JP4312769B2 - Floor structure, viscoelastic body used for floor structure, and construction method of floor structure - Google Patents

Floor structure, viscoelastic body used for floor structure, and construction method of floor structure Download PDF

Info

Publication number
JP4312769B2
JP4312769B2 JP2006076981A JP2006076981A JP4312769B2 JP 4312769 B2 JP4312769 B2 JP 4312769B2 JP 2006076981 A JP2006076981 A JP 2006076981A JP 2006076981 A JP2006076981 A JP 2006076981A JP 4312769 B2 JP4312769 B2 JP 4312769B2
Authority
JP
Japan
Prior art keywords
viscoelastic body
floor frame
floor
frame
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006076981A
Other languages
Japanese (ja)
Other versions
JP2007254959A (en
Inventor
治 木曽
博文 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP2006076981A priority Critical patent/JP4312769B2/en
Publication of JP2007254959A publication Critical patent/JP2007254959A/en
Application granted granted Critical
Publication of JP4312769B2 publication Critical patent/JP4312769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、梁と粘弾性体と床躯体とからなる床構造に関し、特に、振動絶縁性、低摩擦抵抗性及び粘接着性の三機能を発揮出来る粘弾性体に関し、更に詳しくは、かかる粘弾性体をその性能が十分に発揮する状態で圧縮固定に供用し、床躯体に受けた振動を梁に伝達させ難くする技術に関する。   The present invention relates to a floor structure composed of a beam, a viscoelastic body, and a floor frame, and more particularly to a viscoelastic body capable of exhibiting three functions of vibration insulation, low friction resistance, and adhesiveness. The present invention relates to a technique in which a viscoelastic body is used for compression fixation in a state where its performance is sufficiently exerted, and it is difficult to transmit vibration received by a floor frame to a beam.

従来、梁と床構造との取り合いには、ALC床版の様な版材に対しては、床版短辺を梁長辺に対して線状でゴムの帯状物が用いられ、その帯状物の長辺方向に対し直交方向の断面で見た時、山谷を設けたゴムで山の高さの異なるゴムが用いられていた(例えば、特許文献1参照)。
特開2005-016103号公報
Conventionally, for the connection between a beam and a floor structure, for a plate material such as an ALC floor slab, a strip of rubber is used in which the short side of the floor slab is linear with respect to the long side of the beam. When viewed in a cross section perpendicular to the long side direction, rubber having a mountain valley and having different mountain heights were used (see, for example, Patent Document 1).
JP 2005-016103 A

しかし、本発明者が検討したところ、床版を設置する時、梁長辺に平行方向での位置調整は容易であるが、梁長辺に直交方向には動き難く、剪断変形を受けているので、元の位置に復元し易く、復元し無い場合には、剪断変形を受けたままで供用され、本来の振動絶縁能力を発揮出来無いという不具合が見出された。   However, when the present inventor examined, when installing the floor slab, it is easy to adjust the position in the direction parallel to the long side of the beam, but it is difficult to move in the direction orthogonal to the long side of the beam and undergoes shear deformation. Therefore, it was easy to restore to the original position, and when it was not restored, it was used as it was subjected to shear deformation, and it was found that the original vibration insulation ability could not be exhibited.

一方、根太を有する床パネル等の床構造では、数10倍に発泡したポリエチレン等の発泡シートが用いられた時期もあったが、すぐに床荷重で発泡セルが潰れ、防振効果が発揮出来る状況では無かった。   On the other hand, in floor structures such as floor panels with joists, there were times when foamed sheets such as polyethylene foamed several tens of times were used, but the foamed cells were immediately crushed by the floor load, and the anti-vibration effect could be demonstrated There was no situation.

近年床衝撃音にも十分配慮され、梁に床構造の振動を伝え無い工夫が要求され、本発明者等は、柔軟で且つ低反撥ゴムが床衝撃音の低減に有効であるという知見を得ている。更に、従来の様な梁上に線状で用いるよりも点状で設けた方が、衝撃緩和変形のレスポンスが十分にとれる為、床衝撃音の低減に効果が高いという知見を得ている。   In recent years, the floor impact sound has also been sufficiently considered, and a device that does not transmit the vibration of the floor structure to the beam is required, and the present inventors have obtained the knowledge that flexible and low repulsion rubber is effective in reducing floor impact sound. ing. Furthermore, it has been found that the provision of dots in the form of dots rather than linear lines on a conventional beam is more effective in reducing floor impact noise because the response of impact relaxation deformation can be sufficiently taken.

そこで、本発明の課題は、床躯体の位置決めに際して、粘弾性体に対して剪断変形を残さ無い様にし、粘弾性体の振動絶縁能力等が十分に生かされる床構造を得る事である。
更に、本発明が解決しようとする課題には、以下の様なものも包含される。
(1)床躯体の載置固定により、少なくとも床躯体の自重を支持する粘弾性体には、分担荷重以上の荷重が作用し、その結果、粘弾性体は圧縮固定される事となり、これに床衝撃が掛かったとき、緩衝変形が速やかに行え、衝撃反力の作用を十分に制止する為には、柔軟且つ低反撥弾性を示す粘弾性体を得ることが課題の1つである。
(2)粘弾性体が、床構造の下部の粘接着固定部に切削油や防錆油等の油類の付着があっても、簡単な拭き取りだけでも粘接着可能な、油付着面接着性を有する様にする事が課題の1つである。
(3)梁上で床躯体の位置の微調整を容易にし、且つ粘弾性体の剪断変形が生じ難く、それに伴い、微調整前の位置への復元も生じ無い様に、粘弾性体の梁当接面の摩擦抵抗を小さくする事が課題の1つである。
Accordingly, an object of the present invention is to obtain a floor structure in which shear deformation is not left with respect to the viscoelastic body and the vibration insulation ability of the viscoelastic body is sufficiently utilized when positioning the floor frame.
Further, the problems to be solved by the present invention include the following.
(1) When the floor frame is placed and fixed, a load greater than the shared load acts on at least the viscoelastic body that supports the weight of the floor frame, and as a result, the viscoelastic body is compressed and fixed. One of the challenges is to obtain a viscoelastic body that is flexible and exhibits low rebound resilience in order to perform buffer deformation quickly when a floor impact is applied and to sufficiently restrain the impact reaction force.
(2) An oil-adhesive interview where the viscoelastic body can be adhered by simple wiping even if oil such as cutting oil or rust preventive oil adheres to the adhesive-fixing part at the bottom of the floor structure. One of the challenges is to make it wearable.
(3) The beam of the viscoelastic body is designed so that the fine adjustment of the position of the floor frame on the beam is easy and the shear deformation of the viscoelastic body does not easily occur, and accordingly the restoration to the position before the fine adjustment does not occur. One of the problems is to reduce the frictional resistance of the contact surface.

本発明は、対をなす梁と、梁間に横架される床躯体と、梁を床躯体と固定する固定部材と、梁と床躯体との間で圧縮固定される振動絶縁性の粘弾性体とを備える床構造であって、粘弾性体が、梁及び床躯体の一方又は双方との当接部分に、固定部材による前記梁への前記床躯体の未固定状態で、前記床躯体が載置された状態での前記粘弾性体の、前記梁の当接面に対する水平方向の移動又は前記床躯体の、前記粘弾性体の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有する床構造、かかる床構造に用いる粘弾性体に係るものである。
又、本発明は、対をなす梁と、梁間に横架される床躯体と、梁を床躯体と固定する固定部材と、梁と床躯体との間で圧縮固定される振動絶縁性の粘弾性体とを備える床構造を施工するにあたって、(a)粘弾性体を提供する工程であって、前記粘弾性体が、梁及び床躯体の一方又は双方との当接部分に、前記床躯体が載置された状態での前記粘弾性体の、前記梁の当接面に対する水平方向の移動又は前記床躯体の、前記粘弾性体の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有する工程、(b)粘弾性体及び前記粘弾性体上の床躯体を梁上で位置決めする工程、及び(c)固定部材により梁を床躯体と固定する工程を含む床構造の施工方法に係るものである。
The present invention relates to a pair of beams, a floor frame horizontally mounted between the beams, a fixing member that fixes the beam to the floor frame, and a vibration insulating viscoelastic body that is compressed and fixed between the beam and the floor frame. The viscoelastic body is mounted on a contact portion with one or both of the beam and the floor frame in a state where the floor frame is not fixed to the beam by a fixing member. A low frictional resistance layer that enables horizontal movement of the viscoelastic body with respect to the contact surface of the beam or horizontal movement of the floor frame with respect to the contact surface of the viscoelastic body in a placed state And a viscoelastic body used in the floor structure.
In addition, the present invention provides a pair of beams, a floor frame placed horizontally between the beams, a fixing member for fixing the beam to the floor frame, and a vibration insulating adhesive that is compressed and fixed between the beam and the floor frame. In constructing a floor structure comprising an elastic body, (a) a step of providing a viscoelastic body, wherein the viscoelastic body is in contact with one or both of a beam and a floor frame, Low friction that enables horizontal movement of the viscoelastic body with respect to the contact surface of the beam or horizontal movement of the floor frame with respect to the contact surface of the viscoelastic body in a state where the viscoelastic body is placed Construction of a floor structure including a step having a resistance layer, (b) a step of positioning the viscoelastic body and the floor frame on the viscoelastic body on the beam, and (c) a step of fixing the beam to the floor frame by a fixing member. It concerns the method.

本発明は、床躯体の位置決めに際し、床躯体を、梁との間の粘弾性体に対して、比較的自由に、粘弾性体に余計な応力を掛け無いで、微調整出来る様にすることで、床構造の施工性、粘弾性体の振動絶縁能力等が向上するという知見に基づく。   The present invention makes it possible to finely adjust the floor frame relatively freely with respect to the viscoelastic body between the beams and without applying extra stress to the viscoelastic body when positioning the floor frame. Therefore, it is based on the knowledge that the workability of the floor structure and the vibration insulation ability of the viscoelastic body are improved.

本発明によれば、床躯体が、粘弾性体に対して変形応力を掛け無い様にして移動出来る様になり、床構造施工の作業性が改善され、粘弾性体の振動絶縁能力等が十分に生かされる床構造を得られる。   According to the present invention, the floor frame can be moved without applying deformation stress to the viscoelastic body, the workability of the floor structure construction is improved, and the vibration insulation capacity of the viscoelastic body is sufficient. You can get the floor structure that will be used in the future.

本発明は、粘弾性体の振動絶縁能力等の性能を十分に生かすという目的を、粘弾性体の梁及び床躯体の少なくとも1方との当接部分に、床躯体の位置決めに際して床躯体の粘弾性体に対する水平方向の移動を可能とする低摩擦抵抗層を設ける事で、床構造の施工性を損なわず、むしろ向上させて実現する。   The object of the present invention is to sufficiently utilize the performance of the viscoelastic body, such as vibration insulation capability, at the time of positioning the floor frame at the abutting portion between the beam of the viscoelastic body and at least one of the floor frame. By providing a low friction resistance layer that enables horizontal movement with respect to the elastic body, the workability of the floor structure is not impaired but rather improved.

