JP4315884B2 - Metal thin film for semiconductor wiring, semiconductor wiring formed using the metal thin film, and method for manufacturing semiconductor wiring - Google Patents

Metal thin film for semiconductor wiring, semiconductor wiring formed using the metal thin film, and method for manufacturing semiconductor wiring Download PDF

Info

Publication number
JP4315884B2
JP4315884B2 JP2004280445A JP2004280445A JP4315884B2 JP 4315884 B2 JP4315884 B2 JP 4315884B2 JP 2004280445 A JP2004280445 A JP 2004280445A JP 2004280445 A JP2004280445 A JP 2004280445A JP 4315884 B2 JP4315884 B2 JP 4315884B2
Authority
JP
Japan
Prior art keywords
metal
thin film
metal thin
layer
based metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004280445A
Other languages
Japanese (ja)
Other versions
JP2006093630A (en
Inventor
隆 大西
雅夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004280445A priority Critical patent/JP4315884B2/en
Publication of JP2006093630A publication Critical patent/JP2006093630A/en
Application granted granted Critical
Publication of JP4315884B2 publication Critical patent/JP4315884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体装置に関するものであり、より具体的には、半導体に設けられている配線を形成する際に用いる金属薄膜、該金属薄膜を用いて形成される半導体配線、並びに半導体配線を製造する方法に関するものである。   The present invention relates to a semiconductor device, and more specifically, a metal thin film used when forming a wiring provided in a semiconductor, a semiconductor wiring formed using the metal thin film, and a semiconductor wiring are manufactured. It is about how to do.

近年の半導体は、益々高性能化が進んでおり、高速化や高集積化が求められている。半導体の高速化を実現するには、信号伝達遅延の原因となる配線膜の電気抵抗を極力低減することが有効である。そのため配線膜の素材は、アルミニウムまたはアルミニウム合金(以下、「Al系金属」と称することがある)から銅または銅合金(以下、「Cu系金属」と称することがある)に代わってきている。また、高速動作を可能とするには回路の高集積化が望ましく、配線幅をできるだけ狭くする必要がある。そのため従来は配線幅が0.25μm前後の半導体が主流であったが、近年では配線幅は益々狭くなる傾向がある。   In recent years, semiconductors have been increasingly improved in performance, and higher speed and higher integration are required. In order to realize a high speed semiconductor, it is effective to reduce the electric resistance of the wiring film that causes a signal transmission delay as much as possible. Therefore, the material of the wiring film has been changed from aluminum or an aluminum alloy (hereinafter sometimes referred to as “Al-based metal”) to copper or a copper alloy (hereinafter sometimes referred to as “Cu-based metal”). In order to enable high-speed operation, it is desirable that the circuit is highly integrated, and it is necessary to make the wiring width as narrow as possible. For this reason, semiconductors with a wiring width of around 0.25 μm have been the mainstream in the past, but in recent years, the wiring width tends to become increasingly narrower.

一方、半導体の高集積化を実現するために、近年では配線を多層構造にすることが検討されている。多層構造の配線を形成する方法としてはダマシン法があり、この方法は、半導体基板上に形成した絶縁膜(例えば、Si酸化膜等)に、配線を埋め込むための溝や配線同士を接続するための孔(トレンチ・ビア)等の配線パターン(以下、溝や孔をまとめて「凹部」と呼ぶことがある)を予め形成した後、スパッタリングによって表面にバリア膜を形成し、次いで電気メッキによってCu系金属を前記凹部に埋没させた後、余分なCu系金属を化学機械的研磨(Chemical Mechanical Polishing:CMP)処理することによって配線を形成する。そして研磨後の表面に新たな絶縁膜を形成して上記プロセスを繰り返すことにより多層構造の配線を形成する方法である。上記凹部の幅(即ち、配線幅)が大きければ、電気メッキによってCu系金属を該凹部に容易に埋め込むことができる。   On the other hand, in order to realize high integration of semiconductors, in recent years, it has been studied to make a wiring into a multilayer structure. There is a damascene method as a method of forming a multilayer wiring, and this method is used to connect a groove or wiring for embedding wiring in an insulating film (eg, Si oxide film) formed on a semiconductor substrate. After forming a wiring pattern such as a hole (trench / via) (hereinafter sometimes referred to as a “concave portion” collectively), a barrier film is formed on the surface by sputtering, and then Cu is formed by electroplating. After burying the system metal in the recess, wiring is formed by subjecting the excess Cu system metal to chemical mechanical polishing (CMP). In this method, a new insulating film is formed on the polished surface and the above process is repeated to form a multilayer wiring. If the width of the recess (that is, the wiring width) is large, Cu-based metal can be easily embedded in the recess by electroplating.

しかし上述した如く近年の半導体の配線幅は益々狭くなる傾向があるが、配線幅を狭くしようとすると必然的に凹部の幅も狭くなる。そのため該凹部にCu系金属が浸入せず、半導体配線を形成できないという問題があった。   However, as described above, the wiring width of semiconductors in recent years tends to be narrower. However, when the wiring width is narrowed, the width of the recess is inevitably narrowed. Therefore, there is a problem that Cu-based metal does not enter the recess and semiconductor wiring cannot be formed.

Cu系金属を凹部に埋め込む方法としては、特許文献1の技術が先に提案されている。この技術はCu系配線膜の加圧押込方法であり、孔もしくは溝が形成された基板の絶縁膜表面を、物理蒸着法(具体的には、スパッタリング法)によりCu系の配線膜材料で被覆した後、該配線膜材料の融点以下の温度で、高圧のガス圧力を作用させて、該配線膜材料を塑性流動もしくは拡散させることによって孔もしくは溝に埋め込むものである。そしてこの文献には、物理蒸着法による成膜を、対象部材の温度を200〜400℃程度とした高温で行った後、高圧ガスによる押込み処理を行うことが記載されている。しかし本発明者らが検討したところ、孔もしくは溝の幅が一段と狭くなると、該孔もしくは溝に上記Cu系配線膜材料が埋め込まれないことがあることが分かり、改善の余地が残されていた。
特開平11−260820号公報([特許請求の範囲]、[0011]、[0013]参照)
As a method of embedding a Cu-based metal in the recess, the technique of Patent Document 1 has been proposed previously. This technology is a pressure-injection method for Cu-based wiring films, and the insulating film surface of a substrate in which holes or grooves are formed is covered with a Cu-based wiring film material by physical vapor deposition (specifically, sputtering). After that, a high gas pressure is applied at a temperature lower than the melting point of the wiring film material to plastically flow or diffuse the wiring film material, thereby filling the hole or groove. In this document, it is described that the film formation by the physical vapor deposition method is performed at a high temperature in which the temperature of the target member is about 200 to 400 ° C., and then the indentation process is performed with the high-pressure gas. However, as a result of studies by the present inventors, it has been found that when the width of the hole or groove becomes narrower, the Cu-based wiring film material may not be embedded in the hole or groove, leaving room for improvement. .
JP-A-11-260820 (see [Claims], [0011], [0013])

上記特許文献1の技術において、半導体基板の表面に設けた凹部内にCu系配線膜材料が埋め込まれないことがある理由について検討したところ、スパッタリング法で形成したCu系配線膜材料は、例えば電気メッキ法で形成したCu系配線膜材料よりも高温での流動性(以下、リフロー性と称することがある)が悪いことが原因であることが判明した。   In the technique of Patent Document 1, the reason why the Cu-based wiring film material may not be embedded in the recesses provided on the surface of the semiconductor substrate has been studied. The Cu-based wiring film material formed by sputtering is, for example, It has been found that the cause is that the fluidity at a high temperature (hereinafter sometimes referred to as reflowability) is worse than the Cu-based wiring film material formed by plating.

そこで本発明は、この様な状況に鑑みてなされたものであり、その目的は、半導体配線を製造する際に用いられる金属薄膜あって、半導体の配線幅を狭く設計しても該配線幅に対応する凹部に確実に埋め込むことのできる半導体配線用金属薄膜を提供することにある。本発明の他の目的は、上記半導体配線用金属薄膜を半導体基板に設けられた凹部に埋め込むことにより形成される半導体配線を提供することにある。更に他の目的は、こうした半導体配線を製造する方法を提供することにある。   Therefore, the present invention has been made in view of such a situation, and an object of the present invention is a metal thin film used in manufacturing semiconductor wiring, and even if the semiconductor wiring width is designed to be narrow, the wiring width is reduced. An object of the present invention is to provide a metal thin film for semiconductor wiring that can be reliably embedded in a corresponding recess. Another object of the present invention is to provide a semiconductor wiring formed by embedding the metal thin film for semiconductor wiring in a recess provided in a semiconductor substrate. Still another object is to provide a method of manufacturing such semiconductor wiring.

凹部を有する半導体基板の表面にスパッタリング法で積層される金属薄膜について、高温時のリフロー性を高める観点から鋭意検討を重ねたところ、半導体基板の表面に積層するCu系の金属薄膜を、Cu系以外の金属薄層で分断し、上記金属薄膜の厚み方向にCu系金属薄層とCu系以外の金属薄層が積層するように構成すれば、Cuの結晶粒径を著しく小さくできること、そして半導体基板の表面に成膜した段階でCuの結晶粒径を小さくしておけば、この金属薄膜を高温高圧処理したときにCuの結晶粒が充分に成長していくことによってリフロー性が高まることを見出し、本発明を完成した。   With regard to the metal thin film laminated by sputtering on the surface of the semiconductor substrate having the recesses, after intensive investigation from the viewpoint of enhancing the reflow property at high temperature, the Cu-based metal thin film laminated on the surface of the semiconductor substrate is Cu-based. If it is divided by a thin metal layer other than the above, and a Cu-based metal thin layer and a non-Cu-based metal thin layer are laminated in the thickness direction of the metal thin film, the crystal grain size of Cu can be remarkably reduced, and the semiconductor If the crystal grain size of Cu is made small at the stage of film formation on the surface of the substrate, the reflowability is improved by sufficiently growing the crystal grains of Cu when this metal thin film is processed at high temperature and high pressure. The headline and the present invention were completed.

即ち、本発明に係る半導体配線用金属薄膜とは、凹部を有する半導体基板の表面に積層される金属薄膜であって、前記金属薄膜は、Cu系金属で構成される薄膜が、Cu系以外の金属で構成される1つ以上の薄層で分断されたものである点に要旨を有する。   That is, the metal thin film for semiconductor wiring according to the present invention is a metal thin film laminated on the surface of a semiconductor substrate having a recess, and the metal thin film is a thin film composed of a Cu-based metal other than a Cu-based metal. It has a gist in that it is divided by one or more thin layers made of metal.

前記Cu系以外の金属薄層の結晶構造は、(a)前記Cu系金属薄膜の格子定数よりも5%以上異なる格子定数を有する面心立方晶であるか、(b)前記Cu系以外の金属薄層の結晶構造が、体心立方晶または六方最密晶であると、金属薄膜に欠陥が導入されるため、リフロー性を一段と高めることができる。   The crystal structure of the non-Cu-based metal thin layer is (a) a face-centered cubic crystal having a lattice constant different by 5% or more from the lattice constant of the Cu-based metal thin film, or (b) other than the Cu-based crystal. When the crystal structure of the metal thin layer is a body-centered cubic crystal or a hexagonal close-packed crystal, defects are introduced into the metal thin film, so that the reflow property can be further enhanced.

前記Cu系以外の金属としては、例えば、Au,Pd,W,Mo,AlまたはAgよりなる群から選ばれる金属の少なくとも1種を好適に用いることができる。   As the metal other than the Cu-based metal, for example, at least one metal selected from the group consisting of Au, Pd, W, Mo, Al, or Ag can be suitably used.

成膜後のCu系金属の結晶粒はできるだけ小さいことが好ましく、前記Cu系以外の金属薄層で分断されることによって形成されるCu系金属薄層の厚さをa、該薄層中のCu系金属の結晶粒径をbとしたとき、b≦2a、の関係を満足する金属薄膜が推奨される。   The crystal grain of the Cu-based metal after film formation is preferably as small as possible, and the thickness of the Cu-based metal thin layer formed by being divided by a thin metal layer other than the Cu-based material is a, When the crystal grain size of the Cu-based metal is b, a metal thin film that satisfies the relationship of b ≦ 2a is recommended.

前記Cu系以外の金属薄層で分断されることによって形成されるCu系金属薄層の厚さは、1層当たり100〜2000Åであり、前記Cu系以外の金属薄層の厚さは、1層当たり10〜100Åとすることが好ましい。   The thickness of the Cu-based metal thin layer formed by being divided by the thin metal layer other than the Cu-based material is 100 to 2000 mm per layer, and the thickness of the thin metal layer other than the Cu-based material is 1 It is preferable to be 10 to 100 mm per layer.

前記Cu系金属薄層は、2〜10層含むものとすることが好ましい。   The Cu-based metal thin layer preferably includes 2 to 10 layers.

本発明に係る半導体配線とは、凹部を有する半導体基板の表面に、上記金属薄膜を積層した後、高温高圧処理して前記金属薄膜を前記凹部内に埋め込むことによって形成されたものである。   The semiconductor wiring according to the present invention is formed by laminating the metal thin film on the surface of a semiconductor substrate having a recess and then embedding the metal thin film in the recess by high-temperature and high-pressure treatment.

本発明に係る半導体配線の製法とは、凹部を有する半導体基板の表面に、Cu系金属で構成される薄膜をスパッタリング法で形成した後、Cu系以外の金属で構成される薄層をスパッタリング法で形成する工程とCu系金属で構成される薄層をスパッタリング法で形成する工程を1回以上繰り返すことによって半導体配線用金属薄膜を形成し、次いで高温高圧処理して前記金属薄膜を前記凹部内に埋め込むことによって配線を形成する点に要旨を有する。   The method for producing a semiconductor wiring according to the present invention is that a thin film composed of a Cu-based metal is formed on the surface of a semiconductor substrate having a recess by a sputtering method, and then a thin layer composed of a metal other than a Cu-based metal is sputtered. And forming a thin layer composed of a Cu-based metal by a sputtering method at least once to form a metal thin film for semiconductor wiring, and then subjecting the metal thin film to the inside of the recess by high-temperature and high-pressure treatment. The main point is that the wiring is formed by embedding in the wiring.

本発明によれば、Cu系金属薄層中のCuの結晶粒が微細化されるため、こうしたCu系金属薄層を含む金属薄膜を高温高圧処理すれば微細化されたCuの結晶粒が充分に結晶粒成長するため、リフロー性が向上する。その結果、半導体の配線幅を狭く設計しても該配線幅に対応する凹部に確実に埋め込むことのできる半導体配線用金属薄膜を提供できる。また本発明によれば、配線幅を狭く設計しても上記半導体配線用金属薄膜は半導体基板に設けられた凹部に確実に埋め込まれるため、良好な特性を示す半導体配線を提供できる。更に本発明によれば、こうした半導体配線を確実に製造できる方法を提供できる。   According to the present invention, since the Cu crystal grains in the Cu-based metal thin layer are refined, if the metal thin film including such a Cu-based metal thin layer is processed at high temperature and high pressure, the refined Cu crystal grains are sufficient. Therefore, reflowability is improved. As a result, it is possible to provide a metal thin film for semiconductor wiring that can be reliably embedded in the recess corresponding to the wiring width even if the wiring width of the semiconductor is designed to be narrow. Further, according to the present invention, even if the wiring width is designed to be narrow, the semiconductor thin film for semiconductor wiring is surely embedded in the recess provided in the semiconductor substrate, so that it is possible to provide a semiconductor wiring having good characteristics. Furthermore, according to the present invention, it is possible to provide a method capable of reliably manufacturing such semiconductor wiring.

凹部を有する半導体基板の表面にスパッタリング法で積層される金属薄膜について、高温に加熱したときのリフロー性を高めるには、成膜後の金属薄膜におけるCuの結晶粒径をできるだけ微細化することが重要である。   In order to improve the reflow property when heated to a high temperature for a metal thin film laminated on the surface of a semiconductor substrate having a recess by sputtering, the crystal grain size of Cu in the metal thin film after film formation should be made as fine as possible. is important.

即ち、スパッタリング法で成膜される金属薄膜に高温高圧処理を施した際に高温時におけるリフロー性が悪い原因は、成膜後に金属薄膜の多結晶組織が安定化するところにあるのではないかと本発明者らは考えた。つまりスパッタリング法で成膜されたCu系金属薄膜中のCuの平均結晶粒径は、膜厚と同程度にまで成長する。例えば、スパッタリング法で成膜されたCu系金属薄膜の膜厚が1μmであれば、Cu系金属薄膜中のCuの平均結晶粒径は1μm程度にまで成長する。そのため、一般に半導体表面に積層されるCu系金属薄膜の厚さは、上記凹部の幅(開口幅)や深さ(即ち、凹部の容積)によって異なるが、少なくとも1000Å程度であり、最大では20000Å程度である。よってCu系金属薄膜をスパッタリング法で単一層として設けると、Cuの結晶粒は膜厚程度にまで粗大化して1000〜20000Å程度となる。   That is, the reason why the reflowability at high temperature when the metal thin film formed by sputtering is subjected to high temperature and high pressure treatment is that the polycrystalline structure of the metal thin film is stabilized after the film formation. The present inventors considered. That is, the average crystal grain size of Cu in the Cu-based metal thin film formed by sputtering grows to the same extent as the film thickness. For example, if the film thickness of the Cu-based metal thin film formed by sputtering is 1 μm, the average crystal grain size of Cu in the Cu-based metal thin film grows to about 1 μm. Therefore, in general, the thickness of the Cu-based metal thin film laminated on the semiconductor surface varies depending on the width (opening width) and depth (that is, the volume of the recess) of the recess, but is at least about 1000 mm, and at most about 20000 mm. It is. Therefore, when a Cu-based metal thin film is provided as a single layer by a sputtering method, Cu crystal grains are coarsened to a film thickness of about 1000 to 20000 mm.

こうした粗大化の原因は、Cuは室温時効(セルファニール)を起こすという極めて特殊な金属だからという点にあると考えられる。そのためスパッタリング直後の状態(As−deposited状態)ではCu系金属薄膜中のCu結晶が微結晶であっても、室温に放置すると室温時効して一次再結晶を起こし、結晶粒が粗大化するのである。このときCu結晶の粗大化に伴い、結晶粒界は金属薄膜の厚さ方向に貫通するように形成される。そしてこうした金属薄膜に高温高圧処理を施しても、金属薄膜中の結晶粒界は安定に存在するため、Cu薄膜は移動・変形せず、リフロー性が悪くなると本発明者らは考えたのである。   It is considered that the cause of such coarsening is that Cu is a very special metal that causes aging at room temperature (self-phenyl). Therefore, in the state immediately after sputtering (As-deposited state), even if the Cu crystal in the Cu-based metal thin film is a microcrystal, if it is left at room temperature, it will age at room temperature to cause primary recrystallization and the crystal grains will become coarse. . At this time, with the coarsening of the Cu crystal, the crystal grain boundary is formed so as to penetrate in the thickness direction of the metal thin film. The present inventors thought that even when such a metal thin film was subjected to high-temperature and high-pressure treatment, crystal grain boundaries in the metal thin film existed stably, so that the Cu thin film did not move / deform and the reflow property deteriorated. .

そこで高温時における金属薄膜のリフロー性を向上させるには、スパッタリングで成膜した金属薄膜の多結晶組織を不安定化すればよいのではないかと考え、検討を進めた。その結果、金属薄膜の多結晶組織を不安定化するには、金属薄膜中のCu結晶粒を微細化すればよいことに想到した。そしてCuの結晶粒を微細化するには、Cu系金属で構成される薄膜(以下、Cu系金属薄膜と略すことがある)が、Cu系以外の金属で構成される1つ以上の薄層で分断されていればよいことが明らかとなった。   Therefore, in order to improve the reflowability of the metal thin film at high temperatures, the inventors considered that it would be necessary to destabilize the polycrystalline structure of the metal thin film formed by sputtering. As a result, in order to destabilize the polycrystalline structure of the metal thin film, it has been conceived that the Cu crystal grains in the metal thin film need only be refined. In order to refine Cu crystal grains, one or more thin layers in which a thin film composed of a Cu-based metal (hereinafter sometimes abbreviated as a Cu-based metal thin film) is composed of a metal other than a Cu-based metal. It has become clear that it may be divided at

即ち、半導体基板の表面に積層される金属薄膜を、Cu系金属薄膜がCu系以外の金属で構成される1つ以上の薄層で分断される構成とし、Cu系金属薄層とCu系以外の金属薄層が積層した積層構造とする。Cu系以外の金属は、通常、室温時効を起こさないため、As−deposited状態を維持することになる。そのためCu系金属薄層とCu系以外の金属薄層を積層した金属薄膜にすれば、該金属薄膜を室温に放置してもCu系金属薄層中のCu結晶粒は室温時効して粗大化するが、Cu系以外の金属薄層中の金属は室温時効起こさないためAs−deposited状態を維持する。その結果、Cuの結晶粒が成長しようとしても、Cu系以外の金属で挟まれたCu系金属薄層の厚さは小さいため、該Cu系金属薄層中のCu結晶粒は粗大化せず、微細なままとなる。   That is, the metal thin film laminated on the surface of the semiconductor substrate is divided by one or more thin layers in which the Cu-based metal thin film is composed of a metal other than Cu-based, and other than the Cu-based metal thin layer and Cu-based A laminated structure in which thin metal layers are laminated. Metals other than Cu-based metals usually do not cause aging at room temperature, and thus maintain the As-deposited state. Therefore, if a thin metal film composed of a Cu-based metal thin layer and a non-Cu-based metal thin film is formed, Cu crystal grains in the Cu-based metal thin layer are aged and coarsened even if the metal thin film is left at room temperature. However, since the metal in the thin metal layer other than the Cu-based metal does not aging at room temperature, the As-deposited state is maintained. As a result, even if Cu crystal grains are about to grow, the thickness of the Cu-based metal thin layer sandwiched between metals other than the Cu-based metal is small, so the Cu crystal grains in the Cu-based metal thin layer are not coarsened. Remain fine.

このときCu系金属薄膜をCu系以外の金属薄層で分断することにより、半導体基板の表面に積層すべきCu系金属量を変えることなく(つまり、Cu系金属層の合計厚さを維持しながら)、夫々のCu系金属薄層の厚さのみを小さくできる。そしてこうした積層構造の金属薄膜に高温高圧処理を施すと、Cu系以外の金属薄層はCu系金属薄層中に一旦固溶して消滅し、Cu系金属中にCu系以外の金属が固溶した金属薄膜となる。このときCu系以外の金属薄層は消滅するため、Cuの結晶粒は金属薄膜全体の厚さ程度にまで成長しつつ半導体表面に設けられた凹部に埋め込まれる。その結果、金属薄膜のリフロー性が高まる。なお、一旦固溶したCu系以外の金属は、冷却時には状態図の組織となるため、こうした金属は最終的に形成された配線中に固溶、析出、共晶等の状態で存在していると考えられる。   At this time, by dividing the Cu-based metal thin film with a thin metal layer other than Cu-based, the amount of Cu-based metal to be laminated on the surface of the semiconductor substrate is not changed (that is, the total thickness of the Cu-based metal layer is maintained). However, only the thickness of each Cu-based metal thin layer can be reduced. When a metal thin film having such a laminated structure is subjected to high-temperature and high-pressure treatment, the thin metal layer other than Cu is once dissolved in the Cu metal thin layer and disappears, and the metal other than Cu is solid in the Cu metal. It becomes a molten metal thin film. At this time, since the metal thin layer other than the Cu-based metal disappears, Cu crystal grains grow to the thickness of the entire metal thin film and are embedded in the recesses provided on the semiconductor surface. As a result, the reflow property of the metal thin film is increased. In addition, since metals other than Cu-based metals once dissolved form a phase diagram structure during cooling, such metals exist in the form of solid solution, precipitation, eutectic, etc. in the finally formed wiring. it is conceivable that.

半導体表面に設けられた凹部とは、半導体配線を形成するための空間であり、配線を埋め込むための溝や配線同士を接続するための孔(トレンチ・ビア)等の配線パターンを総称したものである。この凹部に金属薄膜を埋め込むことによって半導体配線が形成される。   A recess provided on the surface of a semiconductor is a space for forming a semiconductor wiring, and is a general term for a wiring pattern such as a groove for embedding wiring and a hole (trench / via) for connecting wirings. is there. A semiconductor wiring is formed by embedding a metal thin film in the recess.

凹部の最小幅は0.2μm程度以下である。0.2μmを超える場合は、本発明の半導体配線用金属薄膜を用いなくとも、例えば電気メッキ法で通常のCu系金属を凹部に容易に埋め込むことができる。これに対し、本発明で形成しようとする配線の幅は狭く、その配線に対応する凹部の幅も電気メッキ法では直接Cu合金を埋め込むことのできないレベルのものである。本発明の半導体配線用金属薄膜を用いれば凹部の最小幅を0.1μm以下、更には0.07μm以下にまで狭めても良好に配線を形成できる。   The minimum width of the recess is about 0.2 μm or less. When the thickness exceeds 0.2 μm, an ordinary Cu-based metal can be easily embedded in the recess by, for example, electroplating without using the metal thin film for semiconductor wiring of the present invention. On the other hand, the width of the wiring to be formed in the present invention is narrow, and the width of the recess corresponding to the wiring is of a level that cannot be directly embedded with the Cu alloy by electroplating. If the metal thin film for semiconductor wiring of the present invention is used, wiring can be satisfactorily formed even if the minimum width of the recess is reduced to 0.1 μm or less, and further to 0.07 μm or less.

凹部の深さは0.3μm程度以上である。凹部の深さが浅ければ、本発明の半導体用金属薄膜を用いなくとも、例えば電気メッキ法でCu系金属を凹部に埋め込むことができる。これに対し、本発明の半導体配線用金属薄膜を用いれば凹部の深さが0.3μm程度以上、更には0.5μm以上であっても確実に配線を形成できる。   The depth of the recess is about 0.3 μm or more. If the depth of the recess is shallow, Cu-based metal can be embedded in the recess by, for example, electroplating without using the semiconductor metal thin film of the present invention. On the other hand, if the metal thin film for semiconductor wiring of the present invention is used, the wiring can be reliably formed even if the depth of the recess is about 0.3 μm or more, and further 0.5 μm or more.

ここで、凹部の最小幅とは、金属薄膜を埋め込む対象が溝の場合は、該溝の開口部のうち、最も狭い部分の距離を指す。一方、金属薄膜を埋め込む対象が孔の場合は、該孔の開口部の直径を指し、例えば、孔が楕円の場合は短径を指す。なお、絶縁膜に幅の異なる複数の溝や孔が形成されている場合は、溝の幅や孔の直径(もしくは短径)のうち、最も短いものが上記要件を満足していればよい。   Here, the minimum width of the concave portion refers to the distance of the narrowest portion of the opening of the groove when the object to be embedded with the metal thin film is a groove. On the other hand, when the object for embedding the metal thin film is a hole, it indicates the diameter of the opening of the hole. For example, when the hole is an ellipse, it indicates the short diameter. In the case where a plurality of grooves and holes having different widths are formed in the insulating film, the shortest of the groove widths and hole diameters (or short diameters) only needs to satisfy the above requirements.

Cu系金属とは、Cuを主体とする金属を指し、純Cu(純度:99.99〜99.9999%)またはCu合金を用いることができる。Cu合金とは、SiやTiなどの合金元素を数質量%以下含むものであり、その結晶構造はAs−doposited状態で面心立方構造(fcc)である。好ましくは純Cuを用いる。Cu系金属で構成される薄膜とは、純CuまたはCu合金からなる薄膜を意味する。   The Cu-based metal refers to a metal mainly composed of Cu, and pure Cu (purity: 99.99 to 99.9999%) or a Cu alloy can be used. The Cu alloy includes an alloy element such as Si or Ti of several mass% or less, and the crystal structure thereof is a face-centered cubic structure (fcc) in an As-positioned state. Preferably, pure Cu is used. A thin film made of a Cu-based metal means a thin film made of pure Cu or a Cu alloy.

Cu系金属で構成される薄層は、互いに同一の成分組成の金属で構成してもよいし、異なる成分組成の金属で構成してもよい。   The thin layer composed of a Cu-based metal may be composed of metals having the same component composition, or may be composed of metals having different component compositions.

Cu系以外の金属とは、上記Cu系金属を除いた金属であって、室温時効時にCu系金属中のCu結晶の粒成長を抑制可能である限りその種類は特に限定されない。但し、後述する高温高圧処理を施すことによってCu系金属に一旦固溶する金属でなければならない。高温高圧処理後にCu系以外の金属が固溶せずに残ると、Cu系以外の金属は半導体基板に設けられた凹部を覆うことになり、Cu系以外の金属薄層の上に設けたCu系金属薄層が凹部に埋め込まれないからである。また、Cu系以外の金属は、Cu系金属の電気抵抗を高めないものを選択する必要がある。Cu系金属の電気抵抗を高めてしまうと、配線の電気抵抗を高めることになり、半導体としての特性が劣化するからである。   The metal other than the Cu-based metal is a metal excluding the Cu-based metal, and the type thereof is not particularly limited as long as Cu crystal grain growth in the Cu-based metal can be suppressed during aging at room temperature. However, the metal must be once dissolved in the Cu-based metal by performing a high-temperature and high-pressure treatment described later. If a metal other than Cu-based metal remains without being dissolved after high-temperature and high-pressure treatment, the metal other than Cu-based metal will cover the recess provided in the semiconductor substrate, and Cu provided on the thin metal layer other than Cu-based metal. This is because the system metal thin layer is not embedded in the recess. Moreover, it is necessary to select a metal other than the Cu-based metal that does not increase the electrical resistance of the Cu-based metal. If the electrical resistance of the Cu-based metal is increased, the electrical resistance of the wiring is increased, and the characteristics as a semiconductor deteriorate.

こうした観点から、Cu系以外の金属としては、Au,Pd,W,Mo,AlまたはAgよりなる群から選ばれる金属の少なくとも1種であることが好ましい。この金属は、純金属(純度:99.99%程度)であってもよいし、合金であってもよい。好ましくは純Agか、Ag合金である。なお、Cu系以外の金属としては、Cu系金属薄膜を分断することによる効果を損なわない範囲であれば微量のCuを含んでいてもよいが、好ましくは実質的にCuを含まない金属である。「実質的に」とは、Cuの含有量が0.1質量%以下であるか、不可避不純物レベルであることを意味する。Cu系以外の金属で構成される薄層とは、Cu系以外の純金属または合金からなる薄層を意味する。   From such a viewpoint, the metal other than Cu is preferably at least one metal selected from the group consisting of Au, Pd, W, Mo, Al, or Ag. This metal may be a pure metal (purity: about 99.99%) or an alloy. Preferred is pure Ag or an Ag alloy. The metal other than Cu-based metal may contain a trace amount of Cu as long as it does not impair the effect of dividing the Cu-based metal thin film, but is preferably a metal that does not substantially contain Cu. . “Substantially” means that the Cu content is 0.1% by mass or less or is at an inevitable impurity level. A thin layer composed of a metal other than Cu-based means a thin layer made of pure metal or alloy other than Cu-based.

Cu系以外の金属で構成される薄層は、1層でもよいし、2層以上でもよい。即ち、上記Cu系金属薄膜を少なくとも2層に分断できればよく、もちろん3層以上に分断されていてもよい。Cu系以外の金属で構成される薄層を複数設ける場合は、該複数の薄層を、互いに同一の金属で構成してもよいし、異なる金属で構成してもよい。   The thin layer made of a metal other than the Cu-based metal may be one layer or two or more layers. That is, the Cu-based metal thin film may be divided into at least two layers, and of course, it may be divided into three or more layers. In the case where a plurality of thin layers made of a metal other than Cu are provided, the plurality of thin layers may be made of the same metal or different metals.

ところで半導体基板の表面に上記Cu系金属薄層とCu系以外の金属薄層を積層して形成される金属薄膜の高温高圧処理時におけるリフロー性を更に高めるには、金属薄膜中に欠陥を導入することが有効である。金属薄膜中に転位や原子空孔などの欠陥が多く存在すると、加熱(例えば、300〜500℃)したときに欠陥が回復し、このとき原子拡散が起こってCu結晶粒の軟化や変形が促進される。例えば、電解メッキ法で形成したCu系金属薄膜は多数の空孔を有しており、Bulk−Cuの融点付近で熱平衡となる程度の原子空孔量となる。これに対し、スパッタリング法で形成したCu系金属薄膜は、前記電気メッキ法で形成したCu系金属薄膜に比べて原子空孔量が少ない薄膜となる。そのためリフロー性が低下すると考えられる。   By the way, in order to further improve the reflow characteristics of the metal thin film formed by laminating the Cu-based metal thin layer and the non-Cu-based metal thin layer on the surface of the semiconductor substrate, a defect is introduced into the metal thin film. It is effective to do. If there are many defects such as dislocations and atomic vacancies in the metal thin film, the defects are recovered when heated (for example, 300 to 500 ° C.), and at this time, atomic diffusion occurs to promote softening and deformation of Cu crystal grains. Is done. For example, a Cu-based metal thin film formed by electrolytic plating has a large number of vacancies, and the amount of atomic vacancies is such that thermal equilibrium is achieved near the melting point of Bulk-Cu. In contrast, a Cu-based metal thin film formed by a sputtering method is a thin film having a smaller amount of atomic vacancies than a Cu-based metal thin film formed by the electroplating method. Therefore, it is thought that reflowability will fall.

そこで本発明者らはスパッタリングで形成した金属薄膜のリフロー性を向上させるために、薄膜中の欠陥量を増加させる方策について検討したところ、前記Cu系以外の金属薄層の結晶構造が、(a)前記Cu系金属薄膜の格子定数よりも5%以上異なる格子定数を有する面心立方晶であるか、(b)体心立方晶または六方最密晶であればよいことを見出した。   Therefore, the present inventors examined a method for increasing the amount of defects in the thin film in order to improve the reflow property of the metal thin film formed by sputtering. As a result, the crystal structure of the thin metal layer other than the Cu-based material is (a It was found that it may be a face-centered cubic crystal having a lattice constant that differs by 5% or more from the lattice constant of the Cu-based metal thin film, or (b) a body-centered cubic crystal or a hexagonal close-packed crystal.

即ち、Cu系金属薄層とCu系以外の金属薄層との結晶構造に違い(差)が生じれば、Cu系金属薄層とCu系以外の金属薄層との界面で、結晶格子定数の差による不整合転位が生じる。この不整合転位による欠陥が増加することによって、結晶の塑性変形が促進され、結晶粒が軟化し、金属薄膜のリフロー性が向上する。   That is, if there is a difference (difference) in the crystal structure between the Cu-based metal thin layer and the non-Cu-based metal thin layer, the crystal lattice constant at the interface between the Cu-based metal thin layer and the non-Cu-based metal thin layer. Inconsistent dislocations occur due to the difference between the two. By increasing defects due to this misfit dislocation, the plastic deformation of the crystal is promoted, the crystal grains are softened, and the reflow property of the metal thin film is improved.

Cu系金属薄層の結晶構造は面心立方晶(fcc)のため、Cu系以外の金属薄層は面心立方晶以外の結晶構造、即ち、体心立方晶であるか、六方最密晶であることが好ましい。体心立方格晶(bcc)の金属としては、例えば、WやMo、Ta、Crなど、ちゅう密六方結晶(hcp)の金属としては、例えば、TiやZr,Coなどを好適に用いることができる。   Since the crystal structure of the Cu-based metal thin layer is a face-centered cubic (fcc), the metal thin layer other than the Cu-based metal has a crystal structure other than the face-centered cubic crystal, that is, a body-centered cubic crystal or a hexagonal close-packed crystal. It is preferable that As the body-centered cubic crystal (bcc) metal, for example, W, Mo, Ta, Cr and the like, and as the dense hexagonal crystal (hcp) metal, for example, Ti, Zr, Co, and the like are preferably used. it can.

但し、Cu系以外の金属薄層の結晶構造は面心立方晶であってもかまわない。この場合は、上記Cu系金属薄膜の格子定数よりも5%以上異なる格子定数を有する面心立方晶であることが推奨される。結晶構造が面心立方晶でも、格子定数が5%以上異なると、こうした面心立方晶の金属を積層しても薄膜と薄層の界面に不整合転位が多く導入され、しかも一般的に知られているように格子定数が5%以上異なる界面ではエキタピシー成長しないためCu結晶粒が粗大化せず、金属薄膜のリフロー性が向上する。   However, the crystal structure of the thin metal layer other than Cu may be a face-centered cubic crystal. In this case, a face-centered cubic crystal having a lattice constant different by 5% or more from the lattice constant of the Cu-based metal thin film is recommended. Even if the crystal structure is a face-centered cubic crystal and the lattice constant differs by 5% or more, misalignment dislocations are often introduced at the interface between the thin film and the thin layer even when such face-centered cubic metal is laminated. As described above, since the epitaxial growth does not occur at the interfaces having different lattice constants by 5% or more, the Cu crystal grains are not coarsened and the reflow property of the metal thin film is improved.

一般に格子定数とは、単位格子の三つの次元方向への長さと、相互の角度を意味するが、本発明において格子定数とはaの値(格子定数a)を指し、角度αは90°である。面心立方晶や体心立方晶の結晶格子の特性を左右する長は格子定数aだからである。従ってCu系以外の金属薄層の結晶構造が、前記Cu系金属薄膜の格子定数aよりも5%以上異なる格子定数aを有する面心立方晶であればよい。   In general, the lattice constant means the length of the unit cell in the three dimensional directions and the mutual angle. In the present invention, the lattice constant means the value of a (lattice constant a), and the angle α is 90 °. is there. This is because the length that influences the characteristics of the face-centered cubic or body-centered cubic crystal lattice is the lattice constant a. Therefore, the crystal structure of the thin metal layer other than the Cu-based layer may be a face-centered cubic crystal having a lattice constant a different by 5% or more from the lattice constant a of the Cu-based metal thin film.

Cu以外の金属のなかでも面心立方晶の金属としては、例えば、AuやAg、Al、Pdなどが挙げられる。   Among metals other than Cu, examples of the face-centered cubic metal include Au, Ag, Al, and Pd.

Cu系以外の金属薄層で分断されることによって形成されるCu系金属薄層の厚さをa、該Cu系金属薄層中のCu系金属の最大結晶粒径をbとしたとき、b≦2a、の関係を満足することが望ましい。Cu系金属の結晶粒は、膜厚程度にまで成長するが、まれに粗大化する場合がある。粗大なCuの結晶粒が多く存在すると、高温高圧処理時のリフロー性が悪くなり、半導体基板の表面に形成した金属薄膜を完全に凹部に埋め込むことができない。このような粗大化を防止することによってリフロー性を更に改善できる。好ましくは、b≦a、の関係を満足するのがよい。こうした関係は、Cu系以外金属薄層で分断されているCu系金属薄層の少なくとも一つ、好ましくは全てのCu系金属薄層において満足していることが推奨される。   When the thickness of the Cu-based metal thin layer formed by being divided by a thin metal layer other than Cu-based is a and the maximum crystal grain size of the Cu-based metal in the Cu-based metal thin layer is b, b It is desirable to satisfy the relationship of ≦ 2a. Although the crystal grain of Cu system metal grows to the film thickness grade, it may become coarse in rare cases. When there are many coarse Cu crystal grains, the reflow property at the time of high-temperature and high-pressure processing deteriorates, and the metal thin film formed on the surface of the semiconductor substrate cannot be completely embedded in the recess. Reflowability can be further improved by preventing such coarsening. Preferably, the relationship of b ≦ a is satisfied. It is recommended that this relationship is satisfied in at least one of the Cu-based metal thin layers divided by the metal thin layer other than the Cu-based material, and preferably in all the Cu-based metal thin layers.

Cu系金属の最大結晶粒径が上記範囲を満足させるには、Cu系金属薄層の厚さをできるだけ小さくすればよい。また、スパッタリング時に不活性ガス圧を高めたり、基板温度を低くすればよい。   In order for the maximum crystal grain size of the Cu-based metal to satisfy the above range, the thickness of the Cu-based metal thin layer should be as small as possible. Further, the inert gas pressure may be increased during sputtering or the substrate temperature may be lowered.

Cu系金属薄層の厚さは高分解能透過型電子顕微鏡(例えば、日立製作所社製の「H900型」)で観察して測定できる。該薄層中のCuの結晶粒径は、20000〜30000倍で、SIM像を撮影して画像解析することで測定できる。観察視野数は3箇所とし、測定結果のうち最大の結晶粒径bが上記範囲を満足していればよい。   The thickness of the Cu-based metal thin layer can be measured by observing with a high-resolution transmission electron microscope (for example, “H900 type” manufactured by Hitachi, Ltd.). The crystal grain size of Cu in the thin layer is 20000 to 30000 times and can be measured by taking a SIM image and analyzing the image. It is only necessary that the number of observation fields is three and the maximum crystal grain size b among the measurement results satisfies the above range.

Cu系金属薄層の厚さは、100〜2000Åとする。Cu系金属薄層の厚さは小さいほどCuの結晶粒が成長せず、微細化するのに有効である。しかし上述したように、半導体表面に積層されて形成される金属薄膜の厚さは、半導体表面に設けられた凹部の開口幅や深さにより変動するが、少なくとも1000Å程度は必要である。そのためCu系金属薄層の厚さを1層当たり100Å未満とすると、例えば1000Å分積層する場合にはCu系金属薄層を10層以上設ける必要がある。そのため生産性が著しく低下する。好ましくは500Å以上である。一方、Cu系金属薄層の厚さが1層当たり2000Åを超えると、膜厚の増加に伴ってCuの結晶粒が粗大化するため、高温高圧処理時におけるリフロー性が悪くなる。好ましくは1000Å以下である。   The thickness of the Cu-based metal thin layer is 100 to 2000 mm. As the thickness of the Cu-based metal thin layer is smaller, Cu crystal grains do not grow and are effective for miniaturization. However, as described above, the thickness of the metal thin film formed by being laminated on the semiconductor surface varies depending on the opening width and depth of the recess provided on the semiconductor surface, but at least about 1000 mm is necessary. Therefore, assuming that the thickness of the Cu-based metal thin layer is less than 100 mm per layer, for example, when stacking for 1000 mm, it is necessary to provide 10 or more Cu-based metal thin layers. Therefore, productivity is remarkably reduced. Preferably it is 500 mm or more. On the other hand, when the thickness of the Cu-based metal thin layer exceeds 2000 mm per layer, the crystal grains of Cu become coarse as the film thickness increases, so that the reflow property at the time of high-temperature and high-pressure treatment is deteriorated. Preferably it is 1000 mm or less.

Cu系金属薄層は2〜10層とする。本発明の半導体配線用金属薄膜は、Cu系金属で構成されている薄膜が、Cu系以外の金属で構成される1つ以上の薄層で分断されているため、Cu系金属薄膜は少なくとも2層に分断されている。ここで、半導体基板の表面に積層される金属薄膜の膜厚を一定とした場合、Cu系以外の金属で構成されている薄層の数を増やし、Cu系金属薄層の数を多くすると、金属薄膜中のCu系金属薄層の個々の厚さは小さくなる。そのためCu系金属薄層中のCuの結晶粒は一段と微細化される。よってCu系金属薄層は多いほど好ましい。好ましくは3層以上である。しかしCu系金属薄層の数が多くなると、Cu系金属薄層とCu系以外の金属薄層を繰り返し積層しなければならず、生産性を低下させ、生産コストを高める。そのためCu系金属薄層の上限値は10層とする。好ましくは6層以下である。   The Cu-based metal thin layer is 2 to 10 layers. In the metal thin film for semiconductor wiring of the present invention, since the thin film composed of Cu-based metal is divided by one or more thin layers composed of metal other than Cu-based, the Cu-based metal thin film is at least 2 Divided into layers. Here, when the film thickness of the metal thin film laminated on the surface of the semiconductor substrate is constant, the number of thin layers composed of a metal other than Cu is increased, and the number of Cu based metal thin layers is increased. The individual thickness of the Cu-based metal thin layer in the metal thin film is reduced. Therefore, Cu crystal grains in the Cu-based metal thin layer are further refined. Therefore, the more Cu-based metal thin layer is, the more preferable. Preferably, there are three or more layers. However, when the number of Cu-based metal thin layers increases, the Cu-based metal thin layer and the metal thin layer other than the Cu-based layer must be repeatedly laminated, which decreases productivity and increases production cost. Therefore, the upper limit of the Cu-based metal thin layer is 10 layers. Preferably it is 6 layers or less.

なお、半導体基板の表面に積層する金属薄膜の厚さは、最大でも20000Å程度であるが、Cu系金属薄層中のCuの平均結晶粒径が2000Å以下であればCuの結晶粒が微細化され、高温高圧処理時のリフロー性が向上する。こうした観点からもCu系金属薄層の数は10層を上限とする。   The thickness of the metal thin film to be laminated on the surface of the semiconductor substrate is about 20000 mm at the maximum. However, if the average crystal grain size of Cu in the Cu-based metal thin layer is 2000 mm or less, the Cu crystal grains are refined. Therefore, the reflow property at the time of high temperature and high pressure treatment is improved. Also from this viewpoint, the upper limit of the number of Cu-based metal thin layers is 10 layers.

Cu系以外の金属薄層の厚さは10〜100Åとする。Cu系以外の金属薄層の厚さは、Cu系金属の結晶粒の粗大化を抑止できる範囲であれば特に限定されないが、Cu系以外の金属薄層の厚さが小さすぎると、Cu系金属の結晶粒が該薄層を貫通して成長する可能性がある。そのためCu系以外の金属薄膜の厚さは、少なくとも10Åは必要である。好ましくは20Å以上である。Cu系金属の結晶粒の成長を確実に抑止するには、Cu系以外の金属薄層の厚さをできるだけ大きくすることが好ましい。しかしCu系以外の金属薄層の厚さが大き過ぎると、半導体基板の表面に積層する金属薄膜の厚さ自体はある程度決まっているため、該金属薄膜中に占めるCu系以外の金属の含有量が増加する。そのため高温高圧処理して金属薄膜を凹部に埋め込んで得られる配線の成分組成が、Cu系金属とCu系以外の金属との合金になる。配線が合金になると、配線の電気抵抗が大きくなる場合があり、半導体としての特性を劣化させる原因となる。そこで半導体基板の表面に積層させる金属薄膜中に含まれるCu系以外の金属量はできるだけ少なくするのがよい。そのためCu系以外の金属薄層の厚さは100Å以下とする。好ましくは50Å以下である。   The thickness of the thin metal layer other than Cu is 10 to 100 mm. The thickness of the thin metal layer other than the Cu-based material is not particularly limited as long as the coarsening of the Cu-based metal crystal grains can be suppressed, but if the thickness of the thin metal layer other than the Cu-based material is too small, Metal crystal grains may grow through the thin layer. Therefore, the thickness of the metal thin film other than Cu-based material needs to be at least 10 mm. Preferably it is 20 mm or more. In order to reliably suppress the growth of Cu-based metal crystal grains, it is preferable to increase the thickness of the thin metal layer other than the Cu-based metal as much as possible. However, if the thickness of the metal thin layer other than Cu-based is too large, the thickness of the metal thin film to be laminated on the surface of the semiconductor substrate is determined to some extent, so the content of the metal other than Cu-based in the metal thin film Will increase. Therefore, the component composition of the wiring obtained by high-temperature and high-pressure treatment and embedding the metal thin film in the recess is an alloy of a Cu-based metal and a metal other than the Cu-based metal. If the wiring is made of an alloy, the electrical resistance of the wiring may increase, which causes the semiconductor characteristics to deteriorate. Therefore, it is preferable to reduce the amount of metal other than Cu-based metal contained in the metal thin film laminated on the surface of the semiconductor substrate as much as possible. Therefore, the thickness of the thin metal layer other than the Cu-based material is 100 mm or less. Preferably it is 50 mm or less.

次に、本発明の半導体配線を製造する方法について説明する。   Next, a method for manufacturing the semiconductor wiring of the present invention will be described.

本発明の半導体配線は、凹部を有する半導体基板の表面に、Cu系金属で構成される薄膜をスパッタリング法で形成した後、Cu系以外の金属で構成される薄層をスパッタリング法で形成する工程とCu系金属で構成される薄層をスパッタリング法で形成する工程を1回以上繰り返すことによって半導体配線用金属薄膜を形成し、次いで高温高圧処理して前記金属薄膜を前記凹部内に埋め込むことによって配線が形成される。   In the semiconductor wiring of the present invention, a thin film composed of a Cu-based metal is formed on the surface of a semiconductor substrate having a recess by a sputtering method, and then a thin layer composed of a metal other than a Cu-based metal is formed by the sputtering method. And forming a thin film composed of Cu-based metal by sputtering one or more times to form a metal thin film for semiconductor wiring, and then performing high temperature and high pressure treatment to embed the metal thin film in the recess A wiring is formed.

即ち、半導体基板の表面に、Cu系金属で構成される薄膜をスパッタリング法で形成した後、Cu系以外の金属で構成される薄層をスパッタリング法で形成する工程とCu系金属で構成される薄層をスパッタリング法で形成する工程をこの順で1回以上繰り返すことが重要である。Cu系金属とCu系以外の金属を積層し、Cu系金属で構成される薄膜が、Cu系以外の金属で構成される1つ以上の薄層で分断された構造とする。   That is, a thin film composed of Cu-based metal is formed on the surface of a semiconductor substrate by sputtering, and then a thin layer composed of metal other than Cu-based is formed by sputtering and Cu-based metal. It is important to repeat the process of forming the thin layer by sputtering one or more times in this order. A Cu-based metal and a metal other than a Cu-based metal are stacked, and a thin film composed of a Cu-based metal is divided into one or more thin layers composed of a metal other than a Cu-based metal.

スパッタリング条件は特に限定されず、公知の条件を採用できる。例えば、成膜温度:−20〜300℃、成膜時の雰囲気ガス;不活性ガス(不活性ガスとしては、ArやN2など公知のものを使用できる)、成膜ガス圧力;0.133〜1.33Pa(1〜10ミリTorr)、放電電力;1〜5W/cm2、極間距離;40〜70mm、とすればよい。 The sputtering conditions are not particularly limited, and known conditions can be adopted. For example, film formation temperature: -20 to 300 ° C., atmosphere gas during film formation; inert gas (a known gas such as Ar or N 2 can be used as the inert gas), film formation gas pressure; 0.133 ˜1.33 Pa (1 to 10 mm Torr), discharge power; 1 to 5 W / cm 2 , distance between electrodes; 40 to 70 mm.

本発明の製法のポイントは、Cu系金属薄層とCu系以外の金属薄層をスパッタリング法で積層するとことにあり、他の条件は限定されず、公知の条件を採用できる。   The point of the production method of the present invention is to laminate a Cu-based metal thin layer and a metal thin layer other than Cu-based by a sputtering method, and other conditions are not limited, and known conditions can be adopted.

凹部を有する半導体基板は、公知の方法で形成されたものを用いることができる。即ち、半導体基板(例えば、シリコンウエハー)の表面に、絶縁膜を形成し、次いで配線を埋め込むための溝や配線同士を接続するための孔(トレンチ・ビア)等の配線パターン(凹部)を形成する。   As the semiconductor substrate having a recess, a semiconductor substrate formed by a known method can be used. That is, an insulating film is formed on the surface of a semiconductor substrate (for example, a silicon wafer), and then a wiring pattern (concave portion) such as a groove for embedding wiring and a hole (trench / via) for connecting wirings is formed. To do.

絶縁膜を形成する方法は特に限定されず、公知の方法を採用できる。絶縁膜としては、酸化シリコンや窒化シリコン、BSG(Boro-Silicate Glass)、PSG(Phospho-Silicate Glass)、BPSG(Boro-Phospho-SilicateGlass)等を形成すればよい。   A method for forming the insulating film is not particularly limited, and a known method can be adopted. As the insulating film, silicon oxide, silicon nitride, BSG (Boro-Silicate Glass), PSG (Phospho-Silicate Glass), BPSG (Boro-Phospho-Silicate Glass), or the like may be formed.

また、配線パターンを形成する方法も特に限定されず、公知の方法を採用できる。本発明では、配線パターンの最小幅が0.1μm程度以下(0μmを含まない)で、深さは0.3μm程度以上の凹部にも金属薄膜を埋め込むことができ、配線を形成できる。   Also, the method for forming the wiring pattern is not particularly limited, and a known method can be adopted. In the present invention, a metal thin film can be embedded in a recess having a minimum width of a wiring pattern of about 0.1 μm or less (not including 0 μm) and a depth of about 0.3 μm or more, thereby forming a wiring.

絶縁膜の表面には、スパッタリングによってバリア膜を形成する。絶縁膜に形成した凹部に直接Cu合金を埋め込むと、Cuが絶縁膜方向へ拡散して絶縁膜の特性を損なうことがある。そこでこうしたCuの拡散を防止するために、絶縁膜とCu合金の間にバリア膜を形成する。   A barrier film is formed on the surface of the insulating film by sputtering. If a Cu alloy is directly embedded in the recess formed in the insulating film, Cu may diffuse in the direction of the insulating film and impair the characteristics of the insulating film. Therefore, in order to prevent such diffusion of Cu, a barrier film is formed between the insulating film and the Cu alloy.

バリア膜としては種々の素材が検討されているが、バリア性(即ち、より高温でCuの拡散を抑える特性)が良好なためTiNやTaNを形成すればよい。   Various materials have been studied as the barrier film, but TiN or TaN may be formed because of excellent barrier properties (that is, a property of suppressing diffusion of Cu at a higher temperature).

バリア膜の厚さは、Cuが絶縁膜へ拡散するのを防止できる程度であればよく、数nm〜数十nm程度である。具体的には、5〜50nm程度である。但し、バリア膜の膜厚を過度に厚くすると、半導体装置の小型化にマイナスとなるので好ましくない。   The thickness of the barrier film only needs to be such that Cu can be prevented from diffusing into the insulating film, and is about several nm to several tens of nm. Specifically, it is about 5 to 50 nm. However, if the thickness of the barrier film is excessively large, it is not preferable because it is negative for downsizing of the semiconductor device.

半導体基板の表面に金属薄膜を形成した後には、高温高圧処理する。高温高圧処理することによって前記凹部に前記金属薄膜を埋め込み、配線を形成することができる。このとき高温高圧処理することで、空隙以外の微小な気孔や気泡も消滅する。   After the metal thin film is formed on the surface of the semiconductor substrate, high temperature and high pressure treatment is performed. The metal thin film can be embedded in the recess by high-temperature and high-pressure treatment to form a wiring. At this time, by performing the high-temperature and high-pressure treatment, fine pores and bubbles other than the voids disappear.

処理温度は400℃以上とする。400℃未満では温度が低すぎるため、Cuの高温流動性が充分得られず、圧力を加えても金属薄膜を凹部に埋め込むことができない。好ましくは450℃以上である。処理温度の上限は特に制限されないが、600℃を超えると半導体装置を構成する他の部分(例えば、半導体基板自体やバリア膜など)へダメージを与えてしまうため、実用的ではない。よって処理温度は600℃以下とする。好ましくは500℃以下である。   Processing temperature shall be 400 degreeC or more. If the temperature is lower than 400 ° C., the temperature is too low, so that the high temperature fluidity of Cu cannot be obtained sufficiently, and even if pressure is applied, the metal thin film cannot be embedded in the recess. Preferably it is 450 degreeC or more. The upper limit of the processing temperature is not particularly limited, but if it exceeds 600 ° C., other parts (for example, the semiconductor substrate itself and the barrier film) constituting the semiconductor device are damaged, which is not practical. Accordingly, the processing temperature is 600 ° C. or lower. Preferably it is 500 degrees C or less.

処理圧力は150MPa以上とする。150MPa未満では圧力低すぎるため、金属薄膜の流動性が充分に得られても金属薄膜を凹部に埋め込むことができない。好ましくは170MPa以上である。処理圧力の上限は特に制限されないが、200MPaを超えると高圧になり過ぎるため実用的ではない。よって処理圧力は200MPa以下とする。好ましくは190MPa以下である。   The treatment pressure is 150 MPa or more. Since the pressure is too low at less than 150 MPa, the metal thin film cannot be embedded in the recess even if the fluidity of the metal thin film is sufficiently obtained. Preferably it is 170 MPa or more. The upper limit of the treatment pressure is not particularly limited, but it is not practical because it becomes too high when it exceeds 200 MPa. Accordingly, the processing pressure is set to 200 MPa or less. Preferably it is 190 MPa or less.

処理時間は特に限定されないが、最高温度での保持時間を120分程度以下とすれば充分にCu合金を凹部に埋め込むことができる。処理雰囲気は不活性雰囲気下であれば特に限定されず、ArやN2雰囲気下で処理すればよい。 The treatment time is not particularly limited, but the Cu alloy can be sufficiently embedded in the recess if the holding time at the maximum temperature is about 120 minutes or less. The treatment atmosphere is not particularly limited as long as it is an inert atmosphere, and treatment may be performed in an Ar or N 2 atmosphere.

高温高圧処理後、不要なCu合金を化学機械的研磨(CMP)処理することによって配線を形成する。そして研磨後の表面に新たな絶縁膜を形成して上記プロセスを繰り返すことにより多層構造の配線を形成できる。   After the high-temperature and high-pressure treatment, an unnecessary Cu alloy is subjected to chemical mechanical polishing (CMP) treatment to form a wiring. Then, by forming a new insulating film on the polished surface and repeating the above process, a multilayer wiring can be formed.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

実験例1
高温高圧処理時における金属薄膜のリフロー性をスクリーニングするために、金属薄膜の応力−温度曲線を求めた。応力−温度曲線からは、金属薄膜を加熱または冷却したときの応力変化が分かり、この応力変化から金属薄膜の高温における弾塑性変形挙動を予測でき、高温高圧処理時における金属薄膜のリフロー性の良し悪しを判断できる。応力−温度曲線を求めるための金属薄膜(供試体)は、次の手順で形成した。
Experimental example 1
In order to screen the reflowability of the metal thin film during the high temperature and high pressure treatment, the stress-temperature curve of the metal thin film was obtained. The stress-temperature curve shows the change in stress when the metal thin film is heated or cooled. From this stress change, the elasto-plastic deformation behavior of the metal thin film at high temperatures can be predicted. Can judge badness. A metal thin film (specimen) for obtaining a stress-temperature curve was formed by the following procedure.

供試体A
直径2インチのシリコンウエハー表面に、バリア層としてTaN膜(厚さ:500Å)を形成した後、DCマグネトロンスパッタリング法で金属薄膜を形成し、供試材Aを得た。金属薄膜は、純Cu薄層(厚さ:2000Å)4層と、純Ag薄層(厚さ:40Å)3層を、純Cu薄層と純Ag薄層が交互になるように繰り返して積層した。
Specimen A
After forming a TaN film (thickness: 500 mm) as a barrier layer on the surface of a silicon wafer having a diameter of 2 inches, a metal thin film was formed by a DC magnetron sputtering method, and a specimen A was obtained. The metal thin film is formed by repeatedly laminating 4 pure Cu thin layers (thickness: 2000 mm) and 3 pure Ag thin layers (thickness: 40 mm) so that the pure Cu thin layers and the pure Ag thin layers are alternated. did.

上記TaN膜はスパッタリング法で形成した。スパッタリングターゲットとしては純Ta(純度:99.99%)を用い、Ar+N2ガス雰囲気中で、反応性スパッタリングを行った。スパッタリング条件は、温度:20℃、DCマグネトロンスパッタリングした。 The TaN film was formed by sputtering. Pure Ta (purity: 99.99%) was used as a sputtering target, and reactive sputtering was performed in an Ar + N 2 gas atmosphere. The sputtering conditions were as follows: temperature: 20 ° C., DC magnetron sputtering.

純Cu薄層と純Ag薄層はDCマグネトロンスパッタリング法で形成した。純Cu薄層は、スパッタリングターゲットとして純度:99.99%の純Cuを用い、純Ag薄層は、スパッタリングターゲットとして純度:99.99%の純Agを用い、Arガス雰囲気中でスパッタリングを行った。このときのスパッタリング条件は温度:20℃、DCマグネトロンスパッタリングした。   The pure Cu thin layer and the pure Ag thin layer were formed by a DC magnetron sputtering method. The pure Cu thin layer uses pure Cu with a purity of 99.99% as a sputtering target, and the pure Ag thin layer uses pure Ag with a purity of 99.99% as a sputtering target and performs sputtering in an Ar gas atmosphere. It was. The sputtering conditions at this time were as follows: temperature: 20 ° C., DC magnetron sputtering.

TaN膜や純Cu薄層、純Ag薄層の膜厚は、スパッタリング条件のうち処理時間を調整すれば制御できる。膜厚は、金属薄膜の断面を、高分解能透過型電子顕微鏡(日立製作所社製「H9000型」:TEM)で、50万倍で観察して確認した。   The film thicknesses of the TaN film, the pure Cu thin layer, and the pure Ag thin layer can be controlled by adjusting the processing time among the sputtering conditions. The film thickness was confirmed by observing the cross section of the metal thin film with a high resolution transmission electron microscope (“H9000 type” manufactured by Hitachi, Ltd .: TEM) at 500,000 times.

供試材B
直径2インチのシリコンウエハー表面に、バリア層としてTaN膜(厚さ:500Å)を形成した後、DCマグネトロンスパッタリング法で金属薄膜を形成し、供試材Bを得た。金属薄膜は、純Cu薄膜(厚さ:8000Å)を単層形成した。TaN膜および純Cu薄膜を形成する際の条件は、上記供試体Aの場合と同じとした。
Specimen B
After forming a TaN film (thickness: 500 mm) as a barrier layer on the surface of a silicon wafer having a diameter of 2 inches, a metal thin film was formed by a DC magnetron sputtering method to obtain a test material B. As the metal thin film, a pure Cu thin film (thickness: 8000 mm) was formed as a single layer. The conditions for forming the TaN film and the pure Cu thin film were the same as those for the specimen A.

得られた供試体AとBを、室温から500℃まで加熱冷却速度を5℃/minとして昇温および降温させた。このとき金属薄膜の応力変化を、その場測定(in−situ)し、応力−温度曲線を求めた。なお、金属薄膜のin−situ応力の測定は、光てこ法にて行った。供試材Aに積層した金属薄膜の応力−温度曲線を図1に、供試材Bに積層した金属薄膜の応力−温度曲線を図2に夫々示す。   The obtained specimens A and B were heated and cooled from room temperature to 500 ° C. at a heating / cooling rate of 5 ° C./min. At this time, the stress change of the metal thin film was measured in situ (in-situ) to obtain a stress-temperature curve. The in-situ stress of the metal thin film was measured by an optical lever method. FIG. 1 shows a stress-temperature curve of the metal thin film laminated on the specimen A, and FIG. 2 shows a stress-temperature curve of the metal thin film laminated on the specimen B, respectively.

図2から明らかなように、金属薄膜を純Cuの単層とした場合は、加熱過程(Heating)における応力緩和の程度が小さく、冷却過程(Cooling)では温度に対して応力が直線的に変化しており、弾性変形していることが分かる。   As is clear from FIG. 2, when the metal thin film is a single layer of pure Cu, the degree of stress relaxation in the heating process (Heating) is small, and the stress changes linearly with temperature in the cooling process (Cooling). It can be seen that it is elastically deformed.

一方、図1から明らかなように、金属薄膜を純Cu薄膜が純Ag薄層で分断されるように積層した場合は、加熱過程における応力は常に0よりも小さく、冷却過程では200℃までの応力は0よりも小さく、200℃より低温になると温度に対して応力が直線的に変化し、弾性変形することが分かる。即ち、金属薄膜を純Cu薄層と純Ag薄層の積層構造にすると、応力緩和(即ち、薄膜の軟化)が起こっていることがわかる。   On the other hand, as is clear from FIG. 1, when the metal thin film is laminated so that the pure Cu thin film is divided by the pure Ag thin layer, the stress in the heating process is always smaller than 0, and in the cooling process, the stress is up to 200 ° C. It can be seen that the stress is smaller than 0, and when the temperature is lower than 200 ° C., the stress changes linearly with respect to the temperature and elastically deforms. That is, it can be seen that when the metal thin film has a laminated structure of a pure Cu thin layer and a pure Ag thin layer, stress relaxation (that is, softening of the thin film) occurs.

実験例2
上記実験例1で得られた供試材AおよびBを用い、これを熱処理して熱処理前後における金属薄膜の組織変化を観察した。
Experimental example 2
Using the test materials A and B obtained in Experimental Example 1, the samples were heat-treated, and the change in the structure of the metal thin film before and after the heat treatment was observed.

熱処理は、真空中で、500℃で、5分間保持して行った。このとき加熱冷却速度は5℃/minとした。   The heat treatment was performed in vacuum at 500 ° C. for 5 minutes. At this time, the heating / cooling rate was 5 ° C./min.

金属薄膜の組織は、金属薄膜に対して厚さ方向の断面をFIB装置(SIIナノテクノロジー社製「SMI9200型」)で加工して露出させ、この断面をFIB装置のSIM像(イオンで励起された二次電子像)で観察した。供試材Aの断面写真を図面代用写真として図3に、供試材Bの断面写真を図面代用写真として図4に夫々示す。   The structure of the metal thin film is exposed by processing a cross section in the thickness direction with respect to the metal thin film using an FIB apparatus (“SMI9200 type” manufactured by SII Nanotechnology Co., Ltd.), and this cross section is exposed to a SIM image (excited by ions) of the FIB apparatus. Secondary electron image). FIG. 3 shows a cross-sectional photograph of the specimen A as a drawing substitute photograph, and FIG. 4 shows a sectional photograph of the specimen B as a drawing substitute photograph.

熱処理前後における金属薄膜中のCuの結晶粒径は、5万倍でSIM像を撮影し、これを画像解析して測定した。観察視野は5μm×5μmとし、断面の任意の1箇所とした。   The crystal grain size of Cu in the metal thin film before and after the heat treatment was measured by taking a SIM image at 50,000 times and analyzing the image. The observation visual field was 5 μm × 5 μm, and an arbitrary position in the cross section.

図4から明らかなように、純Cu薄膜を単層形成した場合は、熱処理前(As−deposited状態)のCuの結晶粒は大きく、金属薄膜の厚さ方向に貫通している結晶粒界が多数観察された。金属薄膜のCuの平均結晶粒径を算出すると8200Åであり、該平均結晶粒径は膜厚とほぼ同程度であった。しかし、結晶粒径が膜厚の4倍程度に相当する粗大なCu結晶粒がいくつも観察され、最大結晶粒径は37000Åであった。   As can be seen from FIG. 4, when a pure Cu thin film is formed as a single layer, Cu crystal grains before heat treatment (As-deposited state) are large, and there are crystal grain boundaries penetrating in the thickness direction of the metal thin film. Many were observed. The average crystal grain size of Cu of the metal thin film was calculated to be 8200 mm, and the average crystal grain size was almost the same as the film thickness. However, a number of coarse Cu crystal grains having a crystal grain size equivalent to about four times the film thickness were observed, and the maximum crystal grain size was 37000 mm.

一方、熱処理後のCuの平均結晶粒径は、熱処理前とほとんど変わらず、熱処理しても粒成長(再結晶)はほとんど起きない。即ち、As−deposited状態と同様の多結晶構造を有していることが分かる。   On the other hand, the average crystal grain size of Cu after the heat treatment is almost the same as that before the heat treatment, and the grain growth (recrystallization) hardly occurs even after the heat treatment. That is, it can be seen that it has the same polycrystalline structure as the As-deposited state.

これに対し、図3から明らかなように、純Cu薄層と純Ag薄層を積層した場合は、熱処理前においては、金属薄膜(純Cu薄膜)が純Ag薄層で4層に分断されていることが分かる。各純Cu薄層におけるCuの平均結晶粒径を算出したところ、各純Cu薄層におけるCuの平均結晶粒径は1650Åであり、各薄層の厚さとほぼ同程度であった。しかし、結晶粒径が膜厚の2倍を超える粗大なCu結晶粒は認められず、最大結晶粒径は1900Åであり、微細な多結晶構造を有していることが分かる。   On the other hand, as is clear from FIG. 3, when the pure Cu thin layer and the pure Ag thin layer are laminated, the metal thin film (pure Cu thin film) is divided into four layers by the pure Ag thin layer before the heat treatment. I understand that When the average crystal grain size of Cu in each pure Cu thin layer was calculated, the average crystal grain size of Cu in each pure Cu thin layer was 1650 mm, which was almost the same as the thickness of each thin layer. However, coarse Cu crystal grains having a crystal grain size exceeding twice the film thickness are not recognized, and the maximum crystal grain size is 1900 mm, which indicates that the crystal grain has a fine polycrystalline structure.

一方、熱処理するとCuの結晶粒は粗大化し、大きな多結晶構造を有している。このとき純Ag薄層は消失し、著しいCuの粒成長が起こっている。   On the other hand, when heat treatment is performed, Cu crystal grains become coarse and have a large polycrystalline structure. At this time, the pure Ag thin layer disappears, and remarkable Cu grain growth occurs.

以上の結果から、Cu系金属薄膜をCu系以外の金属薄層で分断すると、熱処理前のCuの結晶粒を微細化でき、しかも熱処理すればCuの結晶粒が著しく成長し、このとき原子拡散も起こすためリフロー性が向上する。   From the above results, when the Cu-based metal thin film is divided by a thin metal layer other than Cu-based, the Cu crystal grains before heat treatment can be refined, and if the heat treatment is performed, the Cu crystal grains grow significantly, and at this time, atomic diffusion occurs. Reflowability is improved.

実験例3
直径2インチのシリコンウエハー表面に、絶縁膜(TEOS膜:SiOF膜)を厚さ:8000Å形成し、この絶縁膜に、直径:0.18μm、深さ:0.55μm、ピッチ:450nmのビアを複数個設けて評価素子(TEG)を得た。
Experimental example 3
An insulating film (TEOS film: SiOF film) is formed on the surface of a 2-inch diameter silicon wafer with a thickness of 8000 mm, and vias having a diameter of 0.18 μm, a depth of 0.55 μm, and a pitch of 450 nm are formed on the insulating film. A plurality of evaluation elements (TEG) were obtained by providing a plurality.

得られたTEGの表面に、バリア層としてTaN膜を設けた。TaN膜は、スパッタリング法で形成し、スパッタリングターゲットとしては純Taを用い、Ar+N2ガス雰囲気中で反応性スパッタリングを行った。スパッタリング条件は公知の条件で行った。ビアの底面および側面に設けられたTaN膜の厚さは50nmであった。 A TaN film was provided as a barrier layer on the surface of the obtained TEG. The TaN film was formed by a sputtering method, pure Ta was used as a sputtering target, and reactive sputtering was performed in an Ar + N 2 gas atmosphere. The sputtering conditions were known conditions. The thickness of the TaN film provided on the bottom and side surfaces of the via was 50 nm.

次に、バリア層を設けたTEGに、純Cu薄層をスパッタリング法で形成した後、純Ag薄層と純Cu薄層がこの順で交互になるようにスパッタリングし、ビアの開口部を金属薄膜でブリッジングした。このとき純Cu薄層と純Ag薄層の膜厚、純Cu薄層の数を下記表1に示すように変化させた。膜厚は断面を50万倍でTEM観察して測定した。   Next, after forming a pure Cu thin layer on the TEG provided with the barrier layer by sputtering, sputtering is performed so that the pure Ag thin layer and the pure Cu thin layer alternate in this order, and the opening of the via is made of metal. Bridging with a thin film. At this time, the film thicknesses of the pure Cu thin layer and the pure Ag thin layer and the number of the pure Cu thin layers were changed as shown in Table 1 below. The film thickness was measured by TEM observation of the cross section at 500,000 times.

純Cu薄層は純Cu、純Ag薄層は純Agを夫々スパッタリングターゲットとして用い、Ar雰囲気中でスパッタリングした。純Cu薄層と純Ag薄層を設ける際のスパッタリング条件は温度:20℃、DCマグネトロンスパッタリングとした。   The pure Cu thin layer was sputtered in an Ar atmosphere using pure Cu and the pure Ag thin layer was pure Ag, respectively. The sputtering conditions for providing the pure Cu thin layer and the pure Ag thin layer were set to 20 ° C. and DC magnetron sputtering.

純Cu薄層と純Ag薄層の結晶構造をTEMの制限視野電子線回折で測定したところ、純Cu薄層は格子定数aが3.6150の面心立方晶、純Ag薄層は格子定数aが4.0861の面心立方晶であった。   When the crystal structure of the pure Cu thin layer and the pure Ag thin layer was measured by TEM limited-field electron diffraction, the pure Cu thin layer was a face-centered cubic crystal having a lattice constant a of 3.6150, and the pure Ag thin layer was a lattice constant. a was a face-centered cubic crystal having 4.0861.

次に、ブリッジングしたTEGを高温高圧処理した。処理条件は、処理圧力:200MPa、処理温度(最高到達温度):600℃、最高到達温度での保持時間:15分間、昇降温速度:20℃/min、とした。   Next, the bridged TEG was subjected to a high-temperature and high-pressure treatment. The processing conditions were as follows: processing pressure: 200 MPa, processing temperature (maximum temperature reached): 600 ° C., holding time at the maximum temperature reached: 15 minutes, temperature rising / falling speed: 20 ° C./min.

高温高圧処理した各TEGについて、15個のビア部の断面をFIB装置(SIIナノテクノロジー社製「SMI9200型」)で加工して露出させ、この断面をFIB装置のSIM像(イオンで励起された二次電子像)で観察し、金属薄膜がビア部に埋め込まれているかどうかを評価した(埋め込み特性)。埋め込み特性の評価基準は、任意に観察した15個のビアのうち、全てのビアに完全に金属薄膜が埋め込まれている場合を合格(○)、完全にCuが埋め込まれていないビアが1個の場合を合格(△)、完全にCuが埋め込まれていないビアが2個以上あれば不合格(×)とした。評価結果を下記表1に示す。   For each TEG subjected to high-temperature and high-pressure treatment, the cross section of 15 via parts was processed and exposed with an FIB apparatus (“SMI9200 type” manufactured by SII Nanotechnology), and the SIM image (excited by ions) of the FIB apparatus. (Secondary electron image) was observed to evaluate whether the metal thin film was embedded in the via portion (embedding characteristics). The evaluation standard for the embedding characteristics is that, among the 15 vias that were arbitrarily observed, all the vias were completely embedded with the metal thin film (O), and one via that was not completely embedded with Cu. In the case of (2), it was determined to be acceptable (Δ), and if there were two or more vias not completely embedded with Cu, it was determined to be unacceptable (x). The evaluation results are shown in Table 1 below.

Figure 0004315884
Figure 0004315884

表1から明らかなように、本発明で規定する要件を満足する例は、全てのビアに完全に金属薄膜を埋め込むことができた。No.2は、純Cu薄層の膜厚が大きい例であり、Cuの結晶粒が粗大化するため埋め込み結果は優れなかった。No.7は純Ag薄層の膜厚が大きい例であり、金属薄膜を完全に埋め込むことができない。No.11は純Ag薄層の膜厚が小さすぎる例であり、Cu系以外の金属薄層でCu系金属薄層を分断する効果がほとんど得られなかった。   As is clear from Table 1, in the example satisfying the requirements defined in the present invention, the metal thin film could be completely embedded in all the vias. No. No. 2 is an example in which the film thickness of the pure Cu thin layer is large, and since the crystal grains of Cu are coarsened, the embedding result is not excellent. No. 7 is an example in which the thickness of the pure Ag thin layer is large, and the metal thin film cannot be completely embedded. No. No. 11 is an example in which the film thickness of the pure Ag thin layer is too small, and the effect of dividing the Cu-based metal thin layer by a metal thin layer other than the Cu-based layer was hardly obtained.

供試材Aに積層した積層薄膜の応力−温度曲線を測定した結果を示すグラフである。It is a graph which shows the result of having measured the stress-temperature curve of the laminated thin film laminated | stacked on the test material A. 供試材Bに積層した単層薄膜の応力−温度曲線を測定した結果を示すグラフである。It is a graph which shows the result of having measured the stress-temperature curve of the single layer thin film laminated | stacked on the test material B. FIG. 供試材Aの断面写真(図面代用写真)である。3 is a cross-sectional photograph (drawing substitute photograph) of specimen A. 供試材Bの断面写真(図面代用写真)である。3 is a cross-sectional photograph (drawing substitute photograph) of Specimen B.

Claims (8)

凹部を有する半導体基板の表面に積層される金属薄膜であって、
前記金属薄膜は、Cu系金属で構成される薄膜が、Cu系以外の金属で構成される1つ以上の薄層で分断されており、
前記Cu系以外の金属は、室温時効時にCu系金属中のCu結晶の粒成長を抑制可能で、且つ高温高圧処理を施すことによってCu系金属に一旦固溶する金属であり、
前記Cu系以外の金属薄層で分断されることによって形成されるCu系金属薄層の厚さが、1層当たり100〜2000Å、
前記Cu系以外の金属薄層の厚さが、1層当たり10〜100Åであることを特徴とする半導体配線用金属薄膜。
A metal thin film laminated on the surface of a semiconductor substrate having a recess,
In the metal thin film, a thin film made of a Cu-based metal is divided by one or more thin layers made of a metal other than a Cu-based metal,
The metal other than the Cu-based metal is a metal that can suppress the grain growth of Cu crystals in the Cu-based metal during aging at room temperature, and is once dissolved in the Cu-based metal by performing high-temperature and high-pressure treatment.
The thickness of the Cu-based metal thin layer formed by being divided by the metal thin layer other than the Cu-based material is 100 to 2000 mm per layer,
A metal thin film for semiconductor wiring, wherein the thickness of the thin metal layer other than the Cu-based material is 10 to 100 mm per layer.
前記Cu系以外の金属薄層の結晶構造が、前記Cu系金属薄膜の格子定数よりも5%以上異なる格子定数を有する面心立方晶である請求項1に記載の半導体配線用金属薄膜。   2. The metal thin film for semiconductor wiring according to claim 1, wherein the crystal structure of the thin metal layer other than Cu-based is a face-centered cubic crystal having a lattice constant that differs by 5% or more from the lattice constant of the Cu-based metal thin film. 前記Cu系以外の金属薄層の結晶構造が、体心立方晶または六方最密晶である請求項1に記載の半導体配線用金属薄膜。   2. The metal thin film for semiconductor wiring according to claim 1, wherein a crystal structure of the thin metal layer other than the Cu-based material is a body-centered cubic crystal or a hexagonal close-packed crystal. 前記Cu系以外の金属が、Au,Pd,W,Mo,AlまたはAgよりなる群から選ばれる金属の少なくとも1種である請求項1〜3のいずれかに記載の半導体配線用金属薄膜。   The metal thin film for semiconductor wiring according to any one of claims 1 to 3, wherein the metal other than the Cu-based metal is at least one metal selected from the group consisting of Au, Pd, W, Mo, Al, or Ag. 前記Cu系以外の金属薄層で分断されることによって形成されるCu系金属薄層の厚さをa、該薄層中のCu系金属の最大結晶粒径をbとしたとき、b≦2a、の関係を満足する請求項1〜4のいずれかに記載の半導体配線用金属薄膜。   When the thickness of the Cu-based metal thin layer formed by being divided by the thin metal layer other than the Cu-based material is a, and the maximum crystal grain size of the Cu-based metal in the thin layer is b, b ≦ 2a The metal thin film for semiconductor wiring according to any one of claims 1 to 4, which satisfies the relationship: 前記Cu系金属薄層を2〜10層含むものである請求項1〜5のいずれかに記載の半導体配線用金属薄膜。   The metal thin film for semiconductor wiring according to claim 1, comprising 2 to 10 Cu-based metal thin layers. 凹部を有する半導体基板の表面に、請求項1〜6のいずれかに記載された金属薄膜を積層した後、高温高圧処理して前記金属薄膜を前記凹部内に埋め込むことによって形成されたことを特徴とする半導体配線。   It is formed by laminating the metal thin film according to any one of claims 1 to 6 on the surface of a semiconductor substrate having a recess, and then embedding the metal thin film in the recess by high-temperature and high-pressure treatment. And semiconductor wiring. 凹部を有する半導体基板の表面に、Cu系金属で構成される薄層をスパッタリング法で形成した後、Cu系以外の金属で構成される薄層をスパッタリング法で形成する工程とCu系金属で構成される薄層をスパッタリング法で形成する工程をこの順で1回以上繰り返すことによって請求項1〜6のいずれかに記載された半導体配線用金属薄膜を形成し、
次いで高温高圧処理して前記金属薄膜を前記凹部内に埋め込むことによって配線を形成することを特徴とする半導体配線の製法。
Forming a thin layer composed of a Cu-based metal on the surface of a semiconductor substrate having a recess by a sputtering method, and then forming a thin layer composed of a metal other than a Cu-based metal by a sputtering method and a Cu-based metal The metal thin film for semiconductor wiring according to any one of claims 1 to 6 is formed by repeating the step of forming a thin layer to be formed by a sputtering method at least once in this order,
Next, a method for producing a semiconductor wiring, wherein the wiring is formed by performing a high-temperature and high-pressure treatment and embedding the metal thin film in the recess.
JP2004280445A 2004-09-27 2004-09-27 Metal thin film for semiconductor wiring, semiconductor wiring formed using the metal thin film, and method for manufacturing semiconductor wiring Expired - Fee Related JP4315884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280445A JP4315884B2 (en) 2004-09-27 2004-09-27 Metal thin film for semiconductor wiring, semiconductor wiring formed using the metal thin film, and method for manufacturing semiconductor wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280445A JP4315884B2 (en) 2004-09-27 2004-09-27 Metal thin film for semiconductor wiring, semiconductor wiring formed using the metal thin film, and method for manufacturing semiconductor wiring

Publications (2)

Publication Number Publication Date
JP2006093630A JP2006093630A (en) 2006-04-06
JP4315884B2 true JP4315884B2 (en) 2009-08-19

Family

ID=36234276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280445A Expired - Fee Related JP4315884B2 (en) 2004-09-27 2004-09-27 Metal thin film for semiconductor wiring, semiconductor wiring formed using the metal thin film, and method for manufacturing semiconductor wiring

Country Status (1)

Country Link
JP (1) JP4315884B2 (en)

Also Published As

Publication number Publication date
JP2006093630A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
KR100688002B1 (en) Method for fabricating copper-based interconnections for semiconductor device
TWI450361B (en) Method for forming copper interconnection structure
US6846752B2 (en) Methods and devices for the suppression of copper hillock formation
US8420537B2 (en) Stress locking layer for reliable metallization
JP2003324148A (en) Semiconductor device and its manufacturing method, and plating solution
KR101515668B1 (en) Copper alloy sheet material
WO2007103014A2 (en) Sputtering target
WO2011114989A1 (en) Thin film formation method
US6620527B2 (en) Hillock-free aluminum wiring layer and method of forming the same
US7538027B2 (en) Fabrication method for semiconductor interconnections
US7928573B2 (en) Metal thin film for interconnection of semiconductor device
JP2007226058A (en) Liquid crystal display panel, its manufacturing method, and cu alloy sputtering target
CN100530565C (en) Semiconductor device and method for manufacturing same
JP4315884B2 (en) Metal thin film for semiconductor wiring, semiconductor wiring formed using the metal thin film, and method for manufacturing semiconductor wiring
JP2006077295A (en) Cu-ALLOY WIRING MATERIAL AND Cu-ALLOY SPUTTERING TARGET
KR100654520B1 (en) Copper alloy for semiconductor interconnections, fabrication method thereof, semiconductor device having copper alloy interconnections fabricated by the method, and sputtering target for fabricating copper alloy interconnections for semiconductors
JPH05211147A (en) Aluminum wiring and its forming method
US20100052171A1 (en) Cu wire in semiconductor device and production method thereof
KR20120040749A (en) Method for forming cu wiring
JP2007088014A (en) Cu alloy interconnection and cu alloy sputtering target
US20030183308A1 (en) Method for electroplated metal annealing process
JP2007242951A (en) Barrier film for semiconductor wiring, copper wiring for semiconductor, manufacturing method of this wiring, and sputtering target for forming semiconductor barrier film
Nakoshi et al. Crystallinity-Induced Variation of the Electronic Characteristics of Electroplated Gold Thin Films
WO2023122697A1 (en) Controlled grain growth for bonding and bonded structure with controlled grain growth
JP4646547B2 (en) Method for forming Al-based alloy wiring of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees