JP4310429B2 - Method for producing perfluoroheterocyclic compound - Google Patents

Method for producing perfluoroheterocyclic compound Download PDF

Info

Publication number
JP4310429B2
JP4310429B2 JP2003184106A JP2003184106A JP4310429B2 JP 4310429 B2 JP4310429 B2 JP 4310429B2 JP 2003184106 A JP2003184106 A JP 2003184106A JP 2003184106 A JP2003184106 A JP 2003184106A JP 4310429 B2 JP4310429 B2 JP 4310429B2
Authority
JP
Japan
Prior art keywords
reaction
compound
fluoride
general formula
perfluoroheterocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003184106A
Other languages
Japanese (ja)
Other versions
JP2005015412A (en
Inventor
隆 阿部
正則 田村
章 関屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003184106A priority Critical patent/JP4310429B2/en
Publication of JP2005015412A publication Critical patent/JP2005015412A/en
Application granted granted Critical
Publication of JP4310429B2 publication Critical patent/JP4310429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、界面活性剤、農薬、医薬品などの含フッ素製品や含フッ素高分子単量体などの合成中間体として有用なペルフロオロ複素環化合物の製造方法に関する。
【0002】
【従来の技術】
ヘテロ原子として、酸素や窒素を持つペルフルオロ複素環を有するペルフルオロカルボン酸は、その分子構造を巧みに利用することにより種々の機能性の発現が期待できるために機能性フッ素化合物の合成中間体として注目されている。
例えば、射出成形の可能な溶融性フッ素樹脂(PFA樹脂)の製造のためには、ポリテトラフルオロエチレンポリマーのアモルファス性を増加(すなわち結晶性を低下)させる目的で、ペルフルオロビニルエーテルがテトラフルオロエチレンとの共単量体として用いられる。そのペルフルオロビニルエーテルは、ペルフルオロカルボン酸フルオリドとヘキサフルオロプロペンを原料として、数段階の反応により合成される。
この場合、共単量体となるペルフルオロビニルエーテルとしては、側鎖基のペルフルオロアルコキシ基が嵩高いほど少量で大きな効果が期待できるが、嵩高い5員環あるいは6員環から成るペルフルオロ環式エーテル基置換カルボニルフルオリドは、表記共単量体であるペルフルオロビニルエーテルの製造のための基本的な要件を満す優れた化合物であるといえる。
【0003】
従来より、これらのペルフルオロ複素環化合物、例えば(1)6員環のペルフルオロオキサン-2-カルボニルフルオリドは、アジピン酸を電解フッ素化反応することにより、5員環の異性体であるペルフルオロオキソラン-2-アセチルフルオリドとともに副反応生成物(環化反応生成物)として得られ(特許文献1)また、(2)5員環のペルフルオロオキソラン-2-カルボニルフルオリドは、上記ペルフルオロオキソラン-2-アセチルフルオリドを原料として、数段階の反応を経た後に、2-ジフルオロメチル-ヘプタフルオロオキソランを中間体として合成し、その最終反応では、2-ジフルオロメチル-ヘプタフルオロオキソランの2-位の側鎖基(-CF2H)を高温(500℃)で塩素と酸化窒素の混合ガスで酸化してカルボキシル基に変換することにより合成されている(非特許文献2)。
【0004】
しかしながら、(1)の二塩基性カルボン酸(アジピン酸)の電解フッ素化反応による合成法では、当該ペルフルオロオキサン-2-カルボニルフルオリドは、ペルフルオロオキソラン-2-アセチルフルオリドとともに副反応生成物(環化反応生成物)として生成するに過ぎず、その収率が極めて低いという問題があり、また、(2)の合成法は、その製造原料として、副反応生成物(環化反応生成物)であるペルフルオロオキソラン-2-アセチルフルオリドを必要とし、更に目的物を得るために多段階の反応と過酷な条件下での反応を必要とする、などの数多くの欠点があった。
【0005】
【非特許文献1】
T. Abe and S. Nagase, in "Preparation, Properties, and Industrial Applications of Organofluorine Compounds", ed. R.E. Banks, Ellis Horwood Limited, Chichester, 1982, P.31
【非特許文献2】
B. Zapevalova, V.S. Plashkin, B.N. Selishchev, K.N. Bil'dinov, M.S. Shcherbakova, J. Org. Chem. USSR (Engl, Transl.), Vol.13, 2389-2391 (1977)
【0006】
【発明が解決しようとする課題】
本発明は、このような問題点を克服し、容易に入手しうる原料を用い、簡便な工程で、各種フッ素化合物の合成中間体として有用なペルフルオロ環式エーテル基置換-2-カルボニルフルオリドを好収率で得ることができる、工業的に有利な製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決するため、鋭意研究を重ねた結果、特定な環式エーテル化合物を液体フッ化水素中等において電解フッ素化すると、対応するペルフルオロ環式エーテル基置換カルボニルフルオリドが簡便かつ好収率で得られることを知見し、本発明を完成するに至った。
すなわち、本発明によれば、以下の発明が提供される。
(1) 下記一般式1で示される化合物を電解フッ素化することを特徴とする下記一般式2で示されるペルフルオロ複素環化合物の製造方法。
【化4】
一般式1

Figure 0004310429
(式中、mは0、nは3〜4の整数である。Yは以下の基から選ばれる置換基を表す。Rはアルキル基、Rfはペルフルオロアルキル基を表す。)
【化5】
Figure 0004310429
【化6】
一般式2
Figure 0004310429
mは0、nは3〜4の整数である。
(2) 電解フッ素化反応を液体フッ化水素中で行うことを特徴とする上記(1)に記載のペルフロオロ複素環化合物の製造方法。
【0008】
【発明の実施の形態】
本発明の電解フッ素化反応においては、原料として、前記一般式1で示される特定なオキソラン又はオキサン誘導体を用いることが重要である。
すなわち、ペルフルオロカルボン酸フルオリドの出発原料として対応するカルボン酸クロリドを用いた場合には、環式エーテル基置換−2−カルボニルクロリドを持つ場合には, 不安定な化合物であるために、電解フッ素化の原料としては適当でない。例えば、オキソラン-2-カルボニルクロリドはそれ自体室温で不安定な化合物{A. Mooradian, C.J. Cavallito, A.J. Bergman, E.J. Lawson and G.M. Suter, J. Amer. Chem. Soc., 71, 3372 (1949)}であり、無水フッ化水素酸中では脱カルボニル化反応が優先しておきるために、この化合物の電解フッ素化からは、目的とするペルフルオロオキソラン−2−カルボニルフロリドはほとんど得ることができない。本発明者らは、これを解決するために試行錯誤の結果、上記一般式(1)における、置換基Yとして、ヒドロキシルメチル基(−CH2OH)や、これをカルボメトキシ基などのエステルに変換したもの更にはアルコキカルボニル等を選定し、このものを電解フッ素化すれば所望のペルフルオロオキソラン−2−カルボニルフルオリドが好収率で得られることを見いだした。
【0009】
Yの具体例としては、たとえば以下のような基を挙げることができる。
【化7】
Figure 0004310429
【0010】
本発明で好ましく使用される一般式1で示される化合物を示せば以下のとおりである。
【化8】
Figure 0004310429
【0011】
特に、置換基として、ヒドロキシルメチル基(-CH2OH)をカルボメトキシ基などのエステルに変換したものは、-CH2OH基の脱水酸基反応を抑制する機能を有し、目的物を好収率で得ることができるので好ましく使用される。
【0012】
本発明の原料である上記一般式1で示される化合物としては、例えば以下のものを例示することができる。
【化9】
Figure 0004310429
【0013】
本発明に係る電解フッ素化反応は、液体フッ化水素中で行なわれる。
また、前記原料であるオキソラン及びオキサン誘導体の濃度は、特に制限はないが、1〜80重量%の範囲で選定するのがよいが、濃度があまり高くなるとタール状化合物が生成し易くなるので、好ましくは3〜20重量%の濃度で選ばれる。
【0014】
電解フッ素化の反応条件に特別な制約はないが、電流密度が高すぎると電解電圧が高くなりすぎて副反応が生じやすくなるで、電流密度は、0.01〜10A/dm2、好ましくは0.1〜5A/dm2の範囲で行うのが好ましい。電解温度は、−20〜50℃、好ましくは−10〜20℃の範囲とするのが好ましい。この電解温度が低すぎると電解電圧が高くなりやすく、一方高すぎるとフッ化水素の逃散が起こりやすくなるので望ましくない。
【0015】
また、電解反応は通常常圧で行われるが、所望に応じ加圧下で行うこともできる。加圧下で行う場合は、フッ化水素の沸点が上昇するために、反応系の冷却を緩和しうる長所がある。また、該反応は連続法又はバッチ式のいずれの方法も用いることができるが、バッチ式で行う場合、反応を完結させるための電解時間は電流密度や原料の量に左右されるが、一般に電気量が理論電気量の80〜200%になるような時間を要して反応を行うのが好ましい。
【0016】
また、上記電解フッ素化反応の条件は、使用する原料の種類によって異なるので、目的生成物の収率及び電流効率などを考慮して適宜選択することが望ましい。また、効率よく電解フッ素化を行い、目的生成物の収率を向上させるために、反応中電解液をかき混ぜることが望ましく、その為には機械的な強制攪拌や不活性ガスの導入によるかき混ぜなどの方法を用いることができる。
また、本発明方法における電解フッ素化反応においては、従来電解フッ素化反応で常用されている電解槽をそのまま適用することができる。
【0017】
このようにして得られたペルフルオロ環式エーテル基置換カルボニルフルオリドは、ほとんどが揮発性の化合物として、冷却トラップに捕集されるが、一部は電解槽内に残留し、液体フッ化水素と分離して二層となるために、その下層を形成している該化合物を電解終了後にドレインして取り出すことができる。
このような電解フッ素化反応により、前記一般式2で表されるペルフルオロ環式エーテル基置換カルボニルフルオリドが得られる。
本発明の目的化合物である、前記一般式2で示される化合物としては、たとえば、以下のような化合物が例示される。
【0018】
【化10】
Figure 0004310429
【0019】
【実施例】
以下、本発明のペルフルオロ環式エーテル基置換カルボニルフルオリドの製造方法を実施例を挙げて更に詳細に説明する。
なお、電解槽は、モネルメタル製のものを、電極にはニッケル板製の陽極7枚と陰極8枚とを極間距離2mmで交互に配列した、有効面積が7.5dm2のものを使用した。
【0020】
実施例1
容量450mlの無水フッ化水素酸にテトラヒドロフルフリルアルコールの酢酸エステル(一般式1において、m=0, n=3, Y=−CH2OC(O)CH3)(20.2g)を溶解し、この溶液を、5.2〜5.8Vで100Ahr電解した。
生成ガスはフッ化ナトリウム管を通じて随伴するフッ化水素を除いた後、ドライアイスエタノール浴で−78℃に冷却したトラップで補集した。冷却トラップ中にはフルオロカーボン混合物11.5gが捕集された。また、電解終了後、電解槽下部のドレインコックを開き、フルオロカーボン混合物(セルドレイン化合物)6.4gを抜き出した。
これらのフルオロカーボン混合物を、ガスクロマトグラフィー[キャリアー:He、液相:Fomblin YR 25%、坦体:60〜80メッシュ クロモソーブPAW]、IR、19F-NMR、Mass、元素分析などにより分析したところ、目的物のペルフルオロ(オキソラン−2−カルボニルフルオロリド)が3.2g(収率9.4モル%)が得られた。
このペルフルオロ(オキソラン−2−カルボニルフルオリド)の赤外吸収スペクトルデータは以下のとおりであった。
【0021】
IR(gas): 1888 ν(C=O) (ms), 1381 (w), 1346 (ms), 1270 (ms, sh), 1227 (s), 1181 (ms), 1161 (ms), 1109 (vs), 1080 (s, sh), 1007 (ms), 910 (ms), 698 (w), 571 (w).
【0022】
ペルフルオロ(オキソラン−2−カルボニルフルオリド)は、更に対応するメチルエステルに誘導して、その物性を測定した。
メチルエステルとしての物性値は、沸点 103.5〜104.5℃(文献値:106℃), 密度がd4 201.5654, 屈折率がnD 20 1.3158でありその分光学的データ(IR, Mass)は次のようであった。
【0023】
IR (capillary film): 2968 ν(CH) (w), 1792 ν(C=O) (s), 1445 (ms), 1375 (ms), 1352 (ms), 1301 (ms), 1217 (vs), 1176 (s), 1157 (s), 1126 (s), 1082 (s), 1007 (s), 962 (ms), 905 (ms), 816 (w), 777 (ms), 569 (w).
【0024】
Mass (796-3): 197 [M-C(O)OCH3]+ (1.8), 181 C4F7 + (2.2), 169 C3F7 + (8.2), 131 C3F5 + (5.1), 119 C2F5 + (7.8), 109 CF2C(O)OCH3 + (5.7), 100 C2F4 + (13.8), 81 C2F3 + (5.9), 69 CF3 + (46.0), 59 C(O)OCH3 + (100), 47 C(O)F+ (4.6).
【0025】
19F NMR:
【化11】
Figure 0004310429
【0026】
実施例 2
原料としてテトラヒドロフルフリルアルコールとテトラヒドロフラン−2−カルボン酸とのエステル(一般式1において、m=0, n=3, Y=−CH2OC(O)−c−C4H7Oのもの)(22.1g, 0.11mol)を用い、電解電圧は、5.5〜6.8Vで98Ahr電解した以外は実施例1と同様にして実験を行った。電解終了後、冷却トラップ中にはフルオロカーボン混合物18.1gが得られたが、この場合には、電解槽下部よりのセルドレイン化合物は得られなかった。目的物のペルフルオロ(オキソラン−2−カルボニルフルオリド)が5.3g得られた。仕込んだ原料を基にするとペルフルオロ(オキソラン−2−カルボニルフルオリド)の収率は19.5モル%であった。
【0027】
実施例 3
原料としてテトラヒドロピラン−2−メタノールとトリフルオロ酢酸のエステル(一般式1にいて、m=0, n=4, Y=−CH2OC(O)CF3)のもの)(27.9g, 0.131mol)を用い、電解電圧は、5.1〜5.6Vで88Ahr電解した以外は実施例1と同様にして実験を行った。電解終了後、冷却トラップ中にはフルオロカーボン混合物7.0gと電解槽下部よりセルドレイン化合物が9.6g捕集された。これらの生成物を分析したところ、目的物のペルフルオロ(オキサン−2−カルボニルフルオリド)が3.0g得られた。仕込んだ原料を基にするとペルフルオロ(オキサン−2−カルボニルフルオリド)の収率は6.9モル%であった。
ペルフルオロ(オキサン−2−カルボニルフルオリド)の赤外吸収スペクトルデータは以下のとおりであった。
【0028】
IR (gas): 1886 ν(C=O) (s), 1355 (w), 1340 (w), 1286 (ms), 1253 (ms, sh), 1207 (s), 1140 (vs), 1055 (ms), 986 (ms), 1011 (w), 899 (ms), 802 (w), 721 (w), 644 (w), 611 (w).
【0029】
ペルフルオロ(オキサン−2−カルボニルフルオリド)の物性値は対応するメチルエステルに誘導化して測定した。
そのメチルエステルとしての物性値は、沸点116.5〜117.5℃、密度 d4 201.6579、屈折率 nD 20 1.3211でありその分光学的データは次のようである。
【0030】
IR (capillary film): 2968 ν(CH) (w), 1788 ν(C=O) (s), 1443 (w), 1352 (ms), 1312 (ms), 1285 (ms), 1263 (s), 1227 (s), 1198 (vs), 1151 (s), 1134 (s), 1057 (ms), 988 (s), 957 (ms), 895 (w), 779 (ms), 642 (w), 613 (w), 552 (w).
【0031】
Mass: 247 [M-C(O)OCH3]+ (1.4), 231 C5F9 + (1.8), 219 C4F9 + (2.9), 181 C4F7 + (2.1), 169 C3F7 + (3.7), 140 C2F3C(O)OCH3 + (2.6), 131 C3F5 + (17.7), 119 C2F5 + (6.5), 109 CF2C(O)OCH3 + (4.3), 100 C2F4 + (18.5), 81 C2F3 + (5.9), 69 CF3 + (41.3), 59 C(O)OCH3 + (100) 47 C(O)F+ (4.0).
【0032】
19F NMR:
【化12】
Figure 0004310429
【0033】
実施例 4
原料としてテトラヒドロフルフリルアルコールとメタンスルホン酸とのエステル(一般式1において、m=0, n=4, Y=−CH2OS(O)2OCH3)(21.0g, 0.116mol)を用いて、電解電圧は5.6〜7.0Vで71Ahr電解を行い、また冷却トラップに、それぞれドライアイス(−78℃)と液体窒素で冷却したトラップを用いた以外は実施例1と同様にして実験を行った。電解終了後、液体窒素で冷却したトラップ中にはフルオロカーボン混合物12.6gが得られたが、主成分はテトラフルオロメタン、スルフリルフルオリド、及びトリフルオロメタンスルホニルフルオリドであった。またドライアイスで冷却したトラップには4.7gのフルオロカーボン混合物が得られた。これを、GC, IRなどにより分析したところ、目的物のペルフルオロ(オキソラン−2−カルボニルフルオリド)が0.7g得られた。仕込んだ原料を基にするとペルフルオロ(オキソラン−2−カルボニルフルオリド)の収率は2.5モル%であった。
【0034】
【発明の効果】
本発明の製造方法によれば、各種フッ素化合物の合成中間体として有用なペルフルオロ環式エーテル基置換-2-カルボニルフルオリドを、容易に入手しうる原料を用い、かつ簡便な電解処理工程により好収率で製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing perfluoroheterocyclic compounds useful as synthetic intermediates for fluorine-containing products such as surfactants, agricultural chemicals and pharmaceuticals, and fluorine-containing polymer monomers.
[0002]
[Prior art]
Perfluorocarboxylic acids having a perfluoroheterocycle with oxygen or nitrogen as a heteroatom can be expected to exhibit various functions by skillfully utilizing their molecular structure, and are therefore attracting attention as intermediates for the synthesis of functional fluorine compounds. Has been.
For example, in order to produce a meltable fluororesin (PFA resin) that can be injection molded, perfluorovinyl ether and tetrafluoroethylene are used for the purpose of increasing the amorphous property of polytetrafluoroethylene polymer (that is, lowering the crystallinity). Used as a comonomer. The perfluorovinyl ether is synthesized by several steps of reaction using perfluorocarboxylic acid fluoride and hexafluoropropene as raw materials.
In this case, as the perfluorovinyl ether serving as a comonomer, a larger effect can be expected with a smaller amount of the perfluoroalkoxy group of the side chain group, but a perfluoro cyclic ether group composed of a bulky 5-membered or 6-membered ring. Substituted carbonyl fluorides can be said to be excellent compounds that meet the basic requirements for the production of the indicated comonomer, perfluorovinyl ether.
[0003]
Conventionally, these perfluoroheterocyclic compounds, for example, (1) 6-membered ring perfluorooxan-2-carbonyl fluoride are obtained by subjecting adipic acid to an electrofluorination reaction to form perfluorooxo which is a 5-membered ring isomer. It is obtained as a side reaction product (cyclization reaction product) together with lan-2-acetyl fluoride (Patent Document 1) and (2) 5-membered ring perfluorooxolane-2-carbonyl fluoride is obtained by After several steps of reaction using lan-2-acetyl fluoride as a raw material, 2-difluoromethyl-heptafluorooxolane was synthesized as an intermediate. In the final reaction, 2-difluoromethyl-heptafluorooxolane was synthesized. It is synthesized by oxidizing the side chain group at the 2-position (-CF 2 H) with a mixed gas of chlorine and nitric oxide at a high temperature (500 ° C) and converting it to a carboxyl group. (Non-Patent Document 2).
[0004]
However, in the synthesis method (1) by electrolytic fluorination reaction of dibasic carboxylic acid (adipic acid), perfluorooxane-2-carbonyl fluoride is produced as a side reaction with perfluorooxolane-2-acetyl fluoride. It is only produced as a product (cyclization reaction product), and there is a problem that the yield is extremely low. In addition, the synthesis method (2) uses a side reaction product (cyclization reaction product) as a production raw material. Perfluorooxolane-2-acetyl fluoride, which requires a multi-stage reaction and a reaction under harsh conditions in order to obtain the desired product.
[0005]
[Non-Patent Document 1]
T. Abe and S. Nagase, in "Preparation, Properties, and Industrial Applications of Organofluorine Compounds", ed. RE Banks, Ellis Horwood Limited, Chichester, 1982, P.31
[Non-Patent Document 2]
B. Zapevalova, VS Plashkin, BN Selishchev, KN Bil'dinov, MS Shcherbakova, J. Org. Chem. USSR (Engl, Transl.), Vol. 13, 2389-2391 (1977)
[0006]
[Problems to be solved by the invention]
The present invention overcomes these problems and uses perfluorocyclic ether group-substituted 2-carbonyl fluoride useful as a synthetic intermediate for various fluorine compounds in a simple process using readily available raw materials. An object of the present invention is to provide an industrially advantageous production method that can be obtained in good yield.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when a specific cyclic ether compound is electrolytically fluorinated in liquid hydrogen fluoride or the like, the corresponding perfluorocyclic ether group-substituted carbonyl fluoride is obtained. Knowing that it can be obtained simply and with good yield, the present invention has been completed.
That is, according to the present invention, the following inventions are provided.
(1) A method for producing a perfluoroheterocyclic compound represented by the following general formula 2, wherein the compound represented by the following general formula 1 is electrolytically fluorinated.
[Formula 4]
General formula 1
Figure 0004310429
(In the formula, m is 0 and n is an integer of 3 to 4. Y represents a substituent selected from the following groups . R represents an alkyl group, and Rf represents a perfluoroalkyl group.)
[Chemical formula 5]
Figure 0004310429
[Chemical 6]
General formula 2
Figure 0004310429
( M is 0, n is an integer of 3-4. )
(2) The method for producing a perfluoroheterocyclic compound as described in (1) above, wherein the electrolytic fluorination reaction is carried out in liquid hydrogen fluoride.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the electrolytic fluorination reaction of the present invention, it is important to use a specific oxolane or oxane derivative represented by the general formula 1 as a raw material.
In other words, when the corresponding carboxylic acid chloride is used as a starting material for perfluorocarboxylic acid fluoride, it has a cyclic ether group-substituted 2-carbonyl chloride. It is not suitable as a raw material. For example, oxolane-2-carbonyl chloride itself is a compound that is unstable at room temperature {A. Mooradian, CJ Cavallito, AJ Bergman, EJ Lawson and GM Suter, J. Amer. Chem. Soc., 71, 3372 (1949)}. Since the decarbonylation reaction is given priority in anhydrous hydrofluoric acid, the target perfluorooxolane-2-carbonyl fluoride can hardly be obtained from the electrolytic fluorination of this compound. As a result of trial and error in order to solve this problem, the present inventors have converted the hydroxyl group (—CH 2 OH) into an ester such as a carbomethoxy group as the substituent Y in the general formula (1). It was found that the desired perfluorooxolane-2-carbonyl fluoride can be obtained in good yield by selecting the converted one and further alkoxycarbonyl and the like and subjecting this to electrolytic fluorination.
[0009]
Specific examples of Y include the following groups.
[Chemical 7]
Figure 0004310429
[0010]
The compound represented by the general formula 1 preferably used in the present invention is as follows.
[Chemical 8]
Figure 0004310429
[0011]
In particular, as a substituent, a hydroxylmethyl group (—CH 2 OH) converted to an ester such as a carbomethoxy group has a function of suppressing the dehydroxylation reaction of the —CH 2 OH group, and the target product is well received. Since it can be obtained at a rate, it is preferably used.
[0012]
As a compound shown by the said General formula 1 which is a raw material of this invention, the following can be illustrated, for example.
[Chemical 9]
Figure 0004310429
[0013]
The electrolytic fluorination reaction according to the present invention is performed in liquid hydrogen fluoride.
Further, the concentration of the oxolane and oxane derivative as the raw material is not particularly limited, but it is preferable to select the concentration within the range of 1 to 80% by weight. However, if the concentration is too high, a tar-like compound is easily generated. It is preferably selected at a concentration of 3 to 20% by weight.
[0014]
There are no particular restrictions on the reaction conditions for electrolytic fluorination, but if the current density is too high, the electrolysis voltage becomes too high and side reactions are likely to occur, and the current density is 0.01 to 10 A / dm 2 , preferably 0.1 to It is preferable to carry out within the range of 5 A / dm 2 . The electrolysis temperature is −20 to 50 ° C., preferably −10 to 20 ° C. If the electrolysis temperature is too low, the electrolysis voltage tends to be high, while if it is too high, escape of hydrogen fluoride tends to occur, which is not desirable.
[0015]
The electrolytic reaction is usually performed at normal pressure, but can be performed under pressure as desired. When carried out under pressure, since the boiling point of hydrogen fluoride increases, there is an advantage that cooling of the reaction system can be relaxed. In addition, the reaction can be carried out by either a continuous method or a batch method, but in the case of a batch method, the electrolysis time for completing the reaction depends on the current density and the amount of raw material, but generally electric It is preferable to carry out the reaction in such a time that the amount is 80 to 200% of the theoretical electricity amount.
[0016]
The conditions for the electrolytic fluorination reaction vary depending on the types of raw materials used, and therefore it is desirable to select them appropriately in consideration of the yield of the target product and current efficiency. In addition, it is desirable to stir the electrolyte during the reaction in order to efficiently perform electrolytic fluorination and improve the yield of the target product. For this purpose, mechanical agitation or stirring by introducing an inert gas, etc. This method can be used.
Moreover, in the electrolytic fluorination reaction in the method of the present invention, an electrolytic cell conventionally used in an electrolytic fluorination reaction can be applied as it is.
[0017]
The perfluorocyclic ether group-substituted carbonyl fluoride thus obtained is mostly collected as a volatile compound in the cooling trap, but a part of it remains in the electrolytic cell, and liquid hydrogen fluoride and Since it is separated into two layers, the compound forming the lower layer can be drained and taken out after electrolysis.
By such electrolytic fluorination reaction, the perfluoro cyclic ether group-substituted carbonyl fluoride represented by the general formula 2 is obtained.
Examples of the compound represented by the general formula 2, which is the target compound of the present invention, include the following compounds.
[0018]
[Chemical Formula 10]
Figure 0004310429
[0019]
【Example】
EXAMPLES Hereinafter, the manufacturing method of the perfluoro cyclic ether group substituted carbonyl fluoride of this invention is demonstrated in detail with an Example.
The electrolytic cell was made of Monel Metal, and the electrode used was an electrode having an effective area of 7.5 dm 2 in which 7 nickel plate anodes and 8 cathodes were alternately arranged with a distance of 2 mm between the electrodes.
[0020]
Example 1
(In general formula 1, m = 0, n = 3, Y = -CH 2 OC (O) CH 3) tetrahydrofurfuryl alcohol acetates in anhydrous hydrofluoric acid capacity 450ml was dissolved (20.2 g), This solution was electrolyzed at 5.2 to 5.8 V for 100 Ahr.
The generated gas was collected by a trap cooled to −78 ° C. in a dry ice ethanol bath after removing the accompanying hydrogen fluoride through a sodium fluoride tube. 11.5 g of fluorocarbon mixture was collected in the cold trap. Further, after completion of electrolysis, the drain cock at the bottom of the electrolytic cell was opened, and 6.4 g of a fluorocarbon mixture (cell drain compound) was extracted.
When these fluorocarbon mixtures were analyzed by gas chromatography [carrier: He, liquid phase: Fomblin YR 25%, carrier: 60-80 mesh chromosorb PAW], IR, 19 F-NMR, Mass, elemental analysis, etc., As a result, 3.2 g (yield: 9.4 mol%) of perfluoro (oxolane-2-carbonylfluoride) as a target product was obtained.
The infrared absorption spectrum data of this perfluoro (oxolane-2-carbonyl fluoride) was as follows.
[0021]
IR (gas): 1888 ν (C = O) (ms), 1381 (w), 1346 (ms), 1270 (ms, sh), 1227 (s), 1181 (ms), 1161 (ms), 1109 ( vs), 1080 (s, sh), 1007 (ms), 910 (ms), 698 (w), 571 (w).
[0022]
Perfluoro (oxolane-2-carbonyl fluoride) was further derivatized to the corresponding methyl ester and its physical properties were measured.
The physical properties of the methyl ester are as follows: Boiling point: 103.5-104.5 ° C (Reference value: 106 ° C), Density: d 4 20 1.5654, Refractive index: n D 20 1.3158 The spectroscopic data (IR, Mass) are It seemed.
[0023]
IR (capillary film): 2968 ν (CH) (w), 1792 ν (C = O) (s), 1445 (ms), 1375 (ms), 1352 (ms), 1301 (ms), 1217 (vs) , 1176 (s), 1157 (s), 1126 (s), 1082 (s), 1007 (s), 962 (ms), 905 (ms), 816 (w), 777 (ms), 569 (w) .
[0024]
Mass (796-3): 197 [MC (O) OCH 3 ] + (1.8), 181 C 4 F 7 + (2.2), 169 C 3 F 7 + (8.2), 131 C 3 F 5 + (5.1) , 119 C 2 F 5 + (7.8), 109 CF 2 C (O) OCH 3 + (5.7), 100 C 2 F 4 + (13.8), 81 C 2 F 3 + (5.9), 69 CF 3 + ( 46.0), 59 C (O) OCH 3 + (100), 47 C (O) F + (4.6).
[0025]
19 F NMR:
Embedded image
Figure 0004310429
[0026]
Example 2
Esters of tetrahydrofurfuryl alcohol and tetrahydrofuran-2-carboxylic acid as a raw material (in general formula 1, m = 0, n = 3, Y = -CH 2 OC (O) -c-C 4 H 7 O ones) (22.1 g, 0.11 mol) was used, and the experiment was performed in the same manner as in Example 1 except that the electrolysis voltage was 98 Ahr at 5.5 to 6.8 V. After completion of the electrolysis, 18.1 g of the fluorocarbon mixture was obtained in the cooling trap, but in this case, the cell drain compound from the lower part of the electrolytic cell was not obtained. 5.3 g of the desired perfluoro (oxolane-2-carbonyl fluoride) was obtained. Based on the raw materials charged, the yield of perfluoro (oxolane-2-carbonyl fluoride) was 19.5 mol%.
[0027]
Example 3
Esters of tetrahydropyran-2-methanol and trifluoroacetic acid as the starting material (Formula 1 Niite, m = 0, n = 4 , Y = -CH 2 OC (O) CF 3) ones) (27.9 g, 0.131 mol ) And the electrolysis voltage was 5.1 to 5.6 V, and the experiment was performed in the same manner as in Example 1 except that electrolysis was performed for 88 Ahr. After completion of electrolysis, 7.0 g of fluorocarbon mixture and 9.6 g of cell drain compound were collected from the bottom of the electrolytic cell in the cooling trap. When these products were analyzed, 3.0 g of the desired perfluoro (oxane-2-carbonyl fluoride) was obtained. Based on the raw materials charged, the yield of perfluoro (oxane-2-carbonyl fluoride) was 6.9 mol%.
The infrared absorption spectrum data of perfluoro (oxane-2-carbonyl fluoride) was as follows.
[0028]
IR (gas): 1886 ν (C = O) (s), 1355 (w), 1340 (w), 1286 (ms), 1253 (ms, sh), 1207 (s), 1140 (vs), 1055 ( ms), 986 (ms), 1011 (w), 899 (ms), 802 (w), 721 (w), 644 (w), 611 (w).
[0029]
The physical properties of perfluoro (oxan-2-carbonyl fluoride) were measured by derivatization to the corresponding methyl ester.
The physical properties of the methyl ester are as follows: boiling point 116.5-117.5 ° C., density d 4 20 1.6579, refractive index n D 20 1.3211, and the spectroscopic data are as follows.
[0030]
IR (capillary film): 2968 ν (CH) (w), 1788 ν (C = O) (s), 1443 (w), 1352 (ms), 1312 (ms), 1285 (ms), 1263 (s) , 1227 (s), 1198 (vs), 1151 (s), 1134 (s), 1057 (ms), 988 (s), 957 (ms), 895 (w), 779 (ms), 642 (w) , 613 (w), 552 (w).
[0031]
Mass: 247 [MC (O) OCH 3 ] + (1.4), 231 C 5 F 9 + (1.8), 219 C 4 F 9 + (2.9), 181 C 4 F 7 + (2.1), 169 C 3 F 7 + (3.7), 140 C 2 F 3 C (O) OCH 3 + (2.6), 131 C 3 F 5 + (17.7), 119 C 2 F 5 + (6.5), 109 CF 2 C (O) OCH 3 + (4.3), 100 C 2 F 4 + (18.5), 81 C 2 F 3 + (5.9), 69 CF 3 + (41.3), 59 C (O) OCH 3 + (100) 47 C (O) F + (4.0).
[0032]
19 F NMR:
Embedded image
Figure 0004310429
[0033]
Example 4
Using an ester of tetrahydrofurfuryl alcohol and methanesulfonic acid as a raw material (in formula 1, m = 0, n = 4, Y = —CH 2 OS (O) 2 OCH 3 ) (21.0 g, 0.116 mol) The experiment was carried out in the same manner as in Example 1 except that the electrolysis voltage was 5.6 to 7.0 V and 71 Ahr electrolysis was performed, and a trap cooled with dry ice (−78 ° C.) and liquid nitrogen was used as the cooling trap. . After the electrolysis, 12.6 g of a fluorocarbon mixture was obtained in a trap cooled with liquid nitrogen, and the main components were tetrafluoromethane, sulfuryl fluoride, and trifluoromethanesulfonyl fluoride. Moreover, 4.7 g of fluorocarbon mixture was obtained in the trap cooled with dry ice. When this was analyzed by GC, IR, etc., 0.7 g of the desired product perfluoro (oxolane-2-carbonyl fluoride) was obtained. Based on the raw materials charged, the yield of perfluoro (oxolane-2-carbonyl fluoride) was 2.5 mol%.
[0034]
【The invention's effect】
According to the production method of the present invention, perfluorocyclic ether group-substituted 2-carbonyl fluoride, which is useful as an intermediate for synthesis of various fluorine compounds, is preferably obtained by using a readily available raw material and by a simple electrolytic treatment process. It can be produced in a yield.

Claims (2)

下記一般式1で示される化合物を電解フッ素化することを特徴とする下記一般式2で示されるペルフルオロ複素環化合物の製造方法。
【化1】
一般式1
Figure 0004310429
(式中、mは0、nは3〜4の整数である。Yは以下の基から選ばれる置換基を表す。Rはアルキル基、Rfはペルフルオロアルキル基を表す。)
Figure 0004310429
【化3】
一般式2
Figure 0004310429
mは0、nは3〜4の整数である。
A method for producing a perfluoroheterocyclic compound represented by the following general formula 2, which comprises subjecting a compound represented by the following general formula 1 to electrolytic fluorination.
[Chemical 1]
General formula 1
Figure 0004310429
(In the formula, m is 0 and n is an integer of 3 to 4. Y represents a substituent selected from the following groups . R represents an alkyl group, and Rf represents a perfluoroalkyl group.)
Figure 0004310429
[Chemical 3]
General formula 2
Figure 0004310429
( M is 0, n is an integer of 3-4. )
電解フッ素化反応を液体フッ化水素中で行うことを特徴とする請求項1に記載のペルフロオロ複素環化合物の製造方法。  The method for producing a perfluoroheterocyclic compound according to claim 1, wherein the electrolytic fluorination reaction is performed in liquid hydrogen fluoride.
JP2003184106A 2003-06-27 2003-06-27 Method for producing perfluoroheterocyclic compound Expired - Lifetime JP4310429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184106A JP4310429B2 (en) 2003-06-27 2003-06-27 Method for producing perfluoroheterocyclic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184106A JP4310429B2 (en) 2003-06-27 2003-06-27 Method for producing perfluoroheterocyclic compound

Publications (2)

Publication Number Publication Date
JP2005015412A JP2005015412A (en) 2005-01-20
JP4310429B2 true JP4310429B2 (en) 2009-08-12

Family

ID=34183980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184106A Expired - Lifetime JP4310429B2 (en) 2003-06-27 2003-06-27 Method for producing perfluoroheterocyclic compound

Country Status (1)

Country Link
JP (1) JP4310429B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014818A1 (en) * 2010-07-30 2012-02-02 日本ゼオン株式会社 Ether compound, electrolyte composition for non-aqueous battery, binder composition for non-aqueous battery electrode, slurry composition for non-aqueous battery electrode, electrode for non-aqueous battery and non-aqueous battery

Also Published As

Publication number Publication date
JP2005015412A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
DE60224554T2 (en) FLUOROSULFONYL COMPOUNDS AND METHOD FOR PRODUCING DIRECTLY DERIVED COMPOUNDS
JPS6140040B2 (en)
JP4310429B2 (en) Method for producing perfluoroheterocyclic compound
US7408019B2 (en) Fluorinated ether compound
JP2984759B2 (en) Novel perfluoro (2,6-dimethylmorpholinoacetyl fluoride) and method for producing the same
JP4440006B2 (en) Fluorinated carbonates and process for producing the same
JPH0637416B2 (en) Fluorodivinyl ether compound and method for producing the same
JP5092192B2 (en) Process for producing perfluoro compounds and derivatives thereof
JP2004018429A (en) Method for manufacturing fluorine-containing fluorosulfonylalkyl vinyl ether
JP5428191B2 (en) Method for producing fluorocarbon
JP3918050B2 (en) Novel nitrogen-containing perfluorocarboxylic acid fluoride and method for producing the same
JP2006232704A (en) New fluorosulfonyl group-containing compound
CN1680241A (en) Process for preparing fluorohalogenethers
US3683036A (en) Method for preparing perfluorocycloolefins
JPH11335346A (en) Production of perfluoroalkylvinyl ether derivative
JP4324373B2 (en) Alkyl ester of 2- (2-fluorosulfonyl) -perfluoroethyleneoxy 3-halogen-propionic acid and method for producing the same
JP2881194B1 (en) Fluorine-containing diether compound and method for producing the same
KR101956826B1 (en) Synthesis Method for Perfluoro-Sulfonylfluoride Ehtyl-Propyl-Vinyl Ether and Apparatus for the Synthesis Method
JPWO2004050649A1 (en) Perfluoro five-membered ring compound
WO2003106407A1 (en) Process for production of fluorine-containing fluoro- sulfonylalkyl vinyl ethers
JP2946045B1 (en) Novel perfluoro (piperazine-N, N'-di-acetylfluoride) and process for producing the same
JPH0261450B2 (en)
JPH01259188A (en) Production of perfluoro(3-dialkylaminopropionic acid fluoride)
JP2967168B1 (en) Method for producing perfluoro (secondary amino-substituted acetyl fluoride)
JPS6224415B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4310429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term