(a)(低摩擦抵抗層)
粘弾性体が、梁や床躯体と当接する部分に有する層である。低摩擦抵抗層は、粘弾性体が梁と床躯体との間で圧縮固定される前に、床躯体を、粘弾性体上に載置し、位置決めするに際して、粘弾性体に過剰な変形応力等が掛から無いで、それが粘弾性体中に残留し無い様に、床躯体の水平方向の移動を可能とする。低摩擦抵抗層は、梁上で床躯体の位置の微調整を容易にし、且つ微調整時に粘弾性体に剪断変形の残留が殆ど無い様にして、微調整前の位置への復元を防止する事が出来る。これには、摩擦抵抗の小さな層を用いる事が出来る。摩擦抵抗の小さな層は、摩擦係数の低い表面を持つ層であり、以下では、特に示す場合を除き、これらのものを含めて、低摩擦抵抗層という。低摩擦抵抗層は、粘弾性体が、梁に当接する部分及び床躯体に当接する部分の一方又は双方に設ける事が出来る。
(a) (Low friction resistance layer)
It is a layer that the viscoelastic body has in a portion that comes into contact with the beam or the floor frame. The low frictional resistance layer is formed by an excessive deformation stress applied to the viscoelastic body when the floor frame is placed and positioned on the viscoelastic body before the viscoelastic body is compressed and fixed between the beam and the floor frame. It is possible to move the floor frame in the horizontal direction so that it does not remain in the viscoelastic body. The low frictional resistance layer facilitates fine adjustment of the position of the floor frame on the beam, and prevents the residual viscoelastic body from having residual shear deformation at the time of fine adjustment, thereby preventing restoration to the position before fine adjustment. I can do it. For this, a layer having a small frictional resistance can be used. The layer having a low frictional resistance is a layer having a surface with a low friction coefficient, and hereinafter, unless otherwise specified, is referred to as a low frictional resistance layer. The low frictional resistance layer can be provided on one or both of the portion where the viscoelastic body is in contact with the beam and the portion where the viscoelastic body is in contact with the floor frame.

低摩擦抵抗層は、粘弾性体と一体的に形成しても良いが、粘弾性体の梁との当接面に、別の形態で設ける様にしても良い。かかる低摩擦係数の層は、クラフトテープや、ポリエチレン、ポリプロピレン、ポリエステル、塩化ビニル等の少なくとも1種から形成されるもの、特に、プラスチックテープ等が良く、これらを貼り付けて形成する事が出来る。又、場合によっては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、EVA(エチレン酢酸ビニル共重合体)等のシートやフィルム、それ等素材の低発泡の発泡体を低摩擦抵抗層(スペーサ)として粘弾性体の表面に積層して設けても良い。スペーサは、粘弾性体の全体の厚みを調整するもので、低摩擦抵抗層と別個に設けても良いが、上述の材質等の表面を持つスペーサは、低摩擦抵抗層としても働く。しかし乍ら、この様にして低発泡の発泡体を用いる場合、必要に応じて、所定の安全率を見据えた荷重を掛けて圧縮し、低反撥の発泡体自体の変形が無い事を確認する必要がある。   The low frictional resistance layer may be formed integrally with the viscoelastic body, but may be provided in another form on the contact surface of the viscoelastic body with the beam. Such a low coefficient of friction layer is formed of craft tape, at least one of polyethylene, polypropylene, polyester, vinyl chloride, and the like, in particular, plastic tape, and can be formed by attaching them. In some cases, a sheet or film of polyethylene, polypropylene, polyester, nylon, EVA (ethylene vinyl acetate copolymer) or the like, or a low-foam foam of such material as a low friction resistance layer (spacer) is used as a viscoelastic material. It may be provided by laminating on the surface. The spacer adjusts the overall thickness of the viscoelastic body and may be provided separately from the low friction resistance layer. However, the spacer having a surface such as the above-described material also functions as the low friction resistance layer. However, when using a foam with low foam in this way, if necessary, it is compressed by applying a load with a predetermined safety factor in mind, and it is confirmed that there is no deformation of the foam with low repulsion itself. There is a need.

摩擦抵抗の小さい度合いを簡単に判別するには、JIS-G-4305に規定するSUS 304鋼板で鏡面仕上げのステンレス板を用いる事が出来る。これに、粘弾性体を低摩擦抵抗層が当接する様にして載せ、ステンレス板を徐々にゆっくりと傾斜させていき、滑落の開始する角度を調べれば良い。この方法では、現場作業時における床躯体位置の微調整のし易さ、粘弾性体の剪断変形の残留の無さや、それに伴う床躯体の元の位置への復元の無さとの関係は、このときの滑落開始傾斜角が45°以下の範囲であれば、前記問題点が解消される範囲である事が経験上、非常に高い精度で相関性がある。このとき、傾斜角が45°を超えると、床躯体が徐々に動かし難くなり、粘弾性体が剪断変形を受け易くなり、床躯体も微調整前の元の位置に復元し易くなり、次第に、粘弾性体が剪断変形を受けた状態で固定される場合も生じて来る。傾斜角が5°未満では、滑り過ぎて、却って、位置修正が困難となったり、指を床躯体に挟む等の危険性が増したりするので好ましくない。   In order to easily determine the low degree of frictional resistance, it is possible to use a stainless steel plate with a mirror finish made of a SUS 304 steel plate specified in JIS-G-4305. The viscoelastic body is placed on the low frictional resistance layer so that the stainless steel plate is gradually inclined and the angle at which the sliding starts is examined. In this method, the relationship between the ease of fine adjustment of the floor frame position during field work, the absence of residual shear deformation of the viscoelastic body, and the subsequent restoration of the floor frame to its original position If the sliding start inclination angle at this time is in the range of 45 ° or less, it is found from the experience that there is a correlation with very high accuracy that the problem is solved. At this time, if the inclination angle exceeds 45 °, the floor frame becomes difficult to move gradually, the viscoelastic body is easily subjected to shear deformation, the floor frame is also easily restored to the original position before fine adjustment, gradually, In some cases, the viscoelastic body is fixed in a state of undergoing shear deformation. If the inclination angle is less than 5 °, it is not preferable because it is too slippery, which makes it difficult to correct the position or increases the risk of pinching a finger between the floor frame and the like.

(b)(粘弾性体の材質)
種々の材質の粘弾性体を用いる事が出来る。好ましくは、粘弾性体は低反撥性である。粘弾性体の反撥弾性を低減する事は、多くのゴムやエラストマーを単独又は併用し、その他ゴム工業や塗料工業で使用される材料を組み合わせる事で可能であるが、特に、低反撥弾性とするには、ブチルゴムをポリマーの80wt(重量)%以上とした系が優れている。それは、ブチルゴムは、架橋構造となる二重結合の数が少なく、必然的に架橋密度が低くなる為に、低反撥弾性の物を得易いという本来の特徴からである。このブチルゴムを更に低反撥性にする手段としては、ポリイソブチレン、部分架橋ゴム、再生ゴムをポリマー分として併用する方法や、粘着付与樹脂、アスファルト、粉末ゴムを添加する方法がある。
(b) (Viscoelastic material)
Various viscoelastic bodies can be used. Preferably, the viscoelastic body has low repulsion. Reducing the rebound resilience of a viscoelastic body can be achieved by using many rubbers and elastomers alone or in combination with other materials used in the rubber and paint industries. For example, a system in which butyl rubber is 80 wt% (weight) or more of the polymer is excellent. This is because butyl rubber has a small number of double bonds that become a cross-linked structure and inevitably has a low cross-linking density. As means for making this butyl rubber even more low-repellent, there are a method of using polyisobutylene, partially crosslinked rubber and reclaimed rubber as a polymer, and a method of adding a tackifier resin, asphalt and powder rubber.

前記手段により、反撥弾性率が15%(20℃に於ける)以下の粘弾性体(ゴム)を得る事が出来る。本発明で用いる粘弾性体は、床躯体と梁の間で用いられ、床躯体荷重を大抵は複数の粘弾性体で支持するので、粘弾性体1個当りの分担荷重は比較的大きく、場合によっては床躯体と梁を固定治具で締結による圧縮固定を行う事もあり、この場合は、予め圧縮固定される事になり、反撥弾性率は10%以下が望ましくなる。0%が理想的である。反撥弾性率はISO-4662に準じて測定する事が出来る。   By the above means, a viscoelastic body (rubber) having a rebound resilience of 15% or less (at 20 ° C.) can be obtained. The viscoelastic body used in the present invention is used between the floor frame and the beam, and since the load on the floor frame is usually supported by a plurality of viscoelastic bodies, the shared load per viscoelastic body is relatively large. Depending on the case, the floor frame and the beam may be compression-fixed by fastening with a fixing jig. In this case, compression and fixation are performed in advance, and the rebound resilience is preferably 10% or less. 0% is ideal. The rebound resilience can be measured according to ISO-4662.

(c)(粘弾性体の形状等)
種々の形状等の粘弾性体を用いる事が出来る。粘弾性体は、前述の様な圧縮固定時も、床衝撃時には更なる衝撃変形を素早く行う必要が生じる。この素早い衝撃変形に対応するには、従来の帯状物や線状物では変形抵抗が大き過ぎる為、好ましくは、粘弾性体を梁上に点状で配置する。このとき、驚くべき事には、点状配置にすると、500Hz以上の高周波音の発生量が非常に少なくなり、聴感上非常に良好となるという知見が得られた。
(c) (Viscoelastic body shape, etc.)
Viscoelastic bodies having various shapes can be used. The viscoelastic body needs to be further subjected to further impact deformation at the time of floor impact even during compression and fixation as described above. In order to cope with this quick impact deformation, the conventional strip-like object or linear object has a deformation resistance that is too large. Therefore, the viscoelastic body is preferably arranged on the beam in the form of dots. At this time, surprisingly, it was found that the generation of high-frequency sound of 500 Hz or more is very small and the audibility is very good when the dot arrangement is adopted.

粘弾性体は、好ましくは、反撥弾性率を小さくし、その一方では、圧縮永久歪を少なくする事に注意を払わなければならないが、このとき、温度は生活可能な範囲で考えれば良い。   The viscoelastic body preferably has a low rebound resilience, while on the other hand, care must be taken to reduce the compression set, but at this time, the temperature may be considered within the range where it can be lived.

(d)(粘接着層)
粘弾性体は、梁や床躯体との間に介在させる事が出来る。この場合、粘弾性体は、梁や床躯体に固定したり、接着させたりする事が出来る。又、予め、粘弾性体を、梁や床躯体に接着しておく事も出来る。好適例では、粘弾性体には、通常の粘接着層を用いる事が出来、更に、油付着面に対して接着性を有する粘接着性層(以下、油付着面に対して接着性を有する粘接着層を、特に、「粘接着性層」ということがある。)を用いる事が出来る。粘接着性層は、油を粘接着性層内に吸収拡散し易い特性を有する物が良く、ブチルゴム系粘接着性層、アクリル系粘接着性層、SIS系粘接着性層、SBS系粘接着性層等が適している。
(d) (Adhesive layer)
The viscoelastic body can be interposed between the beam and the floor frame. In this case, the viscoelastic body can be fixed to or bonded to the beam or the floor frame. In addition, a viscoelastic body can be bonded to a beam or a floor frame in advance. In a preferred example, an ordinary adhesive layer can be used for the viscoelastic body, and an adhesive layer having adhesiveness to the oil adhesion surface (hereinafter referred to as adhesion to the oil adhesion surface). In particular, an adhesive layer having a viscosity may be referred to as an “adhesive layer”. The adhesive layer should have the property of easily absorbing and diffusing oil into the adhesive layer. Butyl rubber adhesive layer, acrylic adhesive layer, SIS adhesive layer An SBS adhesive layer is suitable.

梁や床躯体、特に、床躯体下部の粘弾性体の取付け部は、床躯体の剛性確保の為、鋼材が用いられる場合があり、この場合は、切削油や防錆油が塗られたままの状態であるケースが多く、粘接着の観点からは、油分は粘接着の最大の阻害要因となり、被着体の鋼材は、ウエスの新しい面で何回拭いても、通常の粘接着剤では充分な粘接着性能を得る事は出来ず、溶剤系、その他、アルカリ系洗浄脱脂剤に頼らざるを得ない。ところが、近年、溶剤等は、人体への安全性、火災危険性等の観点から、特別な設備の下での作業が必要となり、一般的に使用出来るものではない。そこで、この様なケースでは、油付着面への粘接着性を有する粘接着性層が非常に有効となる。   In order to secure the rigidity of the floor frame, steel materials may be used for the beam and floor frame, especially the viscoelastic body mounting part at the bottom of the floor frame. In this case, the cutting oil or rust preventive oil remains applied. In many cases, the oil content is the biggest obstacle to adhesiveness from the viewpoint of adhesiveness, and the steel material of the adherend is usually adhesive regardless of how many times it is wiped with a new surface of the waste. Adhesives cannot provide sufficient adhesive performance, and must rely on solvent-based and other alkaline cleaning degreasing agents. However, in recent years, solvents and the like have to be operated under special equipment from the viewpoints of safety to the human body and fire risk, and are not generally usable. Therefore, in such a case, an adhesive layer having adhesiveness to the oil adhesion surface is very effective.

油付着面への粘接着が可能とは言え、自ずと油付着の程度があり、防錆油を全面に吹付処理した場合には、油分が多過ぎ、新しいウエスで2回以上拭き取る必要がある。つまり、1回の拭き取りでは、油膜は、薄くなって被着面全面に拡がるだけである。次に新しいウエスで拭き取れば、被着体表面の油膜の大半は除去出来ているが、油分が完全に除去された状態ではない。したがって、本発明にかかる粘接着性層は、油付着面用のもので、この程度で充分に粘接着が可能となるもので、その点が通常の粘接着層との差となる。
本発明にかかる油付着面への接着性を有する粘接着層は、JIS-Z-0237に準じて、油付着面に対して貼り付けを行い、貼り付け直後の180°剥離接着力が0.3kgf(約2.9N、以下では、1kgf=9.80665Nとして換算)/25mm以上を示すものを言う。好ましくは、油付着面への接着性の程度は、防錆油ダフニースーパーコートTW0.5〜3g/m2(5g/m2を塗布し新しいウエスで2回拭き取った程度の状態の油の量)を塗布し均一に延ばしたもので測定し、上記0.3kgf(約2.9N)/25mm以上のものである。
Although it can be adhered to the oil-adhered surface, there is a natural degree of oil adhesion, and when rust-preventive oil is sprayed over the entire surface, it is too oily and must be wiped twice or more with a new waste cloth. . That is, in one wiping, the oil film becomes thin and spreads over the entire adherend surface. Next, if it wipes off with a new waste, most of the oil film on the surface of the adherend can be removed, but the oil is not completely removed. Therefore, the adhesive layer according to the present invention is for an oil-adhering surface, and can be sufficiently adhered to this extent, which is the difference from a normal adhesive layer. .
The adhesive layer having adhesiveness to the oil adhesion surface according to the present invention is applied to the oil adhesion surface according to JIS-Z-0237, and the 180 ° peel adhesion immediately after the application is 0.3. This refers to kgf (about 2.9N, hereinafter converted as 1kgf = 9.80665N) / 25mm or more. Preferably, the degree of adhesion to the oil deposition surface, the amount of anti-rust oil Daphne supercoat TW0.5~3g / m 2 (5g / m 2 was applied in the degree of wiped twice with a new waste state oil ) Is applied and uniformly extended, and the above is 0.3 kgf (about 2.9 N) / 25 mm or more.

粘接着性層は、油分が粘接着性層中に吸収拡散されるので、前記の様に前処理で油をある程度除去しておかないと、粘接着層が柔らかくなり過ぎ、夏場等ではクリープ現象が生じるおそれがある。一方では、粘接着性層は、油の吸収拡散性が高い為に、粘接着性を発揮する様になるもので、貼付経時による粘接着力は、貼付直後には低く、数時間で1日後程度の接着強度が得られるので、貼付直後は粘弾性体を数時間圧着させるか、又は粘弾性体の自重が掛かる様にした方が良く接着する。油付着は無い方が良いが、鉄等は錆防止等の為に油が塗られて出荷される事が多く、油種も様々であり、必要に応じ、新しいウエスで2回程度拭き取って油付着面接着性を有する粘接着性層を用いた処理等を施すのが良い。粘接着性層にとって好ましい油付着程度は、上記の様な剥離接着力で0.3kgf(約2.9N)/25mm以上を示すものである。   The adhesive layer absorbs and diffuses oil into the adhesive layer, so if the oil is not removed to some extent in the pretreatment as described above, the adhesive layer becomes too soft, such as in summer. In this case, a creep phenomenon may occur. On the other hand, the adhesive layer exhibits high adhesiveness due to its high oil diffusibility, and its adhesive strength over time is low immediately after application. Since an adhesive strength of about one day can be obtained, it is better to bond the viscoelastic body for several hours immediately after sticking or to apply the own weight of the viscoelastic body. It is better that there is no oil adhesion, but iron is often shipped with oil applied to prevent rust, etc., and there are various types of oil. If necessary, wipe off oil with a new waste cloth about twice. It is preferable to perform a treatment using an adhesive layer having adhesion surface adhesion. The preferred degree of oil adhesion for the adhesive layer is 0.3 kgf (about 2.9 N) / 25 mm or more in the peel adhesion as described above.

本発明を以下、構成材について順次述べる。
(1)(床躯体)
床躯体は、合い対向する梁上に横架される床構成材である。床躯体は、ALC床版、PC床版、板材等で良く、これらを複数の根太に支持固定したものであっても良い。根太は、木製、鋼製等、種々の材質のもので良く、代表的なものは角材である。剛性の根太には、鋼材を用いる事が出来、この場合、角パイプが、剛性を得易い割に軽量であるので好ましい。
Hereinafter, the present invention will be sequentially described with respect to the constituent materials.
(1) (floor frame)
The floor frame is a floor component that is laid on beams facing each other. The floor frame may be an ALC floor slab, a PC floor slab, a plate material, etc., and these may be supported and fixed to a plurality of joists. The joist may be made of various materials such as wooden and steel, and a typical one is square wood. A steel material can be used for the joist of rigidity, and in this case, a square pipe is preferable because it is light enough to obtain rigidity.

床躯体自体は、大抵は複数用いられ、床全体で個々独立している場合が多いが、梁間に横架固定された後に、床躯体間の長辺及び短辺の継目を跨る様に、床躯体の上側又は下側に板材を積層し、ビス等で固定すれば、複数の床躯体は連結一体化床となって、床躯体が広く重い床となり、床振動を起こす為には大きな振動エネルギーを要する様になって、耐衝撃性等にとっては有利となる。このとき、積層される板材は、床躯体の長辺に対し板材の長辺を直交させる方が、床躯体自体の振動し難さを増す事が出来る。又、板材は、種々の異なる種類のものを複数枚用いる事が出来る。複数の板材では、各々交互に板材長辺同士を直交させる方が、剛性を増すので好ましいが、石膏ボードやアスファルトに高比重充填剤を混合し、成型された遮音マットの様な板材は、必ずしも、長辺を直交させる必要は無い。床躯体は、対向する梁間に横架され、床躯体が移動落下する事を防止する為、梁に移動止めを設けたり、床躯体と梁を固定治具で固定したりしても良い。   The floor frame itself is usually used in multiple numbers and is often independent of the entire floor.However, after being fixed horizontally between the beams, the floor frame is strung across the long and short seams between the floor frames. If a plate material is laminated on the upper side or the lower side of the frame and fixed with screws, etc., multiple floor frames become connected and integrated floors, and the floor frame becomes a wide and heavy floor. This is advantageous for impact resistance and the like. At this time, the laminated plate material can increase the difficulty of vibration of the floor frame itself if the long side of the plate material is orthogonal to the long side of the floor frame. Further, a plurality of different types of plate materials can be used. In the case of a plurality of plate materials, it is preferable to alternately cross the long sides of the plate materials alternately because it increases rigidity, but a plate material such as a sound insulation mat formed by mixing a high specific gravity filler with gypsum board or asphalt is not necessarily required. It is not necessary to make the long sides orthogonal. In order to prevent the floor frame from moving and dropping, the floor frame may be provided between the beams facing each other, and a movement stop may be provided on the beam, or the floor frame and the beam may be fixed with a fixing jig.

床躯体下部には、粘弾性体を予め設けておく事が出来る。この場合、床躯体に、粘弾性体を所々に点状に分散させ、粘弾性体を粘接着性層で固定し、粘弾性体の梁側には、粘弾性体の低摩擦抵抗層を設ける事が出来る。かかる床躯体は、粘弾性体の低摩擦抵抗層が梁に当接する様にして横架され、床躯体の位置の微調整を行った後、供用する事が出来る。その後、更に固定治具で床躯体と梁を固定治具で締結固定しても良い。固定治具で締結固定する場合は、床荷重の分担荷重以上の荷重を分担するので、圧縮固定から素早い緩衝変位が被衝撃時に可能な事が必要である。   A viscoelastic body can be provided in advance in the lower part of the floor frame. In this case, the viscoelastic body is dispersed in a point-like manner on the floor frame, the viscoelastic body is fixed with an adhesive layer, and a low friction resistance layer of the viscoelastic body is provided on the beam side of the viscoelastic body. Can be provided. Such a floor frame can be used after being laid horizontally so that the low frictional resistance layer of the viscoelastic body is in contact with the beam and finely adjusting the position of the floor frame. Thereafter, the floor frame and the beam may be further fastened and fixed with a fixing jig. In the case of fastening and fixing with a fixing jig, since a load equal to or greater than the shared load of the floor load is shared, it is necessary to be able to perform a quick buffer displacement from the compression fixation at the time of impact.

(2)(粘弾性体)
粘弾性体の圧縮の目安は、予め粘弾性体の圧縮荷重と変位の関係と使用個数により分担荷重を求めて決める事が出来る。圧縮固定からの緩衝変位を考慮すると、予め圧縮しておく量は、粘弾性体の厚みの5〜35%が、より一層好ましくは、15〜25%が、素早い緩衝変位をさせる上で好ましい。このときの圧縮比は、スペーサ等の厚さは含まず、粘弾性体単体で考える必要がある。粘弾性体の硬度はJIS-A型硬度計で30〜60程度の柔らかなものが適している。
(2) (Viscoelastic body)
The standard of compression of the viscoelastic body can be determined in advance by determining the shared load based on the relationship between the compression load and displacement of the viscoelastic body and the number of the viscoelastic body used. Considering the buffer displacement from the compression fixation, the amount to be compressed in advance is preferably 5 to 35% of the thickness of the viscoelastic body, more preferably 15 to 25% in order to make quick buffer displacement. The compression ratio at this time does not include the thickness of the spacer or the like, and needs to be considered as a single viscoelastic body. The softness of the viscoelastic body is about 30 to 60 with a JIS-A type hardness tester.

粘弾性体は、線状や帯状でなく、点状で用いる事が出来るので、この場合、床衝撃に対し、粘弾性体が変位し易く、振動絶縁し易くなる。その結果、この様に点状で用いた場合の特徴は、特に、500Hz以上の高周波音が大きく低減し、聴感上非常に静かになった感じがする。この粘弾性体は、特に、反撥弾性の低い粘弾性体にする事により、単に振動絶縁性が良いだけではなく、床衝撃を受けた時、衝撃反力が小さくなる長所がある。この様な柔軟な反撥弾性の低い粘弾性体は、ポリマー成分の80wt%以上をブチルゴムにした場合、特に振動絶縁性が良くなる。100%のブチルゴムの割合が理想的である。   Since the viscoelastic body can be used in the form of a point instead of a line or a band, in this case, the viscoelastic body is easily displaced with respect to a floor impact, and vibration is easily insulated. As a result, the characteristics when used in the form of dots in this way, especially, the high frequency sound of 500 Hz or more is greatly reduced, and it feels very quiet for hearing. In particular, this viscoelastic body is not only good in vibration insulation by making it a viscoelastic body with low rebound resilience, but also has the advantage of reducing impact reaction force when subjected to floor impact. Such a soft viscoelastic body having low rebound resilience particularly improves vibration insulation when 80% by weight or more of the polymer component is made of butyl rubber. A proportion of 100% butyl rubber is ideal.

粘弾性体では、梁と当接する面は、床構造、特に床躯体の位置の微調整が容易となり、且つ粘弾性体の剪断変形が生じ無い様に、摩擦抵抗の低い層を設ける必要がある。床躯体下部に粘弾性体を点状で設ける場合、粘弾性体1個当りで受ける応力が大きくなる為、容易に位置ずれを直す工夫が必要である。粘弾性体に設ける摩擦抵抗の低い層は、シリコン焼付クラフト紙、ポリエチレン、ポリプロピレン、ナイロン、ポリエステル、EVA、塩ビ等のフィルムやシートがあり、前記ポリマーを低発泡した発泡体でも良い。又、黒鉛、タルク、雲母の様な鱗片状に層間剥離し易い粉体、又は他の粉体等を塗布した層であっても良い。   In the viscoelastic body, it is necessary to provide a layer having a low frictional resistance on the surface in contact with the beam so that the fine adjustment of the position of the floor structure, particularly the floor frame, is facilitated and the shear deformation of the viscoelastic body does not occur. . When a viscoelastic body is provided in the lower part of the floor frame, the stress applied to each viscoelastic body increases, so it is necessary to devise a way to easily correct the positional deviation. The layer having a low frictional resistance provided on the viscoelastic body may be a film or sheet of silicon baked kraft paper, polyethylene, polypropylene, nylon, polyester, EVA, polyvinyl chloride or the like, and may be a foam in which the polymer is low foamed. Further, it may be a layer such as graphite, talc, mica, or the like coated with powder that easily peels between layers, or other powder.

(3)(粘弾性体付き床躯体)
床躯体に予め粘弾性体を接着させたもの、典型的には、床躯体と粘弾性体との組合せ、例えば、粘弾性体付き床躯体を用いる事が出来る。
(3) (floor frame with viscoelastic body)
A viscoelastic body previously bonded to the floor frame, typically a combination of a floor frame and a viscoelastic body, for example, a floor frame with a viscoelastic body can be used.

粘弾性体の床躯体下部への取付けは、粘接着層、特に、油付着面に対して十分な接着性を有する粘接着性層で行えば良く、床躯体として、ALC床版の様な表面がポーラスなもの(多孔質のもの)を用いる場合は、その中に入り込むだけの量の粘接着層の厚みを予め予定して、粘接着層を厚くする方が良い。ALC床版の場合、その厚くする分の目安は0.5mm〜2.0mm位が適切である。   The viscoelastic body may be attached to the lower part of the floor frame by using an adhesive layer, especially an adhesive layer that has sufficient adhesion to the oil adhesion surface. When a porous surface (porous material) is used, it is better to preliminarily plan the thickness of the adhesive layer in an amount sufficient to enter the porous surface and increase the thickness of the adhesive layer. In the case of ALC floor slabs, the appropriate thickness is about 0.5mm to 2.0mm.

床躯体の下部の粘弾性体取付け部に鋼材が用いられる場合は、加工時に切削油や防錆油が塗布され、比較的多量の油が付着している場合が多く、目視で油膜が取れた様に見えても、新しいウエスで3〜4回拭き取っても、通常の粘接着は不可能であり、通常は脱脂工程を経て粘接着されなくてはならない。ところが、脱脂剤は溶剤を多量に含むか、アルカリや界面活性剤を多量に含み、何れの系でも、火災の危険性や人体への安全性を回避する為、専用設備を必要とし、一般的でない。そこで、かかる場合には、脱脂の為の専用設備の無い場合でも対応し得る様に、油膜が残らない様にウエスの新しい面で拭いた状態なら充分接着可能な油付着面への接着性を有する粘接着性層を設ける事が出来る。   When steel is used for the viscoelastic body mounting part at the bottom of the floor frame, cutting oil or rust preventive oil is applied during processing, and a relatively large amount of oil is often attached, and the oil film is removed visually. Even if it looks like it, even if it is wiped 3 to 4 times with a new waste cloth, normal adhesive bonding is impossible, and it usually has to be bonded through a degreasing process. However, degreasing agents contain a large amount of solvents or a large amount of alkalis and surfactants. In any system, special equipment is required to avoid the risk of fire and safety to the human body. Not. Therefore, in such a case, if it is wiped with a new surface of the waste so that an oil film does not remain so that it can be handled even if there is no dedicated equipment for degreasing, the adhesion to the oil adhesion surface that can be sufficiently bonded is ensured. The adhesive layer which has can be provided.

油付着面への接着性は、粘接着剤が油を層内に吸収拡散して得られるので、貼付後の経時が長い方が粘接着に有利であり、温度が高い方が有利であるので、貼付後は数時間、粘弾性体の自重でも良いので静置した方が良い。   Adhesion to the oil adhesion surface is obtained by absorbing and diffusing the oil into the layer, so that the longer the time after sticking, the better the adhesive, and the higher the temperature, the better. Therefore, it is better to leave the viscoelastic body for several hours after sticking because it may be the weight of the viscoelastic body.

(4)(梁)
梁は床躯体を横架支持し、且つ粘弾性体が圧縮固定されれば、構造、材質共に何等制約は無い。対を成す梁には、対向する梁が包含される。粘弾性体は、予め梁に粘接着され、粘弾性体の低摩擦抵抗層が床躯体に当接し、床躯体の位置決めの際に粘弾性体に変形応力が残ら無い様にする事も出来る。
(4) (Beam)
As long as the beam supports the floor frame horizontally and the viscoelastic body is compressed and fixed, there are no restrictions on the structure and material. The pair of beams includes opposing beams. The viscoelastic body is pre-adhered to the beam so that the low frictional resistance layer of the viscoelastic body abuts against the floor frame so that no deformation stress remains in the viscoelastic body when positioning the floor frame. .

図面を参照して、本発明をより一層詳細に説明する。
図1は1例の床構造の側面図である。図2は図1の床構造の平面図である。図3は1例の粘弾性体の断面図である。図4は他の例の粘弾性体の断面図である。図5は他の例の床構造の側面図である。図6は図5の床構造の平面図である。
The present invention will be described in more detail with reference to the drawings.
FIG. 1 is a side view of an example floor structure. FIG. 2 is a plan view of the floor structure of FIG. FIG. 3 is a cross-sectional view of an example viscoelastic body. FIG. 4 is a cross-sectional view of another example of a viscoelastic body. FIG. 5 is a side view of another example floor structure. FIG. 6 is a plan view of the floor structure of FIG.

図1は1例の床構造1の側面図である。床構造1は、1対の梁2(対向する梁は図1の右側方向にある)と、梁2間に横架される床躯体3と、梁2と床躯体3との間で圧縮固定される振動絶縁性の粘弾性体4と、梁2を床躯体3と固定する固定部材5とを備える。粘弾性体4は、粘弾性体本体4Aを備え、梁2との当接部分に、固定部材5による梁2への床躯体3の未固定状態で、床躯体3が載置された状態での粘弾性体4の、梁2の当接面に対する水平方向の移動を可能とする、低摩擦抵抗層4Bを有する。或は又、それに代えてか追加して、粘弾性体4は、床躯体3との当接部分に、固定部材5による梁2への床躯体3の未固定状態で、床躯体3の、粘弾性体4の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有する事が出来る。   FIG. 1 is a side view of an example floor structure 1. The floor structure 1 is compression-fixed between a pair of beams 2 (the opposite beams are in the right direction in FIG. 1), a floor frame 3 that is placed between the beams 2, and the beam 2 and the floor frame 3. The vibration-insulating viscoelastic body 4 and the fixing member 5 that fixes the beam 2 to the floor frame 3 are provided. The viscoelastic body 4 includes a viscoelastic body main body 4A, and is in a state where the floor frame 3 is placed in a state where the floor frame 3 is not fixed to the beam 2 by the fixing member 5 at a contact portion with the beam 2. The low-friction resistance layer 4B that enables the viscoelastic body 4 to move in the horizontal direction with respect to the contact surface of the beam 2 is provided. Alternatively or in addition, the viscoelastic body 4 is in a state in which the floor frame 3 is not fixed to the beam 2 by the fixing member 5 at the contact portion with the floor frame 3, It is possible to have a low friction resistance layer that enables horizontal movement with respect to the contact surface of the viscoelastic body 4.

粘弾性体4は、梁2に当接する側に低摩擦抵抗層4Bを有する。低摩擦抵抗層4Bは摩擦抵抗係数の小さい層である。図1では、粘弾性体4は、更に粘接着層4Cを有する。粘弾性体4は、粘弾性体本体4Aによる振動絶縁性等の性能、低摩擦抵抗層4Bによる梁2と床躯体3との間、特に、梁2と粘弾性体4との間の容易な移動性、粘接着層4Cによる粘弾性体4の床躯体3への固定性の三機能を発揮する。   The viscoelastic body 4 has a low frictional resistance layer 4B on the side in contact with the beam 2. The low frictional resistance layer 4B is a layer having a small frictional resistance coefficient. In FIG. 1, the viscoelastic body 4 further has an adhesive layer 4C. The viscoelastic body 4 has a performance such as vibration insulation by the viscoelastic body main body 4A, between the beam 2 and the floor frame 3 by the low frictional resistance layer 4B, in particular, between the beam 2 and the viscoelastic body 4. It exhibits the three functions of mobility and fixation of the viscoelastic body 4 to the floor frame 3 by the adhesive layer 4C.

床躯体3を位置決めする際には、粘弾性体4は、その粘接着層4Cによって、予め床躯体3に貼付けられ、床躯体3と共に吊り上げられ、梁2上に載置される。粘弾性体4は梁2と床躯体3との間に介在する。多くの場合、床躯体3を正確に位置決めする為に、概略位置決めした床躯体3の位置を微調整する必要があり、その場合には、粘弾性体4の低摩擦抵抗層4Bが床躯体3の水平方向のスムースな移動を許容し、粘弾性体本体4Aに無用な、しかも振動絶縁性等に悪影響を及ぼす応力が残らない様にする事が出来る。   When positioning the floor frame 3, the viscoelastic body 4 is affixed to the floor frame 3 in advance by the adhesive layer 4C, lifted together with the floor frame 3, and placed on the beam 2. The viscoelastic body 4 is interposed between the beam 2 and the floor frame 3. In many cases, in order to accurately position the floor frame 3, it is necessary to finely adjust the position of the roughly positioned floor frame 3. In this case, the low frictional resistance layer 4B of the viscoelastic body 4 is used as the floor frame 3. It is possible to allow smooth movement in the horizontal direction so that no unnecessary stress remains on the viscoelastic body body 4A and adversely affects vibration insulation.

粘弾性体4は、梁2と床躯体3との間に介在させて所期の振動絶縁性等の性能を発揮出来れば、固定治具5等で梁2と床躯体3との間で圧縮固定しても良い。床構造1では、床躯体3上に板材を積層し、隣接する床躯体3を連結一体化する事が出来るが、特に図示してはいない。他の例の粘弾性体では、三機能を有する点で共通させ、サイズ(寸法)を相違させる事が出来る。   If the viscoelastic body 4 is interposed between the beam 2 and the floor frame 3 and exhibits the desired performance such as vibration insulation, it is compressed between the beam 2 and the floor frame 3 with a fixing jig 5 or the like. It may be fixed. In the floor structure 1, a plate material can be laminated on the floor frame 3, and adjacent floor frames 3 can be connected and integrated, but this is not particularly shown. The viscoelastic body of another example can be made common in that it has three functions, and can have different sizes (dimensions).

図2は図1の床構造1の平面図である。梁2は床躯体3の両側にあるが、図2では片側を省略している。床躯体3は、四隅に三機能を有する粘弾性体4を設け、図2では判明しないが、粘接着層4Cを床躯体3の下面に貼着する。床躯体3は、座ぐり穴3Aに納まり、床躯体3上に突出する事が無い固定治具5を用いて、梁2と固定する事が出来る。他の例の床構造では、三機能を有する粘弾性体を用いる点は共通させるが、粘弾性体の位置を各々100mm等の距離内側にして相違させ、粘弾性体の寸法、低摩擦抵抗層の寸法を相違させる事が出来る。   FIG. 2 is a plan view of the floor structure 1 of FIG. The beams 2 are on both sides of the floor frame 3, but one side is omitted in FIG. The floor case 3 is provided with viscoelastic bodies 4 having three functions at the four corners, and the adhesive layer 4C is adhered to the lower surface of the floor case 3 although it is not found in FIG. The floor frame 3 can be fixed to the beam 2 by using a fixing jig 5 which is accommodated in the counterbore 3A and does not protrude onto the floor frame 3. The floor structure of another example uses a viscoelastic body having three functions in common, but the position of the viscoelastic body is set to a distance of, for example, 100 mm, and the dimensions of the viscoelastic body are reduced. The dimensions can be made different.

図3は、図1及び2等で用いる事が出来る1例の三機能を有する粘弾性体4の断面図である。粘弾性体4は、振動絶縁性を有する粘弾性体本体4Aを備え、その一方の面に低摩擦抵抗層4Bが設けられ、残る一方の面には粘接着層4Cが設けられ、更に粘接着層4Cには、保護離型紙4Dが設けられる。保護離型紙4Dは、梁や床躯体に接着する際に除去される。   FIG. 3 is a cross-sectional view of one example of a viscoelastic body 4 having three functions that can be used in FIGS. The viscoelastic body 4 includes a viscoelastic body main body 4A having vibration insulating properties, a low friction resistance layer 4B is provided on one surface thereof, and an adhesive layer 4C is provided on the other surface, and further the viscoelastic body 4A is provided. A protective release paper 4D is provided on the adhesive layer 4C. The protective release paper 4D is removed when adhering to a beam or a floor frame.

図4は図3のものとは異なる例の粘弾性体14の断面図であるが、図3のものと同様に三機能を有する。粘弾性体14は、振動絶縁性を有する粘弾性体本体14Aを備え、その一方の面には低摩擦抵抗層14Bが、図3のものよりは厚く図3の寸法通りでは無いが、ある程度の厚みを持ってスペーサとして設けられている。これは、梁上から仕上げ面までの高さを調節する手段としては、既知の粘弾性体の圧縮変位/圧縮応力の関係を新たに実験する事なく利用出来る。図3のものと同様に、残る一方の面には粘接着層14Cが設けられ、更に粘接着層14Cには、保護離型紙14Dが設けられる。粘接着層は、粘接着性層を用いる事が出来、粘接着性層は、油付着面に対しても十分な接着性を有する。   FIG. 4 is a cross-sectional view of a viscoelastic body 14 of an example different from that of FIG. 3, but has three functions as in FIG. The viscoelastic body 14 includes a viscoelastic body main body 14A having vibration insulation, and a low frictional resistance layer 14B is thicker than that of FIG. The spacer is provided with a thickness. This can be used as a means for adjusting the height from the top of the beam to the finished surface without newly experimenting with the relationship between the compression displacement / compression stress of a known viscoelastic body. As in the case of FIG. 3, an adhesive layer 14C is provided on the remaining one surface, and a protective release paper 14D is provided on the adhesive layer 14C. As the adhesive layer, an adhesive layer can be used, and the adhesive layer has sufficient adhesiveness to the oil adhesion surface.

図5は他の例の床構造21の側面図である。床構造21では、根太26と板材27とからなる床躯体23を用いる。粘弾性体24は、粘弾性体本体24Aを備え、その梁22側には、低摩擦抵抗層24Bが設けられ、梁22に当接し、床躯体23側には、粘接着性層24Cが設けられ、それが床躯体23の下面に貼着される。粘弾性体24は固定治具25により圧縮固定される。この例では、床躯体23上に板材を積層し、隣接した床躯体23を連結一体化する事が出来るが、図示は省略した。   FIG. 5 is a side view of a floor structure 21 of another example. In the floor structure 21, a floor frame 23 composed of a joist 26 and a plate material 27 is used. The viscoelastic body 24 includes a viscoelastic body 24A, a low friction resistance layer 24B is provided on the beam 22 side, abuts against the beam 22, and a viscoadhesive layer 24C is provided on the floor frame 23 side. It is provided and attached to the lower surface of the floor frame 23. The viscoelastic body 24 is compressed and fixed by a fixing jig 25. In this example, a plate material can be laminated on the floor frame 23 and the adjacent floor frame 23 can be connected and integrated, but the illustration is omitted.

図6は図5の床構造21の平面図である。図6では、板材27を3本の根太26で支持した床躯体23が、1本の梁22上で、三機能を有する3個の粘弾性体24を介し、固定治具25によって固定されている所を示す。   FIG. 6 is a plan view of the floor structure 21 of FIG. In FIG. 6, the floor frame 23 that supports the plate member 27 with three joists 26 is fixed on a single beam 22 by three fixing viscoelastic bodies 24 by a fixing jig 25. Indicates where you are.

以下、実施例に基づいて、本発明をより一層詳細に説明する。
(実施例1)
図1及び2に示す様な床構造を、図3及び4に示す様な粘弾性体を用いて施工する。
実験室2階の床開口部の四隅に、角パイプ状のボルト締結用穴を設けたジョイント部を設置する。ジョイント部には、I型鋼梁をボルト固定する。I型鋼梁は、両端と中央にジョイント部のボルト穴に合わせた穴を有する鉄板を、溶接したものである。I型鋼梁は実験室床躯体から浮かせる。I型鋼梁は、長辺2本と短辺1本を大梁とし、残る短辺は小梁とし、長辺中央に控梁を大梁と面一にして床梁組を作る。
Hereinafter, the present invention will be described in more detail based on examples.
(Example 1)
A floor structure as shown in FIGS. 1 and 2 is constructed using a viscoelastic body as shown in FIGS.
Joints with square pipe-shaped bolt fastening holes are installed at the four corners of the floor opening on the second floor of the laboratory. I-shaped steel beams are bolted to the joints. The I-type steel beam is obtained by welding an iron plate having holes matched to the bolt holes of the joint at both ends and the center. Type I steel beams are lifted from the laboratory floor. The I-shaped steel beam has two long sides and one short side as a large beam, and the remaining short side is a small beam.

短辺梁3本で床躯体を支持させる為、床躯体のALC床版(100mm厚×606mm幅×1820mm長さ)の幅方向四隅に、1個ずつ三機能を有する粘弾性体を粘接着層で固定し、梁に低摩擦抵抗層を当接させ、梁上でALC床版の位置の微調整を行って、動き易さ、粘弾性体の剪断変形残り、位置微調整後の復元等をチェックする。床躯体の位置調整による粘弾性体の状況についての結果を、表1に示す。   In order to support the floor frame with three short-side beams, viscoelastic bodies with three functions one at a time are adhered to the four corners of the ALC floor slab (100 mm thickness x 606 mm width x 1820 mm length) of the floor frame. Fixed with a layer, a low friction resistance layer is brought into contact with the beam, fine adjustment of the position of the ALC slab on the beam, ease of movement, residual shear deformation of the viscoelastic body, restoration after fine adjustment of the position, etc. Check. Table 1 shows the results of the situation of the viscoelastic body by adjusting the position of the floor frame.

実験の詳細を以下に示す。
粘弾性体は配合処方例A(表2)であり、粘接着層は1mm厚のブチルゴム粘着層(圧縮固定で使用する為、厚みは無視する)である。低摩擦抵抗層はクラフトテープを使用する。粘弾性体本体のサイズは、6.5mm総厚×40mm幅×40mm長さである。
Details of the experiment are shown below.
The viscoelastic body is Compound Formulation Example A (Table 2), and the adhesive layer is a 1 mm thick butyl rubber adhesive layer (because it is used for compression fixation, the thickness is ignored). Kraft tape is used for the low friction resistance layer. The size of the viscoelastic body is 6.5 mm total thickness × 40 mm width × 40 mm length.

床躯体は、梁上に粘弾性体の低摩擦抵抗層を当接させて載置し、その後、予め設けた座ぐり穴と貫通穴に固定治具を入れ、梁と床躯体との間で粘弾性体を圧縮固定する。圧縮では、粘弾性体の厚み6.5mmが5mmになる様に、1.5mm圧縮する。ALC床版は、梁長辺とALC床版長辺を平行に6枚設置する。   The floor frame is placed with the low frictional resistance layer of the viscoelastic body in contact with the beam, and then a fixing jig is inserted into the counterbore and through hole provided in advance, and the beam is placed between the beam and the floor frame. The viscoelastic body is compressed and fixed. In compression, the viscoelastic body is compressed 1.5 mm so that the thickness of 6.5 mm is 5 mm. Six ALC slabs are installed in parallel with the long side of the beam and the long side of the ALC slab.

ここで、I型鋼大梁は、200mm高さ×100mm幅×4mm厚(高さ方向の厚み)×5mm厚(幅方向の厚み)の断面で、長辺方向は3.45m長さである。短辺方向は1.72mである。I型鋼小梁は、200mm高さ×100mm幅×3mm厚(高さ方向の厚み)×4.5mm厚(幅方向の厚み)で1.72m長さである。I型鋼控え梁は、190mm高さ×100mm幅×3.2mm厚(高さ方向の厚み)×3.5mm厚(幅方向の厚み)で1.72m長さである。   Here, the I-shaped steel girder has a cross section of 200 mm height × 100 mm width × 4 mm thickness (thickness in the height direction) × 5 mm thickness (thickness in the width direction), and the long side direction is 3.45 m long. The short side direction is 1.72m. The I-shaped steel beam is 200 mm high x 100 mm wide x 3 mm thick (height in the height direction) x 4.5 mm thick (thickness in the width direction) and is 1.72 m long. The I-shaped steel retaining beam is 190 mm high × 100 mm wide × 3.2 mm thick (height in the height direction) × 3.5 mm thick (thickness in the width direction) and is 1.72 m long.

次に、下層のALC床版の長辺と、上層のパーチクルボード(15mm厚×910mm幅×1820長さ)の長辺とが直交し、ALC床版の継目とパーチクルボードの継目とが重ならない様に、下層のALC床版の短辺継目を中心に、その上にパーチクルボードの幅中央を設置し、DACビスにてALC床版に縦横303ピッチでパーチクルボードを固定する。その両隣に、パーチクルボードをDACビスで同様に固定した後、両端にパーチクルボード(15mm厚×455mm幅×1820長さ)を同様に固定して、連結一体化床とする。   Next, the long side of the lower ALC floor slab and the long side of the upper particle board (15 mm thick x 910 mm wide x 1820 long) are perpendicular to each other so that the seam of the ALC floor slab and the joint of the particle board do not overlap The center of the width of the particle board is set on the short side seam of the lower ALC floor slab, and the particle board is fixed to the ALC floor slab at 303 pitches vertically and horizontally with a DAC screw. Next, fix the particle board with DAC screws on both sides in the same way, and then fix the particle board (15mm thickness x 455mm width x 1820 length) on both ends in the same way to make a connected integrated floor.

実験室の直下の受音室は、独立天井12.5mm厚石膏ボード2枚貼りとし、天井内にグラスウール16Kを100mm厚で敷く。次に、床衝撃音の測定を行い、結果を上述の床躯体の位置調整による粘弾性体の状況と併せて表1に示す。
又、粘弾性体は、ステンレス板(SUS 304鋼板で鏡面仕上げ)上に、低摩擦抵抗層を下側にして載置し、ステンレス板を傾斜させていき、滑落開始角度を測定し、結果を表1に示す。
粘弾性体の粘弾性体単体は、予め12.5mm厚×29mm径の円柱状のものを3個用意し、ISO-4662に準じて反発弾性率を測定し、結果を表1に示す。又、この試験体について、JIS-K-6253に準じ、A型硬度計により硬度を測定し、結果を表1に示す。
粘弾性体の粘接着層は、厚みを測り、結果を表1に示す。次に、JIS-Z-0237に準じて、180°剥離試験を行う。その際、ステンレス板(SUS 304鋼板で鏡面仕上げ)上に防錆油ダフニースーパーコートTW[出光興産(株)製]を5g/m2塗布し、布ウエスの新しい面で2回拭き取った後、そこに粘接着層を貼り合わせ、貼付直後と5時間後の接着性を測定する。結果を表1に示す。
The sound receiving room directly under the laboratory has two independent ceilings with 12.5mm thick plasterboard, and glass wool 16K is placed in the ceiling with a thickness of 100mm. Next, floor impact sound was measured, and the results are shown in Table 1 together with the situation of the viscoelastic body by adjusting the position of the above-mentioned floor frame.
Also, the viscoelastic body was placed on a stainless steel plate (mirror finish with SUS 304 steel plate) with the low friction resistance layer on the bottom, the stainless steel plate was tilted, the sliding start angle was measured, and the result was Table 1 shows.
As the viscoelastic body alone, three cylindrical ones having a thickness of 12.5 mm and a diameter of 29 mm were prepared in advance, and the resilience elastic modulus was measured according to ISO-4662, and the results are shown in Table 1. Further, the hardness of this specimen was measured with an A-type hardness meter according to JIS-K-6253, and the results are shown in Table 1.
The viscoelastic adhesive layer was measured for thickness and the results are shown in Table 1. Next, a 180 ° peel test is performed according to JIS-Z-0237. At that time, 5 g / m 2 of anti-rust oil Daphne Super Coat TW [made by Idemitsu Kosan Co., Ltd.] was applied on a stainless steel plate (mirror finish with SUS 304 steel plate) and wiped twice with a new surface of the cloth waste The adhesive layer is pasted there, and the adhesion immediately after the pasting and after 5 hours is measured. The results are shown in Table 1.

(実施例2)
図1及び2に示す様な床構造を、図3及び4に示す様な粘弾性体を用いて施工する。
実施例1の梁組を変えず、粘接着層付き粘弾性体を8.5mm厚×40mm幅×50mm長さとし、低摩擦抵抗層として3mm厚×40mm幅×40mm長さの1.6倍発泡ポリエチレンを両面テープで貼り付けて、計11.5mm厚として、ALC床版(100mm厚×606mm幅×1820mm長さ)の606幅の各々端部から100mm内側に貼って、梁上に載せ、位置微調整をして、固定治具で10mm厚になる様に圧縮固定する。粘弾性体は、配合処方例B(表3)のものであり、粘接着層は実施例1と同じ1mm厚ブチルゴム粘接着層で、圧縮固定する為、厚みは無視する。位置調整時に動き易さ、粘弾性体の剪断変形残り、元の位置への復元の有無をチェックし、結果を表1に示す。
(Example 2)
A floor structure as shown in FIGS. 1 and 2 is constructed using a viscoelastic body as shown in FIGS.
Without changing the beam assembly of Example 1, the viscoelastic body with an adhesive layer is 8.5 mm thick x 40 mm wide x 50 mm long, and 1.6 times expanded polyethylene of 3 mm thick x 40 mm wide x 40 mm long is used as the low friction resistance layer. Affixed with double-sided tape to a total thickness of 11.5 mm, affixed 100 mm inside from each end of 606 width of ALC floor slab (100 mm thickness x 606 mm width x 1820 mm length), and placed on the beam for fine adjustment Then, compress and fix to 10mm thickness with a fixing jig. The viscoelastic body is that of Formulation Example B (Table 3), and the adhesive layer is the same 1 mm-thick butyl rubber adhesive layer as in Example 1 and is compressed and fixed, so the thickness is ignored. The ease of movement during position adjustment, the remaining shear deformation of the viscoelastic body, and the presence or absence of restoration to the original position were checked, and the results are shown in Table 1.

実施例1と同様にして、ALC床板上に、パーチクルボード(15mm厚×910mm幅×1820mm長さ)を、ALC長辺とパーチクルボード長辺が直交し、且つ継目がずれる様にして、DACビスにて縦横303ピッチで床版を連結一体化する。各試験項目は実施例1と同様にして試験し、結果を表1に示す。   In the same manner as in Example 1, a particle board (15 mm thickness x 910 mm width x 1820 mm length) was placed on the ALC floor plate with a DAC screw so that the long side of the ALC and the long side of the particle board were orthogonal and the seam was shifted. The floor slabs are connected and integrated at 303 pitches. Each test item was tested in the same manner as in Example 1, and the results are shown in Table 1.

(実施例3)
図1、2、5及び6に示す様な床構造を、図3及び4に示す様な粘弾性体を用いて施工する。
実施例1の梁組を用い、床躯体は、パーチクルボード(20mm厚×910mm幅×1820mm長さ)の中心と、その中心から各々303mm離れた位置に、角パイプ(板厚2.3mm×45mm幅×75mm高さ×1820mm長さ)3本をビス固定したものを用いる。角パイプは、予め固定治具の締結用の穴を設け、そこに雌ネジを溶接する。角パイプ両端の粘弾性体取付け部の油膜を布ウエスの新しい面で2回拭き取る。粘弾性体は、配合処方例A(表2)のもの(6.5mm厚×40mm幅×40mm長さ)で、その片面にクラフトテープを貼り、残る片面に油付着面粘接着性を有する0.3mm厚のブチルゴム粘接着性層を貼る。予め油膜を拭き取った角パイプの貼付面に、粘接着性層の粘接着面を貼り付けて、梁にクラフトテープ面を当接させ、位置微調整をした後、床躯体と梁とを固定治具で粘弾性体が5mmになる様に締結固定する。
(Example 3)
A floor structure as shown in FIGS. 1, 2, 5 and 6 is constructed using a viscoelastic body as shown in FIGS.
Using the beam set of Example 1, the floor frame is a square pipe (plate thickness 2.3 mm x 45 mm width x) at the center of the particle board (20 mm thickness x 910 mm width x 1820 mm length) and at a position 303 mm away from the center. (75mm height x 1820mm length) Use 3 screws fixed. The square pipe is previously provided with a hole for fastening the fixing jig, and a female screw is welded to the hole. Wipe the oil film on the viscoelastic body attachments at both ends of the square pipe twice with a new surface of the cloth. The viscoelastic body is of Formulation Formula A (Table 2) (6.5 mm thickness x 40 mm width x 40 mm length), with kraft tape pasted on one side and an oil adhering side viscose adhesion on the other side 0.3 A butyl rubber adhesive layer with a thickness of mm is applied. Affix the adhesive surface of the adhesive layer to the application surface of the square pipe that has been wiped off the oil film in advance, bring the craft tape surface into contact with the beam, and finely adjust the position. Fasten and fix the viscoelastic body to 5mm with a fixing jig.

次に、床躯体上に、パーチクルボード(15mm厚×910mm幅×1820mm長さを床躯体のパーチクルボードの長辺と長辺を直交させ、且つ継目が一致しない様に積層し、ビス固定する。ビスピッチは縦横303mmである。床衝撃音測定をし、結果を表1に示す。その他の試験項目も実施例1と同様にして測定し、結果を表1に示す。   Next, a particle board (15 mm thickness × 910 mm width × 1820 mm length) is laminated on the floor frame so that the long side and the long side of the particle frame of the floor frame are orthogonal to each other and the seams do not coincide with each other, and screws are fixed. The height and width are 303 mm, floor impact sound was measured, and the results are shown in Table 1. The other test items were also measured in the same manner as in Example 1, and the results are shown in Table 1.

(実施例4)
図1、2、5及び6に示す様な床構造を、図3及び4に示す様な粘弾性体を用いて施工する。
実施例1の梁組を用い、床躯体は実施例3と同様にし、粘弾性体を、配合処方例B(表3)で作製し、サイズを8.5mm厚×40mm幅×40mm長さとし、粘接着性層以外は、実施例2の粘弾性体と低発泡ポリエチレンを用いる。実施例3と同様にして、片面に粘接着性層として0.3mm厚ブチルゴム粘接着性層を貼る。残る片面に1.6倍発泡ポリエチレン(3mm厚×40mm幅×40mm長さを貼って、粘弾性体を作製し、床躯体下面の角パイプに貼り、梁上に設置し、位置微調整を行い、動き易さ、剪断変形、復元性をチェックし、結果を表1に示す。又、固定治具で粘弾性体の厚みを10mmになる様に圧縮固定し、実施例3と同様に、床躯体上にパーチクルボード(15mm厚×910mm幅×1820mm長さ)を積層固定し、床衝撃音測定を行い、結果を表1に示す。その他の項目も実施例1と同様に試験し、結果を表1に示す。
(Example 4)
A floor structure as shown in FIGS. 1, 2, 5 and 6 is constructed using a viscoelastic body as shown in FIGS.
Using the beam set of Example 1, the floor frame was made in the same manner as in Example 3, the viscoelastic body was prepared in Formulation Formula B (Table 3), the size was 8.5 mm thick x 40 mm wide x 40 mm long, Except for the adhesive layer, the viscoelastic body of Example 2 and low-foamed polyethylene are used. In the same manner as in Example 3, a 0.3 mm thick butyl rubber adhesive layer is pasted on one side as an adhesive layer. 1.6 times expanded polyethylene (3mm thickness x 40mm width x 40mm length is pasted on the other side to create a viscoelastic body, paste it on the square pipe on the underside of the floor frame, place it on the beam, finely adjust the position, and move Ease, shear deformation, and restoring properties were checked, and the results are shown in Table 1. Also, the viscoelastic body was compressed and fixed so that the thickness of the viscoelastic body became 10 mm with a fixing jig, and the floor frame was fixed in the same manner as in Example 3. A particle board (15 mm thick x 910 mm wide x 1820 mm long) was laminated and fixed to the floor, and floor impact sound was measured, and the results are shown in Table 1. The other items were tested in the same manner as in Example 1, and the results are shown in Table 1. Show.

(比較例1)
実施例1の梁組を用い、帯状粘弾性体で、梁短辺方向に40mm幅を持ち、三山が平行に長辺方向にあり、中央の山が高さ6mmで、その両側の山が高さ7.5mmである配合処方例C(表4)の粘弾性体を、低摩擦抵抗層を用いずに使用する。なお、実施例の粘弾性体(配合処方例A、B)を低摩擦抵抗層無しで用いると、明らかに作業性に劣って、せん断変形が残るので、せん断変形が残り難い粘弾性体を用いる。三山あるものは、実施例に比べてせん断変形が残り易いが、現在使用されているもので、良好な振動絶縁性を示すものの例として用いる。
粘弾性体は、裏面に設けた両面テープ(粘接着層)の保護離型紙を取って、梁に貼る。梁組中央の梁では、長辺方向に帯状にして2列貼り、両側の短辺梁では、開口部側の梁長辺に沿って、各々1列貼って、その上にALC床版を載せ、位置の微調整を行い、帯状粘弾性体の剪断変形、動き易さ、ALC床版の復元をチェックする。結果を表1に示す。ALC床版と梁とは、固定治具で帯状粘弾性体の山の高さが6.5mmになる様に圧縮し、固定する。
ALC床板上に、実施例1と同様にして、パーチクルボード(15mm厚×910mm幅×1820mm長さ)を積層し、DACビス固定して、床衝撃音測定を行う。結果を表1に示す。その他の試験項目も実施例1と同様にして測定し、その結果を表1に示す。
(Comparative Example 1)
Using the beam set of Example 1, it is a belt-like viscoelastic body, has a width of 40 mm in the beam short side direction, three mountains are parallel to the long side direction, the center mountain is 6 mm high, and the mountain on both sides is high The viscoelastic body of Formulation Formula C (Table 4) having a thickness of 7.5 mm is used without using the low friction resistance layer. In addition, when the viscoelastic body of the example (formulation formulation examples A and B) is used without a low friction resistance layer, the workability is clearly inferior and shear deformation remains, so use a viscoelastic body that hardly retains shear deformation. . The one with the three peaks tends to retain shear deformation as compared with the embodiment, but is used as an example of what is currently used and exhibits good vibration insulation.
The viscoelastic body is attached to the beam by taking a protective release paper of a double-sided tape (adhesive layer) provided on the back surface. For the beam at the center of the beam assembly, two rows are pasted in the form of a strip in the long side direction. For the short side beams on both sides, one row is pasted along the long side of the beam on the opening side, and the ALC floor slab is placed on top Finely adjust the position and check the shear deformation of the belt-like viscoelastic body, ease of movement, and restoration of the ALC floor slab. The results are shown in Table 1. The ALC floor slab and beam are compressed and fixed with a fixing jig so that the height of the band-like viscoelastic body is 6.5 mm.
A particle board (15 mm thickness × 910 mm width × 1820 mm length) is laminated on the ALC floor board in the same manner as in Example 1, and the floor impact sound is measured by fixing the DAC screws. The results are shown in Table 1. Other test items were measured in the same manner as in Example 1, and the results are shown in Table 1.

Figure 0004312769
Figure 0004312769

Figure 0004312769
Figure 0004312769

Figure 0004312769
Figure 0004312769

Figure 0004312769
Figure 0004312769

以下、表1〜4を参照し、実施例及び比較例の実験結果に基づいて、本発明をより一層詳細に説明する。
実施例1は、低摩擦抵抗層としてクラフトテープを用い、反撥弾性率の低い粘弾性体を用い、振動絶縁性を発揮させ、床躯体面に粘接着層で固定する例である。柔らかい(硬度45)粘弾性体は6.5mm厚を5mm迄に、即ち1.5mm圧縮して梁に固定する。ステンレス板上での滑落開始角度も18°で摩擦抵抗が小さく、床躯体の位置微調整は容易であり、且つ粘弾性体に剪断変形残りや床躯体位置の復元傾向は見られ無い。粘弾性体は硬度45、反撥弾性率8で、振動絶縁性が高く、その結果、床衝撃音も十分低減出来ており、特に、500Hz以上の高周波域での低減は大きく、耳障りな周波数帯で改善効果が特に大きい点で聴感上の好感度が得えられる事が判る。
Hereinafter, with reference to Tables 1 to 4, the present invention will be described in more detail based on experimental results of Examples and Comparative Examples.
Example 1 is an example in which a kraft tape is used as the low frictional resistance layer, a viscoelastic body having a low rebound resilience is used, vibration insulation is exhibited, and the floor frame is fixed with an adhesive layer. The soft (hardness 45) viscoelastic body is fixed to the beam by compressing the 6.5mm thickness to 5mm, ie 1.5mm. The sliding start angle on the stainless steel plate is 18 °, the frictional resistance is small, the fine adjustment of the position of the floor frame is easy, and there is no residual shear deformation or the restoring tendency of the floor frame position in the viscoelastic body. The viscoelastic body has a hardness of 45 and a rebound resilience of 8 and high vibration insulation. As a result, the floor impact sound can be reduced sufficiently, especially in the high frequency range of 500Hz and higher, and in an annoying frequency band. It can be seen that audibility favorability can be obtained in that the improvement effect is particularly great.

実施例2は、低摩擦抵抗層を低発泡ポリエチレンとした例であり、反撥弾性率の低い粘弾性体を用いて振動絶縁性を発揮させ、床躯体面に粘接着層で固定する例である。柔らかい(硬度40)粘弾性体は、11.5mm厚を10mm迄に、即ち1.5mm圧縮して梁に固定する。ステンレス板上での滑落開始角度も15°で摩擦抵抗が小さく、床躯体の位置微調整は容易であり、且つ粘弾性体に剪断変形残りや床躯体の位置の復元傾向は見られ無い。粘弾性体は、硬度40、反撥弾性率6で、振動絶縁性が高く、その結果、床衝撃音も十分低減出来ており、特に、500Hz以上の高周波域での低減は大きく、耳障りな周波数帯で改善効果が特に大きい点で、聴感上の好感度が得えられる事が判る。   Example 2 is an example in which the low friction resistance layer is made of low-foamed polyethylene, and is an example in which a viscoelastic body having a low rebound resilience is used to exhibit vibration insulation and is fixed to the floor surface of the floor with an adhesive layer. is there. The soft (hardness 40) viscoelastic body is fixed to the beam by compressing the 11.5 mm thickness to 10 mm, that is, 1.5 mm. The sliding start angle on the stainless steel plate is 15 °, the frictional resistance is small, the fine adjustment of the position of the floor frame is easy, and the shear deformation remains in the viscoelastic body and the restoration tendency of the position of the floor frame is not seen. The viscoelastic body has a hardness of 40 and a rebound resilience of 6 and high vibration insulation. As a result, the floor impact sound can be reduced sufficiently, especially in the high frequency range of 500Hz and above, and the harsh frequency band. It can be seen that favorable audibility is obtained in that the improvement effect is particularly great.

実施例3は、低摩擦抵抗層としてクラフトテープを用い、反撥弾性率の低い粘弾性体を用いて振動絶縁性を発揮させ、油面接着性を有する粘接着性層で床躯体下面に固定する例である。粘接着性層は、貼付直後から経時的に、より一層接着性が増加する。粘弾性体自体は実施例1に用いたものと同じであり、床躯体の位置調整による粘弾性体の剪断変形残りは無く、位置復元の傾向も無い。床衝撃音も十分低減し、特に、500Hz以上の高周波域での低減は、比較例1と比べても大きい事が判る。   Example 3 uses kraft tape as a low friction resistance layer, exhibits vibration insulation using a viscoelastic body with low rebound resilience, and is fixed to the bottom surface of the floor frame with an adhesive layer having oil surface adhesion This is an example. The adhesiveness of the adhesive layer increases further with time from immediately after application. The viscoelastic body itself is the same as that used in Example 1, there is no residual shear deformation of the viscoelastic body by adjusting the position of the floor frame, and there is no tendency to restore the position. The floor impact sound is also sufficiently reduced, and it can be seen that the reduction in the high frequency range of 500 Hz or more is particularly large compared to Comparative Example 1.

実施例4は、粘弾性体と、低摩擦抵抗層として実施例2と同じ低発泡ポリエチレンを用い、粘接着層のみ油面接着性の粘接着性層に変える。床躯体の位置調整による粘弾性体の剪断変形残りは無く、位置復元の傾向も見られ無い。床衝撃音も十分低減出来ており、特に、500Hz以上の高周波音の改善効果が高い。   In Example 4, the same low foamed polyethylene as in Example 2 is used as the viscoelastic body and the low friction resistance layer, and only the adhesive layer is changed to an oil surface adhesive layer. There is no residual shear deformation of the viscoelastic body by adjusting the position of the floor frame, and there is no tendency to restore the position. The floor impact sound can also be reduced sufficiently, especially the effect of improving high frequency sound above 500Hz is high.

比較例1は、梁長辺に帯状で3山が平行に長辺方向にあり、中央の山が両側の山より低い粘弾性体を用い、低摩擦抵抗層は用いない例である。粘弾性体は、梁に直接接着され、床躯体には固定され無いタイプである。したがって、この例では、床躯体の位置合せ時には、粘弾性体上で、床躯体が、粘弾性体に応力を働かせながら移動する状況となる。粘弾性体は、ステンレス板上での滑落開始角度も57°と大きく、摩擦抵抗が大きい事が判る。その結果、床躯体の位置調整によって、粘弾性体は、山に剪断変形が残ったままとなり、床躯体の位置の復元傾向が見られる。この粘弾性体は、反撥弾性率も48と大きく、その結果、床衝撃音の改善も少ない。特に、実施例1〜4と比べ、同様に粘弾性体を介在させるにも拘らず、500Hz以上の発音量が大きい事が判る。これは、聴感上は、実際のデータ以上に「うるさい」と感じるものである。   Comparative Example 1 is an example in which a viscoelastic body is used which has a belt-like shape on the long side of the beam, three ridges parallel to the long side, a central ridge that is lower than the ridges on both sides, and no low friction resistance layer. The viscoelastic body is directly bonded to the beam and is not fixed to the floor frame. Therefore, in this example, when the floor frame is aligned, the floor frame moves on the viscoelastic body while applying stress to the viscoelastic body. It can be seen that the viscoelastic body has a large sliding start angle on the stainless steel plate of 57 ° and a large frictional resistance. As a result, by adjusting the position of the floor frame, the viscoelastic body remains sheared in the mountain, and a tendency to restore the position of the floor frame is seen. This viscoelastic body has a large rebound resilience of 48, and as a result, there is little improvement in floor impact sound. In particular, compared with Examples 1 to 4, it can be seen that the amount of sound generation at 500 Hz or more is large despite the presence of a viscoelastic body. This feels more noisy than actual data in terms of hearing.

以上の様に、本発明によれば、床躯体の位置調整が容易で、粘弾性体に剪断変形残りが無いので、本来の粘弾性体の振動絶縁効果を発揮出来、反撥弾性も低く、振動絶縁性が妨げられる事が無い。又、本発明の床構造は、床構造の施工性に優れ、床衝撃音の低減効果も高く、特に、高周波音の低減に効果が高い。又、本発明においては、粘弾性体に油面接着性の粘接着性層を設ける事で、床躯体に対する粘弾性体の接着面が油面であっても、貼付直後から接着し、経時により充分な接着力を得られ、粘弾性体付き床躯体を予め接着して、床躯体を施工現場に搬入等して載置すれば、床構造の施工性を著しく改善する事が出来る。   As described above, according to the present invention, the position of the floor frame is easy to adjust, and since there is no residual shear deformation in the viscoelastic body, the vibration insulating effect of the original viscoelastic body can be exhibited, the rebound resilience is low, and the vibration Insulation is not hindered. Moreover, the floor structure of the present invention is excellent in workability of the floor structure, has a high effect of reducing floor impact sound, and is particularly effective in reducing high frequency sound. Further, in the present invention, by providing an oil surface adhesive layer on the viscoelastic body, even if the adhesive surface of the viscoelastic body to the floor frame is an oil surface, the adhesive layer is bonded immediately after application, If the floor frame with viscoelastic body is bonded in advance and the floor frame is loaded and placed on the construction site, the workability of the floor structure can be remarkably improved.

1例の床構造の側面図である。It is a side view of an example floor structure. 図1の床構造の平面図である。FIG. 2 is a plan view of the floor structure of FIG. 1例の粘弾性体の断面図である。It is sectional drawing of the viscoelastic body of an example. 他の例の粘弾性体の断面図である。It is sectional drawing of the viscoelastic body of another example. 他の例の床構造の側面図である。It is a side view of the floor structure of another example. 図5の床構造の平面図である。FIG. 6 is a plan view of the floor structure of FIG. 比較例にかかる床の側面図である。It is a side view of the floor concerning a comparative example. 図7の床の平面図である。FIG. 8 is a plan view of the floor of FIG.

符号の説明Explanation of symbols

1、21 床構造
2、22 梁
3、23 床躯体
3A 座ぐり穴
4、14、24 粘弾性体
4A、14A、24A 粘弾性体本体
4B、14B、24B 低摩擦抵抗層
4C、14C、24C 粘接着(性)層
4D、14D 保護離型紙
5、25 固定治具
26 根太
27 板材
1, 21 Floor structure
2, 22 beams
3, 23 floor frame
3A counterbore
4, 14, 24 Viscoelastic body
4A, 14A, 24A Viscoelastic body
4B, 14B, 24B Low friction resistance layer
4C, 14C, 24C Adhesive layer
4D, 14D protective release paper
5, 25 Fixing jig
26 jota
27 Board material

Claims (9)

対をなす梁と、梁間に横架される床躯体と、梁を床躯体と固定する固定部材と、梁と床躯体との間で圧縮固定される振動絶縁性の粘弾性体とを備える床構造であって、
粘弾性体が、梁及び床躯体の一方又は双方との当接部分に、固定部材による前記梁への前記床躯体の未固定状態で、前記床躯体が載置された状態での前記粘弾性体の、前記梁の当接面に対する水平方向の移動又は前記床躯体の、前記粘弾性体の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有することを特徴とする、床構造。
A floor provided with a pair of beams, a floor frame laid horizontally between the beams, a fixing member that fixes the beam to the floor frame, and a vibration insulating viscoelastic body that is compressed and fixed between the beam and the floor frame Structure,
The viscoelastic body is in a state in which the floor frame is placed in a state where the floor frame is not fixed to the beam by a fixing member at a contact portion with one or both of the beam and the floor frame. A floor having a low frictional resistance layer that enables horizontal movement of the body with respect to the contact surface of the beam or horizontal movement of the floor frame with respect to the contact surface of the viscoelastic body, Construction.
対をなす梁と、梁間に横架される床躯体と、梁を床躯体と固定する固定部材と、梁と床躯体との間で圧縮固定される振動絶縁性の粘弾性体とを備える床構造であって、
粘弾性体が、梁との当接部分に、固定部材による前記梁への前記床躯体の未固定状態で、前記床躯体が載置された状態での前記粘弾性体の、前記梁の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有し、床躯体との当接部分に、粘接着性層を有することを特徴とする、床構造
A floor provided with a pair of beams, a floor frame laid horizontally between the beams, a fixing member that fixes the beam to the floor frame, and a vibration insulating viscoelastic body that is compressed and fixed between the beam and the floor frame Structure,
The viscoelastic body is in contact with the beam of the viscoelastic body in a state where the floor frame is placed in a state where the floor frame is not fixed to the beam by a fixing member at a contact portion with the beam. A floor structure characterized by having a low friction resistance layer capable of moving in a horizontal direction with respect to a contact surface, and having an adhesive layer at a contact portion with the floor frame .
床躯体が、複数の根太で固定支持した板状体からなる、請求項1又は2記載の床構造。   The floor structure according to claim 1 or 2, wherein the floor frame comprises a plate-like body fixedly supported by a plurality of joists. 梁と床躯体との間に配置され、梁と床躯体とを固定する固定部材によって圧縮固定される振動絶縁性の粘弾性体であって、梁及び床躯体の一方又は双方との当接部分に、固定部材による前記梁への前記床躯体の未固定状態で、前記床躯体が載置された状態での前記粘弾性体の、前記梁の当接面に対する水平方向の移動又は前記床躯体の、前記粘弾性体の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有することを特徴とする、粘弾性体。   A vibration-insulating viscoelastic body disposed between the beam and the floor frame and compressed and fixed by a fixing member that fixes the beam and the floor frame, and a contact portion with one or both of the beam and the floor frame Further, when the floor frame is not fixed to the beam by a fixing member, the viscoelastic body in a state where the floor frame is placed is moved in the horizontal direction with respect to the contact surface of the beam or the floor frame. The viscoelastic body has a low friction resistance layer that enables horizontal movement with respect to the contact surface of the viscoelastic body. 梁と床躯体との間に配置され、梁と床躯体とを固定する固定部材によって圧縮固定される振動絶縁性の粘弾性体であって、梁との当接部分に、固定部材による前記梁への前記床躯体の未固定状態で、前記床躯体が載置された状態での前記粘弾性体の、前記梁の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有し、床躯体との当接部分に、粘接着性層を有することを特徴とする、粘弾性体 A vibration-insulating viscoelastic body that is disposed between a beam and a floor frame and is compressed and fixed by a fixing member that fixes the beam and the floor frame. A low frictional resistance layer that enables the viscoelastic body to move in a horizontal direction with respect to the contact surface of the beam in a state in which the floor case is placed in an unfixed state of the floor case. A viscoelastic body having an adhesive layer at a contact portion with the floor frame . 粘弾性体が15%以下の反撥弾性率を有する、請求項4又は5記載の粘弾性体。   The viscoelastic body according to claim 4 or 5, wherein the viscoelastic body has a rebound resilience of 15% or less. 粘弾性体の低摩擦抵抗層の面をステンレス板に接触させ、前記ステンレス板を傾けたとき、前記粘弾性体が45°以下の傾斜角度で滑落を開始する、請求項4〜6のいずれか一項記載の粘弾性体。   The surface of the low frictional resistance layer of the viscoelastic body is brought into contact with a stainless steel plate, and when the stainless steel plate is tilted, the viscoelastic body starts sliding down at an inclination angle of 45 ° or less. The viscoelastic body according to one item. 粘接着性層が油付着面に対する接着性を有する、請求項5〜7のいずれか一項記載の粘弾性体。   The viscoelastic body according to any one of claims 5 to 7, wherein the adhesive layer has adhesiveness to the oil adhesion surface. 対をなす梁と、梁間に横架される床躯体と、梁を床躯体と固定する固定部材と、梁と床躯体との間で圧縮固定される振動絶縁性の粘弾性体とを備える床構造を施工するにあたって、
(a)粘弾性体を提供する工程であって、前記粘弾性体が、梁及び床躯体の一方又は双方との当接部分に、前記床躯体が載置された状態での前記粘弾性体の、前記梁の当接面に対する水平方向の移動又は前記床躯体の、前記粘弾性体の当接面に対する水平方向の移動を可能とする低摩擦抵抗層を有する工程、
(b)粘弾性体及び前記粘弾性体上の床躯体を梁上で位置決めする工程、及び
(c)固定部材により梁を床躯体と固定する工程
を含むことを特徴とする、床構造の施工方法。
A floor provided with a pair of beams, a floor frame laid horizontally between the beams, a fixing member that fixes the beam to the floor frame, and a vibration insulating viscoelastic body that is compressed and fixed between the beam and the floor frame In constructing the structure,
(A) A step of providing a viscoelastic body, wherein the viscoelastic body is in a state where the floor casing is placed on a contact portion with one or both of the beam and the floor casing. A step of having a low frictional resistance layer that enables horizontal movement with respect to the contact surface of the beam or horizontal movement of the floor frame with respect to the contact surface of the viscoelastic body,
(B) a step of positioning the viscoelastic body and the floor frame on the viscoelastic body on the beam; and (c) a step of fixing the beam to the floor frame by a fixing member. Method.
JP2006076981A 2006-03-20 2006-03-20 Floor structure, viscoelastic body used for floor structure, and construction method of floor structure Active JP4312769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076981A JP4312769B2 (en) 2006-03-20 2006-03-20 Floor structure, viscoelastic body used for floor structure, and construction method of floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076981A JP4312769B2 (en) 2006-03-20 2006-03-20 Floor structure, viscoelastic body used for floor structure, and construction method of floor structure

Publications (2)

Publication Number Publication Date
JP2007254959A JP2007254959A (en) 2007-10-04
JP4312769B2 true JP4312769B2 (en) 2009-08-12

Family

ID=38629472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076981A Active JP4312769B2 (en) 2006-03-20 2006-03-20 Floor structure, viscoelastic body used for floor structure, and construction method of floor structure

Country Status (1)

Country Link
JP (1) JP4312769B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270739B2 (en) * 2011-10-24 2013-08-21 黒沢建設株式会社 Seismic isolation structure for floor slabs
KR101311422B1 (en) * 2012-04-18 2013-09-25 주식회사 힐 엔지니어링 Connection structure of before and after pile connection for two rows pile construction
JP6520346B2 (en) * 2015-04-20 2019-05-29 ヤマハ株式会社 Frame connection structure and room unit
JP6618305B2 (en) * 2015-09-03 2019-12-11 早川ゴム株式会社 Floor structure and viscoelastic body used for floor structure
JP6755648B2 (en) * 2015-09-17 2020-09-16 イイダ産業株式会社 Floor structure
CN108018991B (en) * 2016-11-03 2023-08-11 重庆大学 Self-resetting viscoelastic energy dissipation steel beam
JP7033400B2 (en) * 2017-06-26 2022-03-10 大和ハウス工業株式会社 Floor structure
JP6958824B2 (en) * 2019-02-21 2021-11-02 積水ハウス株式会社 Tuned mass damper
JP7327757B2 (en) * 2019-09-30 2023-08-16 早川ゴム株式会社 Floor structures and viscoelastic bodies used in floor structures
AT17361U1 (en) * 2020-12-11 2022-02-15 Porr Bau Gmbh Building construction, method of forming the same and functional part

Also Published As

Publication number Publication date
JP2007254959A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4312769B2 (en) Floor structure, viscoelastic body used for floor structure, and construction method of floor structure
RU2462561C2 (en) Wall and ceiling soundproof devices
JP4097894B2 (en) Soundproof floor structure, soundproof flooring, and construction method of soundproof floor structure
CN107531013B (en) Smoke and sound barrier for building joint systems
KR100960207B1 (en) Protective sheet for concrete structure of civil engineering structure and building structure and Protective method using thereof
Swensen et al. Behavior of screw and adhesive connections to gypsum wallboard in wood and cold-formed steel-framed wallettes
EP2432030A2 (en) Solar cell module and method of manufacturing the same
JP4933841B2 (en) Building vibration control and sound insulation structure and vibration control sound insulation sheet
JP2006169959A (en) Soundproof floor structure, soundproof floor material and construction method of soundproof floor structure
JP3430202B2 (en) Soundproof floor structure and soundproof floor material
GB2551049A (en) Self-adhesive closed-cell solid-foam insulation material
JP2015017378A (en) Ceiling structure
JP2000226557A (en) Method for adhering and fixing plate for decoration
JP4287205B2 (en) Metal roof structure, metal roof construction method and vibration damping adhesive
JP2015075158A (en) Earthquake resistant system and earthquake resistant rack
JP2020056295A (en) Buffer material
JP2020020171A (en) Construction method of interior finish decorative panel
JP4465842B2 (en) Support structure of floor support horizontal member
JP2000110331A (en) Execution method of floor material and laying structure
JP2706513B2 (en) Damping sheet
JP2003090121A (en) Wood floor material, wood floor material structure and construction method for it
JPH0671700U (en) Joining type building material
JP4079587B2 (en) Adhesive structure of brittle members
JP2001164728A (en) Wall-surface finishing structure
JP2002309757A (en) Edge joist structure and edge joist fixing adhesive sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4312769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150522

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250