JP4315019B2 - Hot slab plate thickness reduction method, plate thickness reduction device, and mold rotation mechanism - Google Patents

Hot slab plate thickness reduction method, plate thickness reduction device, and mold rotation mechanism Download PDF

Info

Publication number
JP4315019B2
JP4315019B2 JP2004057792A JP2004057792A JP4315019B2 JP 4315019 B2 JP4315019 B2 JP 4315019B2 JP 2004057792 A JP2004057792 A JP 2004057792A JP 2004057792 A JP2004057792 A JP 2004057792A JP 4315019 B2 JP4315019 B2 JP 4315019B2
Authority
JP
Japan
Prior art keywords
mold
slab
plate thickness
upstream
hot slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004057792A
Other languages
Japanese (ja)
Other versions
JP2005246405A (en
Inventor
勝 三宅
保博 曽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004057792A priority Critical patent/JP4315019B2/en
Publication of JP2005246405A publication Critical patent/JP2005246405A/en
Application granted granted Critical
Publication of JP4315019B2 publication Critical patent/JP4315019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、熱間スラブに単一パスで板厚方向の大圧下を可能とする板厚圧下方法、板厚圧下装置及び金型回動機構に関する。   The present invention relates to a plate thickness reduction method, a plate thickness reduction device, and a mold rotation mechanism that enable a hot slab to be greatly reduced in the thickness direction by a single pass.

2本の圧延ロール間でスラブを圧延する通常の圧延機では、噛込角の限界から1パスでの大圧下は困難である。そのため、例えば250mm程度の厚さの熱間スラブを30〜50mm程度の厚さのシートバーに圧下する熱間圧延プロセスの粗圧延ラインでは、通常、2〜5基の圧延機を直列に配置し、スラブを往復動させて圧延するリバースを含めて5〜7パス程度の圧延が行われるが、本設備の導入には多額の設備費が必要であり、また設備長が長くなる等の問題がある。   In a normal rolling mill that rolls a slab between two rolling rolls, it is difficult to achieve a large reduction in one pass because of the biting angle limit. Therefore, for example, in a rough rolling line of a hot rolling process in which a hot slab having a thickness of about 250 mm is reduced to a sheet bar having a thickness of about 30 to 50 mm, usually 2 to 5 rolling mills are arranged in series. In addition, rolling for about 5 to 7 passes is carried out including reverse for rolling by reciprocating the slab. However, the installation of this equipment requires a large amount of equipment costs and the equipment length becomes long. is there.

一方、1パスで大圧下が可能な圧延手段として、多数の遊星ロールを具備したプラネタリーミルが提案されている。しかし、プラネタリーミルでは小径ロールが高速で被圧延材に当たるため、衝撃が大きく、ベアリング等の寿命が短いことから頻繁にメンテナンスが必要となる等、量産型設備には適さないという問題があった。   On the other hand, a planetary mill having a large number of planetary rolls has been proposed as a rolling means capable of large reduction in one pass. However, the planetary mill has a problem that it is not suitable for mass production type equipment because the small-diameter roll hits the material to be rolled at high speed, so the impact is large and the life of the bearings etc. is short, so frequent maintenance is required. .

上述した問題を解決するために、1パスで大圧下が可能な熱間スラブの圧下手段として、従来の幅圧下プレスを板厚圧下に適用した板厚圧下プレス装置が提案されている(例えば特許文献1、特許文献2、特許文献3参照)。   In order to solve the above-described problem, a plate thickness reduction press apparatus in which a conventional width reduction press is applied to plate thickness reduction as a hot slab reduction means capable of large reduction in one pass has been proposed (for example, patents). Reference 1, Patent Document 2, and Patent Document 3).

図6は、特許文献1に開示されている熱間スラブプレス装置である。この装置は、スラブSを挟んで上下に設けられた金型50,50と、各金型ごとに設けられ金型を上下および前後に揺動させるスライダー51,51と、このスライダーを駆動する駆動装置とを備え、前記スライダーは、スラブ幅方向に中心軸を有する円孔52,52が設けられた本体53,53と、この円孔に嵌合する第1軸とこの第1軸より小径の第2軸で第1軸と中心軸をずらして構成されたクランク54,54とを有し、この第2軸が前記駆動装置で回動駆動されることを特徴としている。特許文献1に開示されている熱間スラブプレス装置では、特許文献2に開示されているように、スラブの進行方向に対し入側方向に拡開傾斜したテーパ部55と該テーパ部と連続し前記進行方向と平行な平行部56からなる主加工面をもつ金型を用いている。これらの圧下方法では、圧下にともない金型とスラブがスリップすることを防止するため、スラブと金型の接触開始面が、前記テーパ部と平行部間の遷移領域及び前記平行部の一部であることを特徴とする。   FIG. 6 shows a hot slab press apparatus disclosed in Patent Document 1. This apparatus includes molds 50, 50 provided above and below the slab S, sliders 51, 51 provided for each mold to swing the mold up and down and back and forth, and driving for driving the sliders. The slider includes a main body 53, 53 provided with circular holes 52, 52 having a central axis in the slab width direction, a first shaft fitted into the circular hole, and a smaller diameter than the first shaft. The second shaft includes cranks 54 and 54 configured by shifting the first shaft and the central shaft, and the second shaft is rotationally driven by the driving device. In the hot slab press device disclosed in Patent Document 1, as disclosed in Patent Document 2, a taper portion 55 that is widened and inclined in the entrance direction with respect to the traveling direction of the slab and the taper portion are continuous. A mold having a main machining surface composed of parallel portions 56 parallel to the traveling direction is used. In these reduction methods, in order to prevent the mold and the slab from slipping during the reduction, the contact start surface of the slab and the mold is formed in the transition region between the tapered portion and the parallel portion and a part of the parallel portion. It is characterized by being.

また、図7は特許文献3に開示されている板厚圧下装置である。この装置は、被成形材料Sの上下から、スラブ進行方向の側方から見て該スラブ進行方向に向かって凸曲面状の成形面61,61を有する金型60,60を、同調してスラブ進行方向に近接させながら成形面の被成形材料に接する部分がスラブ進行方向下流側からスラブ進行方向上流側へ移り変わるように揺動させて被成形材料を板厚方向に圧下成形することを特徴とする板厚圧下方法が開示されている。
特開平11−239832号公報、特許請求の範囲など 特開2000−254702号公報、特許請求の範囲など 特開平11−90502号公報、特許請求の範囲など
FIG. 7 shows a plate thickness reduction device disclosed in Patent Document 3. This apparatus synchronizes slabs with dies 60, 60 having molding surfaces 61, 61 that are convexly curved in the slab traveling direction as viewed from the side of the slab traveling direction from above and below the molding material S. It is characterized in that the material to be formed is pressed in the plate thickness direction by swinging so that the portion of the forming surface in contact with the material to be formed is moved from the downstream side in the slab traveling direction to the upstream side in the slab traveling direction while being close to the traveling direction. A sheet thickness reduction method is disclosed.
Japanese Patent Application Laid-Open No. 11-239832, claims, etc. JP 2000-254702 A, Claims, etc. Japanese Patent Laid-Open No. 11-90502, claims, etc.

しかし、図6、図7に例示したような従来の板厚圧下プレス装置では、単一パスでスラブに大きな圧下量を与えることができるが、各々以下のような問題点を有していた。まず、特許文献1に開示されている図6の熱間スラブプレス装置では、上下の金型の平行部がスラブSと平行となるように設定されており、金型50,50の圧下動作に伴い、スラブと金型が接触してから板厚方向圧下の下死点に至るまで、金型とスラブの接触面積は漸次増大し、圧下荷重が大きくなることが避けられない。圧下荷重を低減するためには、金型とスラブの接触面積を低減する、すなわち単一パス間のスラブの下流側への送り量を小さく設定すればよい。一方で、特許文献2に示されているように、圧下開始時に発生しやすい金型とスラブ間のスリップを防止するため、スラブと金型の接触開始面が、前記テーパ部と平行部間の遷移領域及び前記平行部の一部とする必要がある。そのためには、単一パス間のスラブの下流側への送り量の下限値は金型形状と圧下量により自ずと決定される。しかし、例えばこの観点からスラブ進行方向に対する金型傾斜角度を過度に大きくした場合、1パスあたりの送り量を小さく設定することは可能であるが、生産性が大きく低下するという問題点がある。   However, in the conventional sheet thickness reduction press apparatus illustrated in FIGS. 6 and 7, a large reduction amount can be given to the slab in a single pass, but each has the following problems. First, in the hot slab press apparatus shown in FIG. 6 disclosed in Patent Document 1, the parallel parts of the upper and lower molds are set to be parallel to the slab S, and the molds 50 and 50 are pressed down. Accordingly, the contact area between the mold and the slab gradually increases from the contact between the slab and the mold to the bottom dead center in the plate thickness direction reduction, and it is inevitable that the reduction load increases. In order to reduce the rolling load, the contact area between the mold and the slab may be reduced, that is, the amount of feed to the downstream side of the slab between the single passes may be set small. On the other hand, as shown in Patent Document 2, in order to prevent slippage between the mold and the slab that is likely to occur at the start of rolling, the contact start surface between the slab and the mold is between the tapered portion and the parallel portion. It must be part of the transition region and the parallel part. For this purpose, the lower limit value of the feed amount to the downstream side of the slab between the single passes is naturally determined by the mold shape and the reduction amount. However, for example, if the mold inclination angle with respect to the slab traveling direction is excessively increased from this viewpoint, it is possible to set the feed amount per pass small, but there is a problem that productivity is greatly reduced.

特許文献3に開示されている図7の板厚圧下装置では、円弧状の圧下面61,61を有する金型60,60を揺動させながら圧下するが、この目的は、金型とスラブ間の接触長を低減すること、すなわち圧下荷重を低減させることである。しかし、この目的を達成するには、金型を揺動させるための装置機構が非常に複雑となる。またスラブ進行方向下流側から上流側へ金型を揺動させることより、圧下に伴う材料の後進量が大きい。これを補償するため、金型前後動機構により圧下中に金型をスラブ進行方向上流側へ送り出さなければならず、いずれにせよ装置機構が複雑となることが避けられない。   In the plate thickness reduction device of FIG. 7 disclosed in Patent Document 3, the molds 60 and 60 having the arc-shaped pressing surfaces 61 and 61 are squeezed while being swung, and this purpose is between the mold and the slab. Is to reduce the contact length, that is, to reduce the rolling load. However, in order to achieve this object, the device mechanism for swinging the mold becomes very complicated. Further, since the mold is swung from the downstream side in the slab traveling direction to the upstream side, the reverse amount of the material accompanying the reduction is large. In order to compensate for this, the mold must be sent to the upstream side in the slab traveling direction during the reduction by the mold back-and-forth movement mechanism, and in any case, the apparatus mechanism is inevitably complicated.

また、断続加工となる板厚圧下プレス装置では、圧延と比較してライン速度が遅くなることが避けられず、圧延材温度低下を防ぐ観点からも生産性の低下は大きな問題となる。しかし、従来の板厚圧下プレス装置では、先進量が小さくこの問題が解決されていないという問題があった。   Moreover, in the plate thickness reduction press apparatus used as intermittent processing, it is inevitable that the line speed becomes slower than rolling, and the reduction in productivity is a serious problem from the viewpoint of preventing the temperature reduction of the rolled material. However, the conventional sheet thickness pressing machine has a problem that the advanced amount is small and this problem has not been solved.

すなわち、スラブの板厚方向の圧下時に生ずる圧下荷重は、簡易的には式(1)で求めることができる。   That is, the reduction load generated when the slab is reduced in the plate thickness direction can be simply obtained by Expression (1).

P=Qp・k・lm・W …(1)
Qpは圧下力関数であり、スラブ厚み、圧下量、金型とスラブ間の摩擦係数などの板厚圧下条件により決定される。また、kはスラブの変形抵抗、lmは金型とスラブの接触長、Wはスラブ幅である。(1)式より、圧下荷重低減のための実質的な手段としては、(a)圧下力関数Qpを低減させる、(b)変形抵抗kを低減させる、(c)接触弧長1mを低減させる、等である。圧下力関数Qpを低減させるためには、潤滑により金型とスラブ間の摩擦係数を低減させることが有効であり、従来より熱間圧延、熱間鍛造加工では常用されている手段である。変形抵抗kを低減させるためには、圧下時のスラブ温度を高くする、圧下速度を遅くすることが有効であるが、加熱エネルギーと生産性等を総合して考えると、所定の加工条件にてkを大きく低減することは困難である。これに対し、接触弧長1mを低減させるためには、例えば圧延加工においては、噛込性や圧延ロール表面強度や被圧延材の断面形状を保つ限り、圧延ロール径を可能な限り小さくすれば良く、従来より本目的のために小径圧延ロールが用いられることが多々ある。
P = Qp · k · lm · W (1)
Qp is a rolling force function, and is determined by a plate thickness rolling condition such as a slab thickness, a rolling amount, and a friction coefficient between a mold and a slab. K is the deformation resistance of the slab, lm is the contact length between the mold and the slab, and W is the slab width. From equation (1), as a substantial means for reducing the rolling load, (a) reducing the rolling force function Qp, (b) reducing the deformation resistance k, (c) reducing the contact arc length 1 m. , Etc. In order to reduce the rolling force function Qp, it is effective to reduce the coefficient of friction between the mold and the slab by lubrication, which is a means that is conventionally used in hot rolling and hot forging. In order to reduce the deformation resistance k, it is effective to increase the slab temperature at the time of rolling down and slow down the rolling speed, but considering the heating energy and productivity, etc. It is difficult to greatly reduce k. On the other hand, in order to reduce the contact arc length of 1 m, for example, in rolling, if the rolling roll diameter is made as small as possible, as long as the biting property, the rolling roll surface strength, and the cross-sectional shape of the material to be rolled are maintained. Well, small diameter rolling rolls are often used for this purpose.

熱間スラブを板厚方向に圧下する鍛造加工では、特許文献3に開示されているがごとく、圧下中に金型を揺動化させることにより接触弧長1mを低減することが可能である。この際、特許文献3では、凸曲面状の成形面の被成形材料に接している部分がスラブ進行方向下流側からスラブ進行方向上流側へ移り変わるように金型を揺動させているが、この加工方法ではスラブ進行方向上流側に向かった材料の塑性流動が大きくなり、圧下に伴う材料の後進量が大きくなることが問題であった。鍛造による板厚圧下では、金型と被成形材間の相対速度が0となる点が存在し(以下、中立点と呼ぶ)、中立点を境としてスラブ上流側に位置する材料はスラブ上流側、すなわちスラブ進行方向に対して後方に変形することから、この後方への変形による変位量を後進量とよぶ。また、中立点を境としてスラブ下流側に位置する材料はスラブ下流側、すなわちスラブ進行方向に対して先方に変形することから、この先方への変形による変位量を先進量とよぶ。断続加工となる板厚圧下プレス装置では、圧延と比較してライン速度が遅くなることが避けられず、圧延材温度低下を防ぐ観点からも生産性の低下は大きな問題となり、圧下による材料の後進量を低減し、先進量を大きくすることが望ましい。   In the forging process in which the hot slab is reduced in the plate thickness direction, as disclosed in Patent Document 3, it is possible to reduce the contact arc length of 1 m by swinging the mold during the reduction. At this time, in Patent Document 3, the mold is swung so that the portion of the convex curved surface that is in contact with the material to be molded is moved from the downstream side in the slab traveling direction to the upstream side in the slab traveling direction. In the processing method, there is a problem that the plastic flow of the material toward the upstream side in the slab traveling direction becomes large, and the reverse amount of the material accompanying the reduction increases. Under plate thickness pressure by forging, there is a point where the relative speed between the mold and the workpiece is 0 (hereinafter referred to as the neutral point), and the material located upstream of the slab from the neutral point is upstream of the slab. That is, since the deformation occurs backward with respect to the slab traveling direction, the displacement amount due to the backward deformation is referred to as a reverse movement amount. In addition, since the material located downstream of the slab with respect to the neutral point is deformed forward with respect to the downstream side of the slab, that is, with respect to the slab traveling direction, the amount of displacement due to this forward deformation is called the advanced amount. In the plate thickness reduction press machine, which is an intermittent process, it is inevitable that the line speed is slow compared to rolling, and the reduction in productivity becomes a big problem from the viewpoint of preventing the temperature reduction of the rolled material. It is desirable to reduce the amount and increase the advanced amount.

そこで本発明者等は、熱間スラブの板厚圧下における圧下荷重を低減し、かつ材料の先進量を増大させる手段について鋭意検討した結果、圧下中、あるいは圧下下死点における金型の回動方向を、金型とスラブの接触面積がスラブ進行方向上流側から下流側へ移り変わるようにすることにより、スラブ進行方向下流側に向かった材料の塑性流動を大きくすることが可能であることを見出した。この際、金型形状と回動角度を適切に設定することにより、圧下後のスラブ板厚を均一とすることが可能である。   Therefore, as a result of intensive studies on means for reducing the rolling load under the thickness reduction of the hot slab and increasing the advanced amount of the material, the present inventors have turned the mold during the rolling or at the dead center of the rolling. It is found that the plastic flow of the material toward the downstream side in the slab traveling direction can be increased by changing the direction of the contact area between the mold and the slab from the upstream side to the downstream side in the slab traveling direction. It was. At this time, the slab plate thickness after the reduction can be made uniform by appropriately setting the mold shape and the rotation angle.

また、特許文献3のごとく金型の成形面を凸曲面状とした場合、金型を揺動させて圧下しても、図8に示すごとく圧下後の板厚分布が凹凸となりやすい。さらに、通常、金型の成形面がある程度摩耗した後には、切削、あるいは研削加工にて成形面の再仕上げを実施するが、凸曲面状の加工には長時間を要する。   In addition, when the molding surface of the mold is a convex curved surface as in Patent Document 3, even if the mold is swung and reduced, the plate thickness distribution after reduction tends to be uneven as shown in FIG. Furthermore, usually, after the molding surface of the mold is worn to some extent, refinishing of the molding surface is performed by cutting or grinding, but it takes a long time to process the convex curved surface.

以上、本発明は、従来技術の問題点を解決すべくなされたもので、スラブの板厚方向圧下時の圧下荷重を低減してより一層の大圧下や硬質材の圧下、設備のコンパクト化等を可能とし、かつ圧下にともなうスラブの先進量を増大して生産性を向上させることが可能な熱間スラブの板厚圧下方法及び装置を提供することを目的としている。   As described above, the present invention has been made to solve the problems of the prior art, and reduces the reduction load when the slab is reduced in the plate thickness direction to further reduce the large pressure, reduce the hard material, reduce the size of the equipment, etc. It is an object of the present invention to provide a hot slab thickness reduction method and apparatus capable of improving the productivity by increasing the advanced amount of slab accompanying reduction.

また、圧下による材料の後進量を低減し、先進量を大きくすることにより、圧延材温度低下を防ぐことができる熱間スラブの板厚圧下方法及び装置を提供することを目的としている。   It is another object of the present invention to provide a hot slab sheet thickness reduction method and apparatus capable of preventing a reduction in the temperature of a rolled material by reducing the amount of backward movement of the material due to reduction and increasing the advanced amount.

さらにまた本発明では、圧下後の板厚分布が凹凸とならない熱間スラブの板厚圧下方法及び装置を提供することを目的としている。   Still another object of the present invention is to provide a hot slab thickness reduction method and apparatus in which the thickness distribution after reduction does not become uneven.

本発明はこれらの知見に基づきなされたもので、以下のような特徴を有する。   The present invention has been made based on these findings and has the following characteristics.

(1)熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有し、熱間スラブを挟んで上下に対峙して設けられた1対の金型を用いて熱間スラブを断続的に板厚方向に圧下する熱間スラブの板厚圧下方法であって、
前記金型を板厚方向に圧下して上流側圧下面及び下流側圧下面によりスラブの圧下動作を開始するとともに、圧下に伴いスラブとの接触面が下流側圧下面に移り変わるように金型を回動させながら圧下動作の下死点まで金型を圧下することを特徴とする熱間スラブの板厚圧下方法。
(1) A hot slab having an upstream compressed surface that is expanded and inclined in the direction of entry with respect to the traveling direction of the hot slab and a downstream compressed surface that is continuous with the upstream compressed surface and is expanded and inclined toward the traveling direction. A hot slab plate thickness reduction method in which a hot slab is intermittently reduced in the plate thickness direction using a pair of molds provided facing each other up and down,
The mold is squeezed in the plate thickness direction, and the slab is started to be reduced by the upstream side and the downstream side, and the mold is rotated so that the contact surface with the slab is changed to the downstream side. A method for reducing the thickness of a hot slab, wherein the mold is reduced to the bottom dead center while reducing.

(2)熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有し、熱間スラブを挟んで上下に対峙して設けられた1対の金型を用いて熱間スラブを断続的に板厚方向に圧下する熱間スラブの板厚圧下方法であって、
前記金型を板厚方向に圧下して上流側圧下面及び下流側圧下面によりスラブを板厚方向への圧下動作の下死点まで圧下し、しかる後にスラブとの接触面が下流側圧下面に移り変わるように金型を回動させることを特徴とする熱間スラブの板厚圧下方法。
(2) A hot slab having an upstream compressed surface that is expanded and inclined in the direction of entry with respect to the traveling direction of the hot slab and a downstream compressed surface that is continuous with the upstream compressed surface and is expanded and inclined toward the traveling direction. A hot slab plate thickness reduction method in which a hot slab is intermittently reduced in the plate thickness direction using a pair of molds provided facing each other up and down,
The mold is squeezed in the thickness direction, and the slab is squeezed to the bottom dead center by the upstream side squeezing surface and the downstream side squeezing surface, and then the contact surface with the slab is changed to the downstream side squeezing surface. A method for reducing the thickness of a hot slab, characterized by rotating a mold.

(3)金型の回動角度をスラブ進行方向と下流側圧下面のなす角度と同一とし、下流側圧下面がスラブ進行方向と平行になるまで金型を回動させることを特徴とする(1)または(2)に記載の熱間スラブの板厚圧下方法。   (3) The rotation angle of the mold is the same as the angle formed by the slab traveling direction and the downstream pressure surface, and the mold is rotated until the downstream pressure surface is parallel to the slab traveling direction (1) Or the thickness reduction method of the hot slab as described in (2).

(4)金型との接触面を円弧状とした金型受けと、金型回動軸に取り付けられ、金型受けとの接触面を円弧状とし、熱間スラブを挟んで上下に対峙して配置される一対の金型と、これら金型の接触面と金型受けの接触面との間に介装され、金型を回動可能としたコロと、これら金型を金型回動軸を軸として回動運動させる駆動機構と、これら金型を熱間スラブの板厚方向に圧下する圧下手段とを具備し、前記金型は、熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有することを特徴とする熱間スラブの板厚圧下装置。 (4) A mold receiver having a circular contact surface with the mold, and attached to the mold rotation shaft, and having a circular contact surface with the mold receiver , facing each other vertically with a hot slab in between. A pair of molds arranged between the contact surfaces of the molds and the contact surface of the mold receiver, and a roller that can rotate the molds. A driving mechanism for rotating the shaft as an axis, and a rolling-down means for rolling down these molds in the thickness direction of the hot slab, wherein the mold is in the incoming direction with respect to the traveling direction of the hot slab. An apparatus for reducing the thickness of a hot slab, comprising: an upstream-side pressure-lower surface that is expanded and inclined; and a downstream-side pressure-lower surface that is continuous with the upstream-side pressure surface and is inclined toward the advancing direction.

(5)金型との接触面を円弧状とした金型受けと、金型回動軸に取り付けられ、金型受けとの接触面を円弧状とした金型と、金型の接触面と金型受けの接触面との間に介装され、金型を回動可能としたコロと、金型回動軸を軸として金型の回動運動をさせる駆動機構とを具備したことを特徴とする熱間スラブ板厚圧下装置用の金型回動機構。   (5) A mold receiver having an arc-shaped contact surface with the mold, a mold attached to the mold rotating shaft and having an arc-shaped contact surface with the mold receiver, and a contact surface of the mold A roller that is interposed between the contact surface of the mold receiver and that allows the mold to rotate, and a drive mechanism that rotates the mold about the mold rotation axis. A mold rotation mechanism for a hot slab plate thickness reduction device.

(6)各金型は熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有することを特徴とする(5)に記載された熱間スラブ板厚圧下装置用の金型回動機構。 (6) Each mold has an upstream flank that is expanded and inclined in the incoming direction with respect to the direction of travel of the hot slab, and a downstream flank that is continuous with the upstream flank and is expanded and inclined toward the advancing direction. A mold rotation mechanism for a hot slab plate thickness reduction device as described in (5).

本発明の熱間スラブの板厚圧下方法及び装置によると、圧下荷重を従来技術と比較して大幅に低減することが可能であり、また圧下による材料の先進量を大きくすることができる。これにより、より一層の板厚の大圧下が可能となる、硬質材の大圧下が可能となる、設備自体をコンパクトとすることができる等、多くの面で大きな効果が期待できる。   According to the plate thickness reduction method and apparatus of a hot slab of the present invention, the reduction load can be greatly reduced as compared with the prior art, and the advanced amount of material by reduction can be increased. As a result, a great effect can be expected in many respects, such as a further reduction of the plate thickness, a reduction of the hard material, and a compact facility itself.

以下、本発明の実施形態について図1〜図4を参照して説明する。図1に示す本発明の実施形態1では、図3に示すごとく金型2がスラブ進行方向に対して上流側圧下面18が角度θ、下流側圧下面19が角度φだけ傾いた状態にて圧下上死点位置(金型2がスラブ1から最も離れる位置)からスラブ1の圧下を開始し、圧下下死点位置(金型2がスラブ1を最も圧下する位置)まで、圧下方向に金型を上下に移動させるとともに、金型2とスラブ1の接触面がスラブ進行方向の下流側に移り変わるように図中の矢印方向(以下、順回動方向とよび、逆向きの回動方向を逆回動方向とよぶ)に金型を角度φだけ回動させている。本実施形態では、圧下中のスラブ1と金型2の接触面はほぼ下流側圧下面19のみとなる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In Embodiment 1 of the present invention shown in FIG. 1, as shown in FIG. 3, the mold 2 is rolled down with the upstream pressure surface 18 inclined at an angle θ and the downstream pressure surface 19 inclined by an angle φ with respect to the slab traveling direction. The slab 1 starts to be crushed from the dead center position (the position where the mold 2 is farthest from the slab 1), and the dies are moved in the downward direction to the crushed dead center position (the position where the mold 2 is most crushed from the slab 1) In addition to moving up and down, the direction of the arrow in the figure (hereinafter referred to as the forward rotation direction and the reverse rotation direction is reversed so that the contact surface of the mold 2 and the slab 1 is moved downstream in the slab traveling direction. The mold is rotated by an angle φ in the direction of movement). In the present embodiment, the contact surface between the slab 1 and the mold 2 that is being reduced is substantially only the downstream pressure surface 19.

また、図2に示す本発明の実施形態2では、図3に示すごとく金型2がスラブ進行方向に対して上流側圧下面18が角度θ、下流側圧下面19が角度φだけ傾いた状態にて圧下上死点位置からスラブ1の圧下を開始し、圧下下死点位置までは圧下方向のみに金型を上下に移動させ、圧下下死点位置にて金型2とスラブ1の接触面がスラブ進行方向の下流側に移り変わるように順回動方向に金型を角度φだけ回動させている。本実施形態では、圧下下死点位置までは圧下中のスラブ1と金型2の接触面は上流側圧下面18と下流側圧下面19の両面(ただし、図6に示すような従来の板厚圧下プレス装置の場合よりは接触長は短い)であり、圧下下死点にて金型を順回動方向に回動させることにより、接触面は下流側圧下面19のみとなる。   Further, in the second embodiment of the present invention shown in FIG. 2, as shown in FIG. 3, the mold 2 is in a state where the upstream pressure surface 18 is inclined by an angle θ and the downstream pressure surface 19 is inclined by an angle φ with respect to the slab traveling direction. The slab 1 starts to be reduced from the position of the top dead center, and the mold is moved up and down only to the position of the bottom dead center, and the contact surface between the mold 2 and the slab 1 is moved to the position of the bottom dead center. The mold is rotated by an angle φ in the forward rotation direction so as to change to the downstream side in the slab traveling direction. In the present embodiment, the contact surface between the slab 1 and the mold 2 that is being rolled up to the bottom dead center position is the both sides of the upstream side pressure surface 18 and the downstream side pressure surface 19 (however, the conventional plate thickness reduction as shown in FIG. 6). The contact length is shorter than in the case of the press device), and the contact surface becomes only the downstream pressure surface 19 by rotating the die in the forward rotation direction at the rolling dead center.

なお、角度θは、特に限定されるものではないが、好ましくは15°〜35°、特に好ましくは20°〜30°がよい。これは、角度θが小さすぎると金型と材料間の接触長が長くなるため荷重が増大し、また角度θが大きすぎると上流側圧下面18と材料間の接触が不安定となり、安定したプレス加工が難しくなるという問題があるためである。   The angle θ is not particularly limited, but is preferably 15 ° to 35 °, and particularly preferably 20 ° to 30 °. This is because if the angle θ is too small, the contact length between the mold and the material becomes long, so the load increases. If the angle θ is too large, the contact between the upstream pressure surface 18 and the material becomes unstable, and a stable press is achieved. This is because there is a problem that processing becomes difficult.

また、角度φは、特に限定されるものではないが、好ましくは5°〜30°、特に好ましくは20°〜30°がよい。これは、角度φが小さすぎると金型と材料間の接触長を短くする効果が小さい、すなわち荷重低減効果が小さく、また、角度φを過大に大きくしても荷重低減効果が飽和傾向となるためである。   The angle φ is not particularly limited, but is preferably 5 ° to 30 °, and particularly preferably 20 ° to 30 °. This is because if the angle φ is too small, the effect of shortening the contact length between the mold and the material is small, that is, the load reducing effect is small, and even if the angle φ is excessively large, the load reducing effect tends to be saturated. Because.

図4は、本発明の実施形態1および実施形態2による熱間スラブの圧下方法を実現するための金型回動機構の一実施形態を示す説明図である。金型2は、金型受け4との接触面が円弧状となっており、金型受け4とは円筒コロ8を介して接触するように金型回動軸10にて変位を固定され、回動運動のみが可能となっている。また、金型2は油圧シリンダー11と回動軸を介して連結されており、油圧シリンダー11の上下運動により、金型回動軸10を軸とした回動運動を行う。また、金型2の回動範囲は、金型受台17によって上流側圧下面18が逆回動方向位置が拘束されることにより制限される。この時、図4には示していないが、金型2が設置されている金型受け4の上下運動は、図6に示した従来の熱間スラブプレス装置に用いられている偏心運動による圧下動作の他、単純な上下方向の圧下運動のいずれでもよく、板厚方向の圧下動作間のスラブ進行方向へのスラブ送りはピンチロール12によって行えばよい。   FIG. 4 is an explanatory view showing an embodiment of a mold rotation mechanism for realizing the hot slab reduction method according to the first and second embodiments of the present invention. The mold 2 has a circular arc contact surface with the mold receiver 4, and the displacement is fixed by the mold rotation shaft 10 so as to contact the mold receiver 4 via the cylindrical roller 8. Only rotational movement is possible. Further, the mold 2 is connected to the hydraulic cylinder 11 via a rotation shaft, and performs a rotation motion about the mold rotation shaft 10 by the vertical movement of the hydraulic cylinder 11. Further, the rotation range of the mold 2 is limited by the upstream side pressure surface 18 being constrained by the mold cradle 17 in the reverse rotation direction position. At this time, although not shown in FIG. 4, the vertical movement of the mold receiver 4 in which the mold 2 is installed is reduced by the eccentric movement used in the conventional hot slab press apparatus shown in FIG. In addition to the operation, any simple vertical rolling motion may be used, and the slab feed in the slab traveling direction during the rolling motion in the thickness direction may be performed by the pinch roll 12.

以下、図1と図2の熱間スラブの圧下方法の実施形態に関し、図4の金型回動機構を用いてその動作を説明する。   Hereinafter, the operation of the hot slab reduction method of FIGS. 1 and 2 will be described using the mold rotation mechanism of FIG.

図1の実施形態1では、圧下上死点位置にて金型2は油圧シリンダー11にてその下流側端連結部を引き上げられて逆回動方向に回動し、金型受台17にて回動が固定された状態となっている。圧下上死点位置より、上下方向への圧下を開始するとともに、油圧シリンダー11により金型2の下流側端連結部を押し出しながら順方向に回動させ、圧下下死点位置にて金型回動角度がφとなるように、圧下と回動を同時に行う。この際、油圧シリンダー11の最大ストロークにて金型回動角がφとなる、すなわち下流側圧下面19が水平となるように設定しておけばよく、圧下動作位置に応じて金型回動角を制御すればよい。パス間、すなわち上下の金型を離反させて圧下上死点位置まで移動させるまでの間に、ピンチロール12にてスラブ1を所定の送り量だけ送り、油圧シリンダー11によって金型2の下流側端連結部を引き上げて逆回動方向に回動させ、金型受台17にて回動が固定された状態とする。以下、本動作を連続して実施することにより、長手方向全長に渡る熱間スラブの圧下を行う。   In the first embodiment shown in FIG. 1, the die 2 is pulled up by the hydraulic cylinder 11 at the reduction top dead center position and rotated in the reverse rotation direction by the hydraulic cylinder 11. The rotation is fixed. Starting from the top dead center position, the rolling down is started in the vertical direction, and the downstream end connecting portion of the mold 2 is pushed forward by the hydraulic cylinder 11 and rotated in the forward direction. The reduction and rotation are performed simultaneously so that the moving angle becomes φ. At this time, it is only necessary to set the mold rotation angle to be φ at the maximum stroke of the hydraulic cylinder 11, that is, the downstream pressure surface 19 to be horizontal, and the mold rotation angle according to the reduction operation position. Can be controlled. Between the passes, that is, until the upper and lower molds are separated and moved to the top dead center position, the slab 1 is fed by a predetermined feed amount by the pinch roll 12, and the hydraulic cylinder 11 downstream of the mold 2 The end connecting portion is pulled up and rotated in the reverse rotation direction, and the rotation is fixed by the mold receiving base 17. Hereinafter, the hot slab is reduced over the entire length in the longitudinal direction by continuously performing this operation.

図2の実施形態2では、圧下上死点位置にて金型2は油圧シリンダー11にてその下流側端連結部を引き上げられて逆回動方向に回動し、金型受台17にて回動が固定された状態となっている。圧下上死点位置より、上下方向への圧下を開始して圧下下死点位置に達するまで本状態を維持し、圧下下死点位置にて油圧シリンダー11により金型2の下流側端連結部を押し出しながら順方向に金型2を角度φだけ回動させ、下流側圧下面19にて圧下を完了する。この際、油圧シリンダー11の最大ストロークにて金型回動角がφとなるように設定しておけばよい。パス間、すなわち上下の金型を離反させて圧下上死点位置まで移動させるまでの間の動作は、上記図1の実施形態での動作と同一であり、以下、本動作を連続して実施することにより、長手方向全長に渡る熱間スラブの圧下を行う。   In the second embodiment shown in FIG. 2, the die 2 is pulled up by the hydraulic cylinder 11 at the reduction top dead center position and rotated in the reverse rotation direction by the hydraulic cylinder 11. The rotation is fixed. Starting from the top dead center position, the up-down direction is started and this state is maintained until the bottom dead center position is reached, and the downstream end connecting portion of the mold 2 is connected by the hydraulic cylinder 11 at the bottom dead center position. The die 2 is rotated by an angle φ in the forward direction while pushing out, and the reduction is completed at the downstream pressure surface 19. At this time, the rotation angle of the mold may be set to φ at the maximum stroke of the hydraulic cylinder 11. The operation between the passes, that is, the operation until the upper and lower molds are separated and moved to the top dead center position is the same as the operation in the above-described embodiment of FIG. By doing so, the hot slab is reduced over the entire length in the longitudinal direction.

なお、図4の金型回動機構の実施形態では、金型回動の制御タイミングを変更するだけで図1と図2の両方の動作が実施可能である。ただし、図1の実施形態1では、圧下動作と金型回動の両機構により下流側圧下面19でのみスラブ1の圧下を行い、図2の実施形態2では、上下方向の圧下動作が完了後、金型を回動させることにより下流側圧下面19と接触している部分のみの圧下を行う。したがって、実施形態1は実施形態2に対して接触長が短く、圧下荷重が小さいため、装置全体を小型化することができる。逆に実施形態2は、油圧シリンダー11は圧下下死点まで圧下後の金型回動に伴う圧下を行うのみであるので、実施形態1に対して油圧シリンダー11の容量を小さくすることができるという特徴がある。これらは、対象とするスラブ材質、スラブ寸法による圧下荷重範囲や設備費等を考慮し、適宜選択すればよい。   In the embodiment of the mold rotation mechanism of FIG. 4, both the operations of FIGS. 1 and 2 can be performed only by changing the control timing of the mold rotation. However, in the first embodiment shown in FIG. 1, the slab 1 is reduced only on the downstream pressure surface 19 by both the reduction operation and the mold rotation mechanism, and in the second embodiment shown in FIG. By rotating the mold, only the portion in contact with the downstream pressure surface 19 is reduced. Therefore, since the first embodiment has a shorter contact length and a smaller rolling load than the second embodiment, the entire apparatus can be miniaturized. On the contrary, in the second embodiment, the hydraulic cylinder 11 only performs the reduction associated with the mold rotation after the reduction to the reduction dead center, so that the capacity of the hydraulic cylinder 11 can be reduced compared to the first embodiment. There is a feature. These may be appropriately selected in consideration of the target slab material, the rolling load range depending on the slab size, the equipment cost, and the like.

なお、本発明における金型の回動は、図4に示す金型回動機構を用いることに限定されるものではなく、例えばリンク機構によりその回動動作を実現してもよい。   Note that the rotation of the mold in the present invention is not limited to using the mold rotation mechanism shown in FIG. 4, and the rotation operation may be realized by a link mechanism, for example.

実施例として、図4に示した金型回動機構を備えた板厚圧下プレス装置を用い、前述の実施形態1(実施例1)および実施形態2(実施例2)にて熱間スラブの板厚圧下を行った。圧下荷重と圧下に伴う材料の先進量の比較例として、図6に示した従来の板厚圧下装置も用いた。対象としたスラブは、板厚254mm、板幅1500mm、長さ9000mmの普通鋼である。まず、本スラブを加熱炉にて1200℃まで加熱した後に加熱炉から抽出し、搬送テーブルにて板厚圧下プレス装置まで搬送し、板厚方向の圧下を開始した。この際、圧下開始時のスラブの温度は1100℃程度であり、板厚38mmまで圧下を行った(圧下率約85%)。金型形状は図3に示した形態のものを使用したが、上流側圧下面の傾斜角θを20゜で一定とし、下流側圧下面の傾斜角φを0〜20゜の範囲で変更した。この際、金型回動角は下流側圧下面の傾斜角φと同じである。つまり、下流側圧下面の傾斜角φが0゜の条件では、図6に示した従来の板厚圧下装置と同じ圧下条件となる。   As an example, the hot slab of the above-described Embodiment 1 (Example 1) and Embodiment 2 (Example 2) is used by using the plate thickness reduction press device provided with the mold rotation mechanism shown in FIG. Plate thickness reduction was performed. As a comparative example of the rolling load and the advanced amount of material accompanying the rolling, the conventional plate thickness rolling device shown in FIG. 6 was also used. The target slab is plain steel with a plate thickness of 254 mm, a plate width of 1500 mm, and a length of 9000 mm. First, the slab was heated to 1200 ° C. in a heating furnace, extracted from the heating furnace, conveyed to a sheet thickness reduction press device by a conveyance table, and reduction in the sheet thickness direction was started. At this time, the temperature of the slab at the start of the reduction was about 1100 ° C., and the reduction was performed to a plate thickness of 38 mm (reduction rate of about 85%). The shape of the mold shown in FIG. 3 was used, but the inclination angle θ of the upstream flank was fixed at 20 °, and the inclination angle φ of the downstream flank was changed in the range of 0 to 20 °. At this time, the mold rotation angle is the same as the inclination angle φ of the downstream pressure surface. That is, under the condition that the inclination angle φ of the downstream side pressure surface is 0 °, the same reduction condition as that of the conventional plate thickness reduction apparatus shown in FIG. 6 is obtained.

図5は、下流側圧下面の傾斜角φを0〜20゜による最大圧下荷重の変化を示す図であり、比較例での圧下荷重を1.0として整理した。なお、最大圧下荷重とは、圧下開始から圧下終了までの間での圧下荷重の最大値である。本発明の実施例1では、下流側圧下面のみでの圧下となるため、下流側圧下面の傾斜角φによらず最大圧下荷重は一定であり、比較例と比べ約45%の荷重低減効果があった。また、本発明の実施例2では、最大圧下荷重は下流側圧下面の傾斜角φに大きく依存しており、φ=10゜で約30%の荷重低減効果、φ=20゜の場合には約40%の荷重低減効果があった。また、圧下によるスラブの先進量と後進量の関係を調べたところ、従来の板厚圧下装置では先進量と後進量の比が約0.5:0.5であったのに対し、本発明の実施例1と実施例2では0.6:0.4ないし0.7:0.3と、先進量が大きくなることが確認できた。   FIG. 5 is a diagram showing a change in the maximum reduction load when the inclination angle φ of the downstream pressure surface is 0 to 20 °, and the reduction load in the comparative example is arranged as 1.0. The maximum reduction load is the maximum value of the reduction load from the start of reduction to the end of reduction. In Example 1 of the present invention, since the reduction is performed only on the downstream side pressure surface, the maximum reduction load is constant regardless of the inclination angle φ of the downstream side pressure surface, and there is an approximately 45% load reduction effect compared to the comparative example. It was. Further, in Example 2 of the present invention, the maximum reduction load greatly depends on the inclination angle φ of the downstream pressure surface, about 30% of the load reduction effect at φ = 10 °, and about φ20 °. There was a load reduction effect of 40%. Further, when the relationship between the advanced amount of the slab and the reverse amount due to the reduction was investigated, the ratio of the advanced amount and the reverse amount was about 0.5: 0.5 in the conventional sheet thickness reduction device, whereas the present invention In Example 1 and Example 2, it was confirmed that the advanced amount increased from 0.6: 0.4 to 0.7: 0.3.

本発明の板厚圧下方法の一実施形態(実施形態1)を示す説明図。Explanatory drawing which shows one Embodiment (Embodiment 1) of the board thickness reduction method of this invention. 本発明の板厚圧下方法の一実施形態(実施形態2)を示す説明図。Explanatory drawing which shows one Embodiment (Embodiment 2) of the board thickness reduction method of this invention. 本発明の実施に供される金型形状の一例を示す説明図。Explanatory drawing which shows an example of the metal mold | die shape provided for implementation of this invention. 本発明の実施に供される金型回動機構の一例を示す説明図。Explanatory drawing which shows an example of the metal mold | die rotation mechanism with which implementation of this invention is provided. 本発明による熱間スラブ板厚圧下時の圧下荷重の低減効果の実施例を示す説明図。Explanatory drawing which shows the Example of the reduction effect of the rolling load at the time of hot slab board thickness reduction by this invention. 従来の熱間スラブプレス装置の構成図。The block diagram of the conventional hot slab press apparatus. 従来の板厚圧下装置の構成図。The block diagram of the conventional plate | board thickness reduction apparatus. 成形面が凸局面状の金型による板厚圧下で発生する板厚凹凸の模式図。The schematic diagram of the plate thickness unevenness | corrugation which generate | occur | produces under the plate | board thickness pressure by a metal mold | die with a convex-surface shape.

符号の説明Explanation of symbols

2…金型、3…スライダー、4…金型受け、5…本体、6…円孔、7…クランク、8…円筒コロ、9…フレーム、10…金型回動軸、11…油圧シリンダー、12…ピンチロール、13…テーブルローラ、14…ロッド、15…金型前後動機構、16…ハウジング、17…金型回動受台、18…上流側圧下面、19…下流側圧下面。   2 ... Mold, 3 ... Slider, 4 ... Mold receiver, 5 ... Main body, 6 ... Circular hole, 7 ... Crank, 8 ... Cylindrical roller, 9 ... Frame, 10 ... Mold rotating shaft, 11 ... Hydraulic cylinder, DESCRIPTION OF SYMBOLS 12 ... Pinch roll, 13 ... Table roller, 14 ... Rod, 15 ... Mold back-and-forth movement mechanism, 16 ... Housing, 17 ... Mold rotation receiving stand, 18 ... Upstream pressure side, 19 ... Downstream pressure side

Claims (6)

熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有し、熱間スラブを挟んで上下に対峙して設けられた1対の金型を用いて熱間スラブを断続的に板厚方向に圧下する熱間スラブの板厚圧下方法であって、
前記金型を板厚方向に圧下して上流側圧下面及び下流側圧下面によりスラブの圧下動作を開始するとともに、圧下に伴いスラブとの接触面が下流側圧下面に移り変わるように金型を回動させながら圧下動作の下死点まで金型を圧下することを特徴とする熱間スラブの板厚圧下方法。
The upstream slab has an upstream flank that is expanded and inclined in the ingress direction with respect to the traveling direction of the hot slab, and a downstream flank that is continuous with the upstream flank and is inclined to expand in the advancing direction. A hot slab plate thickness reduction method in which a hot slab is intermittently reduced in the plate thickness direction using a pair of molds provided opposite to each other,
The mold is squeezed in the plate thickness direction, and the slab is started to be reduced by the upstream side and the downstream side, and the mold is rotated so that the contact surface with the slab is changed to the downstream side. A method for reducing the thickness of a hot slab, wherein the mold is reduced to the bottom dead center while reducing.
熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有し、熱間スラブを挟んで上下に対峙して設けられた1対の金型を用いて熱間スラブを断続的に板厚方向に圧下する熱間スラブの板厚圧下方法であって、
前記金型を板厚方向に圧下して上流側圧下面及び下流側圧下面によりスラブを板厚方向への圧下動作の下死点まで圧下し、しかる後にスラブとの接触面が下流側圧下面に移り変わるように金型を回動させることを特徴とする熱間スラブの板厚圧下方法。
The upstream slab has an upstream flank that is expanded and inclined in the ingress direction with respect to the traveling direction of the hot slab, and a downstream flank that is continuous with the upstream flank and is inclined to expand in the advancing direction. A hot slab plate thickness reduction method in which a hot slab is intermittently reduced in the plate thickness direction using a pair of molds provided opposite to each other,
The mold is squeezed in the thickness direction, and the slab is squeezed to the bottom dead center by the upstream side squeezing surface and the downstream side squeezing surface, and then the contact surface with the slab is changed to the downstream side squeezing surface. A method for reducing the thickness of a hot slab, characterized by rotating a mold.
金型の回動角度をスラブ進行方向と下流側圧下面のなす角度と同一とし、下流側圧下面がスラブ進行方向と平行になるまで金型を回動させることを特徴とする請求項1または請求項2に記載の熱間スラブの板厚圧下方法。 The rotation angle of the mold is the same as the angle formed by the slab traveling direction and the downstream crushed surface, and the mold is rotated until the downstream crushed surface is parallel to the slab traveling direction. 2. A method for reducing the thickness of a hot slab according to 2. 金型との接触面を円弧状とした金型受けと、金型回動軸に取り付けられ、金型受けとの接触面を円弧状として、熱間スラブを挟んで上下に対峙して配置される一対の金型と、これら金型の接触面と金型受けの接触面との間に介装され、金型を回動可能としたコロと、これら金型を金型回動軸を軸として回動運動させる駆動機構と、これら金型を熱間スラブの板厚方向に圧下する圧下手段とを具備し、前記金型は、熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有することを特徴とする熱間スラブの板厚圧下装置。 A mold receiver with a circular contact surface with the mold, and attached to the mold rotation shaft, with the contact surface with the mold receiver in an arc shape, placed facing the top and bottom across the hot slab A pair of molds, a roller interposed between a contact surface of the molds and a contact surface of the mold receiver, and the molds being rotatable, and the molds with the mold rotation axis as an axis. A driving mechanism for rotating the slab and a reduction means for squeezing these dies in the thickness direction of the hot slab. An apparatus for reducing the thickness of a hot slab, comprising: an upstream compressed surface and a downstream compressed surface that is continuous with the upstream compressed surface and is inclined toward the advancing direction. 金型との接触面を円弧状とした金型受けと、金型回動軸に取り付けられ、金型受けとの接触面を円弧状とした金型と、金型の接触面と金型受けの接触面との間に介装され、金型を回動可能としたコロと、金型回動軸を軸として金型の回動運動をさせる駆動機構とを具備したことを特徴とする熱間スラブ板厚圧下装置用の金型回動機構。 A mold receiver having an arc-shaped contact surface with the mold, a mold attached to the mold rotating shaft and having an arc-shaped contact surface with the mold receiver, and the mold contact surface and the mold receiver And a driving mechanism for rotating the mold about the mold rotation axis. Mold rotation mechanism for inter-slab plate thickness reduction device. 各金型は熱間スラブの進行方向に対し入側方向に拡開傾斜した上流側圧下面及びこの上流側圧下面と連続し前記進行方向に向けて拡開傾斜した下流側圧下面を有することを特徴とする請求項5に記載された熱間スラブ板厚圧下装置用の金型回動機構。 Each mold has an upstream side pressure surface that is expanded and inclined in the direction of entry with respect to the direction of travel of the hot slab, and a downstream side pressure surface that is continuous with the upstream side pressure surface and is expanded and inclined toward the direction of travel. A mold rotation mechanism for a hot slab plate thickness reduction device according to claim 5.
JP2004057792A 2004-03-02 2004-03-02 Hot slab plate thickness reduction method, plate thickness reduction device, and mold rotation mechanism Expired - Fee Related JP4315019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057792A JP4315019B2 (en) 2004-03-02 2004-03-02 Hot slab plate thickness reduction method, plate thickness reduction device, and mold rotation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057792A JP4315019B2 (en) 2004-03-02 2004-03-02 Hot slab plate thickness reduction method, plate thickness reduction device, and mold rotation mechanism

Publications (2)

Publication Number Publication Date
JP2005246405A JP2005246405A (en) 2005-09-15
JP4315019B2 true JP4315019B2 (en) 2009-08-19

Family

ID=35027389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057792A Expired - Fee Related JP4315019B2 (en) 2004-03-02 2004-03-02 Hot slab plate thickness reduction method, plate thickness reduction device, and mold rotation mechanism

Country Status (1)

Country Link
JP (1) JP4315019B2 (en)

Also Published As

Publication number Publication date
JP2005246405A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US3333452A (en) Reduction of thick flat articles
CN211304324U (en) Rounding machine
US3921429A (en) Process and apparatus for modifying the cross section of a slab
KR900007957B1 (en) Method for reducing widths of hot slabs
JP2005512816A5 (en)
JP4315019B2 (en) Hot slab plate thickness reduction method, plate thickness reduction device, and mold rotation mechanism
CN207981861U (en) A kind of nickel ingot hot rolling centralising device
CN1695839B (en) Roller trio skew rolling method for cold perforating and cold chambering ingot
JPS60166101A (en) Method and device for reducing width of slab
CN205020502U (en) Roll forging device of cutter
KR960005879B1 (en) Method and apparatus for horizontal continuous casting
JP2007061823A (en) Method for reducing thickness of hot slab
CN100431728C (en) Extrusion method and apparatus
CN210995925U (en) Adjustable die of bending machine
US5331833A (en) Method of operating an upsetting press
JP4165724B2 (en) Sheet thickness reduction press apparatus and method
JP3178544B2 (en) Method and apparatus for forming width of slab by pressing
JP2002153903A (en) Rotary driving method for reciprocal roll-off roll groove of cold pilger mill
JP2006272427A (en) Method and apparatus for edging hot slab
JP6915595B2 (en) How to reduce the width of the slab
RU2356668C1 (en) Manufacturing method of variable cross-section products from light alloys
JP3980730B2 (en) Rolling press and rolling equipment using the same
US3213661A (en) Method of and apparatus for producing a wide metal strip by rolling
RU2232657C2 (en) Section making method and apparatus for performing the same
JPH0250807B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees