizer has a function as a reflection film, so the performance is somewhat lower than that of a reflection film such as a total reflection film, but it is a sufficiently reflective liquid crystal display device. Can be used.
[0043]
  Further, as shown in FIG. 10, the optical film of the present invention is used as a light diffusing film 76, and this is used in combination with a conventionally known isotropic scattering light diffusing film 77, whereby the brightness in the front direction is improved. A bright liquid crystal display device having a wide viewing angle can be obtained. This isotropic scattering light diffusing film may not be a film. For example, when bonding or sticking the optical film of the present invention to a reflective film, a glass substrate or the like, an adhesive or pressure-sensitive adhesive containing a spherical filler having a refractive index different from that of the base polymer, for example, is used. Using this, the optical film may be adhered or adhered to a reflective film, a glass substrate or the like to form a light diffusing adhesive layer or adhesive layer. By combining the isotropic scattering light diffusing film or light diffusing layer and the optical film of the present invention, light from the periphery is diffused broadly by the isotropic scattering light diffusing film, and the light diffused in this broad light Condensation of light is performed in the front direction by the optical film of the present invention. As a result, the effect of the optical film of the present invention and the effect of the conventional isotropic scattering film are combined, and when the liquid crystal screen is observed from the front direction, the visibility is good and a bright image is observed. In addition, a liquid crystal display device having a wide viewing angle can be formed.
[0044]
  An example of the liquid crystal display device will be described with reference to a mobile phone. A diffusion film as shown in FIGS. 4 and 5 is used, and the display screen 82 of the mobile phone 81 is elongated in the left-right direction as shown in FIG. 11B. The major axis direction of the high refractive index region 83 is oriented, and the inclination of the columnar structure 83 is such that the end on the film surface side of the columnar structure faces the upper side of the screen, and the end on the film bottom side of the columnar structure faces the lower side of the screen. It is preferable to install a diffusion film because optimum scattering characteristics can be obtained. In such a mobile phone, when the viewer 86 views the mobile phone 81, when light incident from a wide range from the upper back of the viewer to the upper front is reflected by the liquid crystal display element, the viewer mainly The light can be selectively scattered and reflected in the direction 86. Such scattering and reflection characteristics improve the brightness of an image in the most usage mode when a display screen of a mobile phone or the like is viewed.
[0045]
  FIG. 12 shows an example of another liquid crystal display device of the present invention. In many cases, the liquid crystal display device 91 includes a polarizing plate (see 69 in FIG. 7). In this case, the polarizing plate has an angle θ (vertical direction 94 as viewed from the viewer of the display screen 92 with respect to the polarization axis direction 93. For example, it is often installed at an angle of about 35 to 45 degrees. Since the polarizing plate uses light in the direction of the polarization axis, the short axis direction of the elongated region (transverse cross section of the cylindrical structure) 95 is also in the polarizing film so that the scattering film of the present invention also has strong scattering in the polarization axis direction. It is desirable to set the polarization axis direction. In this case as well, it is preferable that the alignment of the long region and the polarization axis is perfectly aligned, but it is sufficient if it is substantial.
[0046]
  The above-described characteristics are the same when the irradiation light is incident on the liquid crystal display device from the backlight. Therefore, a bright and excellent image can be realized in both the transmission and reflection states. In addition, as described above, when a reflective polarizer or an isotropic scattering light diffusion film is used together with the light diffusion film of the present invention, a brighter display image than when a conventional light diffusion film is used in the front direction. Can be obtained, and display with a wide viewing angle can be performed.
[0047]
  EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by the following example.
[0048]
Example
  Example 1
  Please refer to FIG. Using a 50 μm thick DuPont OMNIDEX, HRF600 coated on a polyethylene terephthalate film 101 as the photosensitive polymer, a mask 103 having an elliptical hole pattern on the surface of the photosensitive polymer layer 102 as shown in FIG. It was stuck with. However, the elliptical hole pattern of the mask had a major axis / minor axis ratio of 2: 1, a major axis dimension in the range of 500 nm to 30 μm, and an average of 2 μm. The elliptical holes were uniaxially oriented.
[0049]
  Ultraviolet light obtained from the mercury lamp was condensed into parallel light by a lens system, and was irradiated from above the mask 103 by selecting from an irradiation angle in a range of θ = 0 to 50 degrees with respect to the normal. The irradiation time was several seconds to several minutes. Then, it heat-processed at 120 degreeC for 1 hour.
[0050]
  As a result, a diffusion film having a high refractive index region having a cross-sectional structure according to the hole pattern of the mask and having a columnar structure with a predetermined inclination angle with respect to the film normal direction was obtained. The refractive index of the polymer matrix of the diffusion film was 1.47, and the refractive index of the high refractive index region was 1.52.
[0051]
  The transmission and scattering characteristics of the diffusion film thus obtained are made incident 106 from one side of the diffusion film 105 as shown in FIG. 14, the light detector 107 is disposed on the opposite side of the film, and the position of the light detector 107 is changed. The relationship between the direction and angle of outgoing light (direction and angle with respect to the traveling direction of incident light) and transmitted light intensity was determined. Further, the incident direction and angle of incident light were changed, and the relationship between the direction and angle of outgoing light (direction and angle with respect to the traveling direction of incident light) and transmitted light intensity were similarly determined for each. The definitions of the directions and angles of incident light and outgoing light were as described above with reference to FIGS.
[0052]
  As a result, for example, FIG. 5B shows the transmission scattering characteristics obtained for the diffusion film having a light irradiation angle of 20 degrees with respect to the photosensitive polymer. That is, on the film surface, when the major axis direction of the ellipse is the x-axis direction and the incident direction to the axial direction of the columnar structure is the y-axis positive direction, the film is in a transparent state with little scattering in the y-axis negative direction. . On the other hand, the upper half of the light from the positive x-axis direction through the positive y-axis direction to the negative x-axis direction is scattered with anisotropy so that the scattering is concentrated in the front direction. For these reasons, the incident light is efficiently collected on the front side, and the front luminance is improved.
[0053]
  Example 2
  A diffusion film was formed in the same manner as in Example 1 except that an elliptical mask having a major / minor axis ratio of 1.5: 1 was used for the same photosensitive polymer as in Example 1 and the light irradiation angle θ was 20 degrees. Created.
[0054]
  The transmission / scattering characteristics were evaluated in the same manner as in Example 1.
[0055]
  As in Example 1, incident light was efficiently collected on the front.
[0056]
  Example 3
  A diffusion film was prepared in the same manner as in Example 1 except that an elliptical mask with a long / short axis ratio of 2: 1 was used for the same photosensitive polymer as in Example 1 and the light irradiation angle θ was set to 10 degrees. .
[0057]
  The transmission / scattering characteristics were evaluated in the same manner as in Example 1.
[0058]
  As in Example 1, incident light was efficiently collected on the front.
[0059]
  Example 4
  A diffusion film was formed in the same manner as in Example 1 except that an elliptical mask with a major / minor axis ratio of 1.5: 1 was used for the same photosensitive polymer as in Example 1 and the light irradiation angle θ was set to 10 degrees. Created.
[0060]
  The transmission / scattering characteristics were evaluated in the same manner as in Example 1.
[0061]
  As in Example 1, incident light was efficiently collected on the front.
[0062]
  Example 5
  A diffusion film was formed in the same manner as in Example 1 except that an elliptical mask with a major / minor axis ratio of 1.5: 1 was used for the same photosensitive polymer as in Example 1 and the light irradiation angle θ was set to 0 degree. Created.
[0063]
  The transmission / scattering characteristics were evaluated in the same manner as in Example 1.
[0064]
  The obtained transmission scattering characteristics are shown in FIG. 6B. That is, the light incident from the elliptical short axis direction (film y-axis direction) on the film surface was scattered and extended in the film y-axis direction. The light in this direction can be efficiently collected on the front. In the liquid crystal display of a small information device of a cellular phone, the point is to efficiently condense the front light, so the diffusion film of Example 5 can condense the light in this direction efficiently.
[0065]
Industrial applicability
  According to the present invention, there is provided a diffusion film in which a high refractive index region having a columnar structure having a long cross section is formed in a polymer film, and scattering with anisotropy occurs so that scattering is concentrated on the front surface. In addition, since the front viewing angle direction is transparent, when used as a diffusion film in a liquid crystal display panel or the like, the front luminance in the viewing angle direction is improved. Also provided are an optical element and a liquid crystal display device using a diffusion film having such effects.
[Brief description of the drawings]
1A to 1D are a cross-sectional view and a transmission / scattering characteristic diagram of normal incident light of a diffusion film having a high refractive index region having a cylindrical structure in a polymer film and a diffusion film in which a filler is filled in the polymer film.
FIG. 2 is an incident angle-dependent transmission / scattering characteristic diagram of a diffusion film having a cylindrical structure with a high refractive index region in the normal direction of the film.
3A and 3B are a cross-sectional view of a diffusion film having a high refractive index region having a columnar structure in a polymer film inclined with respect to the normal direction of the film, and a transmission scattering characteristic diagram depending on an incident angle.
FIG. 4 is a plan view of a diffusion film having a high refractive index region having a columnar structure with an elliptical cross section in a polymer film.
FIG. 5A and FIG. 5B are a cross-sectional view of a diffusion film having a high refractive index region having a columnar structure with an elliptical cross section in a polymer film inclined with respect to the film normal direction and a transmission scattering characteristic diagram depending on an incident angle.
6A and 6B are a cross-sectional view of a diffusion film having a high refractive index region having a columnar structure with an elliptical cross section in a polymer normal direction and a transmission scattering characteristic diagram depending on an incident angle.
FIG. 7 is a schematic cross-sectional view of a liquid crystal display device.
FIG. 8 is a schematic cross-sectional view of another liquid crystal display device.
FIG. 9 is an explanatory diagram for explaining the light diffusion / transmission characteristics of a laminated film of an optical film and a reflective polarizer.
FIG. 10 is a laminated film of the optical film of the present invention and an isotropic light diffusion film.
11A and 11B are a front view and a partial side view showing an example in which a diffusion film is used in a mobile phone.
FIG. 12 shows an example in which the present invention is applied to a liquid crystal display device using a polarizing film.
FIG. 13 is a view for explaining a photosensitive polymer exposure method in the embodiment.
FIG. 14 is a diagram for explaining a method for evaluating the transmission / scattering characteristics of a diffusion film in Examples.

Claims (11)

光を散乱透過させる屈折率の異なる二相からなる光拡散フィルムにおいて、屈折率の大きい一相がフィルムの厚さ方向に延在する柱状構造を有し円筒レンズとして機能する多数の領域を含み、前記多数の領域は柱状構造の横断面形状が長尺状の領域を含み、前記長尺状領域の前記横断面の長軸および短軸の平均アスペクト比が1.5:1〜5:1の範囲内であり、かつ前記長尺状領域がフィルムの特定方向に配向していることを特徴とする光拡散フィルム。  In a light diffusing film consisting of two phases having different refractive indexes for scattering and transmitting light, one phase having a large refractive index has a columnar structure extending in the thickness direction of the film and includes a large number of regions functioning as a cylindrical lens, The multiple regions include regions where the cross-sectional shape of the columnar structure is long, and the average aspect ratio of the long and short axes of the long region is 1.5: 1 to 5: 1. A light diffusion film characterized by being in a range and having the elongated region oriented in a specific direction of the film. 前記多数の領域は柱状構造の軸線が互に平行であり、かつその軸線がフィルムの法線方向に対して傾斜している請求項1に記載の光拡散フィルム。  2. The light diffusing film according to claim 1, wherein the axis of the columnar structure is parallel to each other and the axis is inclined with respect to the normal direction of the film. 前記多数の領域は柱状構造の軸線がフィルムの法線方向である請求項1に記載の光拡散フィルム。  The light diffusing film according to claim 1, wherein an axis of the columnar structure is a normal direction of the film in the multiple regions. 前記フィルムの屈折率の異なる二相の屈折率の差が0.005〜0.2の範囲内である請求項1〜3のいずれかに記載の光拡散フィルム。  The light diffusion film according to any one of claims 1 to 3, wherein a difference in refractive index between two phases having different refractive indexes of the film is in a range of 0.005 to 0.2. 前記フィルムが感光性を有する高分子材料から製造されたものである請求項1〜4のいずれかに記載の光拡散フィルム。  The light diffusion film according to any one of claims 1 to 4, wherein the film is produced from a polymer material having photosensitivity. 請求項1〜5のいずれかに記載の光拡散フィルムを用いたことを特徴をする光学素子。  An optical element using the light diffusion film according to claim 1. 請求項6に記載の光学素子を用いたことを特徴とする液晶表示装置。  A liquid crystal display device using the optical element according to claim 6. 光拡散フィルムの前記領域の横断面の前記長軸方向が液晶表示装置の視点方向から見て左右方向になるように、光拡散フィルムが配置されている請求項7に記載の液晶表示装置。  The liquid crystal display device according to claim 7, wherein the light diffusion film is arranged so that the major axis direction of the cross section of the region of the light diffusion film is a left-right direction when viewed from the viewpoint direction of the liquid crystal display device. 光拡散フィルムの前記領域の柱状構造の軸線方向がフィルム法線方向に対して傾斜しかつその傾斜方向が視点に対して遠ざかる方向である請求項8に記載の液晶表示装置。  The liquid crystal display device according to claim 8, wherein the axial direction of the columnar structure in the region of the light diffusion film is inclined with respect to the normal direction of the film and the inclined direction is away from the viewpoint. 液晶表示装置が偏光フィルムを含み、偏光フィルムの偏光軸が液晶表示画面の視点方向から見て左右いずれか方向に傾けて設置され、光拡散フィルムの前記領域の横断面の前記短軸方向が偏光フィルムの前記偏光軸方向に配置されている請求項7に記載の液晶表示装置。  The liquid crystal display device includes a polarizing film, and the polarizing axis of the polarizing film is set to be tilted in either the left or right direction when viewed from the viewpoint direction of the liquid crystal display screen, and the minor axis direction of the cross section of the region of the light diffusion film is polarized. The liquid crystal display device according to claim 7, wherein the liquid crystal display device is disposed in a direction of the polarization axis of the film. 感放射線性高分子フィルムの表面に、孔パターンを有するマスクとなる層を形成し、前記マスクの上方から法線に対して0〜50度の範囲から選択された照射角で感放射線性フィルムに前記マスクを通して放射線を照射することによって、高屈折率の柱状構造を形成することを含むことを特徴とする、請求項1〜5のいずれか1項に記載の光拡散フィルムの製造方法。  A layer serving as a mask having a hole pattern is formed on the surface of the radiation-sensitive polymer film, and the radiation-sensitive film is formed at an irradiation angle selected from the range of 0 to 50 degrees with respect to the normal from above the mask. The method for producing a light diffusion film according to claim 1, comprising forming a columnar structure having a high refractive index by irradiating with radiation through the mask.
JP2003500607A 2001-05-28 2002-05-16 Light diffusion film having controlled scattering characteristics, optical element using the same, and liquid crystal display device Expired - Lifetime JP4317006B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001159500 2001-05-28
JP2001159500 2001-05-28
PCT/JP2002/004749 WO2002097483A1 (en) 2001-05-28 2002-05-16 Light diffusion film having controlled scattering characteristics and optical element and liquid crystal display comprising it

Publications (2)

Publication Number Publication Date
JPWO2002097483A1 JPWO2002097483A1 (en) 2004-09-16
JP4317006B2 true JP4317006B2 (en) 2009-08-19

Family

ID=19003070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003500607A Expired - Lifetime JP4317006B2 (en) 2001-05-28 2002-05-16 Light diffusion film having controlled scattering characteristics, optical element using the same, and liquid crystal display device

Country Status (6)

Country Link
JP (1) JP4317006B2 (en)
KR (1) KR20040004671A (en)
CN (1) CN1235066C (en)
MY (1) MY139063A (en)
TW (1) TW557367B (en)
WO (1) WO2002097483A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047745A (en) * 2011-08-29 2013-03-07 Japan Display West Co Ltd Display panel and display device
US8432515B2 (en) 2004-11-11 2013-04-30 Nitto Denko Corporation Combination optical film, laminated combination optical film and image display
WO2015146708A1 (en) * 2014-03-28 2015-10-01 株式会社巴川製紙所 Anisotropic optical film
EP2940494A4 (en) * 2012-12-27 2016-11-09 Lintec Corp Light diffusion film
WO2018051700A1 (en) * 2016-09-14 2018-03-22 株式会社巴川製紙所 Light diffusing film laminate for reflective display device and reflective display device using same
WO2020203644A1 (en) * 2019-03-29 2020-10-08 株式会社巴川製紙所 Reflection-type display device using anisotropic optical film
JP7475333B2 (en) 2019-03-29 2024-04-26 株式会社巴川コーポレーション Reflective display device using anisotropic optical film

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202415A (en) * 2001-12-28 2003-07-18 Clariant Internatl Ltd Optical film with controlled scattering and transmission characteristic and liquid crystal display using the same
JP4561061B2 (en) * 2003-07-31 2010-10-13 凸版印刷株式会社 Production method of diffusion film
WO2005088357A1 (en) * 2004-03-16 2005-09-22 Tomoegawa Co., Ltd. Anisotropic diffusing medium and production method therefor
US8009251B2 (en) 2006-06-13 2011-08-30 Au Optronics Corporation High brightness liquid crystal display
KR100850155B1 (en) * 2006-09-02 2008-08-04 웅진케미칼 주식회사 Non-oriented optical film with excellent optical and thermal properties
TW200949369A (en) * 2008-02-15 2009-12-01 3M Innovative Properties Co Brightness enhancing film and film based diffuser for improved illumination uniformity of displays
JP5960979B2 (en) * 2010-12-16 2016-08-02 リンテック株式会社 Light diffusing film and method for producing light diffusing film
JP5738006B2 (en) * 2011-03-01 2015-06-17 株式会社巴川製紙所 Optical film
JP5893256B2 (en) * 2011-03-29 2016-03-23 株式会社ジャパンディスプレイ Display device and electronic device
JP5770127B2 (en) 2012-03-12 2015-08-26 株式会社ジャパンディスプレイ Liquid crystal display
US9945990B2 (en) * 2013-03-29 2018-04-17 Lintec Corporation Light diffusion film and light diffusion film manufacturing method
US10185063B2 (en) * 2013-04-30 2019-01-22 Lintec Corporation Optical-diffusion film for display and reflective display device using same
CN105829924B (en) * 2014-01-21 2018-10-19 株式会社巴川制纸所 Anisotropic optical film
JP5927313B2 (en) * 2015-01-30 2016-06-01 株式会社巴川製紙所 Optical film
US10670788B2 (en) * 2016-09-14 2020-06-02 Tomoegawa Co., Ltd. Light diffusion film laminate for reflective display device and reflective display device including the same
CN106324891B (en) * 2016-09-21 2019-06-07 武汉华星光电技术有限公司 A kind of LCD display of the symmetrical scattering light of formation
JP6955885B2 (en) * 2017-03-31 2021-10-27 リンテック株式会社 Projection screen
CN112088578A (en) * 2018-05-14 2020-12-15 株式会社巴川制纸所 Head-mounted display
JP6581329B1 (en) * 2018-05-14 2019-09-25 株式会社巴川製紙所 Head mounted display
JP7132746B2 (en) * 2018-05-18 2022-09-07 リンテック株式会社 Moire suppression film, moire suppression film laminate, composite display device provided with moire suppression film
JP7245004B2 (en) * 2018-06-20 2023-03-23 リンテック株式会社 Light diffusion control laminate and reflective display
CN112771441B (en) * 2018-09-28 2023-10-10 株式会社巴川制纸所 Light guide laminate using anisotropic optical film and planar lighting device for display device using the same
CN109471302A (en) * 2018-12-25 2019-03-15 中航华东光电有限公司 A kind of bottom back lighting device with visual angle deflection
JPWO2022209566A1 (en) * 2021-03-31 2022-10-06

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767935A (en) * 1995-08-31 1998-06-16 Sumitomo Chemical Company, Limited Light control sheet and liquid crystal display device comprising the same
JP2001081292A (en) * 1999-09-09 2001-03-27 Toppan Printing Co Ltd Composition for anisotropic light scattering film and anisotropic light scattering film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432515B2 (en) 2004-11-11 2013-04-30 Nitto Denko Corporation Combination optical film, laminated combination optical film and image display
JP2013047745A (en) * 2011-08-29 2013-03-07 Japan Display West Co Ltd Display panel and display device
EP2940494A4 (en) * 2012-12-27 2016-11-09 Lintec Corp Light diffusion film
US10094958B2 (en) 2012-12-27 2018-10-09 Lintec Corporation Light diffusion film
JP2015191178A (en) * 2014-03-28 2015-11-02 株式会社巴川製紙所 anisotropic optical film
WO2015146708A1 (en) * 2014-03-28 2015-10-01 株式会社巴川製紙所 Anisotropic optical film
WO2018051700A1 (en) * 2016-09-14 2018-03-22 株式会社巴川製紙所 Light diffusing film laminate for reflective display device and reflective display device using same
KR20190053844A (en) * 2016-09-14 2019-05-20 가부시키가이샤 도모에가와 세이시쇼 LIGHT DIFFUSION FILM LAMINATE FOR REFLECTIVE DISPLAY DEVICE AND REFLECTIVE DISPLAY DEVICE
JPWO2018051700A1 (en) * 2016-09-14 2019-06-27 株式会社巴川製紙所 Light diffusion film laminate for reflection type display device and reflection type display device using the same
US10739501B2 (en) 2016-09-14 2020-08-11 Tomoegawa Co., Ltd. Light diffusion film laminate for reflective display device and reflective display device including the same
KR102360349B1 (en) * 2016-09-14 2022-02-10 가부시키가이샤 도모에가와 세이시쇼 Light-diffusion film laminate for reflective display device and reflective display device using same
WO2020203644A1 (en) * 2019-03-29 2020-10-08 株式会社巴川製紙所 Reflection-type display device using anisotropic optical film
JP7475333B2 (en) 2019-03-29 2024-04-26 株式会社巴川コーポレーション Reflective display device using anisotropic optical film

Also Published As

Publication number Publication date
KR20040004671A (en) 2004-01-13
TW557367B (en) 2003-10-11
CN1537240A (en) 2004-10-13
WO2002097483A1 (en) 2002-12-05
CN1235066C (en) 2006-01-04
JPWO2002097483A1 (en) 2004-09-16
MY139063A (en) 2009-08-28

Similar Documents

Publication Publication Date Title
JP4317006B2 (en) Light diffusion film having controlled scattering characteristics, optical element using the same, and liquid crystal display device
US20050018303A1 (en) Optical film having controlled scattering/ transmitting characteristics and liquid crystal display using it
JP3957986B2 (en) Reflective display device
US6888678B2 (en) Irregular-shape body, reflection sheet and reflection-type liquid crystal display element, and production method and production device therefor
KR100446562B1 (en) Translucent Liquid Crystal Display Device
US6819507B2 (en) Optical element like corner cube retroreflector and reflective display device including such an optical element
US7973893B2 (en) Method of manufacturing a substrate for a liquid crystal display device
KR100824226B1 (en) Optical film having controlled scattering and transmitting characteristics
JP2003195275A (en) Liquid crystal display device
JP4590729B2 (en) Off-axis anisotropic light scattering film and display device using the same
JP3731414B2 (en) Off-axis anisotropic light scattering film and display device using the same
JP2000330106A (en) Electrode substrate for reflection type liquid crystal display device and reflection type liquid crystal display device using the same
JP2005010481A (en) Reflection type screen
JP2004037831A (en) Retroreflector, polarizing plate with retroreflector, and liquid crystal display device using the same
JP4385646B2 (en) Liquid crystal display
JP4989001B2 (en) Transflective liquid crystal display element
JP2004061767A (en) Reflector and manufacturing method therefor, and reflection type liquid crystal display
JP3642144B2 (en) Reflective display device
JP2000199804A (en) Optical device
JP2004054041A (en) Reflector and reflection liquid crystal display device, and method for manufacturing reflector
JP2000105366A (en) Scattering type liquid crystal display element and its production
JP2004045580A (en) Reflective liquid crystal display device
JP2005043923A (en) Reflective display device
JP2009237585A (en) Reflective liquid crystal display device
JP2003329819A (en) Reflector, method for manufacturing the same and reflective liquid crystal display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Ref document number: 4317006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term