JP4314892B2 - Process for producing granulated blast furnace slag - Google Patents

Process for producing granulated blast furnace slag Download PDF

Info

Publication number
JP4314892B2
JP4314892B2 JP2003156753A JP2003156753A JP4314892B2 JP 4314892 B2 JP4314892 B2 JP 4314892B2 JP 2003156753 A JP2003156753 A JP 2003156753A JP 2003156753 A JP2003156753 A JP 2003156753A JP 4314892 B2 JP4314892 B2 JP 4314892B2
Authority
JP
Japan
Prior art keywords
cooling water
blast furnace
slag
concentration
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003156753A
Other languages
Japanese (ja)
Other versions
JP2004359474A (en
Inventor
賢治 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003156753A priority Critical patent/JP4314892B2/en
Publication of JP2004359474A publication Critical patent/JP2004359474A/en
Application granted granted Critical
Publication of JP4314892B2 publication Critical patent/JP4314892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉における銑鉄製造プロセスで発生する溶融スラグに水砕処理を行って高炉水砕スラグを製造する方法、特に、高炉水砕スラグから溶出するフッ素濃度を土壌環境基準である0.8mg/L 以下とする高炉水砕スラグの製造方法に関する。
【0002】
【従来の技術】
高炉スラグは、鉄鉱石、コークスおよび石灰石から高炉で銑鉄を製造する際に発生する。この高炉スラグは溶銑1t 当たり約270kg 発生する。この高炉スラグは高炉から発生直後で約1500℃程度の高温溶融状態にあり、冷却処理方法により高炉徐冷スラグおよび高炉水砕スラグに分類される。
【0003】
高炉徐冷スラグは、高炉からスラグ樋を通してドライピットに放流もしくはスラグ鍋台車によってヤードに運搬して放流され、大気中で常温になるまで徐冷、必要に応じて散水して冷却したものである。このようにして得た高炉徐冷スラグはその後、破砕・粒度調整を行い、一般の砕石と同様に路盤材等に用いられる。高炉徐冷スラグはさらには水硬性をもっているため、これを活かして砕石以上の強度をもたせることもできる。このことより、セメント安定処理道路と同等に扱うこともできる。
【0004】
一方、高炉水砕スラグは、高炉からスラグ樋を通過した溶融スラグに高圧冷却水を直接噴射し、細粒状に破砕し、そのまま水槽で急冷したものである。このようにして得られた高炉水砕スラグはその後、脱水機で冷却水から分離後、セメント材料およびコンクリート混和材として用いられる。高炉水砕スラグは、急冷されるためガラス質 (非晶質) で、粒状状態でも水硬性をもつが、微粉砕したものはアルカリ刺激によりセメント並の水硬性を発揮する。
【0005】
ところで、このような状況下で平成13年3月、土壌環境基準項目にフッ素が追加、告示されたことから、上述のような高炉水砕スラグ、高炉徐冷スラグ(以下、単に「高炉スラグ」と総称することもある)等のフッ素を含んでいる鉄鋼スラグの利用促進に関しては、益々、環境への配慮が求められることになった。
【0006】
これまで鉄鋼スラグのうち高炉スラグにおいても環境に十分な配慮をしつつ、様々な用途に有効利用されてきた。そのため、現在までその利用を通じた環境問題が発生したという報告はない。事実、環境省は『フッ素を含むスラグ等の再利用物が長年にわたり利用され、これまで再利用物による地下水汚染の事例は報告されていない』旨、環境省告示と同時に出された通達 (環水土第44号) に記載している。
【0007】
もとより、スラグのリサイクルに関しては、スラグに起因するいかなる環境問題も起こしてはならず、今後スラグの再利用は的確に推進していく必要がある。このことより、現状発生している高炉スラグからの溶出フッ素濃度は、問題の無いレべルである。
【0008】
しかし、特許文献1にあるように高炉スラグにおける高炉水砕スラグの溶出フッ素濃度は、高炉徐冷スラグよりも高い傾向があることが判明している。また、高炉水砕スラグは土木工事用として地下水周辺に使用されることもある。これらのことからも、高炉水砕スラグの溶出フッ素濃度は、さらに確実に低減することが望ましい。
【0009】
従来は、高炉水砕スラグの溶出フッ素濃度の低減には、特許文献1に記載のように、冷却水フッ素濃度(mg/L)≦ (−7/0.08) × (スラグ中フッ素含有量[%])+14を満足するように、冷却水中のフッ素濃度を可及的少と低減することで高炉水砕スラグからの溶出フッ素濃度を低減して、目標以下の濃度にする方法が知られていた。循環使用する冷却水にフッ素が濃縮し、高炉水砕スラグの表面に付着し、これが溶出するから、冷却水のフッ素濃度を低減することで、付着量を少なくし、それによって溶出フッ素濃度の低減を図るというのである。
【0010】
【特許文献1】
特開2001−26472 号公報
【0011】
【発明が解決しようとする課題】
本発明者は、従来技術である特許文献1の発明の再現試験を実施したところ、前述した従来技術の「冷却水のフッ素濃度を制御する」だけでは水砕スラグからの溶出フッ素濃度を低減して、安定して溶出フッ素濃度0.8mg/L 以下とすることは実用上困難であることが判明した。例えばスラグ中フッ素濃度が0.10〜0.16%という場合、実用上不可能であった。
【0012】
ここに、本発明の課題は、そのような問題点を解決し、高炉水砕スラグからの溶出フッ素濃度を低減することの可能な高炉水砕スラグの製造方法を提供することにある。
【0013】
【課題を解決するための手段】
ここに、前述の従来技術である特許文献1開示の方法について、特許文献1の実施例の結果を後述の表1にまとめて示すが、この表1のデータを図示すると図4において点線領域に示す通りである。
【0014】
なお、図4は、特許文献1の結果を図示したものであり、○は後述する表1における評価が○であったものに対応し、●は表1における評価が×であったものに対応する。
【0015】
しかしながら、かかる従来技術では、スラグ中のフッ素含有量をほぼ0.08%以下にまで低減させている。実際、本文中では、「スラグ中フッ素含有量が0.16%の場合は、水砕スラグからの溶出フッ素濃度を0.8mg/L とするためには冷却水フッ素濃度をほぼ0mg/Lとしなければならない」としており、これでは別途新たなフッ素除去手段を設ける必要があり、実用的方法とは言えない。
【0016】
これらの結果より、スラグ中フッ素濃度が0.10〜0.16%というように比較的多量に含まれる場合には、高炉水砕スラグからの溶出フッ素濃度は従来技術のように冷却水のフッ素濃度を制御するだけでは満足しないことが判明した。
【0017】
ここに、本発明者らは、スラグ中フッ素含有量が0.10%を越えても、あるいはさらに0.16%を超えても、水砕スラグからの溶出フッ素濃度を0.8mg/L 以下に制御できる方法について検討を重ね、まず、溶出フッ素濃度に及ぼしている原因調査を行った。
【0018】
まず、スラグ中フッ素含有量が0.16%である溶融スラグを試験的に製造し、次いで、循環して使用する冷却水(以下、単に「循環冷却水」ということもある)中フッ素濃度18.5mg/L以下および循環冷却水中浮遊スラッジ濃度210mg/L以下に調整した冷却水を用いてその溶融スラグに冷却水を吹き付けて、高炉水砕スラグを製造し、このときの高炉水砕スラグからの溶出フッ素濃度を調査した。
【0019】
かかる調査を通して、本発明者は、高炉水砕スラグからの溶出フッ素濃度が、「高炉水砕スラグ自身からの溶出フッ素」、「高炉水砕スラグの含有水に含まれるフッ素」、そして「高炉水砕スラグの表面に付着した循環冷却水中の浮遊スラッジからの溶出フッ素」の合計量であることを見出し、特に高炉水砕スラグの表面に付着した循環冷却水中の浮遊スラッジからの溶出フッ素が、溶出フッ素濃度に大きく寄与していること、そして、循環冷却水中フッ素濃度を併せて制御することで、合計溶出フッ素濃度をさらに低減する効果があがることを見出した。
【0020】
ここに、循環冷却水中の「浮遊スラッジ」とは、溶融スラグの水砕処理によって微細化したスラグ成分のうち、沈降しないものを言い、微細化されていることから、徐々に時間経過に伴って循環冷却水中にフッ素が溶出してくるのである。したがって、このような浮遊スラッジが多ければ多い程、循環冷却水中のフッ素濃度は上昇し続けることになる。
【0021】
すでに述べたように、現在、土壌環境基準項目にフッ素が追加、告示されたことから、高炉水砕スラグからの溶出フッ素濃度を0.8mg/L 以下に抑制することが必要である。
【0022】
すなわち、本発明者は、高炉水砕スラグ製造において循環使用する冷却水のフッ素濃度を管理するだけではなく、循環使用する冷却水中の浮遊スラッジ濃度も制御することで、スラグ中のフッ素含有量が0.16%を越える場合にあっても、高炉水砕スラグからの溶出フッ素濃度が土壌環境基準≦0.8mg/L を満たす高炉水砕スラグを製造することができることを知り、本発明を完成した。
【0023】
本発明は、このような知見を基になされたものであって、その要旨は以下のとおりである。
(1)高炉における銑鉄製造プロセスで発生するフッ素含有量が0.10質量%以上0.16質量%以下の溶融スラグに、フッ素濃度が18.5mg/L以下である冷却水を吹き付ける水砕処理を行っ高炉水砕スラグを製造する方法であって、高炉水砕スラグの製造に用いる前記冷却水を循環使用するとともに、循環使用する該冷却水中の浮遊スラッジ濃度を、得られる高炉水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L以下の高炉水砕スラグとなるように、下記範囲に入るように制御することを特徴とする高炉水砕スラグの製造方法。
0<(循環使用する冷却水中の浮遊スラッジ濃度[mg/L])≦210
【0024】
(2)高炉における銑鉄製造プロセスで発生するフッ素含有量が0.10質量%以上0.16質量%以下の溶融スラグに、フッ素濃度が18.5mg/L超である冷却水を吹き付ける水砕処理を行っ高炉水砕スラグを製造する方法であって、高炉水砕スラグの製造に用いる前記冷却水を循環使用するとともに、循環使用する該冷却水中の浮遊スラッジ濃度およびフッ素濃度を、得られる高炉水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L以下の高炉水砕スラグとなるように、下記範囲に入るように制御することを特徴とする高炉水砕スラグの製造方法。
【0026】
0< (循環使用する冷却水中の浮遊スラッジ濃度[mg/L])
≦ (−50) × (循環使用する冷却水中のフッ素濃度[mg/L]) +1000
ただし、0< (循環使用する冷却水中の浮遊スラッジ濃度) ≦210
18.5< (循環使用する冷却水中のフッ素濃度) ≦20.0
なお、高炉スラグ溶出フッ素の濃度測定は、JIS-KOlO2-34.1 (ランタンアリザリンコンプレキソン吸光光度法) により実施した。
【0027】
【発明の実施の形態】
次に、本発明の実施の形態について添付図面を参照して具体的に説明する。
図1は、本発明の冷却塔水槽の模式的平面図、図2は図1の模式的側面図の例である。
【0028】
図1および図2において、1は冷却塔、2は堰、3は送水ポンプ、4は戻り管である。循環冷却水は、戻り管4を通って冷却塔1に入り、送水ポンプ3により水砕製造設備に送水される。この時、送水ポンプ3の吸込み口周辺に堰2を設置する。そうすることで、循環冷却水中に浮遊しているスラッジは送水ポンプ3に吸込まれることなく水砕製造設備( 図示せず) に送水される。
【0029】
このときの水砕製造設備は、本発明において特に制限されず、要するに、高炉における銑鉄製造プロセスで発生する溶融スラグに、冷却水を吹き付ける水砕処理を行って高炉水砕スラグが製造できればよい。このときの冷却水は、図1、2の装置によって循環され再使用されるのである。
【0030】
ここに、本発明によれば、高炉水砕スラグ製造に用いる循環冷却水中の浮遊スラッジ濃度、または循環冷却水中浮遊スラッジ濃度および循環冷却水中フッ素濃度を制御することで、高炉水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L 以下の高炉水砕スラグを製造することができる。
【0031】
好ましくは、循環使用する冷却水中のフッ素濃度18.5mg/L以下とし、下記関係式(1) を満足するように循環冷却水中浮遊スラッジ濃度を制御することで溶出フッ素濃度をさらに低減できる。
【0032】
0< (循環使用する冷却水中の浮遊スラッジ濃度[mg/L]) ≦ 210・・ (1)
比較例として、循環使用する冷却水中のフッ素濃度18.5mg/L以下および循環冷却水中浮遊スラッジ濃度210mg/L 超に調整した冷却水を用いて、スラグ中フッ素含有量が0.16%である高炉水砕スラグを試験的に製造し、溶出フッ素濃度を調査した。その結果、溶出フッ素濃度は0.8mg/L を超過した。
【0033】
また、循環使用する冷却水中のフッ素濃度を18.5〜20.Omg/Lに調整し、循環冷却水中浮遊スラッジ濃度および循環冷却水中フッ素濃度を下記式(2)のように調整した冷却水を用いて、スラグ中フッ素含有量が0.16%である高炉水砕スラグを試験的に製造し、溶出フッ素濃度を調査した。その結果、溶出フッ素濃度は0.8mg/L以下となった。
【0034】
0<(循環冷却水中浮遊スラッジ濃度[mg/L])
≦(−50)×(循環冷却水中フッ素濃度[mg/L])+1000・・・(2)
ただし、0<(循環冷却水中浮遊スラッジ濃度)≦210、
18.5<(循環冷却水中フッ素濃度)≦20.0
比較例として、循環冷却水中フッ素濃度を18.5〜20.Omg/Lに調整し、循環冷却水中浮遊スラッジ濃度および循環冷却水中フッ素濃度を上記式(2)を超過するように調整した冷却水を用いて、スラグ中フッ素含有量が0.16%である高炉水砕スラグを試験的に製造し、溶出フッ素濃度を調査した。その結果、溶出フッ素濃度は0.8mg/Lを超過した。
【0035】
参考までに、循環冷却水中フッ素濃度が20.Omg/Lを超過した冷却水を用いて、スラグ中フッ素含有量が0.16%である高炉水砕スラグを試験的に製造し、溶出フッ素濃度を調査した。その結果、溶出フッ素濃度は0.8mg/Lを超過した。
【0036】
ここで、循環冷却水中浮遊スラッジ濃度が上記範囲(1) および上記式(2) を超過すると高炉水砕スラグからの溶出フッ素濃度が0.8mg/L 以下とすることはできない。従って、循環冷却水中浮遊スラッジ濃度の上限は上記範囲(1) および上記式(2) となる。
【0037】
循環冷却水中の浮遊スラッジ濃度が上記範囲(1) および上記式(2) を超える原因として、水砕スラグ製造設備における脱水設備で循環冷却水と分離する際、網目を通過したスラッジが考えられる。従って、浮遊スラッジを低減するためには、冷却塔内送水ポンプ取水口周辺に堰を設置する方法、冷却塔内送水ポンプ取水口に膜などのフィルターを設置する方法、循環冷却水に化学薬品の添加によって浮遊スラッジを凝集沈殿させる化学的方法などが採用できる。
【0038】
また、冷却水中のフッ素濃度について、特許文献1においては、「冷却水中のフッ素濃度は20.Omg/Lまで上昇するとそれ以上は上昇せず、継続して冷却水を循環使用しても該濃度のまま推移する」と記載されているが、本発明者の試験では、循環冷却水中フッ素濃度は、最大60mg/Lまでなることが見出された。
【0039】
このことより、循環冷却水中フッ素濃度を本発明の範囲内とするには、冷却水中フッ素濃度を20.Omg/Lまで低減すればよい。その方法として、循環冷却水に新たな水を補給することによるフッ素濃度希釈法、化学的に循環冷却水中のフッ素濃度を低減する方法などを採用することができる。
【0040】
以上より、本発明によれば、冷却水のフッ素濃度を制御するだけではなく、水砕スラグ製造に用いる循環冷却水中の浮遊スラッジ濃度も制御することで、水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L 以下の高炉水砕スラグを製造できる。
【0041】
【実施例】
以下にその実施例について、図面を参照にしながら説明する。
本発明によれば、従来例のように高炉から回収される溶融スラグは水砕製造設備に供給され、そのとき高圧冷却水が噴射されて急冷微細化が行われ、高炉水砕スラグが製造される。冷却水は直ちに回収され、図2に示す戻り管4を経由して冷却塔1に送られる。冷却塔1内に収容された冷却水は、堰2をオーバーフローして再び送水ポンプPによって水砕製造設備( 図示せず) に送水され、再び高炉水砕スラグの製造に用いられる。冷却水は循環使用される。
【0042】
本発明によれば、送水ポンプ3の吸込み口周辺に堰2を設置することで、循環冷却水中に浮遊しているスラッジは送水ポンプ3に吸込まれることなく水砕製造設備に送水される。
【0043】
ここに表1には本例の処理条件を、表2にはそのときの冷却水フッ素濃度等の結果をその評価とともにまとめて示す。
図3は、表2の結果を図示したものであり、○は表2における評価が○であったものに対応し、●は表2における評価が×であったものに対応する。堰設置の有無により図3のような結果が得られた。この効果は、冷却塔内送水ポンプ取水口周辺に堰を設置する方法、冷却塔内送水ポンプ取水口に膜などのフィルターを設置する方法、循環冷却水に化学薬品の添加によって浮遊スラッジを凝集沈殿させる化学的方法などにより循環冷却水中の浮遊スラッジ濃度を制御することで、高炉水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L 以下になることが判明した。
【0044】
しかし、循環冷却水中フッ素濃度が18.5mg/Lを超過し、循環冷却水中スラッジ濃度および循環冷却水中フッ素濃度を上記式(2) の範囲を超過した場合、高炉水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L 以下にすることができないことは前述のとおりである。
【0045】
循環冷却水中スラッジ濃度の制御として、冷却塔内送水ポンプ取水口周辺に堰を設置する方法、冷却塔内送水ポンプ取水口に膜などのフィルターを設置する方法、循環冷却水に化学薬品の添加によって浮遊スラッジを凝集沈殿させる化学的方法などにより制御できる。
【0046】
循環冷却水中フッ素濃度を制御する方法として、循環冷却水に新たな水を補給することによってフッ素濃度を希釈する方法、化学的に循環冷却水中のフッ素を除去する方法などを採用することができる。
【0047】
本発明では、循環冷却水に新たな水を補給することによってフッ素濃度を希釈する方法により、循環冷却水中フッ素濃度を制御した。そうすることで、循環冷却水中浮遊スラッジ濃度および循環冷却水中フッ素濃度を制御することで、高炉水砕スラグからの溶出フッ素が土壌環境基準0.8mg/L 以下になることが判明した。
【0048】
【表1】

Figure 0004314892
【0049】
【表2】
Figure 0004314892
【0050】
【発明の効果】
本発明において、水砕スラグ製造に用いる循環冷却水中の浮遊スラッジ濃度、または循環冷却水中スラッジ濃度および循環冷却水中フッ素濃度を制御することで、循環冷却水中のフッ素濃度を大幅に低減するような処理を行うことなく、単に浮遊スラッジを除去するだけで、高炉水砕スラグからの溶出フッ素濃度が0.8mg/L 以下の高炉水砕スラグを製造することが容易に可能になった。
【0051】
このことより、フッ素濃度を低減した高炉水砕スラグを安価な手段でもって多量に製造でき、その結果、そのような高炉水砕スラグを地下水周辺の土木工事用材料として使用できるようになったのであり、本発明の実際上の意義は大きい。
【図面の簡単な説明】
【図1】本発明の冷却塔水槽の平面図である。
【図2】図1の側面図である。
【図3】本発明における堰を設けたことによる効果の確認試験の結果を示すグラフである。
【図4】従来技術との比較を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for producing granulated blast furnace slag by subjecting molten slag generated in the pig iron production process in a blast furnace to granulate, in particular, the fluorine concentration eluted from the blast furnace granulated slag is 0.8 mg / L relates to a method for producing granulated blast furnace slag.
[0002]
[Prior art]
Blast furnace slag is generated when pig iron is produced in a blast furnace from iron ore, coke and limestone. This blast furnace slag is generated about 270kg per ton of hot metal. This blast furnace slag is in a high-temperature molten state of about 1500 ° C. immediately after being generated from the blast furnace, and is classified into a blast furnace slow-cooled slag and a blast furnace granulated slag according to the cooling treatment method.
[0003]
Blast furnace slow-cooled slag is discharged from a blast furnace through a slag pit to a dry pit or transported to a yard by a slag pan cart, gradually cooled to room temperature in the atmosphere, and sprinkled with water as needed to cool. . The blast furnace slow-cooled slag thus obtained is then crushed and adjusted in particle size, and used for roadbed materials and the like in the same way as general crushed stone. Since the blast furnace slow-cooled slag has hydraulic properties, it can be used to provide strength higher than crushed stone. Therefore, it can be handled in the same way as a cement-stabilized road.
[0004]
On the other hand, granulated blast furnace slag is obtained by directly injecting high-pressure cooling water from a blast furnace into molten slag that has passed through a slag slag, crushing it into fine granules, and rapidly cooling it in a water tank. The blast furnace granulated slag thus obtained is then used as a cement material and a concrete admixture after being separated from the cooling water by a dehydrator. Granulated blast furnace slag is vitreous (amorphous) because it is cooled rapidly and has hydraulic properties even in the granular state, but finely pulverized slag exhibits hydraulic properties similar to cement due to alkali stimulation.
[0005]
By the way, under such circumstances, in March 2001, fluorine was added and announced to the soil environment standard items, so the blast furnace granulated slag, blast furnace slow-cooled slag (hereinafter simply referred to as “blast furnace slag”) As for the promotion of the use of steel slag containing fluorine, such as sometimes referred to collectively), environmental considerations have been increasingly required.
[0006]
So far, blast furnace slag among steel slags has been used effectively for various purposes while paying sufficient attention to the environment. Therefore, there has been no report that environmental problems have occurred through its use until now. In fact, the Ministry of the Environment issued a notification issued at the same time as the Ministry of the Environment notification (Environmental Recyclables such as slag containing fluorine have been used for many years, and no cases of groundwater contamination due to recycled materials have been reported so far). It is described in Mizusato 44).
[0007]
Of course, regarding slag recycling, any environmental problems caused by slag must not occur, and it is necessary to promote the reuse of slag accurately in the future. From this, the concentration of dissolved fluorine from the blast furnace slag that is currently generated is at a level with no problem.
[0008]
However, as disclosed in Patent Document 1, it has been found that the dissolved fluorine concentration of the granulated blast furnace slag in the blast furnace slag tends to be higher than that of the blast furnace slow-cooled slag. Blast furnace granulated slag is sometimes used around groundwater for civil works. From these facts, it is desirable that the dissolved fluorine concentration of the blast furnace granulated slag is further reduced.
[0009]
Conventionally, as described in Patent Document 1, cooling water fluorine concentration (mg / L) ≦ (−7 / 0.08) × (fluorine content in slag [%] ]) In order to satisfy +14, a method has been known in which the concentration of fluorine eluted from blast furnace granulated slag is reduced to a concentration below the target by reducing the fluorine concentration in the cooling water as much as possible. . Fluorine concentrates in the cooling water used for circulation and adheres to the surface of the granulated blast furnace slag, which is eluted. By reducing the fluorine concentration of the cooling water, the amount of adhesion is reduced, thereby reducing the concentration of eluted fluorine. It is to plan.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-26472
[Problems to be solved by the invention]
The present inventor conducted a reproduction test of the invention of Patent Document 1 as a prior art. As a result of the above-described prior art “controlling the fluorine concentration of cooling water” alone, the concentration of eluted fluorine from the granulated slag was reduced. Thus, it has been found that it is practically difficult to stably achieve an elution fluorine concentration of 0.8 mg / L or less. For example, when the fluorine concentration in the slag is 0.10 to 0.16%, it was practically impossible.
[0012]
Here, the subject of this invention is providing the manufacturing method of the granulated blast furnace slag which can solve such a problem and can reduce the elution fluorine density | concentration from a blast furnace granulated slag.
[0013]
[Means for Solving the Problems]
Here, with respect to the method disclosed in Patent Document 1, which is the above-described prior art, the results of Examples of Patent Document 1 are summarized in Table 1 to be described later. The data of Table 1 is illustrated in the dotted line region in FIG. As shown.
[0014]
FIG. 4 illustrates the results of Patent Document 1, where ○ corresponds to the case where the evaluation in Table 1 described later was ○, and ● corresponds to the case where the evaluation in Table 1 was ×. To do.
[0015]
However, in the conventional technology, the fluorine content in the slag is reduced to approximately 0.08% or less. In fact, in the text, “If the fluorine content in the slag is 0.16%, the cooling water fluorine concentration must be approximately 0 mg / L in order to achieve 0.8 mg / L of the eluted fluorine concentration from the granulated slag. In this case, it is necessary to provide a new fluorine removing means, which is not a practical method.
[0016]
From these results, when the fluorine concentration in the slag is relatively large such as 0.10 to 0.16%, the eluted fluorine concentration from the blast furnace granulated slag controls the fluorine concentration in the cooling water as in the prior art. It turns out that alone is not satisfactory.
[0017]
Here, the present inventors are concerned with a method capable of controlling the concentration of eluted fluorine from granulated slag to 0.8 mg / L or less, even if the fluorine content in the slag exceeds 0.10% or even exceeds 0.16%. The investigation was repeated, and first, the cause of the influence on the eluted fluorine concentration was investigated.
[0018]
First, a molten slag having a fluorine content of 0.16% in a slag is experimentally manufactured, and then a fluorine concentration in cooling water used for circulation (hereinafter sometimes simply referred to as “circulated cooling water”) is 18 The blast furnace granulated slag was produced by blowing cooling water to the molten slag by using the cooling water adjusted to 5 mg / L or less and the circulating sludge suspended sludge concentration of 210 mg / L or less. From the blast furnace granulated slag at this time, The elution fluorine concentration of was investigated.
[0019]
Through such investigation, the present inventor has found that the concentration of fluorine eluted from blast furnace granulated slag is "fluorine eluted from blast furnace granulated slag itself", "fluorine contained in water contained in blast furnace granulated slag", and "blast furnace water The total amount of `` eluted fluorine from suspended sludge in circulating cooling water adhering to the surface of the crushed slag '' was found, and in particular, the eluted fluorine from floating sludge in circulating cooling water adhering to the surface of the blast furnace granulated slag was eluted It has been found that it contributes greatly to the fluorine concentration, and that the combined elution fluorine concentration can be further reduced by controlling the fluorine concentration in the circulating cooling water.
[0020]
Here, the “floating sludge” in the circulating cooling water refers to a slag component that has not been settled among the slag components that have been refined by the water granulation treatment of the molten slag, and since it has been refined, gradually with time. Fluorine elutes in the circulating cooling water. Therefore, the more such suspended sludge, the higher the fluorine concentration in the circulating cooling water.
[0021]
As already mentioned, since fluorine has been added and announced to the soil environmental standard items, it is necessary to control the concentration of eluted fluorine from blast furnace granulated slag to 0.8 mg / L or less.
[0022]
That is, the inventor not only manages the fluorine concentration of cooling water used for circulation in blast furnace granulated slag production, but also controls the concentration of floating sludge in the cooling water used for circulation, so that the fluorine content in the slag is reduced. Even when the amount exceeded 0.16%, the present inventors completed that the present invention was completed by knowing that the concentration of fluorine eluted from granulated blast furnace slag could produce blast furnace granulated slag satisfying the soil environment standard ≦ 0.8 mg / L.
[0023]
The present invention has been made on the basis of such findings, and the gist thereof is as follows.
(1) Granulation treatment of spraying cooling water having a fluorine concentration of 18.5 mg / L or less onto molten slag having a fluorine content of 0.10 mass% or more and 0.16 mass% or less generated in a pig iron production process in a blast furnace a method of manufacturing a water-granulated blast furnace slag performed, as well as recycled to the cooling water used for the production of blast furnace slag, a floating sludge concentration in the cooling water to be recycled, resulting granulated blast furnace slag A process for producing granulated blast furnace slag, wherein the blast furnace granulated slag is controlled so as to fall within the following range so that the concentration of fluorine eluted from blast furnace is 0.8 mg / L or less of soil environmental standards.
0 <(Concentration of suspended sludge in cooling water used for circulation [mg / L]) ≦ 210
[0024]
(2) Granulation treatment in which cooling water having a fluorine concentration of more than 18.5 mg / L is blown onto molten slag having a fluorine content of 0.10 mass% or more and 0.16 mass% or less generated in a pig iron production process in a blast furnace a method of manufacturing a water-granulated blast furnace slag performs, together with the circulated using cooling water used for the production of blast furnace slag, a floating sludge concentration and the fluorine concentration in the cooling water to be recycled, resulting blast furnace A method for producing a granulated blast furnace slag, wherein the concentration of fluorine eluted from the granulated slag is controlled to fall within the following range so that the blast furnace granulated slag has a soil environment standard of 0.8 mg / L or less.
[0026]
0 <(Concentration of suspended sludge in cooling water used for circulation [mg / L])
≦ (−50) × (fluorine concentration in circulating cooling water [mg / L]) +1000
However, 0 <(Floating sludge concentration in circulating cooling water) ≦ 210
18.5 <(fluorine concentration in circulating cooling water) ≤ 20.0
The blast furnace slag-eluted fluorine concentration was measured by JIS-KOlO2-34.1 (lanthanum alizarin complexone spectrophotometry).
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
FIG. 1 is a schematic plan view of a cooling tower water tank of the present invention, and FIG. 2 is an example of a schematic side view of FIG.
[0028]
1 and 2, 1 is a cooling tower, 2 is a weir, 3 is a water pump, and 4 is a return pipe. The circulating cooling water enters the cooling tower 1 through the return pipe 4 and is sent to the granulated production facility by the water pump 3. At this time, the weir 2 is installed around the suction port of the water pump 3. By doing so, the sludge floating in the circulating cooling water is fed into a granulated production facility (not shown) without being sucked into the water feed pump 3.
[0029]
The granulated production equipment at this time is not particularly limited in the present invention. In short, it is only necessary that the granulated slag generated by the pig iron production process in the blast furnace is subjected to a granulation process in which cooling water is blown to produce the blast furnace granulated slag. The cooling water at this time is circulated and reused by the apparatus shown in FIGS.
[0030]
Here, according to the present invention, the suspended sludge concentration in the circulating cooling water used for blast furnace granulated slag production, or the elution from the granulated blast furnace slag by controlling the circulating sludge floating sludge concentration and the circulating cooling water fluorine concentration. Blast furnace granulated slag with a fluorine concentration of 0.8 mg / L or less can be produced.
[0031]
Preferably, the fluorine concentration in circulating cooling water is 18.5 mg / L or less, and the concentration of suspended sludge in circulating cooling water can be further reduced by controlling the suspended sludge concentration in circulating cooling water so as to satisfy the following relational expression (1).
[0032]
0 <(Concentration of suspended sludge in cooling water used for circulation [mg / L]) ≦ 210 ・ ・ (1)
As a comparative example, blast furnace granulation with fluorine content in slag of 0.16% using cooling water adjusted to a circulating fluorine concentration of 18.5 mg / L or less and a circulating sludge floating sludge concentration of over 210 mg / L. A slag was produced on a trial basis and the concentration of dissolved fluorine was investigated. As a result, the eluted fluorine concentration exceeded 0.8 mg / L.
[0033]
In addition, the fluorine concentration in the cooling water to be circulated is 18.5 to 20. Was adjusted to omg / L, the circulating cooling water floating sludge concentration and circulating cooling water fluorine concentration using the cooling water were adjusted to the following equation (2), blast furnace water fluorine content in the slag is 0.16% Crushed slag was produced on a trial basis, and the eluted fluorine concentration was investigated. As a result, the eluted fluorine concentration was 0.8 mg / L or less.
[0034]
0 <(suspended sludge concentration in circulating cooling water [mg / L])
≦ (−50) × (fluorine concentration in circulating cooling water [mg / L]) + 1000 (2)
However, 0 <(circulating cooling water suspended sludge concentration) ≦ 210,
18.5 <(fluorine concentration in circulating cooling water) ≦ 20.0
As a comparative example, the fluorine concentration of the circulating cooling water is set to 18.5-20. Was adjusted to omg / L, the circulating cooling water floating sludge concentration and circulating cooling water fluorine concentration using the cooling water adjusted to exceed the above formula (2), a 0.16% fluorine content in the slag Blast furnace granulated slag was experimentally produced and the concentration of dissolved fluorine was investigated. As a result, the eluted fluorine concentration exceeded 0.8 mg / L.
[0035]
For reference, the fluorine concentration in the circulating cooling water is 20. Using cooling water that exceeded Omg / L, blast furnace granulated slag having a fluorine content of 0.16% in the slag was experimentally manufactured, and the eluted fluorine concentration was investigated. As a result, the eluted fluorine concentration exceeded 0.8 mg / L.
[0036]
Here, if the suspended sludge concentration in the circulating cooling water exceeds the above range (1) and the above formula (2), the concentration of fluorine eluted from the blast furnace granulated slag cannot be 0.8 mg / L or less. Therefore, the upper limit of the circulating cooling water suspended sludge concentration is the above range (1) and the above formula (2).
[0037]
The cause of the floating sludge concentration in the circulating cooling water exceeding the above range (1) and the above formula (2) is considered to be sludge that has passed through the mesh when separated from the circulating cooling water in the dewatering equipment in the granulated slag production facility. Therefore, in order to reduce suspended sludge, a method of installing a weir around the cooling tower water pump intake, a method of installing a filter such as a membrane at the cooling tower water pump intake, A chemical method for agglomerating sedimentation of suspended sludge by addition can be employed.
[0038]
Regarding the fluorine concentration in the cooling water, Patent Document 1 states that “If the fluorine concentration in the cooling water rises to 20.Omg / L, the concentration does not increase any further. However, in the test conducted by the present inventors, it was found that the fluorine concentration in the circulating cooling water was up to 60 mg / L.
[0039]
From this, in order to keep the fluorine concentration in the circulating cooling water within the range of the present invention, the fluorine concentration in the cooling water may be reduced to 20.Omg / L. As the method, a fluorine concentration dilution method by supplying new water to the circulating cooling water, a method of chemically reducing the fluorine concentration in the circulating cooling water, or the like can be employed.
[0040]
As described above, according to the present invention, not only the fluorine concentration of the cooling water is controlled, but also the floating sludge concentration in the circulating cooling water used for the granulated slag production is controlled, so that the eluted fluorine concentration from the granulated slag is reduced to the soil. Can produce granulated blast furnace slag with environmental standard 0.8mg / L or less.
[0041]
【Example】
Embodiments will be described below with reference to the drawings.
According to the present invention, as in the conventional example, the molten slag recovered from the blast furnace is supplied to the granulation production facility, and at that time, high-pressure cooling water is injected to perform rapid cooling and refinement to produce the blast furnace granulation slag. The The cooling water is immediately recovered and sent to the cooling tower 1 via the return pipe 4 shown in FIG. The cooling water accommodated in the cooling tower 1 overflows the weir 2 and is again sent to a granulation production facility (not shown) by the water feed pump P, and is used again for the production of granulated blast furnace slag. Cooling water is circulated.
[0042]
According to the present invention, by installing the weir 2 in the vicinity of the suction port of the water pump 3, sludge floating in the circulating cooling water is fed into the granulated production facility without being sucked into the water pump 3.
[0043]
Table 1 shows the processing conditions of this example, and Table 2 shows the results of the cooling water fluorine concentration and the like together with the evaluation.
FIG. 3 illustrates the results of Table 2. “◯” corresponds to the case where the evaluation in Table 2 was “Good”, and “●” corresponds to the case where the evaluation in Table 2 was “Poor”. The result as shown in FIG. 3 was obtained depending on whether or not the weir was installed. This effect is due to the method of installing a weir around the water inlet of the water pump in the cooling tower, the method of installing a filter such as a membrane at the water inlet of the water pump in the cooling tower, and coagulating sedimentation of suspended sludge by adding chemicals to the circulating cooling water. By controlling the suspended sludge concentration in the circulating cooling water using a chemical method, the dissolved fluorine concentration from the granulated blast furnace slag was found to be less than 0.8 mg / L of soil environmental standards.
[0044]
However, if the fluorine concentration in the circulating cooling water exceeds 18.5 mg / L and the sludge concentration in the circulating cooling water and the fluorine concentration in the circulating cooling water exceed the range of the above formula (2), the eluted fluorine concentration from the blast furnace granulated slag is As mentioned above, it is not possible to make the soil environmental standard 0.8 mg / L or less.
[0045]
Control of circulating cooling water sludge concentration by installing a weir around the cooling tower water pump intake, installing a filter such as a membrane around the cooling tower water pump intake, and adding chemicals to the circulating cooling water It can be controlled by a chemical method for agglomerating sedimentation of suspended sludge.
[0046]
As a method of controlling the fluorine concentration in the circulating cooling water, a method of diluting the fluorine concentration by supplying new water to the circulating cooling water, a method of chemically removing fluorine in the circulating cooling water, or the like can be employed.
[0047]
In the present invention, the fluorine concentration in the circulating cooling water is controlled by a method of diluting the fluorine concentration by supplying fresh water to the circulating cooling water. By doing so, it was found that by controlling the suspended sludge concentration in the circulating cooling water and the fluorine concentration in the circulating cooling water, the eluted fluorine from the granulated blast furnace slag became 0.8 mg / L or less of the soil environmental standard.
[0048]
[Table 1]
Figure 0004314892
[0049]
[Table 2]
Figure 0004314892
[0050]
【The invention's effect】
In the present invention, by controlling the suspended sludge concentration in the circulating cooling water used for granulated slag production, or the sludge concentration in the circulating cooling water and the fluorine concentration in the circulating cooling water, a treatment that significantly reduces the fluorine concentration in the circulating cooling water. It is now possible to easily produce blast furnace granulated slag having an elution fluorine concentration of 0.8 mg / L or less from blast furnace granulated slag simply by removing suspended sludge without performing the above.
[0051]
As a result, a large amount of granulated blast furnace slag with reduced fluorine concentration can be produced by inexpensive means, and as a result, such blast furnace granulated slag can be used as a material for civil engineering work around groundwater. Yes, the practical significance of the present invention is great.
[Brief description of the drawings]
FIG. 1 is a plan view of a cooling tower water tank of the present invention.
FIG. 2 is a side view of FIG.
FIG. 3 is a graph showing a result of a confirmation test of an effect by providing a weir in the present invention.
FIG. 4 is a graph showing a comparison with the prior art.

Claims (2)

高炉における銑鉄製造プロセスで発生するフッ素含有量が0.10質量%以上0.16質量%以下の溶融スラグに、フッ素濃度が18.5mg/L以下である冷却水を吹き付ける水砕処理を行っ高炉水砕スラグを製造する方法であって、高炉水砕スラグの製造に用いる前記冷却水を循環使用するとともに、循環使用する該冷却水中の浮遊スラッジ濃度を、得られる高炉水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L以下の高炉水砕スラグとなるように、下記範囲に入るように制御することを特徴とする高炉水砕スラグの製造方法。
0<(循環使用する冷却水中の浮遊スラッジ濃度[mg/L])≦210
The molten slag fluorine content generated in pig iron production process is less 0.16 wt% to 0.10 wt% in a blast furnace, and subjected to water-granulated processing fluorine concentration sprayed cooling water is less than 18.5 mg / L A method for producing granulated blast furnace slag, wherein the cooling water used for the production of granulated blast furnace slag is circulated and used , and the suspended sludge concentration in the circulated and used cooling water is eluted from the obtained blast furnace granulated slag. A method for producing granulated blast furnace slag, wherein the blast furnace granulated slag is controlled so as to fall within the following range so that the fluorine concentration is 0.8 mg / L or less of soil environment standard.
0 <(Concentration of suspended sludge in cooling water used for circulation [mg / L]) ≦ 210
高炉における銑鉄製造プロセスで発生するフッ素含有量が0.10質量%以上0.16質量%以下の溶融スラグに、フッ素濃度が18.5mg/L超である冷却水を吹き付ける水砕処理を行っ高炉水砕スラグを製造する方法であって、高炉水砕スラグの製造に用いる前記冷却水を循環使用するとともに、循環使用する該冷却水中の浮遊スラッジ濃度およびフッ素濃度を、得られる高炉水砕スラグからの溶出フッ素濃度が土壌環境基準0.8mg/L以下の高炉水砕スラグとなるように、下記範囲に入るように制御することを特徴とする高炉水砕スラグの製造方法。
0<(循環使用する冷却水中の浮遊スラッジ濃度[mg/L])
≦(−50)×(循環使用する冷却水中のフッ素濃度[mg/L])+1000
ただし、0<(循環使用する冷却水中の浮遊スラッジ濃度)≦210
18.5<(循環使用する冷却水中のフッ素濃度)≦20.0
The molten slag fluorine content generated in pig iron production process is less 0.16 wt% to 0.10 wt% in a blast furnace, and subjected to water-granulated processing fluorine concentration sprayed cooling water is 18.5 mg / L greater A method for producing granulated blast furnace slag, wherein the cooling water used for producing granulated blast furnace slag is circulated and used , and the suspended sludge concentration and fluorine concentration in the circulated and used cooling water are obtained. A method for producing a granulated blast furnace slag, wherein the fluorinated granulated slag is controlled so as to fall within the following range so that the concentration of fluorine eluted from the blast furnace is 0.8 mg / L or less of soil environmental standards.
0 <(Floating sludge concentration in cooling water used for circulation [mg / L])
≦ (−50) × (fluorine concentration in circulating cooling water [mg / L]) + 1000
However, 0 <(floating sludge concentration in cooling water to be circulated) ≦ 210
18.5 <(fluorine concentration in circulating cooling water) ≦ 20.0
JP2003156753A 2003-06-02 2003-06-02 Process for producing granulated blast furnace slag Expired - Fee Related JP4314892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156753A JP4314892B2 (en) 2003-06-02 2003-06-02 Process for producing granulated blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156753A JP4314892B2 (en) 2003-06-02 2003-06-02 Process for producing granulated blast furnace slag

Publications (2)

Publication Number Publication Date
JP2004359474A JP2004359474A (en) 2004-12-24
JP4314892B2 true JP4314892B2 (en) 2009-08-19

Family

ID=34050735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156753A Expired - Fee Related JP4314892B2 (en) 2003-06-02 2003-06-02 Process for producing granulated blast furnace slag

Country Status (1)

Country Link
JP (1) JP4314892B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161519A (en) * 2005-12-13 2007-06-28 Jfe Steel Kk Civil engineering and building material and its producing method
JP2008127270A (en) * 2006-11-26 2008-06-05 Jfe Steel Kk Method of treatment of granulated blast furnace slag

Also Published As

Publication number Publication date
JP2004359474A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4133318B2 (en) Method for producing regenerated desulfurizing agent and method for producing low sulfur hot metal
JP4909747B2 (en) Method for producing regenerated desulfurizing agent, method for producing low sulfur hot metal, method for transporting regenerated desulfurizing agent, and method for sieving regenerated desulfurizing agent
Mauthoor et al. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius
CN101928793B (en) Steel slag treatment method
JP4992057B2 (en) Slag post-processing apparatus and processing method thereof
JP4314892B2 (en) Process for producing granulated blast furnace slag
JP4219057B2 (en) Method for processing steelmaking slag for cement
JP4362494B2 (en) Granulation method of powdered slag
JP2000239752A (en) Treatment of raw material for production of iron ore pellet
JP2000192155A (en) Treatment of sludge containing water and oil components
JP4751181B2 (en) Sand-capping method
AU777336B2 (en) Method for utilizing activated carbon powder recovered from exhaust sintering gas treating apparatus
JP2007063061A (en) Method for aging slag
US20080115624A1 (en) Method of handling, conditioning and processing steel slags
CN107557532A (en) Method for treating metallurgical dust removal ash
JP4071887B2 (en) Waste melting slag treatment method and apparatus
JP2010150095A (en) Method for producing civil engineering and building material
CN1348998A (en) Agglomeration method of metal-based powder
CN111254279B (en) Vanadium-containing steel slag granulating and sintering method
CN115321534B (en) Method for in-situ extraction of large-scale graphite from molten iron pretreatment desulfurization slag
JP5776675B2 (en) Agglomeration method of wet dust collection dust
JP2001048603A (en) Production of blast-furnace slag fine aggregate
JP2001026472A (en) Production of blast furnace water granulated slag
JP6930559B2 (en) Iron-making dust treatment method, iron-making dust recycling method, and iron-making dust granulation manufacturing method
JP3644330B2 (en) Treatment method for reducing slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4314892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees