JP4314809B2 - Electronic device having a plurality of printed circuit boards - Google Patents

Electronic device having a plurality of printed circuit boards Download PDF

Info

Publication number
JP4314809B2
JP4314809B2 JP2002318934A JP2002318934A JP4314809B2 JP 4314809 B2 JP4314809 B2 JP 4314809B2 JP 2002318934 A JP2002318934 A JP 2002318934A JP 2002318934 A JP2002318934 A JP 2002318934A JP 4314809 B2 JP4314809 B2 JP 4314809B2
Authority
JP
Japan
Prior art keywords
board
auxiliary
mother
auxiliary board
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002318934A
Other languages
Japanese (ja)
Other versions
JP2004153178A (en
Inventor
潤 熊谷
晃弘 岸本
洋史 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002318934A priority Critical patent/JP4314809B2/en
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to EP03809438.9A priority patent/EP1558064B1/en
Priority to AU2003266642A priority patent/AU2003266642A1/en
Priority to PCT/JP2003/012319 priority patent/WO2004039130A1/en
Priority to CN03824725.9A priority patent/CN1695404B/en
Priority to US10/532,822 priority patent/US7141937B2/en
Priority to KR1020057006759A priority patent/KR100679216B1/en
Publication of JP2004153178A publication Critical patent/JP2004153178A/en
Application granted granted Critical
Publication of JP4314809B2 publication Critical patent/JP4314809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B20/204
    • Y02B70/126

Description

【0001】
【発明の属する技術分野】
本発明は複数のプリント基板を有する電子装置に関するものであり、特に配線ダクト等に内蔵可能な省スペース型の高圧放電灯点灯装置に適するものである。
【0002】
【従来の技術】
【特許文献1】
特開平5−327161号公報
【0003】
特許文献1には、母基板上に垂直に実装される補助基板における母基板側の長辺両端に母基板側に突出する一対の基板支持部を備え、母基板側には各基板支持部を貫挿される固定孔を備える実装構造が開示されている。
【0004】
【発明が解決しようとする課題】
特許文献1に開示された実装構造では、補助基板の長辺に沿って列設された複数の端子パッドと母基板の表面に列設された複数の端子パッドとは、母基板の部品面側で半田付けされている。このため、例えば、補助基板を母基板の部品面に実装し、母基板の半田面を半田槽に浸漬して母基板の部品リードの半田付けを行う際に補助基板を同時に母基板に接続するようなことは出来なかった。もちろん、特許文献1においても、母基板上の部品全部を補助基板と同時に表面実装すれば、母基板上の部品の半田付けと補助基板と母基板の半田付けを同時に行うことは出来るが、同文献でも指摘されているように、表面実装のためのリフロー半田付けの際の加熱により補助基板に実装された部品が位置ずれを起こすという別の問題があり、補助基板上の部品を保持するための部材が別途必要とされており、コスト増加の原因であった。また、補助基板の長辺両端に母基板側に突出するように設けられた基板支持部は折れ易く、破損すると基板全体が使えなくなるという問題があった。さらにまた、補助基板の母基板側の長辺は母基板の表面(部品面)に位置しているので、補助基板の端子パッドは母基板の表面(部品面)よりも上に存在していることになり、したがって、補助基板上の部品実装スペースは母基板の表面から補助基板の端子パッドを挟んでさらに上方に離れて位置することになり、結果的に補助基板の母基板表面からの突出高さを低くできないという問題があった。
【0005】
本発明は上述のような点に鑑みてなされたものであり、母基板の半田面側に突出する母基板の部品リードのスペースを有効に利用して、補助基板の端子パッドを母基板の部品面側ではなく半田面側に配置することにより、補助基板の母基板表面からの突出高さを低くし、複数のプリント基板を有する電子装置の低背化を実現することを課題とする。
【0006】
【課題を解決するための手段】
請求項1の発明によれば、図2に示すように、母基板10と補助基板11を有する電子装置において、図1に示すように、補助基板11下部の表裏両面に母基板10と半田接続するための端子パッドPを表裏間で電気的に別電位となし得るように複数対設けてあり、母基板10に空けた補助基板挿入用スリットSに補助基板11を直接挿入して接続するものであって、母基板10に空けたスリットSには、補助基板11下部の表裏両面に設けた前記複数対の端子パッドPとそれぞれ表裏別々に電気的に半田で接続するための第1スリット幅Aの部位と、補助基板11の挿入後から半田付けするまでの間、補助基板11を母基板10に対して略垂直に保持するための第2スリット幅Bの部位とを具備し、第1スリット幅Aは第2スリット幅Bよりも大きく、第2スリット幅Bは補助基板11の厚みdとほぼ同等以下であり、第2スリット幅Bの部位は、第1スリット幅Aの部位における母基板10と補助基板11の半田接続の間隔が補助基板11の表裏両面で略均一となるように母基板10から補助基板11の表裏両面に対して略同寸法突出していることを特徴とするものである。
【0007】
請求項2の発明によれば、請求項1において、図13に示すように、補助基板11に取り付けられた出力調整用可変抵抗18は、母基板10上面の部品面に装着される補助基板11の高さの半分の距離よりも母基板10と補助基板11の接続部近くに実装してあることを特徴とする。
【0008】
請求項の発明によれば、請求項1または2のいずれかにおいて、図14に示すように、補助基板の電気的な配線パターンは低電圧で制御される部位と比較的高電圧を印加される部位に分かれており、比較的高電圧を印加される部位のパターンを補助基板上の外周に配置したことを特徴とする。
【0009】
請求項の発明によれば、請求項1〜のいずれかにおいて、図2に示すように、母基板10上の部品配置は補助基板11,12が外周となるように配置したことを特徴とする。
【0010】
請求項の発明によれば、請求項1〜のいずれかに記載の複数のプリント基板を有する電子装置の実装構造を有する放電灯点灯装置であることを特徴とする。
請求項の発明によれば、請求項において、図2および図3に示すように、負荷消費電力が略20ないし40Wを供給する高圧放電灯の点灯装置であって、母基板下面の半田面から突出する部品リードから一番背の高い部品までの高さHが約26mm以下であることを特徴とする。
【0011】
【発明の実施の形態】
(実施の形態1)
図3は本発明の一実施の形態の回路図である。この図3に示した回路を複数のプリント基板に実装した構造を図2に示す。図中、10は母基板、11は第1の補助基板、12は第2の補助基板である。この電子装置は、負荷消費電力が略20〜40Wを供給する高圧放電灯の点灯装置であって、幅W=70mm、長さL=77mmのプリント基板上に全部品を実装しており、特に小型実装をする上で常に弊害となっていた高さ方向を制限する要素である補助基板11,12を、直接、母基板10上面の部品面に挿入接続できる構造としたことで低部品配置が実現できた。この実装構造では、母基板10下面の半田面から突出する部品リードを基板下3mmで管理し、この基板下3mmから一番背の高い部品までの高さHを26mm以下となるようにしている。
【0012】
図1は補助基板11と母基板10の接続部を図示したものである。補助基板11下部の表裏両面に母基板10と半田接続するための端子パッドPを設けてあり、母基板10に空けた補助基板挿入用スリットSに補助基板11の下端を直接挿入して接続するものである。母基板10に空けた補助基板挿入用スリットSには、補助基板11と半田で電気的に接続するために、端子パッドPを設けてある第1スリット幅Aの部位と、補助基板11の挿入後から半田付けするまでの間、補助基板11を母基板10に対して垂直に保持するための第2スリット幅Bの部位とがある。第1スリット幅Aは第2スリット幅Bよりも大きく、第2スリット幅Bは補助基板11の厚みdとほぼ同等以下となっている。このような補助基板挿入用のスリットSを母基板10に設けたことで、補助基板11における部品の配置高さは母基板10の表面のすぐ近くまで下げることができ、これにより補助基板11上の部品の低配置化が可能になり、結果的に、補助基板11の母基板10の表面からの突出高さを低くすることが可能となる。また、製造時に、補助基板11を母基板10に対して垂直に保持するための大掛かりな治具類なしで、母基板10と補助基板11を組み付けたものを半田槽にそのまま流すことができるので、製造工程の簡略化と低コスト化に役立つなどの効果も得られる。
【0013】
すなわち、補助基板11を母基板10の部品面に実装し、母基板10の半田面を半田槽に浸漬することで、母基板10の部品リードの半田付けを行う際に補助基板11を同時に母基板10に接続することができる。図1(a)において、母基板10の端子パッドPは母基板10の(部品面側ではなく)半田面側に設けられており、スリットSの両側に複数個の端子パッドPが配列されている。図1(c)は補助基板11の片面に設けられた端子パッドPを図示しているが、反対側の面にも複数の端子パッドが配列されている。図2に示すように、補助基板11の下端(端子パッドPが配列された側)を母基板10のスリットSに挿入し、母基板10の部品面に実装された複数の部品の半田付けを行う際に、補助基板11の端子パッドと母基板10の端子パッドとが半田付け接続される。
【0014】
ここで、図3の回路について補足説明する。図中、1は交流電源、2は整流回路部、3は点灯回路部、4は制御回路部、5は共振回路部、6は力率改善制御回路である。交流電源1には、ノイズフィルター回路と電路保護素子を介して整流回路部2におけるダイオードブリッジDBの交流入力端が接続されている。ダイオードブリッジDBの直流出力の高圧側にはインダクタL3の一端が接続されている。ダイオードブリッジDBの直流出力の低圧側とインダクタL3の他端との間にはスイッチング素子Q5が接続されている。インダクタL3とスイッチング素子Q5の接続点にはダイオードD5のアノード側が接続されており、ダイオードD5のカソード側とグラウンド間にはコンデンサC5が接続されている。力率改善制御回路6は、ダイオードブリッジDBから出力される全波整流波形に合わせて整流回路部2のスイッチング素子Q5をON/OFF制御することで、インダクタL3に流れる三角電流波形のピークが全波整流波形を辿るようにPWM信号を送る制御回路である。(ここでは、点灯回路部3の電源として、交流電源1とチョッパ回路方式の整流回路部2を用いる場合について説明したが、これは点灯回路部3に直流電源を供給できるものであれば何でもよく、電池でも市販の直流電源でも良い。)
【0015】
点灯回路部3は整流回路部2から供給される直流電源を交流に変換して負荷DLに供給するために、スイッチング素子Q1〜Q4によりフルブリッジ回路を形成している。スイッチング素子Q1とQ3の各一端が直流電源の高電位側に接続されており、スイッチング素子Q1の他端とスイッチング素子Q2の一端が直列に接続され、スイッチング素子Q3の他端とスイッチング素子Q4の一端が直列に接続されており、スイッチング素子Q2とQ4の各他端がグラウンドに接続されている。負荷電流を制限するために、スイッチング素子Q3,Q4の接続点と負荷DLとの間にインダクタL1が直列に接続されており、負荷電流のリップル成分を除去するため負荷DLと並列にコンデンサC1が接続されている。点灯回路部3の負荷DLは高圧放電灯(以下、単にランプDLと呼ぶ)である。
【0016】
制御回路部4は点灯回路部3を構成するスイッチング素子Q1〜Q4を所望の動作に制御するものであり、制御用IC40と駆動回路41,42を備えている。制御用IC40は例えばマイクロコンピュータ(以下、単にマイコンと呼ぶ)で構成されている。駆動回路41,42はマイコンの出力信号によりスイッチング素子Q1〜Q4を駆動するドライバICよりなる。
【0017】
共振回路部5は、ランプDLを始動するための共振電圧を発生するために、前記スイッチング素子Q1とQ2の接続点と負荷DLの間に直列に接続されたインダクタL2と、インダクタL2の巻線の一部に一端を接続されたコンデンサC2と、コンデンサC2の他端に直列に接続された抵抗R1とからなる。なお、ダイオードD1,D2は共振回路部5に流れる共振電流が電流検出抵抗R2には流れないようにバイパスさせている。
【0018】
以下、図4〜図6を用いて高圧放電灯点灯装置の動作について説明する。
(始動モード)
まず、高圧放電灯を始動するには、ランプDLの電極間に高電圧を印如して、電極間の絶縁を破壊する必要がある。この放電灯点灯装置においては、インダクタL2とコンデンサC2の共振周波数f2(≒360KHz)の1/3の周波数120KHzで図4のようにスイッチング素子Q1とQ4のペアとスイッチング素子Q2とQ3のペアを交互に夫々略50%のデューティーでオン・オフする。この動作(動作Aとする)をマイコンで設定された回数(50回)繰り返す。そして、動作Aを50回実施した後、ランプの発熱を下げるため、800μsecの間、電圧印加を停止する。次に、この800μsecの経過後、再び動作Aを繰り返す。この動作Aと800μsecの休止動作の組み合わせ(動作Bとする)を20秒間繰り返した後、ランプの発熱を下げるため、2分間、電圧印加を停止する。次に、この2分間の休止後、再び動作Bを繰り返す。この動作Bと2分間の休止動作の組み合わせ(動作Cとする)を30分間繰り返してもランプが点灯しない場合は、回路が動作を停止する。
【0019】
以下、高電圧印加中にランプが絶縁破壊して、点灯モードへ移行した場合を説明する。動作Aにより、インダクタL2の1次巻線N1とコンデンサC2の接続点にはグラウンドGNDに対して数KVの共振電圧が発生し、インダクタL2の2次巻線N2を介してN1:N2の巻数比分、昇圧された共振電圧がランプDLに印加され、ランプDLが始動する。このとき、図3で示すインダクタL1の2次巻線からダイオードD3,D4により全波整流された電圧を検出することで、ランプDLの始動を検出し、次の点灯モードへ移行するものである。
【0020】
(低Vlaモード)
ランプDLの絶縁破壊後、制御回路部4は図5のようにスイッチング素子Q1〜Q4のスイッチングモードを切り替える。その動作を以下説明する。
【0021】
a)制御回路4はまず、スイッチング素子Q2とQ3のペアをオフ状態、スイッチング素子Q1とQ4のペアをオン状態にして、ランプ電流IDLが所望の電流値に到達するのを電流検出抵抗R2で電圧に変換して検出した後、スイッチング素子Q4をオフする。スイッチング素子Q4がオフした後、所定の時間が経つとスイッチング素子Q1もオフし、ランプ電流IDLはインダクタL4に蓄積されたエネルギー放出のため、スイッチング素子Q2のボディーダイオード(図では省略)→ランプDL→インダクタL4→スイッチング素子Q3のボディーダイオード(図では省略)のルートを経て、コンデンサC5へ戻るループが形成される。この動作によりランプ電流IDLが0になるゼロクロス点を検出し、スイッチング素子Q1とQ4のペアをオンし、再度同じ動作を繰り返す。
【0022】
b)制御回路部4は次に、スイッチング素子Q1とQ4のペアをオフ状態、スイッチング素子Q2とQ3のペアをオン状態にして、a)の動作に対して逆向きのランプ電流IDLを流す。ランプ電流IDLが所望の電流値に到達するのを電流検出抵抗R2で電圧に変換して検出した後、スイッチング素子Q3をオフする。スイッチング素子Q3のオフ後、所定の時間が経つと、スイッチング素子Q2もオフしてランプ電流IDLはインダクタL4に蓄積されたエネルギー放出のため、スイッチング素子Q4のボディーダイオード(図では省略)→インダクタL1→ランプDL→スイッチング素子Q1のボディーダイオード(図では省略)のルートを経て、コンデンサC5へ戻るループが形成される。この動作によりランプ電流IDLが0になるゼロクロス点を検出し、スイッチング素子Q2とQ3のペアをオンし、再度同じ動作を繰り返す。
【0023】
制御回路部4は前記a)、b)の動作を100Hz〜200Hzの周波数で交番させて、ランプ電圧が略定格点灯電圧である80〜110V(ランプごとのばらつきによる)へ到達するまでの0〜60Vほどの低ランプ電圧領域においては、ランプの立ち消え防止及び早くランプが温まるようにランプDLに流れるランプ電流IDLを多く流れるように制御する。
【0024】
(安定点灯モード)
ランプDLが温まり管電圧が定格ランプ電圧近辺に到達すると、制御回路部4は図6のようにスイッチング素子Q1〜Q4のスイッチングモードを切り替える。その動作を以下説明する。
【0025】
A)制御回路部4は、スイッチング素子Q2とQ3のペアをオフ状態、スイッチング素子Q1とQ4のペアをオン状態にして、ランプ電流IDLが所望の電流値に到達するのを電流検出抵抗R2で電圧に変換して検出した後、スイッチング素子Q4をオフする。ランプ電流IDLが0になるゼロクロス点を検出し、スイッチング素子Q4を再びオンし、再度同じ動作を繰り返して、図6のような三角波状のランプ電流IDLを流す。
【0026】
B)制御回路部4は次に、スイッチング素子Q1とQ4のペアをオフ状態、スイッチング素子Q2とQ3のペアをオン状態にして、A)の動作に対して逆向きのランプ電流IDLを流す。ランプ電流IDLが所望の電流値に到達するのを電流検出抵抗R2で電圧に変換して検出した後、スイッチング素子Q3をオフする。ランプ電流IDLが0になるゼロクロス点を検出し、スイッチング素子Q3を再びオンし、再度同じ動作を繰り返して、図6のような三角波状のランプ電流IDLを流す。
【0027】
制御回路部4は前記A)、B)の動作を100Hz〜200Hzの周波数で交番させて、ランプDLに安定した電力を供給する。
上記低Vlaモードと安定点灯モードの動作において、出力電力は図7のランプ電力Wlaとランプ電圧Vlaの特性図にもとづいてマイコン制御される。
【0028】
以上の高圧放電灯点灯装置により、従来なかなか飛躍的な小型化のできなかったインダクタンス部品を小型化でき、かつ、始動用高電圧発生のために高調波成分に対して共振させていることによりスイッチング周波数を上げなくて済むので、スイッチングロスも増えることなく、更にはランプ絶縁破壊に必要な高電圧も従来と同レベルを維持することができる。
【0029】
従来のダクト取付用照明器具にあっては、配線ダクトの下方に配される外郭部は、ダウントランス部を配線ダクト下面より下方に位置させる大きさを有するものであった。従って、外郭部も大きなものとなり、外観上好ましくないという問題点があった。この問題点を改善するための外観上好ましいダクト取付用の照明器具は過去に特開平11−111040号公報に提案されていた。しかし、今までに提供されていたダクト取付用照明器具のランプには、ダウントランスで点灯する白熱灯や、ハロゲンランプ等が使用されていた。一方、HIDランプのような高圧放電灯を用いたダクト取付用照明器具は、従来、図8に示すような回路構成をとるため部品点数が多いことや、部品の温度上昇の問題からあまり回路を小さくできない等の問題を抱えていた。
【0030】
図8は従来の高圧放電灯点灯装置の回路を示しており、昇圧チョッパよりなる整流回路部2と、降圧チョッパよりなる電力調整回路部7と、フルブリッジ回路よりなる極性反転回路部3と、高圧パルス電圧発生回路Igと、昇圧チョッパ用のスイッチング素子Q5の駆動制御を行うための制御回路6と、降圧チョッパ用のスイッチング素子Q6の駆動制御を行うための制御回路8から成る。整流回路部2は全波整流器DBで商用交流電源ACを全波整流して得られる脈流電圧をインダクタL3、ダイオードD5、コンデンサC5、MOSFETなどのスイッチング素子Q5により構成される所謂昇圧チョッパ回路により直流電圧に変換するようになっている。電力調整回路部7は、数10KHzでオン・オフするMOSFETなどのスイッチング素子Q6、ダイオードD6、インダクタL4、コンデンサC6で構成され、その出力電流は三角波状である。インダクタL4の2次巻線に発生する電圧は直列接続されている抵抗R4を介して出力電流の検出出力として制御回路8へ送られ、制御回路8を通じ降圧チョッパ用のスイッチング素子Q6をゼロクロススイッチング駆動制御するためのフィードバック信号となる。また、コンデンサC6は、前段の降圧チョッパ回路2の出力電流から高周波成分を除去するものである。極性反転回路部3は前段の降圧チョッパで構成された電力調整回路部7からの直流出力をMOSFETのようなスイッチング素子Q1〜Q4で構成されるフルブリッジ回路により、低周波の矩形波交流電圧に変換し、数100Hzの低周波の矩形波交流電流を高圧放電灯DLに供給する。高圧パルス電圧発生回路Igは、始動時に高圧放電灯DLを絶縁破壊させるための高圧パルス電圧を発生させ、高圧放電灯DLの点灯後は動作を停止する。以上のような回路にて点灯できるHIDランプを含む高圧放電灯は、特開平14−75045号公報に開示されているが、これを更に小型化するために回路方式を変更し、部品サイズを小型化することが望まれていた。
【0031】
図8に示す従来回路にあっては、インダクタンス部品の小型化が困難であることにより、図3の回路を用いた場合のように、配線ダクトに内蔵できるような小型の電子安定器を実現することは困難であった。一方、図3の回路では、高調波成分に対する共振作用を利用することにより、インダクタンス部品を小型化することができたので、配線ダクトに内蔵できるような小型の電子安定器を実現することが可能となった。なお、以下の実施の形態2〜5においても、図3に示した回路を実装するための構造を前提としているが、本発明の用途は図3の回路のみに限定されるものでないことは言うまでもない。
【0032】
(実施の形態2)
図9〜図12に第2の実施の形態を示す。本実施の形態は、補助基板11の下部に設けた母基板10と接続するための端子パッドPと補助基板11に実装されている部品群の間のスぺースに、母基板10に補助基板11を挿入した際に母基板10上面と接する突起部を補助基板11の表裏両面に設けたものである。これにより、母基板10に直接挿入できる補助基板11の構造において、半田付けまでの製造工程で補助基板11を母基板10に対して確実に垂直を保てるようにしたものである。
【0033】
まず、図9の例では、補助基板11下部に設けた母基板10と半田接続するための端子パッドPと補助基板に実装されている部品群の間のスぺースに、補助基板11の表裏両面を貫通する穴13を設けてあり、ここに図示の垂直保持棒14(母基板10上で補助基板11に隣接する部品に当たらない程度の長さ)を挿入する。この状態で補助基板11を母基板10に挿入することで、製造工程において、半田付けまで大掛かりな治具なしで補助基板11を垂直に保持することが可能である。
【0034】
また、図10に示すように、補助基板11下部に母基板10上面と接する突起部15を設けて、この突起部15により、補助基板11と母基板10を半田付けまでの間、垂直に保持するようにしても良い。この図10の例では、補助基板11下部に設けた母基板10上面と接する突起部15は、補助基板11の表裏両面に実装されているどの部品よりも下に配置されており、且つ母基板10と半田接続するための端子パッドPよりも上に配置されている。
【0035】
その他、図11に示すように、補助基板11の母基板10上面との接点に部品16を実装する構造としたり、あるいは、図12に示すように、補助基板11の横端に倒れ防止治具17を付ける構造としても良い。図12の例では、補助基板11の表裏両面を囲うコの字型の治具17を、補助基板11の長手方向の少なくとも一方の端に取り付けたものである。
【0036】
(実施の形態3)
図13に第3の実施の形態を示す。本実施の形態は、放電灯安定器の出力調整に使用する可変抵抗18の配置に関するものである。補助基板11に取り付けられた出力調整用可変抵抗18は、母基板10上面の部品面に装着される補助基板11の高さの半分以下の距離よりも母基板10と補助基板11の接続部近くに実装してある。部品実装後の出力調整工程において、補助基板11に実装されている可変抵抗18を出力調整棒19を用いて調整する場合、母基板10と補助基板11の半田接合部に図13で示す力F(N)が加わる。そこで、可変抵抗18の配置を(黒丸で示した)半田接合部になるべく近い位置となるように、母基板10上面(部品面)に21mmの高さで乗る補助基板11の半分以下となる母基板10からR=7mmの位置に可変抵抗18の中心が来るように実装した。これにより、力のモーメントによるトルクT(N・m)=F(N)×R(m)を最小限に抑えることができた。ここで、Rは半田接合部からの距離(m)である。
【0037】
(実施の形態4)
図14に第4の実施の形態を示す。(a)は第1の補助基板11の部品面、(b)は同上の配線パターン、(c)は第2の補助基板12の部品面、(d)は同上の配線パターンである。本実施の形態は、回路小型化のため、1枚の補助基板上に高圧配線と制御用の小電力配線を設けた場合の配線に関するものである。特に小型設計をする際には、部品が密集するため、回路が自己ノイズに強い構造にしておきたい。そこで、制御回路を図14で示すように高圧配線で囲むように配置することで、高圧配線がガードリングとして制御回路に対してノイズを防ぐ作用をして制御回路の誤動作を防ぐことができる。
【0038】
上記各実施の形態において、補助基板下部の表裏両面に母基板と半田接続するために設けてある端子パッドは、補助基板の表裏対称の位置に設けると良い。この場合において、補助基板下部の表裏両面対称の位置に母基板と半田接続するために設けてある端子パッドは、電気的に同電位でなくても良い。
【0039】
(実施の形態5)
図2に第5の実施の形態を示す。本実施の形態は、回路小型化のため部品を密集配置する際の部品配置に関するものであり、母基板10上の部品配置は補助基板11,12が外周となるように配置したことを特徴とする。特に発熱を避けたい半導体部品を補助基板11,12に実装し、この補助基板11,12を抵抗・チョークコイル等の自己温度上昇の高い発熱部品を避けて母基板10の外周に配置することで、半導体部品への熱的影響を抑えることができる。
【0040】
【発明の効果】
請求項1の発明によれば、母基板と補助基板を有する電子装置において、補助基板下部の表裏両面に母基板と半田接続するための端子パッドを表裏間で電気的に別電位となし得るように複数対設けてあり、母基板に空けた補助基板挿入用スリットに補助基板を直接挿入して接続するものであって、母基板に空けたスリットには、補助基板下部の表裏両面に設けた前記複数対の端子パッドとそれぞれ表裏別々に電気的に半田で接続するための第1スリット幅の部位と、補助基板の挿入後から半田付けするまでの間、補助基板を母基板に対して略垂直に保持するための第2スリット幅の部位とを具備し、第1スリット幅は第2スリット幅よりも大きく、第2スリット幅は補助基板の厚みとほぼ同等以下であり、第2スリット幅の部位は、第1スリット幅の部位における母基板と補助基板の半田接続の間隔が補助基板の表裏両面で略均一となるように母基板から補助基板の表裏両面に対して略同寸法突出しているから、母基板に補助基板を挿入接続する製造工程において、補助基板の半田付け前の状態での倒れを防止できるので、製造コスト・部品コストを低減することができる。また、補助基板の端子パッドを母基板の部品面側ではなく半田面側に配置したことにより、母基板の半田面側に突出する母基板の部品リードのスペースを有効に利用して、補助基板の母基板表面からの突出高さを低くすることができ、複数のプリント基板を有する電子装置の低背化を実現することができる。
【0041】
請求項2の発明によれば、補助基板に取り付けられた出力調整用可変抵抗は、母基板上面の部品面に装着される補助基板の高さの半分の距離よりも母基板と補助基板の接続部近くに実装してあるので、力のモーメントの半径が小さいことにより、出力調整時に補助基板と母基板の半田接合部に応力のかからない構造を実現することができる。
【0042】
請求項の発明によれば、補助基板の電気的な配線パターンは低電圧で制御される部位と比較的高電圧を印加される部位に分かれており、比較的高電圧を印加される部位のパターンを補助基板上の外周に配置したことで、小型の装置であっても制御回路が自己ノイズにより誤動作しない回路を実現することができる。
【0043】
請求項の発明によれば、母基板上の部品配置は補助基板が外周となるように配置したので、補助基板上の回路の発熱を低く抑えることが可能となる。
【0044】
請求項の発明によれば、複数のプリント基板を有する放電灯点灯装置において、請求項1〜のいずれかに記載の実装構造を用いることにより、小型で低コストの放電灯点灯装置を実現することができる。
請求項の発明によれば、負荷消費電力として略20〜40Wを供給する高圧放電灯点灯装置において、上記の実装構造を用いることにより、母基板下面の半田面から突出する部品リードから一番背の高い部品までの高さを約26mm以下としたことから、器具内占有面積を従来より大幅に削減できるので、器具設計の自由度に大きく貢献する効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態1の説明図であり、(a)は母基板の半田面側の正面図、(b)は補助基板の側面図、(c)は補助基板の正面図である。
【図2】本発明の実施の形態1および5の外観を示す斜視図である。
【図3】本発明の実施の形態1の回路図である。
【図4】本発明の実施の形態1の始動モードの動作説明図である。
【図5】本発明の実施の形態1の低Vlaモードの動作説明図である。
【図6】本発明の実施の形態1の安定点灯モードの動作説明図である。
【図7】本発明の実施の形態1の出力特性を示す特性図である。
【図8】従来例の回路図である。
【図9】本発明の実施の形態2の説明図であり、(a)は補助基板の正面図、(b)は母基板に補助基板を挿入した状態の側面図である。
【図10】本発明の実施の形態2の一変形例の説明図であり、(a)は補助基板の正面図、(b)は母基板に補助基板を挿入した状態の側面図である。
【図11】本発明の実施の形態2の他の変形例の説明図であり、(a)は補助基板の正面図、(b)は母基板に補助基板を挿入した状態の側面図である。
【図12】本発明の実施の形態2の別の変形例の説明図であり、(a)は補助基板の正面図、(b)は母基板に補助基板を挿入した状態の側面図、(c)は略コの字型の治具の斜視図である。
【図13】本発明の実施の形態3の説明図であり、(a)は補助基板の正面図、(b)は母基板に補助基板を挿入接続した状態で出力調整する様子を示す側面図である。
【図14】本発明の実施の形態4の補助基板を示す図であり、(a)は第1の補助基板の部品面を示す正面図、(b)は第1の補助基板の配線パターンを示す背面図、(c)は第2の補助基板の部品面を示す正面図、(d)は第2の補助基板の配線パターンを示す背面図である。
【符号の説明】
10 母基板
11 補助基板
S スリット
A 第1スリット幅
B 第2スリット幅
d 補助基板厚
P 端子パッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic device having a plurality of printed circuit boards, and is particularly suitable for a space-saving high-pressure discharge lamp lighting device that can be built in a wiring duct or the like.
[0002]
[Prior art]
[Patent Document 1]
JP-A-5-327161
Patent Document 1 includes a pair of substrate support portions projecting toward the mother substrate side at both ends of the long side of the mother substrate side of the auxiliary substrate mounted vertically on the mother substrate, and each substrate support portion is provided on the mother substrate side. A mounting structure including a fixing hole to be inserted is disclosed.
[0004]
[Problems to be solved by the invention]
In the mounting structure disclosed in Patent Document 1, the plurality of terminal pads arranged along the long side of the auxiliary substrate and the plurality of terminal pads arranged on the surface of the mother substrate are the component surface side of the mother substrate. It is soldered with. For this reason, for example, when the auxiliary board is mounted on the component surface of the mother board and the solder surface of the mother board is immersed in a solder bath to solder the component leads of the mother board, the auxiliary board is simultaneously connected to the mother board. I couldn't do that. Of course, in Patent Document 1, if all components on the mother board are surface-mounted simultaneously with the auxiliary board, it is possible to perform soldering of the parts on the mother board and soldering of the auxiliary board and the mother board at the same time. As pointed out in the literature, there is another problem that the components mounted on the auxiliary board are displaced due to heating during reflow soldering for surface mounting, in order to hold the parts on the auxiliary board This member was required separately, which caused an increase in cost. In addition, there is a problem that the substrate support portions provided so as to protrude toward the mother substrate at both ends of the long side of the auxiliary substrate are easily broken, and the entire substrate cannot be used if it is damaged. Furthermore, since the long side of the auxiliary board on the mother board side is located on the surface (component surface) of the mother board, the terminal pads of the auxiliary board exist above the surface (component surface) of the mother board. Therefore, the component mounting space on the auxiliary board is located further upward from the surface of the mother board with the terminal pad of the auxiliary board interposed therebetween, and as a result, the auxiliary board protrudes from the mother board surface. There was a problem that the height could not be lowered.
[0005]
The present invention has been made in view of the above points, and by effectively utilizing the space of the component lead of the mother board protruding to the solder surface side of the mother board, the terminal pad of the auxiliary board is used as the component of the mother board. It is an object of the present invention to reduce the height of the auxiliary board protruding from the mother board surface by arranging the board on the solder side rather than on the side of the face, and to realize a reduction in the height of an electronic device having a plurality of printed boards.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, as shown in FIG. 2, in the electronic device having the mother board 10 and the auxiliary board 11, as shown in FIG. A plurality of pairs of terminal pads P are provided so as to be electrically different from each other between the front and back sides, and the auxiliary substrate 11 is directly inserted and connected to the auxiliary substrate insertion slit S opened in the mother substrate 10 The slit S formed in the mother board 10 has a first slit width for electrically connecting the plurality of pairs of terminal pads P provided on the front and back surfaces of the lower side of the auxiliary board 11 separately by soldering. A portion A and a portion having a second slit width B for holding the auxiliary substrate 11 substantially perpendicular to the mother substrate 10 after the auxiliary substrate 11 is inserted and soldered; Slit width A is second slit width B The second slit width B is substantially equal to or less than the thickness d of the auxiliary substrate 11, and the second slit width B is a portion of the first slit width A where the solder connection between the mother substrate 10 and the auxiliary substrate 11 is performed. The distance between the front and back surfaces of the auxiliary substrate 11 is substantially the same as the distance between the front and back surfaces of the auxiliary substrate 11.
[0007]
According to the invention of claim 2, in claim 1, as shown in FIG. 13, the output adjustment variable resistor 18 attached to the auxiliary board 11 is attached to the component surface on the upper surface of the mother board 10. It is characterized in that it is mounted closer to the connecting portion of the mother board 10 and the auxiliary board 11 than the distance of half the height of the board.
[0008]
According to a third aspect of the invention, in any one of the first and second aspects, as shown in FIG. 14, the electrical wiring pattern of the auxiliary board is applied with a portion controlled by a low voltage and a relatively high voltage. The pattern of the part to which a relatively high voltage is applied is arranged on the outer periphery on the auxiliary substrate.
[0009]
According to the invention of claim 4 , in any one of claims 1 to 3 , as shown in FIG. 2, the component placement on the mother board 10 is arranged such that the auxiliary boards 11 and 12 are on the outer periphery. And
[0010]
According to a fifth aspect of the invention, there is provided a discharge lamp lighting device having a mounting structure for an electronic device having the plurality of printed circuit boards according to any one of the first to fourth aspects.
According to a sixth aspect of the present invention, in the fifth aspect , as shown in FIGS. 2 and 3, a lighting device for a high-pressure discharge lamp that supplies approximately 20 to 40 W of load power consumption is provided. The height H from the component lead protruding from the surface to the tallest component is about 26 mm or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
FIG. 3 is a circuit diagram of one embodiment of the present invention. FIG. 2 shows a structure in which the circuit shown in FIG. 3 is mounted on a plurality of printed boards. In the figure, 10 is a mother board, 11 is a first auxiliary board, and 12 is a second auxiliary board. This electronic device is a lighting device for a high-pressure discharge lamp that supplies approximately 20 to 40 W of load power consumption, and all components are mounted on a printed circuit board having a width W = 70 mm and a length L = 77 mm. Auxiliary boards 11 and 12, which are elements that limit the height direction, which has always been a detrimental effect for small-sized mounting, have a structure in which the auxiliary boards 11 and 12 can be directly inserted and connected to the parts surface on the upper surface of the mother board 10 to achieve low component placement. Realized. In this mounting structure, component leads protruding from the solder surface on the lower surface of the mother board 10 are managed at 3 mm below the substrate, and the height H from the bottom 3 mm to the tallest component is 26 mm or less. .
[0012]
FIG. 1 illustrates a connecting portion between the auxiliary substrate 11 and the mother substrate 10. Terminal pads P for soldering to the mother board 10 are provided on both the front and back surfaces of the lower part of the auxiliary board 11, and the lower end of the auxiliary board 11 is directly inserted and connected to the auxiliary board insertion slit S formed in the mother board 10. Is. The auxiliary substrate insertion slit S in the mother substrate 10 is inserted into the auxiliary substrate 11 with a portion having a first slit width A provided with a terminal pad P so as to be electrically connected to the auxiliary substrate 11 with solder. There is a portion having a second slit width B for holding the auxiliary substrate 11 perpendicularly to the mother substrate 10 until after soldering. The first slit width A is larger than the second slit width B, and the second slit width B is substantially equal to or less than the thickness d of the auxiliary substrate 11. By providing such a slit S for inserting the auxiliary board in the mother board 10, the arrangement height of the components on the auxiliary board 11 can be lowered to the immediate vicinity of the surface of the mother board 10. Therefore, it is possible to reduce the height of protrusion of the auxiliary substrate 11 from the surface of the mother board 10. In addition, at the time of manufacture, the assembly of the mother board 10 and the auxiliary board 11 can be allowed to flow as it is into the solder bath without using large jigs for holding the auxiliary board 11 perpendicular to the mother board 10. In addition, effects such as simplification of the manufacturing process and cost reduction can be obtained.
[0013]
That is, the auxiliary substrate 11 is mounted on the component surface of the mother substrate 10 and the solder surface of the mother substrate 10 is immersed in a solder bath so that the component substrate of the mother substrate 10 is soldered to the mother substrate 10 at the same time. It can be connected to the substrate 10. In FIG. 1A, the terminal pads P of the mother board 10 are provided on the solder surface side (not the component surface side) of the mother board 10, and a plurality of terminal pads P are arranged on both sides of the slit S. Yes. FIG. 1C illustrates the terminal pads P provided on one surface of the auxiliary substrate 11, but a plurality of terminal pads are also arranged on the opposite surface. As shown in FIG. 2, the lower end of the auxiliary board 11 (the side on which the terminal pads P are arranged) is inserted into the slit S of the mother board 10 to solder a plurality of components mounted on the component surface of the mother board 10. When performing, the terminal pads of the auxiliary substrate 11 and the terminal pads of the mother substrate 10 are connected by soldering.
[0014]
Here, a supplementary description of the circuit of FIG. 3 will be given. In the figure, 1 is an AC power source, 2 is a rectifier circuit unit, 3 is a lighting circuit unit, 4 is a control circuit unit, 5 is a resonance circuit unit, and 6 is a power factor correction control circuit. The AC power supply 1 is connected to the AC input terminal of the diode bridge DB in the rectifier circuit unit 2 through a noise filter circuit and a circuit protection element. One end of an inductor L3 is connected to the high-voltage side of the DC output of the diode bridge DB. A switching element Q5 is connected between the low-voltage side of the DC output of the diode bridge DB and the other end of the inductor L3. The anode side of the diode D5 is connected to the connection point between the inductor L3 and the switching element Q5, and the capacitor C5 is connected between the cathode side of the diode D5 and the ground. The power factor correction control circuit 6 performs ON / OFF control of the switching element Q5 of the rectifier circuit unit 2 in accordance with the full-wave rectified waveform output from the diode bridge DB, so that the peak of the triangular current waveform flowing through the inductor L3 is all. It is a control circuit that sends a PWM signal so as to follow a wave rectification waveform. (Here, the case where the AC power source 1 and the chopper circuit type rectifier circuit unit 2 are used as the power source of the lighting circuit unit 3 has been described. However, any device that can supply DC power to the lighting circuit unit 3 may be used. Battery or commercial DC power supply may be used.)
[0015]
The lighting circuit unit 3 forms a full bridge circuit with the switching elements Q1 to Q4 in order to convert the DC power supplied from the rectifier circuit unit 2 into AC and supply it to the load DL. One end of each of the switching elements Q1 and Q3 is connected to the high potential side of the DC power supply, the other end of the switching element Q1 and one end of the switching element Q2 are connected in series, and the other end of the switching element Q3 and the switching element Q4 One end is connected in series, and the other ends of the switching elements Q2 and Q4 are connected to the ground. In order to limit the load current, an inductor L1 is connected in series between the connection point of the switching elements Q3 and Q4 and the load DL, and a capacitor C1 is connected in parallel with the load DL to remove a ripple component of the load current. It is connected. The load DL of the lighting circuit unit 3 is a high-pressure discharge lamp (hereinafter simply referred to as a lamp DL).
[0016]
The control circuit unit 4 controls the switching elements Q1 to Q4 constituting the lighting circuit unit 3 to a desired operation, and includes a control IC 40 and drive circuits 41 and 42. The control IC 40 is composed of, for example, a microcomputer (hereinafter simply referred to as a microcomputer). The drive circuits 41 and 42 are composed of driver ICs that drive the switching elements Q1 to Q4 by the output signal of the microcomputer.
[0017]
In order to generate a resonance voltage for starting the lamp DL, the resonance circuit unit 5 includes an inductor L2 connected in series between the connection point of the switching elements Q1 and Q2 and the load DL, and a winding of the inductor L2. The capacitor C2 has one end connected to a part of the capacitor C2 and the resistor R1 connected in series to the other end of the capacitor C2. The diodes D1 and D2 are bypassed so that the resonance current flowing through the resonance circuit unit 5 does not flow through the current detection resistor R2.
[0018]
Hereinafter, the operation of the high pressure discharge lamp lighting device will be described with reference to FIGS.
(Start mode)
First, in order to start a high pressure discharge lamp, it is necessary to apply a high voltage between the electrodes of the lamp DL to break the insulation between the electrodes. In this discharge lamp lighting device, a pair of switching elements Q1 and Q4 and a pair of switching elements Q2 and Q3 are arranged at a frequency of 120 KHz, which is 1/3 of the resonance frequency f2 (≈360 KHz) of the inductor L2 and the capacitor C2, as shown in FIG. Alternately, they are turned on and off at a duty of approximately 50%. This operation (referred to as operation A) is repeated the number of times set by the microcomputer (50 times). Then, after performing the operation A 50 times, the voltage application is stopped for 800 μsec in order to reduce the heat generation of the lamp. Next, after the elapse of 800 μsec, the operation A is repeated again. After the combination of the operation A and the pause operation of 800 μsec (referred to as operation B) is repeated for 20 seconds, the voltage application is stopped for 2 minutes in order to reduce the heat generation of the lamp. Next, after this 2-minute pause, the operation B is repeated again. If the combination of this operation B and the pause operation for 2 minutes (referred to as operation C) is repeated for 30 minutes and the lamp does not turn on, the circuit stops operating.
[0019]
Hereinafter, a case will be described in which the lamp breaks down during high voltage application and shifts to the lighting mode. By the operation A, a resonance voltage of several KV with respect to the ground GND is generated at the connection point between the primary winding N1 of the inductor L2 and the capacitor C2, and the number of turns of N1: N2 is passed through the secondary winding N2 of the inductor L2. The resonance voltage boosted by the ratio is applied to the lamp DL, and the lamp DL is started. At this time, the start of the lamp DL is detected by detecting the voltage that is full-wave rectified by the diodes D3 and D4 from the secondary winding of the inductor L1 shown in FIG. 3, and the process proceeds to the next lighting mode. .
[0020]
(Low Vla mode)
After the dielectric breakdown of the lamp DL, the control circuit unit 4 switches the switching mode of the switching elements Q1 to Q4 as shown in FIG. The operation will be described below.
[0021]
a) First, the control circuit 4 turns off the pair of the switching elements Q2 and Q3 and turns on the pair of the switching elements Q1 and Q4 so that the lamp current I DL reaches a desired current value. After switching to voltage and detecting, switching element Q4 is turned off. When a predetermined time passes after the switching element Q4 is turned off, the switching element Q1 is also turned off, and the lamp current I DL is released from the energy stored in the inductor L4, so that the body diode of the switching element Q2 (not shown in the figure) → lamp A loop returning to the capacitor C5 is formed through a route of DL → inductor L4 → body diode (not shown) of the switching element Q3. By this operation, the zero cross point at which the lamp current IDL becomes 0 is detected, the pair of the switching elements Q1 and Q4 is turned on, and the same operation is repeated again.
[0022]
b) Next, the control circuit unit 4 turns off the pair of switching elements Q1 and Q4, turns on the pair of switching elements Q2 and Q3, and flows a lamp current IDL in the opposite direction to the operation of a). . After detecting that the lamp current IDL reaches a desired current value by converting it into a voltage with the current detection resistor R2, the switching element Q3 is turned off. When a predetermined time elapses after the switching element Q3 is turned off, the switching element Q2 is also turned off, and the lamp current I DL is released from the energy stored in the inductor L4. Therefore, the body diode of the switching element Q4 (not shown) → inductor A loop is formed to return to the capacitor C5 through the route of L1 → lamp DL → body diode (not shown) of the switching element Q1. By this operation, the zero cross point at which the lamp current I DL becomes 0 is detected, the pair of the switching elements Q2 and Q3 is turned on, and the same operation is repeated again.
[0023]
The control circuit unit 4 alternates the operations of a) and b) at a frequency of 100 Hz to 200 Hz, so that the lamp voltage reaches 0 to 110 V (due to variations among lamps) that is substantially the rated lighting voltage. In a low lamp voltage region of about 60 V, control is performed so that a large amount of lamp current I DL flows through the lamp DL so as to prevent the lamp from turning off and to quickly warm the lamp.
[0024]
(Stable lighting mode)
When the lamp DL is warmed and the tube voltage reaches the vicinity of the rated lamp voltage, the control circuit unit 4 switches the switching modes of the switching elements Q1 to Q4 as shown in FIG. The operation will be described below.
[0025]
A) The control circuit unit 4 turns off the pair of the switching elements Q2 and Q3 and turns on the pair of the switching elements Q1 and Q4 so that the lamp current I DL reaches a desired current value. After switching to voltage and detecting, switching element Q4 is turned off. A zero-cross point at which the lamp current I DL becomes 0 is detected, the switching element Q4 is turned on again, and the same operation is repeated again to pass a triangular wave-shaped lamp current I DL as shown in FIG.
[0026]
B) Next, the control circuit unit 4 turns off the pair of switching elements Q1 and Q4, turns on the pair of switching elements Q2 and Q3, and flows a lamp current I DL in the opposite direction to the operation of A). . After detecting that the lamp current IDL reaches a desired current value by converting it into a voltage with the current detection resistor R2, the switching element Q3 is turned off. The zero cross point at which the lamp current I DL becomes 0 is detected, the switching element Q3 is turned on again, the same operation is repeated again, and a triangular wave lamp current I DL as shown in FIG.
[0027]
The control circuit unit 4 alternates the operations A) and B) at a frequency of 100 Hz to 200 Hz to supply stable power to the lamp DL.
In the operations in the low Vla mode and the stable lighting mode, the output power is controlled by the microcomputer based on the characteristic diagram of the lamp power Wla and the lamp voltage Vla in FIG.
[0028]
With the above high pressure discharge lamp lighting device, it is possible to reduce the size of the inductance components that could not be significantly reduced in the past, and to switch by resonating with the harmonic component to generate a high voltage for starting Since it is not necessary to increase the frequency, the switching loss does not increase, and the high voltage necessary for the lamp dielectric breakdown can be maintained at the same level as the conventional one.
[0029]
In the conventional lighting fixture for mounting a duct, the outer portion disposed below the wiring duct has a size for positioning the down transformer portion below the lower surface of the wiring duct. Accordingly, there is a problem that the outer portion becomes large and is not preferable in appearance. In order to improve this problem, a duct mounting illuminator that is preferable in appearance has been proposed in Japanese Patent Application Laid-Open No. 11-1111040. However, incandescent lamps that are lit with a down transformer, halogen lamps, and the like have been used as the lamps of the luminaires for mounting ducts that have been provided so far. On the other hand, duct mounting luminaires using high-pressure discharge lamps such as HID lamps conventionally have a circuit configuration as shown in FIG. We had problems such as being unable to make it small.
[0030]
FIG. 8 shows a circuit of a conventional high pressure discharge lamp lighting device, in which a rectifier circuit unit 2 composed of a step-up chopper, a power adjustment circuit unit 7 composed of a step-down chopper, a polarity inversion circuit unit 3 composed of a full bridge circuit, It comprises a high voltage pulse voltage generation circuit Ig, a control circuit 6 for controlling the driving of the step-up chopper switching element Q5, and a control circuit 8 for controlling the driving of the step-down chopper switching element Q6. The rectifier circuit unit 2 uses a so-called step-up chopper circuit composed of a switching element Q5 such as an inductor L3, a diode D5, a capacitor C5, and a MOSFET to obtain a pulsating voltage obtained by full-wave rectifying the commercial AC power supply AC with a full-wave rectifier DB. It converts to DC voltage. The power adjustment circuit unit 7 includes a switching element Q6 such as a MOSFET that is turned on / off at several tens of KHz, a diode D6, an inductor L4, and a capacitor C6, and its output current is triangular. The voltage generated in the secondary winding of the inductor L4 is sent to the control circuit 8 as an output current detection output via the resistor R4 connected in series, and the switching element Q6 for the step-down chopper is driven through the control circuit 8 to zero-cross switching. This is a feedback signal for control. The capacitor C6 removes a high frequency component from the output current of the step-down chopper circuit 2 in the previous stage. The polarity inversion circuit unit 3 converts the DC output from the power adjustment circuit unit 7 configured by the step-down chopper in the previous stage into a low-frequency rectangular wave AC voltage by a full bridge circuit configured by switching elements Q1 to Q4 such as MOSFETs. The low-frequency rectangular wave alternating current of several 100 Hz is supplied to the high-pressure discharge lamp DL. The high-voltage pulse voltage generation circuit Ig generates a high-voltage pulse voltage for dielectric breakdown of the high-pressure discharge lamp DL at the start, and stops operation after the high-pressure discharge lamp DL is lit. A high pressure discharge lamp including an HID lamp that can be lit by the circuit as described above is disclosed in Japanese Patent Application Laid-Open No. 14-75045. To further reduce the size, the circuit system is changed and the component size is reduced. It was hoped that
[0031]
In the conventional circuit shown in FIG. 8, since it is difficult to reduce the size of the inductance component, a small electronic ballast that can be built in the wiring duct is realized as in the case of using the circuit of FIG. It was difficult. On the other hand, in the circuit of FIG. 3, since the inductance component can be reduced in size by utilizing the resonance action with respect to the harmonic component, it is possible to realize a small electronic ballast that can be incorporated in the wiring duct. It became. In the following second to fifth embodiments, the structure for mounting the circuit shown in FIG. 3 is assumed, but it goes without saying that the application of the present invention is not limited to the circuit shown in FIG. Yes.
[0032]
(Embodiment 2)
9 to 12 show a second embodiment. In the present embodiment, a space between a terminal pad P for connecting to a mother board 10 provided below the auxiliary board 11 and a group of components mounted on the auxiliary board 11 is provided on the mother board 10. Protrusions that come into contact with the upper surface of the mother board 10 when 11 is inserted are provided on both the front and back surfaces of the auxiliary board 11. Thus, in the structure of the auxiliary board 11 that can be directly inserted into the mother board 10, the auxiliary board 11 can be surely kept perpendicular to the mother board 10 in the manufacturing process up to soldering.
[0033]
First, in the example of FIG. 9, the front and back sides of the auxiliary board 11 are arranged in a space between the terminal pads P for soldering to the mother board 10 provided below the auxiliary board 11 and the component group mounted on the auxiliary board. A hole 13 penetrating both surfaces is provided, and the illustrated vertical holding rod 14 (a length that does not hit a component adjacent to the auxiliary substrate 11 on the mother substrate 10) is inserted therein. By inserting the auxiliary substrate 11 into the mother substrate 10 in this state, the auxiliary substrate 11 can be held vertically without a large jig until soldering in the manufacturing process.
[0034]
Further, as shown in FIG. 10, a protrusion 15 that contacts the upper surface of the mother board 10 is provided below the auxiliary board 11, and the auxiliary board 11 and the mother board 10 are held vertically by the protrusion 15 until soldering. You may make it do. In the example of FIG. 10, the protrusions 15 that are in contact with the upper surface of the mother board 10 provided at the lower part of the auxiliary board 11 are arranged below any components mounted on both the front and back surfaces of the auxiliary board 11. 10 is disposed above the terminal pad P for solder connection.
[0035]
In addition, as shown in FIG. 11, the component 16 is mounted on the contact point between the auxiliary substrate 11 and the upper surface of the mother substrate 10. Alternatively, as shown in FIG. A structure with 17 is also possible. In the example of FIG. 12, a U-shaped jig 17 surrounding both the front and back surfaces of the auxiliary substrate 11 is attached to at least one end in the longitudinal direction of the auxiliary substrate 11.
[0036]
(Embodiment 3)
FIG. 13 shows a third embodiment. This embodiment relates to the arrangement of the variable resistor 18 used for adjusting the output of the discharge lamp ballast. The output adjusting variable resistor 18 attached to the auxiliary board 11 is closer to the connection part between the mother board 10 and the auxiliary board 11 than a distance less than half the height of the auxiliary board 11 mounted on the component surface on the upper surface of the mother board 10. Is implemented. When adjusting the variable resistor 18 mounted on the auxiliary substrate 11 using the output adjustment rod 19 in the output adjustment step after component mounting, the force F shown in FIG. 13 is applied to the solder joint between the mother substrate 10 and the auxiliary substrate 11. (N) is added. Therefore, the mother of the auxiliary board 11 that is less than half of the auxiliary board 11 that rides on the upper surface (component surface) of the mother board 10 at a height of 21 mm so that the arrangement of the variable resistor 18 is as close as possible to the solder joint (shown by a black circle). It was mounted so that the center of the variable resistor 18 was at a position of R = 7 mm from the substrate 10. As a result, the torque T (N · m) = F (N) × R (m) due to the moment of force could be minimized. Here, R is the distance (m) from the solder joint.
[0037]
(Embodiment 4)
FIG. 14 shows a fourth embodiment. (A) is the component surface of the 1st auxiliary substrate 11, (b) is the same wiring pattern, (c) is the component surface of the 2nd auxiliary substrate 12, (d) is the same wiring pattern. The present embodiment relates to wiring when high voltage wiring and low power wiring for control are provided on one auxiliary substrate for circuit miniaturization. In particular, when designing a compact design, the components are densely packed, so the circuit should be resistant to self-noise. Therefore, by arranging the control circuit so as to be surrounded by the high-voltage wiring as shown in FIG. 14, the high-voltage wiring acts as a guard ring to prevent noise to the control circuit, thereby preventing the control circuit from malfunctioning.
[0038]
In each of the above embodiments, the terminal pads provided on both the front and back surfaces of the lower part of the auxiliary board for solder connection with the mother board are preferably provided at symmetrical positions on the auxiliary board. In this case, the terminal pads provided for soldering connection with the mother board at the symmetrical positions on the front and back sides of the lower part of the auxiliary board may not be electrically at the same potential.
[0039]
(Embodiment 5)
FIG. 2 shows a fifth embodiment. The present embodiment relates to component arrangement when components are densely arranged for circuit miniaturization, and the component arrangement on the mother board 10 is such that the auxiliary boards 11 and 12 are arranged on the outer periphery. To do. In particular, by mounting a semiconductor component to avoid heat generation on the auxiliary boards 11 and 12, and arranging the auxiliary boards 11 and 12 on the outer periphery of the mother board 10 avoiding heat generating parts with high self-temperature rise such as resistors and choke coils. The thermal influence on the semiconductor component can be suppressed.
[0040]
【The invention's effect】
According to the first aspect of the present invention, in an electronic device having a mother board and an auxiliary board, terminal pads for soldering to the mother board on both the front and back surfaces of the lower part of the auxiliary board can be electrically separated from each other. A plurality of pairs are provided, and the auxiliary board is directly inserted into and connected to the auxiliary board insertion slit formed in the mother board. The slit provided in the mother board is provided on both front and back surfaces of the lower part of the auxiliary board . A portion of the first slit width for electrically connecting the plurality of pairs of terminal pads to the front and back separately by solder, and between the insertion of the auxiliary substrate and soldering, the auxiliary substrate is substantially omitted from the mother substrate. A second slit width portion for holding vertically, the first slit width is larger than the second slit width, and the second slit width is substantially equal to or less than the thickness of the auxiliary substrate. The part of the first sleeve Since the distance between the solder connection between the mother board and the auxiliary board at the width-width portion is substantially uniform on both the front and back surfaces of the auxiliary board, the same dimension protrudes from the mother board to the front and back faces of the auxiliary board. In the manufacturing process in which the auxiliary board is inserted and connected, the auxiliary board can be prevented from falling before being soldered, so that manufacturing costs and component costs can be reduced. Also, by arranging the terminal pads of the auxiliary board on the solder side rather than on the component side of the mother board, the auxiliary board effectively utilizes the space of the component lead on the mother board that protrudes toward the solder side of the mother board. The height of the protrusion from the surface of the mother board can be reduced, and the height of the electronic device having a plurality of printed boards can be reduced.
[0041]
According to the invention of claim 2, the variable resistor for output adjustment attached to the auxiliary board is connected to the mother board and the auxiliary board more than a distance half the height of the auxiliary board to be mounted on the component surface on the upper surface of the mother board. Since the radius of the moment of force is small, it is possible to realize a structure in which no stress is applied to the solder joint between the auxiliary board and the mother board during output adjustment.
[0042]
According to the invention of claim 3 , the electrical wiring pattern of the auxiliary substrate is divided into a portion controlled by a low voltage and a portion to which a relatively high voltage is applied. By arranging the pattern on the outer periphery on the auxiliary substrate, it is possible to realize a circuit in which the control circuit does not malfunction due to self-noise even in a small device.
[0043]
According to the fourth aspect of the present invention, the components on the mother board are arranged so that the auxiliary board is located on the outer periphery, so that the heat generation of the circuit on the auxiliary board can be kept low.
[0044]
According to the invention of claim 5 , in a discharge lamp lighting device having a plurality of printed boards, a compact and low-cost discharge lamp lighting device is realized by using the mounting structure according to any one of claims 1 to 4. can do.
According to the sixth aspect of the present invention, in the high pressure discharge lamp lighting device that supplies approximately 20 to 40 W as the load power consumption, by using the mounting structure described above, the component lead that protrudes from the solder surface on the lower surface of the mother board is the first. Since the height to the tall parts is about 26 mm or less, the occupied area in the instrument can be greatly reduced compared to the conventional one, which has the effect of greatly contributing to the freedom of instrument design.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention, where (a) is a front view of a solder surface side of a mother board, (b) is a side view of the auxiliary board, and (c) is a front view of the auxiliary board. It is.
FIG. 2 is a perspective view showing an appearance of Embodiments 1 and 5 of the present invention.
FIG. 3 is a circuit diagram according to the first embodiment of the present invention.
FIG. 4 is an operation explanatory diagram of a start mode according to the first embodiment of the present invention.
FIG. 5 is an operation explanatory diagram of a low Vla mode according to the first embodiment of the present invention.
FIG. 6 is an operation explanatory diagram of a stable lighting mode according to the first embodiment of the present invention.
FIG. 7 is a characteristic diagram showing output characteristics of the first embodiment of the present invention.
FIG. 8 is a circuit diagram of a conventional example.
9A and 9B are explanatory diagrams of Embodiment 2 of the present invention, in which FIG. 9A is a front view of an auxiliary board, and FIG. 9B is a side view of the auxiliary board inserted into the mother board.
10A and 10B are explanatory diagrams of a modification of the second embodiment of the present invention, in which FIG. 10A is a front view of an auxiliary board, and FIG. 10B is a side view of the auxiliary board inserted into the mother board.
11A and 11B are explanatory diagrams of another modification of the second embodiment of the present invention, in which FIG. 11A is a front view of an auxiliary board, and FIG. 11B is a side view of the auxiliary board inserted into the mother board. .
FIGS. 12A and 12B are explanatory diagrams of another modification of the second embodiment of the present invention, in which FIG. 12A is a front view of an auxiliary board, FIG. 12B is a side view of the auxiliary board inserted into the mother board, c) is a perspective view of a substantially U-shaped jig.
FIGS. 13A and 13B are explanatory diagrams of Embodiment 3 of the present invention, in which FIG. 13A is a front view of an auxiliary board, and FIG. 13B is a side view showing output adjustment in a state where the auxiliary board is inserted and connected to the mother board. It is.
14A and 14B are diagrams showing an auxiliary board according to a fourth embodiment of the present invention, where FIG. 14A is a front view showing a component surface of the first auxiliary board, and FIG. 14B is a wiring pattern of the first auxiliary board. FIG. 7C is a front view showing a component surface of the second auxiliary board, and FIG. 8D is a rear view showing a wiring pattern of the second auxiliary board.
[Explanation of symbols]
10 Mother board 11 Auxiliary board S Slit A First slit width B Second slit width d Auxiliary board thickness P Terminal pad

Claims (6)

母基板と補助基板を有する電子装置において、補助基板下部の表裏両面に母基板と半田接続するための端子パッドを表裏間で電気的に別電位となし得るように複数対設けてあり、母基板に空けた補助基板挿入用スリットに補助基板を直接挿入して接続するものであって、母基板に空けたスリットには、補助基板下部の表裏両面に設けた前記複数対の端子パッドとそれぞれ表裏別々に電気的に半田で接続するための第1スリット幅の部位と、補助基板の挿入後から半田付けするまでの間、補助基板を母基板に対して略垂直に保持するための第2スリット幅の部位とを具備し、第1スリット幅は第2スリット幅よりも大きく、第2スリット幅は補助基板の厚みとほぼ同等以下であり、第2スリット幅の部位は、第1スリット幅の部位における母基板と補助基板の半田接続の間隔が補助基板の表裏両面で略均一となるように母基板から補助基板の表裏両面に対して略同寸法突出していることを特徴とする複数のプリント基板を有する電子装置。In an electronic device having a mother board and an auxiliary board, a plurality of pairs of terminal pads are provided on both the front and back sides of the lower part of the auxiliary board so as to be electrically connected to the mother board between the front and back surfaces. Auxiliary board is directly inserted into and connected to the auxiliary board insertion slit formed in the substrate, and the plurality of pairs of terminal pads provided on both the front and back surfaces of the lower side of the auxiliary board are respectively connected to the front and back surfaces of the mother board. A portion having a first slit width for separately electrically connecting with solder and a second slit for holding the auxiliary substrate substantially perpendicular to the mother substrate after the auxiliary substrate is inserted and soldered. The first slit width is larger than the second slit width, the second slit width is substantially equal to or less than the thickness of the auxiliary substrate, and the second slit width portion is equal to the first slit width. Mother group at the site And a printed circuit board having a plurality of printed circuit boards protruding from the mother board to the front and back surfaces of the auxiliary board so that the distance between the solder connections of the auxiliary board and the auxiliary board is substantially uniform on both sides of the auxiliary board. apparatus. 請求項1において、補助基板に取り付けられた出力調整用可変抵抗は、母基板上面の部品面に装着される補助基板の高さの半分の距離よりも母基板と補助基板の接続部近くに実装してあることを特徴とする複数のプリント基板を有する電子装置。    2. The variable resistor for output adjustment attached to the auxiliary board according to claim 1 is mounted closer to a connection portion between the mother board and the auxiliary board than a distance of half the height of the auxiliary board to be mounted on the component surface on the upper surface of the mother board. An electronic device having a plurality of printed circuit boards. 請求項1または2のいずれかにおいて、補助基板の電気的な配線パターンは低電圧で制御される部位と比較的高電圧を印加される部位に分かれており、比較的高電圧を印加される部位のパターンを補助基板上の外周に配置したことを特徴とする複数のプリント基板を有する電子装置。    3. The electrical wiring pattern of the auxiliary board according to claim 1, wherein the electrical wiring pattern of the auxiliary substrate is divided into a part controlled by a low voltage and a part to which a relatively high voltage is applied, and a part to which a relatively high voltage is applied. An electronic device having a plurality of printed boards, wherein the pattern is arranged on the outer periphery of the auxiliary board. 請求項1〜3のいずれかにおいて、母基板上の部品配置は補助基板が外周となるように配置したことを特徴とする複数のプリント基板を有する電子装置。    4. The electronic apparatus having a plurality of printed boards according to claim 1, wherein the component placement on the mother board is arranged such that the auxiliary board is located on the outer periphery. 請求項1〜4のいずれかに記載の複数のプリント基板を有する電子装置の実装構造を有することを特徴とする放電灯点灯装置。    A discharge lamp lighting device comprising a mounting structure of an electronic device having a plurality of printed circuit boards according to claim 1. 請求項5において、負荷消費電力が略20ないし40Wを供給する高圧放電灯の点灯装置であって、母基板下面の半田面から突出する部品リードから一番背の高い部品までの高さが約26mm以下であることを特徴とする高圧放電灯点灯装置。    6. The lighting device for a high pressure discharge lamp according to claim 5, wherein the load power consumption is approximately 20 to 40 W, and the height from the component lead protruding from the solder surface on the lower surface of the mother board to the tallest component is about. A high pressure discharge lamp lighting device characterized by being 26 mm or less.
JP2002318934A 2002-10-28 2002-10-31 Electronic device having a plurality of printed circuit boards Expired - Fee Related JP4314809B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002318934A JP4314809B2 (en) 2002-10-31 2002-10-31 Electronic device having a plurality of printed circuit boards
AU2003266642A AU2003266642A1 (en) 2002-10-28 2003-09-26 High-pressure discharge lamp operation device and illumination appliance having the same
PCT/JP2003/012319 WO2004039130A1 (en) 2002-10-28 2003-09-26 High-pressure discharge lamp operation device and illumination appliance having the same
CN03824725.9A CN1695404B (en) 2002-10-28 2003-09-26 High-pressure discharge lamp operation device and illumination appliance having the same
EP03809438.9A EP1558064B1 (en) 2002-10-28 2003-09-26 High-pressure discharge lamp operation device and illumination appliance having the same
US10/532,822 US7141937B2 (en) 2002-10-28 2003-09-26 High-pressure discharge lamp operation device and illumination appliance having the same
KR1020057006759A KR100679216B1 (en) 2002-10-28 2003-09-26 High Pressure Discharge Lamp Operation Device And Illumination Appliance Having The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318934A JP4314809B2 (en) 2002-10-31 2002-10-31 Electronic device having a plurality of printed circuit boards

Publications (2)

Publication Number Publication Date
JP2004153178A JP2004153178A (en) 2004-05-27
JP4314809B2 true JP4314809B2 (en) 2009-08-19

Family

ID=32461937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318934A Expired - Fee Related JP4314809B2 (en) 2002-10-28 2002-10-31 Electronic device having a plurality of printed circuit boards

Country Status (1)

Country Link
JP (1) JP4314809B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159004A1 (en) 2017-03-02 2018-09-07 三菱電機株式会社 Printed wiring board
WO2020021743A1 (en) 2018-07-26 2020-01-30 三菱電機株式会社 Printed circuit board
WO2020021742A1 (en) 2018-07-26 2020-01-30 三菱電機株式会社 Printed circuit board
DE112017008043T5 (en) 2017-11-02 2020-07-09 Mitsubishi Electric Corporation PCB ASSEMBLY
US11266018B2 (en) 2017-12-08 2022-03-01 Mitsubishi Electric Corporation Printed wiring board and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830456B2 (en) * 2005-11-11 2011-12-07 パナソニック株式会社 High voltage power supply
KR101178827B1 (en) 2009-03-04 2012-09-03 후지쯔 가부시끼가이샤 Printed circuit board module
JP2017017089A (en) * 2015-06-29 2017-01-19 三菱電機株式会社 Three-dimensional printed circuit board
US11122687B2 (en) 2017-12-11 2021-09-14 Mitsubishi Electric Corporation Printed wiring board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159004A1 (en) 2017-03-02 2018-09-07 三菱電機株式会社 Printed wiring board
US10757807B2 (en) 2017-03-02 2020-08-25 Mitsubishi Electric Corporation Printed wiring board and method for manufacturing printed wiring board
US11089679B2 (en) 2017-03-02 2021-08-10 Mitsubishi Electric Corporation Printed wiring board and method for manufacturing printed wiring board
DE112017008043T5 (en) 2017-11-02 2020-07-09 Mitsubishi Electric Corporation PCB ASSEMBLY
US11277914B2 (en) 2017-11-02 2022-03-15 Mitsubishi Electric Corporation Printed circuit board assembly
US11266018B2 (en) 2017-12-08 2022-03-01 Mitsubishi Electric Corporation Printed wiring board and method for manufacturing the same
WO2020021743A1 (en) 2018-07-26 2020-01-30 三菱電機株式会社 Printed circuit board
WO2020021742A1 (en) 2018-07-26 2020-01-30 三菱電機株式会社 Printed circuit board
US11432403B2 (en) 2018-07-26 2022-08-30 Mitsubishi Electric Corporation Printed circuit board
US11445609B2 (en) 2018-07-26 2022-09-13 Mitsubishi Electric Corporation Printed circuit board

Also Published As

Publication number Publication date
JP2004153178A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
KR100679216B1 (en) High Pressure Discharge Lamp Operation Device And Illumination Appliance Having The Same
CA2224300C (en) Discharge lamp driving bridge circuit
JP2001357986A (en) Discharge lamp lighting device
JP2009134945A (en) Led lighting device, and led illumination fixture
JP2009170804A (en) Lighting device
JP4314809B2 (en) Electronic device having a plurality of printed circuit boards
CN1695404B (en) High-pressure discharge lamp operation device and illumination appliance having the same
JP5980107B2 (en) Power supply device and lighting device
US6670778B2 (en) AC power generating apparatus having electrolytic capacitor and ceramic capacitor
JP5464328B2 (en) Power supply and lighting fixture
KR19990083245A (en) Discharge lamp lighting equipment and illuminating apparatus
US6107747A (en) Self ballasted fluorescent lamp and lighting fixture
JP3227175B2 (en) Printed circuit board structure of ballast for discharge lamp
JP2010056043A (en) Load control device and illumination apparatus
JP5476212B2 (en) POWER SUPPLY DEVICE AND LIGHTING DEVICE USING THE SAME
JP5240439B2 (en) Load control device and electrical equipment
JP2009295311A (en) Load control device and electric equipment
JP2009514158A (en) Gas discharge lamp lighting module
JPH07327376A (en) Power converter
JP2002075045A (en) Lighting equipment
KR100716562B1 (en) Electronic stabilizer for the use of high pressure discharge lamp
JP4075158B2 (en) High frequency inverter and discharge lamp lighting device
JP3151234B2 (en) Discharge lamp lighting device
JP3820902B2 (en) Discharge lamp lighting device
JP2005318686A (en) Dc/dc converter equipped with snubber circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4314809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees