JP4310825B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4310825B2
JP4310825B2 JP29826398A JP29826398A JP4310825B2 JP 4310825 B2 JP4310825 B2 JP 4310825B2 JP 29826398 A JP29826398 A JP 29826398A JP 29826398 A JP29826398 A JP 29826398A JP 4310825 B2 JP4310825 B2 JP 4310825B2
Authority
JP
Japan
Prior art keywords
evaporator
temperature
heater
refrigerator
defrost heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29826398A
Other languages
Japanese (ja)
Other versions
JP2000121235A (en
Inventor
晃一 西村
武 清水
正昭 田中
豊志 上迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29826398A priority Critical patent/JP4310825B2/en
Publication of JP2000121235A publication Critical patent/JP2000121235A/en
Application granted granted Critical
Publication of JP4310825B2 publication Critical patent/JP4310825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可燃性冷媒を用いた冷蔵庫に係り、特に除霜ヒータの制御に関する。
【0002】
【従来の技術】
従来の冷蔵庫としては、特開平9−329386号公報に示されているものがある。以下、図面を参照しながら上記従来の冷蔵庫の一例を説明する。
【0003】
従来の構成を図7に示す。図7において、1は冷蔵庫であり、圧縮機2,蒸発器3,を有する冷却システム(図示せず)、蒸発器3近傍に近接した除霜ヒータ4,蒸発器温度検出器5,除霜ヒータ温度検出器6,除霜ヒータ制御装置7などから構成されている。
【0004】
以上のように構成された冷蔵庫について、以下その動作を説明する。圧縮機2の積算運転時間がある設定時間を超えると除霜運転が行われる。通常の除霜運転時は、蒸発器温度検出器5による検出温度が設定温度T1を超えると除霜終了と判断され、通常の運転に戻る。
【0005】
この時、除霜ヒータ4が何らかの異常により高温になり、除霜ヒータ温度検出器6で検出された温度が、可燃性冷媒の発火温度以下に設定された設定温度T2に達すると蒸発器温度検出器5の検出温度に関係なく除霜ヒータ制御装置により除霜ヒータ4への通電が遮断される。従って、もし可燃性冷媒が庫内に漏れたときにも除霜ヒータ4によって可燃性冷媒の発火温度に達することがないので、爆発を防止できる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、除霜ヒータ温度は常に可燃性冷媒の発火温度以下に保たなければならず、低い温度での除霜運転となるので除霜時間が非常に長くなり、その間に冷蔵庫1内の温度が上昇し、冷蔵庫1の効率を低くする可能性があった。
【0007】
本発明は、上記従来の課題を解決するものであり、除霜ヒータ4の温度を低くしても効率良く除霜運転を行い、冷蔵庫1の効率低下を防ぐことを目的とする。
【0008】
また、除霜ヒータ4の温度が急激に上昇した時には除霜ヒータ制御装置7の制御が間に合わず、爆発してしまう可能性があった。
【0009】
本発明の他の目的は、除霜ヒータ4の温度が急激に上昇した時にも可燃性冷媒と除霜ヒータ4を直接接触させないことにより爆発を防止することを目的とする。
【0010】
【課題を解決するための手段】
この課題を解決するために本発明の冷蔵庫は、可燃性冷媒を冷媒とする冷蔵庫において、蒸発器と、前記蒸発器のフィンと密着し前記蒸発器に付着した霜を融解する除霜ヒータと、除霜ヒータ側を風上、蒸発器側を風下とし蒸発器の冷気を冷蔵庫庫内に循環させる冷却ファンと、前記除霜ヒータの最も高温となる部分の温度を検出するヒータ温度検出手段と、前記ヒータ温度検出手段の検出した温度が設定温度以上にならないよう前記除霜ヒータ温度を制御するヒータ温度制御装置とを備え、前記除霜ヒータ近傍の蒸発器のフィンのピッチをそれ以外のフィンのピッチよりも狭くし、除霜ヒータを蒸発器の鉛直下方向に設置し、前記蒸発器のフィンと除霜ヒータの接触部分が少なくとも前記除霜ヒータの鉛直上方向にあり、前記除霜ヒータによって融解された除霜水が前記フィンの前記除霜ヒータとの接触部分に溜まるように水受け皿を設けた構成とした。
【0011】
これにより、除霜ヒータの温度が蒸発器に熱伝導し、低い温度の除霜ヒータを用いても蒸発器に付着した霜を効率良く融解することができ、冷蔵庫内の温度上昇も小さく抑えられ、冷蔵庫の効率低下を防止できる。
【0012】
また、蒸発器に付着する霜は、フィンピッチの狭い風上側の除霜ヒータ近傍により多く付着し、除霜運転時効率良く霜を融解することができ、冷蔵庫内の温度上昇も小さく抑えられ、冷蔵庫の効率低下を防止できる。
【0013】
また、除霜ヒータにより融解された除霜水はフィンの除霜ヒータとの接触部に溜まり、除霜ヒータの熱により蒸発した水蒸気により蒸発器の霜を短時間で融解することができ、冷蔵庫内の温度上昇も小さく抑えられ、冷蔵庫の効率低下を防止できる。
【0014】
【発明の実施の形態】
本発明の請求項1に記載の発明は、可燃性冷媒を冷媒とする冷蔵庫において、蒸発器と、前記蒸発器のフィンと密着し前記蒸発器に付着した霜を融解する除霜ヒータと、除霜ヒータ側を風上、蒸発器側を風下とし蒸発器の冷気を冷蔵庫庫内に循環させる冷却ファンと、前記除霜ヒータの最も高温となる部分の温度を検出するヒータ温度検出手段と、前記ヒータ温度検出手段の検出した温度が設定温度以上にならないよう前記除霜ヒータ温度を制御するヒータ温度制御装置とを備え、前記除霜ヒータ近傍の蒸発器のフィンのピッチをそれ以外のフィンのピッチよりも狭くし、除霜ヒータを蒸発器の鉛直下方向に設置し、前記蒸発器のフィンと除霜ヒータの接触部分が少なくとも前記除霜ヒータの鉛直上方向にあり、前記除霜ヒータによって融解された除霜水が前記フィンの前記除霜ヒータとの接触部分に溜まるように水受け皿を設けた構成としているので、蒸発器に付着する霜は、フィンピッチの狭い風上側の除霜ヒータ近傍により多く付着し、除霜ヒータにより融解された除霜水は、除霜ヒータの熱により蒸発し水蒸気となり、蒸発器の霜を短時間で融解することができ、低い温度の除霜ヒータを用いても蒸発器に付着した霜を効率良く融解することができ、冷蔵庫の効率低下を防止できる。
【0015】
以下、本発明の実施の形態について、図1から図6を用いて説明する。なお、従来と同一構成については、同一符号を付して、詳細な説明を省略する。
【0016】
(実施の形態1)
図1は請求項1記載の冷蔵庫の蒸発器の正面図である。図1において、3はフィン3aを有する蒸発器であり、4は除霜ヒータでありフィン3aを貫通している。8は除霜ヒータ温度検出器であり、除霜ヒータ4の最も高温となる部分の温度を検出する。9は除霜ヒータ制御装置であり、除霜ヒータ4の温度が設定値より高くならないよう除霜ヒータ4の温度を制御する。
【0017】
以上のように構成された冷蔵庫において、以下その動作を説明する。冷蔵庫(図示せず)が一定時間運転して除霜運転となると、冷却運転が停止し、除霜運転が行われる。除霜運転において、もし可燃性冷媒が冷却システムから漏れた場合にも除霜ヒータ制御装置9は除霜ヒータ温度検出器8が検出した除霜ヒータ4の温度を基に除霜ヒータ4の温度が冷媒の発火する恐れのある設定温度以上とならないよう制御を行うため爆発を防止できる。この時、除霜ヒータ4は蒸発器3の一部であるフィン3aと接触しており、接触していない時と比べると熱伝導により蒸発器3の温度をより短時間で上昇させることができる。
【0018】
これにより、蒸発器3に付着した霜は短時間で融解し、除霜運転による冷蔵庫内温度の上昇は少なく抑えられる。また、除霜ヒーター4への入力も低く押さえることができる。
【0019】
従って、除霜運転による冷蔵庫の効率低下を防止でき、効率の高い冷蔵庫とすることができる。
【0020】
尚、本実施の形態において、除霜ヒータ4はフィン3aを貫通する形で蒸発器3と熱伝導をしているが、蒸発器3と除霜ヒータ4を熱伝導させる接触形態であれば、どのような形態についても同様の効果が得られる。
【0021】
また、本実施の形態において、除霜ヒータ4の制御方法は規定していないが、ON,OFF制御、入力電圧制御などの制御方法や、温度の低いヒータの使用など、どのような制御方法でも同様の効果が得られる。
【0022】
(実施の形態2)
図2は請求項2記載の冷蔵庫の蒸発器の正面図である。図2において、10は蒸発器3においてつくられた冷気を冷蔵庫内に循環させる冷却ファンであり、蒸発器3の除霜ヒータ4側から空気を吸い込み、反除霜ヒータ側に吐出する位置に設置されている。
【0023】
以上のように構成された冷蔵庫について、以下その動作を説明する。通常の冷却運転時、冷却ファン10は冷蔵庫内に冷気を循環させる。冷気の循環により、冷気内の水分はより温度の低い蒸発器3表面で霜となり付着する。この時、冷気の流れは図2中の矢印の方向となり、冷気内に存在する水分は風上側の除霜ヒータ4近傍により多く付着する。
【0024】
除霜ヒータ4近傍に多くの霜が付着していることから、除霜運転時、霜はより短時間で融解し、除霜運転による冷蔵庫内温度の上昇は少なく抑えられる。また、除霜ヒーター4への入力も低く押さえることができる。
【0025】
従って、除霜運転による冷蔵庫の効率低下を防止でき、より効率の高い冷蔵庫とすることができる。
【0026】
(実施の形態3)
図3は請求項3記載の冷蔵庫の蒸発器の正面図である。図3において、11は補助フィンであり、これにより冷気の風上側である蒸発器3の除霜ヒータ4側のフィン3aのピッチは狭くなっている。
【0027】
以上のように構成された冷蔵庫について、以下その動作を説明する。通常の冷却運転時、冷却ファン10は冷蔵庫内に冷気を循環させる。冷気の循環により、冷気内の水分はより温度の低い蒸発器3表面で霜となり付着する。冷気の流れ方向が図2中の矢印の方向であるため、冷気内に存在する水分は風上側により多く付着するが、この時、蒸発器3の風上側のフィン3aのピッチが風下側に比べ狭いため、冷気内の水分はより多く蒸発器3の風上側である除霜ヒータ4近傍に付着する。
【0028】
除霜ヒータ4近傍により多くの霜が付着していることから、除霜運転時、霜はより短時間で融解し、除霜運転による冷蔵庫内温度の上昇は少なく抑えられる。また、除霜ヒーター4への入力も低く押さえることができる。
【0029】
従って、除霜運転による冷蔵庫の効率低下を防止でき、より効率の高い冷蔵庫とすることができる。
【0030】
(実施の形態4)
図4は請求項4記載の冷蔵庫の蒸発器の正面図である。図4において、12は除霜ヒータ4と密着し、除霜ヒータ4と冷蔵庫内空気を遮断する形で密閉する密閉体である。
【0031】
以上のように構成された冷蔵庫について、以下その動作を説明する。冷蔵庫(図示せず)が一定時間運転して除霜運転となると、冷却運転が停止し、除霜運転が行われる。除霜運転において、もし可燃性冷媒が冷却システムから漏れた場合にも除霜ヒータ制御装置9は除霜ヒータ温度検出器8が検出した除霜ヒータ4の温度を基に除霜ヒータ4の温度が冷媒の発火する恐れのある設定温度以上とならないよう制御を行うため爆発を防止できる。
【0032】
しかしながら、もし除霜ヒータ4に異常が生じ、除霜ヒータ4の温度が急激に上昇したときには除霜ヒータ制御装置9の制御が間に合わない場合がある。そのような時にも、本実施の形態によれば、除霜ヒータ4の温度は一旦密閉体12に熱伝導してから冷蔵庫内空気と接するため、急激に温度上昇することはなく、除霜ヒータ制御装置9により安全に制御することが可能になる。
【0033】
従って、除霜ヒータ4に異常が生じ、除霜ヒータ4の温度が急激に上昇した場合にも爆発を防止することができる。
【0034】
尚、本実施の形態においては、除霜ヒータ4を、表面温度よりも内部温度の方が高くなるラジアントヒータなどとした時には、内部温度に関係なく除霜ヒータ4を使用でき、より効率良く除霜運転を行える。
【0035】
また、本実施の形態においても、実施の形態1から3と同様の効果が得られることは言うまでもない。
【0036】
(実施の形態5)
図5は請求項5記載の冷蔵庫の蒸発器の正面図である。図6は請求項5記載の蒸発器の除霜ヒータ部の斜視図である。図5,図6において、13は密閉体の鉛直上方に設置され、除霜ヒータ5によって融解された除霜水の一部を溜める水受け皿である。
【0037】
以上のように構成された冷蔵庫について、以下その動作を説明する。除霜運転時、除霜ヒータ4によって融解された霜は、除霜水となり、一部水受け皿に溜められる。水受け皿13に溜められた除霜水は、除霜ヒータ4から密閉体12,水受け皿13を介して熱伝導され蒸発し、水蒸気となり、鉛直上方にある蒸発器3を通過する。
【0038】
この時、水蒸気は100℃の温度で蒸発器3と接触するため蒸発器3に付着した霜を融解する効果がある。水蒸気による霜の融解により、除霜ヒータ4の熱の輻射及び熱伝導による霜の融解のみの時よりも速く蒸発器3に付着した霜を融解することができる。また、除霜ヒーター4への入力も低く押さえることができる。
【0039】
従って、除霜運転による冷蔵庫の効率低下を防止でき、より効率の高い冷蔵庫とすることができる。
【0040】
尚、本実施例においても実施の形態1から4と同様の効果が得られることは言うまでもない。
【0041】
また、本実施の形態においては、除霜ヒータ4と水受け皿13の熱伝導は密閉体12を介して行われているが、少なくとも除霜ヒータ4上部と水受け皿13が熱伝導を行える形態であればどのような形態でも同様の効果が得られる。
【0042】
【発明の効果】
以上のように本発明によれば、蒸発器と除霜ヒータの熱伝導により除霜運転時には短時間で蒸発器の温度を上昇させることができるため、蒸発器についた霜を効率良く融解させることができる。従って、除霜時間を短時間とすることができ、冷蔵庫内温度の上昇による冷蔵庫の効率低下を防ぐことができる。
【0043】
また、蒸発器の除霜ヒータ近傍である風上側のフィンピッチを狭くし、より多く除霜ヒータ近傍に霜を付着させることができるため、蒸発器についた霜をより効率良く融解させることができる。従って、除霜時間をより短時間とすることができ、冷蔵庫内温度の上昇による冷蔵庫の効率低下を防ぐことができる。
【0044】
また、除霜ヒータによって融解した除霜水を蒸発させ、水蒸気の熱により蒸発器に付着した霜を融解させることにより、蒸発器についた霜をより効率良く融解させることができる。従って、除霜時間を短時間とすることができ、冷蔵庫内温度の上昇による冷蔵庫の効率低下を防ぐことができる。
【図面の簡単な説明】
【図1】 本発明の請求項1記載の冷蔵庫の蒸発器の正面図
【図2】 本発明の請求項2記載の冷蔵庫の蒸発器の正面図
【図3】 本発明の請求項3記載の冷蔵庫の蒸発器の正面図
【図4】 本発明の請求項4記載の冷蔵庫の蒸発器の正面図
【図5】 本発明の請求項5記載の冷蔵庫の蒸発器の正面図
【図6】 本発明の請求項5記載の蒸発器の除霜ヒータ近傍の斜視図
【図7】 従来の冷蔵庫の縦断面図
【符号の説明】
3 蒸発器
3a フィン
4 除霜ヒータ
8 除霜ヒータ温度検出器
9 除霜ヒータ温度装置
10 冷却ファン
11 補助フィン
12 密閉体
13 水受け皿
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator using a flammable refrigerant, and more particularly to control of a defrost heater.
[0002]
[Prior art]
A conventional refrigerator is disclosed in JP-A-9-329386. Hereinafter, an example of the conventional refrigerator will be described with reference to the drawings.
[0003]
A conventional configuration is shown in FIG. In FIG. 7, reference numeral 1 denotes a refrigerator, a cooling system (not shown) having a compressor 2 and an evaporator 3, a defrost heater 4 near the evaporator 3, an evaporator temperature detector 5, and a defrost heater. It is comprised from the temperature detector 6, the defrost heater control apparatus 7, etc.
[0004]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below. When the accumulated operation time of the compressor 2 exceeds a set time , the defrosting operation is performed. During the normal defrosting operation, when the temperature detected by the evaporator temperature detector 5 exceeds the set temperature T1, it is determined that the defrosting is completed, and the normal operation is resumed.
[0005]
At this time, when the temperature of the defrost heater 4 becomes high due to some abnormality and the temperature detected by the defrost heater temperature detector 6 reaches a set temperature T2 set to be equal to or lower than the ignition temperature of the combustible refrigerant, the evaporator temperature is detected. Regardless of the detected temperature of the vessel 5, the defrost heater control device cuts off the power supply to the defrost heater 4. Therefore, even if the flammable refrigerant leaks into the cabinet, the defrost heater 4 does not reach the ignition temperature of the flammable refrigerant, so that explosion can be prevented.
[0006]
[Problems to be solved by the invention]
However, in the conventional configuration described above, the defrost heater temperature must always be kept below the ignition temperature of the flammable refrigerant, and the defrost operation is performed at a low temperature. There was a possibility that the temperature in the refrigerator 1 rose and the efficiency of the refrigerator 1 was lowered.
[0007]
An object of the present invention is to solve the above-described conventional problems, and to efficiently perform a defrosting operation even when the temperature of the defrosting heater 4 is lowered and to prevent a reduction in efficiency of the refrigerator 1.
[0008]
Moreover, when the temperature of the defrost heater 4 rose rapidly, control of the defrost heater control apparatus 7 was not in time, and there existed a possibility of exploding.
[0009]
Another object of the present invention is to prevent explosion by preventing direct contact between the flammable refrigerant and the defrost heater 4 even when the temperature of the defrost heater 4 is rapidly increased.
[0010]
[Means for Solving the Problems]
In order to solve this problem, the refrigerator of the present invention is a refrigerator using a flammable refrigerant as a refrigerant, an evaporator, and a defrosting heater that melts frost adhering to the evaporator in close contact with the fins of the evaporator, A cooling fan that circulates the cool air of the evaporator in the refrigerator cabinet with the defrost heater side upwind, the evaporator side downwind, and heater temperature detection means that detects the temperature of the hottest portion of the defrost heater; A heater temperature control device for controlling the temperature of the defrost heater so that the temperature detected by the heater temperature detection means does not exceed a set temperature, and the pitch of the fins of the evaporator near the defrost heater is set to Narrower than the pitch, the defrost heater is installed in the vertically downward direction of the evaporator, the contact portion between the fin of the evaporator and the defrost heater is at least in the vertically upward direction of the defrost heater, Defrost water that has been melted I has a structure in which a water receiving tray to collect the contact portion between the defrost heater of the fin.
[0011]
As a result, the temperature of the defrost heater conducts heat to the evaporator, and even if a low temperature defrost heater is used, the frost attached to the evaporator can be efficiently melted, and the temperature rise in the refrigerator can be suppressed to a small level. It can prevent the efficiency of the refrigerator from decreasing.
[0012]
In addition , frost adhering to the evaporator adheres more to the vicinity of the defrost heater on the windward side with a narrow fin pitch, can efficiently melt the frost during the defrost operation, and the temperature rise in the refrigerator can be suppressed to a small level, Reduced efficiency of refrigerator.
[0013]
Further , the defrost water melted by the defrost heater is accumulated in the contact portion of the fin with the defrost heater, and the frost in the evaporator can be melted in a short time by the water vapor evaporated by the heat of the defrost heater. The temperature rise inside is also kept small, and the efficiency of the refrigerator can be prevented from decreasing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, in the refrigerator for a flammable refrigerant as a refrigerant, and a defrosting heater for melting the evaporator, the frost on the said evaporator in close contact with the fins of the evaporator, divided A cooling fan that winds the frost heater side, evacuates the evaporator side and circulates the cool air of the evaporator in the refrigerator cabinet, heater temperature detecting means for detecting the temperature of the highest temperature portion of the defrost heater, and A heater temperature control device for controlling the temperature of the defrost heater so that the temperature detected by the heater temperature detection means does not exceed a set temperature, and the pitch of the fins of the evaporator near the defrost heater is set to the pitch of the other fins The defrost heater is installed vertically below the evaporator, and the contact portion between the evaporator fin and the defrost heater is at least vertically above the defrost heater and is melted by the defrost heater. Since defrost water is present as a structure in which a water receiving tray to collect the contact portion between the defrost heater of the fin, frost adhering to the evaporator, defrost heater near the narrow upwind side of the fin pitch The defrost water that adheres more and is melted by the defrost heater evaporates by the heat of the defrost heater and becomes water vapor, and the frost of the evaporator can be melted in a short time, using a low temperature defrost heater However, the frost adhering to the evaporator can be efficiently melted, and the efficiency of the refrigerator can be prevented from decreasing.
[0015]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0016]
(Embodiment 1)
FIG. 1 is a front view of an evaporator of a refrigerator according to claim 1. In FIG. 1, 3 is an evaporator having fins 3a, 4 is a defrosting heater, and penetrates the fins 3a. Reference numeral 8 denotes a defrost heater temperature detector, which detects the temperature of the highest temperature portion of the defrost heater 4. 9 is a defrost heater control apparatus, and controls the temperature of the defrost heater 4 so that the temperature of the defrost heater 4 may not become higher than a setting value.
[0017]
The operation of the refrigerator configured as described above will be described below. When the refrigerator (not shown) is operated for a certain period of time and becomes the defrosting operation, the cooling operation is stopped and the defrosting operation is performed. In the defrosting operation, even if the flammable refrigerant leaks from the cooling system, the defrosting heater control device 9 determines the temperature of the defrosting heater 4 based on the temperature of the defrosting heater 4 detected by the defrosting heater temperature detector 8. Explosion can be prevented by controlling so that the temperature does not exceed the set temperature at which the refrigerant may ignite. At this time, the defrost heater 4 is in contact with the fin 3a which is a part of the evaporator 3, and the temperature of the evaporator 3 can be increased in a shorter time by heat conduction than when not in contact. .
[0018]
Thereby, the frost adhering to the evaporator 3 is melt | dissolved in a short time, and the raise of the refrigerator internal temperature by a defrost operation is suppressed little. Moreover, the input to the defrosting heater 4 can also be suppressed low.
[0019]
Therefore, the efficiency reduction of the refrigerator due to the defrosting operation can be prevented, and the refrigerator can be made highly efficient.
[0020]
In the present embodiment, the defrost heater 4 conducts heat with the evaporator 3 in a form penetrating the fins 3a, but if the contact form allows heat conduction between the evaporator 3 and the defrost heater 4, The same effect can be obtained for any form.
[0021]
In the present embodiment, the control method of the defrost heater 4 is not defined, but any control method such as a control method such as ON / OFF control or input voltage control or use of a heater having a low temperature is used. Similar effects can be obtained.
[0022]
(Embodiment 2)
FIG. 2 is a front view of the evaporator of the refrigerator according to claim 2. In FIG. 2, 10 is a cooling fan that circulates the cold air generated in the evaporator 3 into the refrigerator, and is installed at a position where air is sucked from the defrost heater 4 side of the evaporator 3 and discharged to the anti-defrost heater side. Has been.
[0023]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below. During normal cooling operation, the cooling fan 10 circulates cold air in the refrigerator. Due to the circulation of the cold air, the water in the cold air becomes frost and adheres on the surface of the evaporator 3 having a lower temperature. At this time, the flow of the cold air is in the direction of the arrow in FIG.
[0024]
Since a lot of frost adheres in the vicinity of the defrosting heater 4, the frost is melted in a shorter time during the defrosting operation, and the rise in the refrigerator temperature due to the defrosting operation is suppressed to a small extent. Moreover, the input to the defrosting heater 4 can also be suppressed low.
[0025]
Therefore, the efficiency reduction of the refrigerator due to the defrosting operation can be prevented, and the refrigerator can be made more efficient.
[0026]
(Embodiment 3)
FIG. 3 is a front view of the evaporator of the refrigerator according to claim 3. In FIG. 3, reference numeral 11 denotes auxiliary fins, whereby the pitch of the fins 3a on the defrosting heater 4 side of the evaporator 3 that is the windward side of the cold air is narrow.
[0027]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below. During normal cooling operation, the cooling fan 10 circulates cold air in the refrigerator. Due to the circulation of the cold air, the water in the cold air becomes frost and adheres on the surface of the evaporator 3 having a lower temperature. Since the flow direction of the cold air is the direction of the arrow in FIG. 2, more moisture present in the cold air adheres to the windward side. At this time, the pitch of the fins 3a on the windward side of the evaporator 3 is larger than that on the leeward side. Since it is narrow, more water in the cold air adheres to the vicinity of the defrost heater 4 on the windward side of the evaporator 3.
[0028]
Since more frost adheres to the vicinity of the defrosting heater 4, the frost melts in a shorter time during the defrosting operation, and the rise in the refrigerator temperature due to the defrosting operation is suppressed to a small extent. Moreover, the input to the defrosting heater 4 can also be suppressed low.
[0029]
Therefore, the efficiency reduction of the refrigerator due to the defrosting operation can be prevented, and the refrigerator can be made more efficient.
[0030]
(Embodiment 4)
FIG. 4 is a front view of the evaporator of the refrigerator according to claim 4. In FIG. 4, reference numeral 12 denotes a sealed body that is in close contact with the defrost heater 4 and hermetically seals the defrost heater 4 and the air in the refrigerator.
[0031]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below. When the refrigerator (not shown) is operated for a certain period of time and becomes the defrosting operation, the cooling operation is stopped and the defrosting operation is performed. In the defrosting operation, even if the flammable refrigerant leaks from the cooling system, the defrosting heater control device 9 determines the temperature of the defrosting heater 4 based on the temperature of the defrosting heater 4 detected by the defrosting heater temperature detector 8. Explosion can be prevented by controlling so that the temperature does not exceed the set temperature at which the refrigerant may ignite.
[0032]
However, if an abnormality occurs in the defrost heater 4 and the temperature of the defrost heater 4 increases rapidly, the control of the defrost heater control device 9 may not be in time. Even in such a case, according to the present embodiment, the temperature of the defrost heater 4 is once thermally conducted to the sealed body 12 and then comes into contact with the air in the refrigerator. The control device 9 can be controlled safely.
[0033]
Therefore, an explosion can be prevented even when an abnormality occurs in the defrost heater 4 and the temperature of the defrost heater 4 rapidly increases.
[0034]
In the present embodiment, when the defrost heater 4 is a radiant heater whose internal temperature is higher than the surface temperature, the defrost heater 4 can be used regardless of the internal temperature, and the defrost heater 4 can be removed more efficiently. Frost operation can be performed.
[0035]
Needless to say, the same effects as those of the first to third embodiments can be obtained in the present embodiment.
[0036]
(Embodiment 5)
FIG. 5 is a front view of the evaporator of the refrigerator according to claim 5. FIG. 6 is a perspective view of the defrosting heater portion of the evaporator according to claim 5. 5 and 6, reference numeral 13 denotes a water tray that is installed vertically above the sealed body and stores a part of the defrost water melted by the defrost heater 5.
[0037]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below. During the defrosting operation, the frost melted by the defrosting heater 4 becomes defrosted water and is partially stored in the water receiving tray. The defrosted water stored in the water receiving tray 13 is thermally conducted from the defrosting heater 4 through the sealing body 12 and the water receiving tray 13 to evaporate to become water vapor, and passes through the evaporator 3 located vertically above.
[0038]
At this time, since water vapor contacts the evaporator 3 at a temperature of 100 ° C., there is an effect of melting frost attached to the evaporator 3. The frost adhering to the evaporator 3 can be melted faster by the melting of the frost by the water vapor than when only the frost melting by the heat radiation and heat conduction of the defrost heater 4 is performed. Moreover, the input to the defrosting heater 4 can also be suppressed low.
[0039]
Therefore, the efficiency reduction of the refrigerator due to the defrosting operation can be prevented, and the refrigerator can be made more efficient.
[0040]
Needless to say, the same effects as in the first to fourth embodiments can be obtained in this example.
[0041]
Moreover, in this Embodiment, although heat conduction of the defrost heater 4 and the water receiving tray 13 is performed via the sealing body 12, at least the defrost heater 4 upper part and the water receiving tray 13 can conduct heat. The same effect can be obtained in any form.
[0042]
【The invention's effect】
As described above, according to the present invention, the temperature of the evaporator can be raised in a short time during the defrosting operation by the heat conduction of the evaporator and the defrosting heater, so that the frost attached to the evaporator can be efficiently melted. Can do. Therefore, the defrosting time can be shortened, and the efficiency of the refrigerator can be prevented from decreasing due to the rise in the refrigerator temperature.
[0043]
Moreover, since the fin pitch on the windward side in the vicinity of the defrosting heater of the evaporator can be narrowed and more frost can be attached in the vicinity of the defrosting heater, the frost attached to the evaporator can be melted more efficiently. . Therefore, the defrosting time can be made shorter, and the efficiency of the refrigerator can be prevented from decreasing due to an increase in the refrigerator temperature.
[0044]
Moreover, the frost attached to the evaporator can be more efficiently melted by evaporating the defrost water melted by the defrost heater and melting the frost attached to the evaporator by the heat of water vapor. Therefore, the defrosting time can be shortened, and the efficiency of the refrigerator can be prevented from decreasing due to the rise in the refrigerator temperature.
[Brief description of the drawings]
FIG. 1 is a front view of a refrigerator evaporator according to claim 1 of the present invention. FIG. 2 is a front view of a refrigerator evaporator according to claim 2 of the present invention. Front view of the evaporator of the refrigerator [Fig. 4] Front view of the evaporator of the refrigerator according to claim 4 of the present invention [Fig. 5] Front view of the evaporator of the refrigerator according to claim 5 of the present invention [Fig. FIG. 7 is a perspective view of the vicinity of a defrosting heater of an evaporator according to claim 5 of the invention. FIG. 7 is a longitudinal sectional view of a conventional refrigerator.
DESCRIPTION OF SYMBOLS 3 Evaporator 3a Fin 4 Defrost heater 8 Defrost heater temperature detector 9 Defrost heater temperature device 10 Cooling fan 11 Auxiliary fin 12 Sealing body 13 Water tray

Claims (1)

可燃性冷媒を冷媒とする冷蔵庫において、蒸発器と、前記蒸発器のフィンと密着し前記蒸発器に付着した霜を融解する除霜ヒータと、除霜ヒータ側を風上、蒸発器側を風下とし蒸発器の冷気を冷蔵庫庫内に循環させる冷却ファンと、前記除霜ヒータの最も高温となる部分の温度を検出するヒータ温度検出手段と、前記ヒータ温度検出手段の検出した温度が設定温度以上にならないよう前記除霜ヒータ温度を制御するヒータ温度制御装置とを備え、前記除霜ヒータ近傍の蒸発器のフィンのピッチをそれ以外のフィンのピッチよりも狭くし、除霜ヒータを蒸発器の鉛直下方向に設置し、前記蒸発器のフィンと除霜ヒータの接触部分が少なくとも前記除霜ヒータの鉛直上方向にあり、前記除霜ヒータによって融解された除霜水が前記フィンの前記除霜ヒータとの接触部分に溜まるように水受け皿を設けた冷蔵庫。In a refrigerator using a combustible refrigerant as a refrigerant, an evaporator, a defrost heater that is in close contact with the fins of the evaporator and melts frost adhering to the evaporator, the defrost heater side is upwind, and the evaporator side is downwind A cooling fan that circulates the cool air of the evaporator into the refrigerator cabinet, a heater temperature detecting means that detects the temperature of the highest temperature portion of the defrost heater, and a temperature detected by the heater temperature detecting means is equal to or higher than a set temperature. A heater temperature control device for controlling the temperature of the defrost heater so that the pitch of the fins of the evaporator in the vicinity of the defrost heater is narrower than the pitch of the other fins. It is installed in the vertically downward direction, the contact portion between the fin of the evaporator and the defrost heater is at least in the vertically upward direction of the defrost heater, and the defrost water melted by the defrost heater is removed from the fin. Refrigerator having a water receiving tray to collect the contact portion of the heater.
JP29826398A 1998-10-20 1998-10-20 refrigerator Expired - Fee Related JP4310825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29826398A JP4310825B2 (en) 1998-10-20 1998-10-20 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29826398A JP4310825B2 (en) 1998-10-20 1998-10-20 refrigerator

Publications (2)

Publication Number Publication Date
JP2000121235A JP2000121235A (en) 2000-04-28
JP4310825B2 true JP4310825B2 (en) 2009-08-12

Family

ID=17857375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29826398A Expired - Fee Related JP4310825B2 (en) 1998-10-20 1998-10-20 refrigerator

Country Status (1)

Country Link
JP (1) JP4310825B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329447A (en) * 1999-05-17 2000-11-30 Matsushita Refrig Co Ltd Refrigerator and defrosting heater
JP2001165552A (en) * 1999-12-08 2001-06-22 Mitsubishi Electric Corp Refrigerator
JP2002267331A (en) * 2001-03-13 2002-09-18 Matsushita Refrig Co Ltd Refrigerator
JP4884990B2 (en) * 2007-01-18 2012-02-29 株式会社東洋製作所 Defroster for air cooler
JP5405011B2 (en) * 2007-10-02 2014-02-05 ホシザキ電機株式会社 Refrigeration equipment
JP4874223B2 (en) * 2007-12-25 2012-02-15 三菱電機株式会社 Air conditioner
CN102927786B (en) * 2012-11-30 2014-12-17 合肥美的电冰箱有限公司 Defrosting control method and system of refrigerator and refrigerator
WO2014192053A1 (en) * 2013-05-27 2014-12-04 三菱電機株式会社 Refrigerating device
CN112665286B (en) * 2021-01-04 2024-07-02 珠海格力电器股份有限公司 Refrigerator dehumidification and frost removal device, control method and refrigerator

Also Published As

Publication number Publication date
JP2000121235A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
JP2000329447A (en) Refrigerator and defrosting heater
JP4310825B2 (en) refrigerator
JP2004069294A (en) Refrigerator and defrosting device
CN106211703A (en) The heat abstractor of power device and the cooling control method of power device
JP3710674B2 (en) Forced evaporation mechanism of defrost water
KR101044616B1 (en) Defrosting method for heat pump evaporator
FI87111C (en) Device for preventing freezing of the working medium in an absorbent coolant
KR20000007553U (en) Electric heater device for outdoor unit defrost of air conditioner
JP2975878B2 (en) refrigerator
JP2005226865A (en) Refrigerator
KR100512641B1 (en) Defrosting system of refrigerator
KR100340055B1 (en) Refrigerator improved in defrosting ability
JP2000274925A (en) Regulating device for humidity in refrigerator
JP2569284B2 (en) Semiconductor cooling device
KR960002571B1 (en) Refrigerating apparatus
JP3482405B2 (en) refrigerator
KR100209651B1 (en) Defrost device of refrigerator evaporator
KR100387706B1 (en) Defroster of refrigerator
KR960001199Y1 (en) Refrigerator
JP2000111189A (en) Air conditioner
JPS6039736Y2 (en) Refrigeration equipment
JP3495956B2 (en) refrigerator
JP2760506B2 (en) Cooling system
JPH0633316Y2 (en) Constant temperature showcase
KR20200065674A (en) Method and Apparatus for Removing Condensate and Frost in Unit Cooler for Cold Storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees