JP4309731B2 - Solar cell element - Google Patents

Solar cell element Download PDF

Info

Publication number
JP4309731B2
JP4309731B2 JP2003333111A JP2003333111A JP4309731B2 JP 4309731 B2 JP4309731 B2 JP 4309731B2 JP 2003333111 A JP2003333111 A JP 2003333111A JP 2003333111 A JP2003333111 A JP 2003333111A JP 4309731 B2 JP4309731 B2 JP 4309731B2
Authority
JP
Japan
Prior art keywords
electrode
solar cell
finger
cell element
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003333111A
Other languages
Japanese (ja)
Other versions
JP2005101273A (en
Inventor
康弘 松原
尚司 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003333111A priority Critical patent/JP4309731B2/en
Publication of JP2005101273A publication Critical patent/JP2005101273A/en
Application granted granted Critical
Publication of JP4309731B2 publication Critical patent/JP4309731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は太陽電池素子および太陽電池モジュールに関し、特に裏面電極を第一の金属からなる集電電極部と第二の金属からなるバスバー電極部及びフィンガー電極部からなる出力取出電極とで構成した太陽電池素子に関する。   The present invention relates to a solar cell element and a solar cell module, and in particular, the back surface electrode is composed of a collector electrode portion made of a first metal, a bus bar electrode portion made of a second metal, and an output extraction electrode made of a finger electrode portion. The present invention relates to a battery element.

図4は従来の太陽電池素子の構造を示す模式図、図5は従来の太陽電池素子の表面電極を示す模式図、図6は従来の太陽電池素子の裏面電極を示す模式図、図7は従来の他の太陽電池素子の裏面電極の一例を示す模式図、図8は従来の他の太陽電池素子の裏面電極の一例を示す模式図、図9は従来の他の太陽電池素子の裏面電極の一例を示す模式図、図10は太陽電池素子の接続状態を説明するための模式図である。   4 is a schematic diagram showing the structure of a conventional solar cell element, FIG. 5 is a schematic diagram showing a surface electrode of the conventional solar cell element, FIG. 6 is a schematic diagram showing a back electrode of the conventional solar cell element, and FIG. FIG. 8 is a schematic diagram showing an example of a back electrode of another conventional solar cell element, FIG. 8 is a schematic diagram showing an example of a back electrode of another conventional solar cell element, and FIG. 9 is a back electrode of another conventional solar cell element. FIG. 10 is a schematic diagram for explaining a connection state of solar cell elements.

従来の太陽電池素子を図4を用いて説明する。図4中、1は半導体基板、2は表面側電極、3は裏面側電極、4は不純物拡散層、5は反射防止膜である。   A conventional solar cell element will be described with reference to FIG. In FIG. 4, 1 is a semiconductor substrate, 2 is a front side electrode, 3 is a back side electrode, 4 is an impurity diffusion layer, and 5 is an antireflection film.

例えばP型シリコンからなる半導体基板1の受光面側にN型の不純物拡散層4を設け、この不純物拡散層4の表面に反射防止膜5と表面側電極2を設け、裏面側に裏面側電極3を設けて構成されている。表面側電極2は、図5に示すように、銀とはんだなどから成るインナーリードを接続するためのバスバー電極6と、銀とはんだなどから成る集電用のフィンガー電極7とから構成される。   For example, an N-type impurity diffusion layer 4 is provided on the light-receiving surface side of a semiconductor substrate 1 made of P-type silicon, an antireflection film 5 and a surface-side electrode 2 are provided on the surface of the impurity diffusion layer 4, and a back-side electrode is provided on the back side. 3 is provided. As shown in FIG. 5, the surface-side electrode 2 includes a bus bar electrode 6 for connecting an inner lead made of silver and solder, and a current collecting finger electrode 7 made of silver and solder.

また、裏面側電極3は、図6に示すように、アルミニウムなどから成る集電電極8と銀とはんだなどから成るインナーリードを接続するためのバスバー電極9とから形成される(例えば特許文献1参照)。   Further, as shown in FIG. 6, the back surface side electrode 3 is formed of a current collecting electrode 8 made of aluminum or the like and a bus bar electrode 9 for connecting an inner lead made of silver and solder (for example, Patent Document 1). reference).

また、上記のようにバスバー電極のみで形成される場合以外に、図7に示すように表面側電極と同様にバスバー電極9に交わる形で集電電極8の上に重なるように銀とはんだなどから成るフィンガー電極10を形成する場合もある(例えば特許文献2参照)。   In addition to the case where only the bus bar electrode is formed as described above, as shown in FIG. 7, silver and solder are formed so as to overlap the current collecting electrode 8 so as to intersect with the bus bar electrode 9 like the surface side electrode. There is a case where the finger electrode 10 made of is formed (for example, see Patent Document 2).

さらに、裏面側バスバー電極9は、フィンガー電極10を形成するかしないかに関わらず、図6または図7に示すように帯状に形成される場合と、図8または図9に示すように島状に単独もしくは複数個形成される場合がある。   Further, regardless of whether the finger electrode 10 is formed or not, the back-side busbar electrode 9 is formed in a strip shape as shown in FIG. 6 or FIG. 7, and an island shape as shown in FIG. 8 or FIG. May be formed singly or in plural.

このような太陽電池素子は、図10に示すように、複数の素子同士をインナーリード11を用いて直列に接続して、電圧を昇圧させて使用するのが一般的である。この素子間の接続にははんだが必要となるため、表面バスバー電極6および裏面バスバー電極9にはんだ濡れ性が良好な素材を用いて太陽電池素子の電極にはんだコーティングを行っている。はんだコーティングの方法としては、はんだ槽に太陽電池素子を浸漬させる方法が一般的である。
特開平10−335267 特開2002−43597
As shown in FIG. 10, such a solar cell element is generally used by connecting a plurality of elements in series using inner leads 11 and boosting the voltage. Since solder is required for the connection between the elements, the surface bus bar electrode 6 and the back surface bus bar electrode 9 are coated with solder on the electrodes of the solar cell element using a material having good solder wettability. As a solder coating method, a method of immersing a solar cell element in a solder bath is common.
JP 10-335267 A JP 2002-43597 A

ところで、はんだ融液の中に太陽電池素子を浸漬させる浸漬法で太陽電池素子の電極をはんだコーティングする場合、はんだ融液の液面に対してバスバー電極6、9を平行に、フィンガー電極7、10を垂直に向けて浸漬させる方法が一般的である。これは、図5に示すような表面電極構造の場合、バスバー電極6のはんだコーティングの厚みを均一にすることができるとともに、バスバー電極6からフィンガー電極7に余剰なはんだが流れるため、バスバー電極6のはんだコーティングの厚みを薄くすることができるからである。   By the way, when the solar cell element electrode is solder coated by an immersion method in which the solar cell element is immersed in the solder melt, the bus bar electrodes 6 and 9 are parallel to the liquid surface of the solder melt, A method of dipping 10 vertically is common. In the case of the surface electrode structure as shown in FIG. 5, the thickness of the solder coating of the bus bar electrode 6 can be made uniform, and excess solder flows from the bus bar electrode 6 to the finger electrode 7. This is because the thickness of the solder coating can be reduced.

しかしこのような方向で太陽電池素子をはんだ融液に浸漬させると、図6および図8に示すようなフィンガー電極を設けずにバスバー電極単独で構成された裏面電極構造の場合は、電極部へのはんだコーティングの際にはんだ槽に浸漬させた太陽電池素子を引上げる際の表面張力により、電極部に過剰量のはんだがコーティングされ盛りあがりができるために、後の工程においてこのはんだの盛りが起点となって太陽電池素子の割れが発生することがあった。また、複数の素子をインナーリードにて接続する際において、太陽電池素子の電極6、9とインナーリード11とを熱溶着する際に、裏面電極のバスバー電極9のはんだがインナーリード11の外周部に流れ出したり凝集したりして、はんだ玉や突起部を形成して、太陽電池素子の割れや、太陽電池モジュールにしたときに表面に配置される透光性基板の割れ、また充填材として用いる樹脂の突き抜けによる絶縁不良の原因となってしまうことがあった。   However, when the solar cell element is immersed in the solder melt in such a direction, in the case of the back electrode structure constituted by the bus bar electrode alone without providing the finger electrode as shown in FIGS. Because the surface tension when the solar cell element immersed in the solder bath is pulled up during the solder coating of the electrode, the electrode part is coated with an excessive amount of solder, so that it can be raised. In some cases, the solar cell element was cracked. Further, when the plurality of elements are connected by the inner leads, when the electrodes 6 and 9 of the solar cell element and the inner leads 11 are thermally welded, the solder of the bus bar electrode 9 of the back surface electrode becomes the outer peripheral portion of the inner leads 11. Or solder balls and protrusions to form cracks in the solar cell element, cracks in the translucent substrate placed on the surface when the solar cell module is formed, and use as a filler Insufficient insulation may be caused by penetration of the resin.

また、上記問題点を解決するために図7または図9に示すように、アルミニウムなどから成る集電電極8の上にフィンガー電極10を形成した場合は、はんだコーティング後のはんだの凝固冷却に伴う収縮などによって、フィンガー電極10がその端部から剥離してしまう問題が発生することがある。この問題は集電電極とフィンガー電極に異種金属を用いることにより両金属界面の接合強度が不足してしまった場合や、集電電極にアルミニウムを用い、そのアルミニウムの層がポーラスな状態で形成されたときに発生しやすい。集電電極とフィンガー電極の接合強度が弱い場合、両電極間で剥離が発生することがあり、アルミニウムの層がポーラスな場合、シリコンから成る半導体基板1とアルミニウムの界面やアルミニウム層の中間面を破断面として、はんだによる引っ張り応力の集中するフィンガー電極の端部から部分的に剥離してしまうことがある。   Further, in order to solve the above problems, as shown in FIG. 7 or FIG. 9, when the finger electrode 10 is formed on the current collecting electrode 8 made of aluminum or the like, it is accompanied by solidification cooling of the solder after the solder coating. There may be a problem that the finger electrode 10 is peeled off from the end due to shrinkage or the like. This problem can be caused by the use of dissimilar metals for the collector electrode and finger electrode, resulting in insufficient bonding strength at the interface between the two metals, or when the collector electrode is made of aluminum and the aluminum layer is formed in a porous state. It is easy to occur when. When the bonding strength between the current collecting electrode and the finger electrode is weak, peeling may occur between the two electrodes. When the aluminum layer is porous, the interface between the semiconductor substrate 1 made of silicon and the aluminum or the intermediate surface of the aluminum layer As a fracture surface, it may partly peel off from the end of the finger electrode where the tensile stress due to solder is concentrated.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、太陽電池素子の裏面電極部をはんだコーティングする際の余剰なはんだ盛りや裏面電極部にインナーリードを熱溶着する際のインナーリード外周部のはんだ玉や突起部の発生を抑制するために形成されたフィンガー電極部がはんだコーティングによる引っ張り応力により、その端部から剥離を起こすという問題を解消した太陽電池素子を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. When solder coating is applied to the back electrode portion of the solar cell element and the inner leads are thermally welded to the back electrode portion. Provided is a solar cell element that solves the problem that the finger electrode portion formed to suppress the generation of solder balls and protrusions on the outer periphery of the inner lead causes peeling from the end due to the tensile stress caused by the solder coating For the purpose.

上記目的を達成するために、本発明に係る太陽電池素子は、半導体接合部を有する半導体基板前記半導体基板の裏面設けられ、第一の金属で形成された集電電極と、前記集電電極上に接触して設けられた帯状のバスバー電極及び該バスバー電極から突出する複数のフィンガー電極と、該フィンガー電極の周縁より内側で該フィンガー電極の先端部近傍にのみ設けられた接触領域とを有しており、前記第一の金属よりも半田濡れ性のよい第二の金属で形成された出力取出電極を備え、前記出力取出電極は、前記接触領域が、前記半導体基板上における前記集電電極が形成されていない部分に接触するとともに、前記フィンガー電極の先端部近傍における周縁部分が、前記集電電極に接触していることを特徴とする。
To achieve the above object, a solar cell element according to the present invention includes a semiconductor substrate having a semiconductor junction is provided on the back surface of the semiconductor substrate, and a collecting electrode formed by the first metal, the A strip-shaped bus bar electrode provided in contact with the current collecting electrode, a plurality of finger electrodes protruding from the bus bar electrode, and a contact area provided only in the vicinity of the tip of the finger electrode inside the periphery of the finger electrode the has, and an output-extracting electrode formed with a solder wettability good second metal than the first metal, the output extraction electrode, the contact area, in the semiconductor substrate While contacting the part in which the said collector electrode is not formed, the peripheral part in the front-end | tip part vicinity of the said finger electrode is contacting the said collector electrode, It is characterized by the above-mentioned.

また、本発明に係る他の太陽電池素子は、半導体接合部を有する半導体基板前記半導体基板の裏面設けられ、第一の金属で形成された集電電極と、前記集電電極上に接触して設けられた帯状のバスバー電極及び該バスバー電極から突出する複数のフィンガー電極と、該フィンガー電極の周縁より内側で該フィンガー電極の周縁に沿った部分にのみ設けられた接触領域とを有しており、前記第一の金属よりも半田濡れ性のよい第二の金属で形成された出力取出電極を備え、前記出力取出電極は、前記接触領域が、前記半導体基板上における前記集電電極が形成されていない部分に接触するとともに、前記フィンガー電極の周縁部分が、前記集電電極に接触していることを特徴とする。
Another solar cell element according to the present invention includes a semiconductor substrate having a semiconductor junction is provided on the back surface of the semiconductor substrate, and a collecting electrode formed by the first metal, the current Denden superb A strip-shaped bus bar electrode provided in contact with each other, a plurality of finger electrodes projecting from the bus bar electrode, and a contact area provided only in a portion along the periphery of the finger electrode inside the periphery of the finger electrode. and has, and an output-extracting electrode formed with a solder wettability good second metal than the first metal, the output extraction electrode, the contact area, the current in the semiconductor substrate While contacting the part in which the electrical electrode is not formed, the peripheral part of the said finger electrode is contacting the said current collection electrode, It is characterized by the above-mentioned.

また、上記太陽電池素子では、前記第一の金属がアルミニウムを主成分とすることが望ましい。   In the solar cell element, it is preferable that the first metal is mainly composed of aluminum.

また、上記太陽電池素子では、前記第二の金属が銀を主成分とすることが望ましい。   In the solar cell element, it is desirable that the second metal is mainly composed of silver.

以上のように、本発明に係る太陽電池素子によれば、半導体接合部を有する半導体基板前記半導体基板の裏面設けられ、第一の金属で形成された集電電極と、前記集電電極上に接触して設けられた帯状のバスバー電極及び該バスバー電極から突出する複数のフィンガー電極と、該フィンガー電極の周縁より内側で該フィンガー電極の先端部近傍にのみ設けられた接触領域とを有しており、前記第一の金属よりも半田濡れ性のよい第二の金属で形成された出力取出電極を備え、前記出力取出電極は、前記接触領域が、前記半導体基板上における前記集電電極が形成されていない部分に接触するとともに、前記フィンガー電極の先端部近傍における周縁部分が、前記集電電極に接触している。そのため。電極についてより強い接着強度を確保し、フィンガー電極の剥離を防止できる。
As described above, according to the solar cell element according to the present invention, a semiconductor substrate having a semiconductor junction, the provided on the back surface of the semiconductor substrate, and a collecting electrode formed by the first metal, the current A strip-shaped bus bar electrode provided in contact with the electric electrode, a plurality of finger electrodes projecting from the bus bar electrode, and a contact area provided only in the vicinity of the tip of the finger electrode inside the periphery of the finger electrode has, and an output-extracting electrode formed with a solder wettability good second metal than the first metal, the output extraction electrode, the contact area, the in the semiconductor substrate While contacting the part in which the current collection electrode is not formed, the peripheral part near the front-end | tip part of the said finger electrode is contacting the said current collection electrode. for that reason. A stronger adhesive strength can be secured for the electrode, and the finger electrode can be prevented from peeling off.

また、本発明に係る他の太陽電池素子によれば、半導体接合部を有する半導体基板前記半導体基板の裏面設けられ、第一の金属で形成された集電電極と、前記集電電極上に接触して設けられた帯状のバスバー電極及び該バスバー電極から突出する複数のフィンガー電極と、該フィンガー電極の周縁より内側で該フィンガー電極の周縁に沿った部分にのみ設けられた接触領域とを有しており、前記第一の金属よりも半田濡れ性のよい第二の金属で形成された出力取出電極を備え、前記出力取出電極は、前記接触領域が、前記半導体基板上における前記集電電極が形成されていない部分に接触するとともに、前記フィンガー電極の周縁部分が、前記集電電極に接触している。そのため、太陽電池素子の電気特性を更に高く維持しながら、電極の強い接着強度を確保し、フィンガー電極の剥離を防止できる。
According to another solar cell element according to the present invention, a semiconductor substrate having a semiconductor junction, the provided on the back surface of the semiconductor substrate, and a collecting electrode formed by the first metal, said current Denden A strip-shaped bus bar electrode provided in contact with the pole, a plurality of finger electrodes protruding from the bus bar electrode, and a contact area provided only at a portion along the periphery of the finger electrode inside the periphery of the finger electrode the has, and an output-extracting electrode formed with a solder wettability good second metal than the first metal, the output extraction electrode, the contact area, in the semiconductor substrate While contacting the part where the said current collection electrode is not formed, the peripheral part of the said finger electrode is contacting the said current collection electrode. Therefore, strong adhesion strength of the electrode can be secured and peeling of the finger electrode can be prevented while maintaining the electric characteristics of the solar cell element higher.

以下、本発明の実施形態を添付図面に基づき詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明に係る太陽電池素子の構造も基本的には従来の太陽電池素子と同様である。すなわち、例えば図4に示すように、P型シリコンからなる半導体基板1の受光面側にN型の不純物拡散層4を設け、この不純物拡散層4の表面に反射防止膜5と表面側電極2を設け、裏面側に裏面側電極3を設けて構成されている。表面側電極2は、図5に示すように、銀とはんだなどから成るインナーリードを接続するためのバスバー電極6と、銀とはんだなどから成る集電用のフィンガー電極7とから構成される。   The structure of the solar cell element according to the present invention is basically the same as that of a conventional solar cell element. That is, for example, as shown in FIG. 4, an N-type impurity diffusion layer 4 is provided on the light-receiving surface side of a semiconductor substrate 1 made of P-type silicon, and an antireflection film 5 and a surface-side electrode 2 are formed on the surface of the impurity diffusion layer 4. And the back side electrode 3 is provided on the back side. As shown in FIG. 5, the surface-side electrode 2 includes a bus bar electrode 6 for connecting an inner lead made of silver and solder, and a current collecting finger electrode 7 made of silver and solder.

また、裏面側電極3は、図7に示すように表側電極と同様にバスバー電極9に交わる形で集電電極8の上に重なるように銀とはんだなどから成るフィンガー電極10を形成する。   Further, as shown in FIG. 7, finger electrode 10 made of silver, solder, or the like is formed on back surface side electrode 3 so as to overlap with current collector electrode 8 so as to cross bus bar electrode 9 like the front side electrode.

また、裏面側バスバー電極9は、図7に示すように帯状に形成される場合と、図9に示すように島状に単独もしくは複数個形成される場合がある。   Moreover, the back surface side bus-bar electrode 9 may be formed in a strip shape as shown in FIG. 7, or may be formed in an island shape alone or in a plurality as shown in FIG.

このような太陽電池素子は、例えばP型半導体基板1をN型不純物雰囲気中で熱処理などして、表面領域の全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層4を形成し、CVD法などで反射防止膜5を形成して拡散層4を分離したのち、表面に銀ペーストを、裏面にはアルミニウムペーストおよび銀ペーストをスクリーン印刷して焼成することにより表面側電極2と裏面側電極3が形成される。   In such a solar cell element, for example, a P-type semiconductor substrate 1 is heat-treated in an N-type impurity atmosphere to diffuse an N-type impurity to a certain depth over the entire surface region to form an N type diffusion layer 4. After forming the antireflection film 5 by CVD or the like and separating the diffusion layer 4, the surface side electrode 2 is formed by screen-printing and baking silver paste on the front surface and aluminum paste and silver paste on the back surface. And the back side electrode 3 are formed.

図1は本発明に係る太陽電池素子の裏面電極構造を示す。半導体基板1の裏面側の略全面に形成されたアルミニウムなどを主成分とする第一の金属による集電電極8と、第一の金属よりも半田濡れ性のよい銀などを主成分とする第二の金属によるバスバー電極9から成る裏面電極を形成し、このバスバー電極9に交わる形でフィンガー電極10を形成している。フィンガー電極10の突出部の先端近傍付近と重なる部分の集電電極8は予め形成されておらず、フィンガー電極10の突出部の先端近傍付近のみを部分的に半導体基板に接するように形成している。フィンガー剥離の問題は、その要因であるはんだの熱収縮による引っ張り応力が集中する突出部の先端付近を起点として発生することがほとんどであることから、フィンガー電極の略全面を半導体基板に接しなくとも、剥離の起点となるフィンガー電極の突出部の先端近傍のみを半導体基板に接するように形成すれば充分にその効果を発揮できる。このようにフィンガー電極10の端部と半導体基板1を略全面で直接接するように形成することで、より強い接着強度を確保できるため、フィンガー剥離の問題を解決することできる。   FIG. 1 shows a back electrode structure of a solar cell element according to the present invention. A collector electrode 8 made of a first metal mainly composed of aluminum or the like formed on substantially the entire back surface of the semiconductor substrate 1 and a silver or the like mainly composed of silver having better solder wettability than the first metal. A back electrode composed of a bus bar electrode 9 made of a second metal is formed, and a finger electrode 10 is formed so as to cross the bus bar electrode 9. The current collecting electrode 8 that overlaps the vicinity of the tip of the protruding portion of the finger electrode 10 is not formed in advance, and only the vicinity of the tip of the protruding portion of the finger electrode 10 is formed so as to partially contact the semiconductor substrate. Yes. The problem of finger peeling occurs mostly from the vicinity of the tip of the protruding part where the tensile stress due to thermal shrinkage of the solder, which is the cause, is concentrated, so even if the entire surface of the finger electrode does not contact the semiconductor substrate If only the vicinity of the tip of the protruding portion of the finger electrode that becomes the starting point of peeling is formed so as to be in contact with the semiconductor substrate, the effect can be sufficiently exhibited. By forming the end portion of the finger electrode 10 and the semiconductor substrate 1 so as to be in direct contact with each other over almost the entire surface in this way, it is possible to secure a stronger adhesive strength, thereby solving the problem of finger peeling.

また、フィンガー電極と半導体基板が直接接触する領域を、フィンガー電極の突出部の先端近傍のみにすることで、出力取出電極と集電電極の十分な接触面積を確保することができるため、両電極間の抵抗損失が発生することはなく、従来の太陽電池素子の出力特性を維持することができる。   In addition, since the area where the finger electrode and the semiconductor substrate are in direct contact is only in the vicinity of the tip of the protruding portion of the finger electrode, a sufficient contact area between the output extraction electrode and the current collecting electrode can be secured. No resistance loss occurs, and the output characteristics of the conventional solar cell element can be maintained.

ただし、フィンガー電極と半導体基板が直接接触する領域は、フィンガー電極の外周よりも内側に形成するものとし、最外周部分は集電電極と接していたほうが良い。このようにすることにより集電電極で集電された電子が、その移動距離を変えることなく出力取出電極に運ばれることになる。   However, the region where the finger electrode and the semiconductor substrate are in direct contact with each other should be formed inside the outer periphery of the finger electrode, and the outermost peripheral portion should be in contact with the current collecting electrode. By doing so, the electrons collected by the collecting electrode are carried to the output extraction electrode without changing the moving distance.

また、一般に第一の金属としてアルミニウムのような周期表第三属元素を含む金属材料を使用する場合は、集電電極としての役割以外に、電極を焼成して形成する際にその第三属元素の半導体基板内への拡散が起こりP+層からなるBSF層が同時に形成されることで、太陽電池素子の電流−電圧特性が改善される効果がある。したがって、図1のように第一の金属である集電電極をできるだけ残したまま形成するほうが、図1のようにフィンガー電極の略全面を半導体基板と接するように形成するよりも、太陽電池素子の電気特性を高く維持することができる。   In general, when a metal material containing a periodic table third group element such as aluminum is used as the first metal, in addition to the role as a current collecting electrode, the third group is used when the electrode is baked and formed. The diffusion of the element into the semiconductor substrate and the simultaneous formation of the BSF layer composed of the P + layer has an effect of improving the current-voltage characteristics of the solar cell element. Therefore, the solar cell element is formed by leaving the current collecting electrode, which is the first metal as much as possible, as shown in FIG. 1, rather than forming the substantially entire surface of the finger electrode in contact with the semiconductor substrate as shown in FIG. High electrical characteristics can be maintained.

図2は本発明に係る裏面のフィンガー電極の外周部近傍に半導体基板と直接接触する領域を形成した太陽電池素子の裏面拡大図である。この太陽電池素子では、フィンガー電極10と半導体基板1の接触個所は、フィンガー電極10の外周部形状に沿った部分のみとし、それ以外のフィンガー中央部は集電電極を残したまま形成している。この形状でもフィンガー剥離抑制には充分な効果を発揮し、なおかつ、集電電極を最大限に残すことで、太陽電池素子の電気特性も更に高く維持することができる。   FIG. 2 is an enlarged view of the back surface of the solar cell element in which a region in direct contact with the semiconductor substrate is formed in the vicinity of the outer peripheral portion of the finger electrode on the back surface according to the present invention. In this solar cell element, the contact portion between the finger electrode 10 and the semiconductor substrate 1 is only a portion along the outer peripheral shape of the finger electrode 10, and the other finger central portion is formed with the collecting electrode remaining. . This shape also exhibits a sufficient effect for suppressing finger peeling, and the electrical characteristics of the solar cell element can be further maintained by leaving the current collecting electrode to the maximum extent.

このときもフィンガー電極と半導体基板が直接接触する領域は、フィンガー電極の外周よりも内側に形成するものとし、最外周部は集電電極と接していたほうがよい。このようにすることにより集電電極で集電された電子が、その移動距離を変えることなく出力取出電極に運ばれることになる。   At this time, the region where the finger electrode and the semiconductor substrate are in direct contact should be formed inside the outer periphery of the finger electrode, and the outermost peripheral portion should be in contact with the current collecting electrode. By doing so, the electrons collected by the collecting electrode are carried to the output extraction electrode without changing the moving distance.

さらに、図3に本発明に係る他の実施形態を示す。この太陽電池素子では、フィンガー電極10と半導体基板1の接触個所は、フィンガー電極10の突出部の先端の外周部形状に沿った部分のみとし、それ以外のフィンガー中央部は集電電極を残したまま形成している。この形状でもフィンガー剥離抑制には充分な効果を発揮し、なおかつ、集電電極を最大限に残すことで、太陽電池素子の電気特性も更に高く維持することができる。   FIG. 3 shows another embodiment according to the present invention. In this solar cell element, the contact portion between the finger electrode 10 and the semiconductor substrate 1 is only a portion along the outer peripheral shape of the tip of the protruding portion of the finger electrode 10, and the other finger central portion leaves the collecting electrode. It is formed as it is. This shape also exhibits a sufficient effect for suppressing finger peeling, and the electrical characteristics of the solar cell element can be further maintained by leaving the current collecting electrode to the maximum extent.

尚、これまでに述べたフィンガー電極の形状は、図7および図9に示すようなバスバー電極に直交するように形成されたものだけでなく、バスバー電極に鋭角あるいは鈍角に交わっているものでも同様である。また、そのフィンガー電極の形状も矩形だけでなく、三角形や丸みを帯びたもの、途中で形状の変化があるものなどについても同様の考えで形成すれば良い。さらに、フィンガー電極がバスバー電極に対してその両側に均等に形成されず、その形状や長さ等が不均等に形成される場合や、バスバー電極に対して片側のみに形成される場合も同様に本発明に係る実施形態を応用できる。   Note that the shape of the finger electrode described so far is not limited to the shape formed so as to be orthogonal to the bus bar electrode as shown in FIGS. 7 and 9, but the shape of the finger electrode that intersects the bus bar electrode at an acute angle or an obtuse angle is the same. It is. In addition, the shape of the finger electrode is not limited to a rectangle, but a triangle, a rounded shape, or a shape that changes in the middle may be formed based on the same idea. Furthermore, the finger electrode is not formed evenly on both sides of the bus bar electrode, and the shape, length, etc. are formed unevenly, or the finger electrode is formed only on one side of the bus bar electrode. Embodiments according to the present invention can be applied.

本発明に係る太陽電池素子を示し、(a)は断面図、(b)は裏面図、(c)は裏面のフィンガ電極の端部を半導体基板に直接形成した拡大図をそれぞれ示す。The solar cell element which concerns on this invention is shown, (a) is sectional drawing, (b) is a back view, (c) shows the enlarged view which formed the edge part of the finger electrode of a back surface directly on the semiconductor substrate, respectively. 本発明に係る裏面のフィンガ電極の外周部を半導体基板に直接形成した太陽電池素子の裏面拡大図である。It is a back surface enlarged view of the solar cell element which formed the outer peripheral part of the finger electrode of the back surface which concerns on this invention directly in the semiconductor substrate. 本発明に係る裏面のフィンガ電極の端部の外周部を半導体基板に直接形成した太陽電池素子の裏面拡大図である。It is a back surface enlarged view of the solar cell element which formed the outer peripheral part of the edge part of the finger electrode of the back surface which concerns on this invention directly on the semiconductor substrate. 従来の太陽電池素子の構造を示す図である。It is a figure which shows the structure of the conventional solar cell element. 従来の太陽電池素子の表面電極を示す図である。It is a figure which shows the surface electrode of the conventional solar cell element. 従来の太陽電池素子の裏面電極を示す図である。It is a figure which shows the back surface electrode of the conventional solar cell element. 従来の他の太陽電池素子の裏面電極の一例を示す図である。It is a figure which shows an example of the back surface electrode of the other conventional solar cell element. 従来の他の太陽電池素子の裏面電極の一例を示す図である。It is a figure which shows an example of the back surface electrode of the other conventional solar cell element. 従来の他の太陽電池素子の裏面電極の一例を示す図である。It is a figure which shows an example of the back surface electrode of the other conventional solar cell element. 太陽電池素子の接続状態を説明するための図である。It is a figure for demonstrating the connection state of a solar cell element.

符号の説明Explanation of symbols

1・・・半導体基板
2・・・表面側電極
3・・・裏面側電極
4・・・不純物拡散層
5・・・反射防止膜
6・・・表面側バスバー電極
7・・・表面側フィンガー電極
8・・・裏面側集電電極
9・・・裏面側バスバー電極、
10・・・裏面側フィンガー電極
11・・・インナーリード
12・・・フィンガー電極と半導体基板が直接接触する個所
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... Front side electrode 3 ... Back side electrode 4 ... Impurity diffusion layer 5 ... Antireflection film 6 ... Front side bus-bar electrode 7 ... Front side finger electrode 8 ... Back side collecting electrode 9 ... Back side bus bar electrode,
10 ... Back side finger electrode 11 ... Inner lead 12 ... Location where finger electrode and semiconductor substrate are in direct contact

Claims (4)

半導体接合部を有する半導体基板
前記半導体基板の裏面設けられ、第一の金属で形成された集電電極と、
前記集電電極上に接触して設けられた帯状のバスバー電極及び該バスバー電極から突出する複数のフィンガー電極と、該フィンガー電極の周縁より内側で該フィンガー電極の先端部近傍にのみ設けられた接触領域とを有しており、前記第一の金属よりも半田濡れ性のよい第二の金属で形成された出力取出電極
を備え、
前記出力取出電極は、前記接触領域が、前記半導体基板上における前記集電電極が形成されていない部分に接触するとともに、前記フィンガー電極の先端部近傍における周縁部分が、前記集電電極に接触していることを特徴とする太陽電池素子。
A semiconductor substrate having a semiconductor junction,
A current collecting electrode provided on the back surface of the semiconductor substrate and formed of a first metal;
A strip-shaped bus bar electrode provided in contact with the current collecting electrode, a plurality of finger electrodes projecting from the bus bar electrode, and a contact area provided only in the vicinity of the tip of the finger electrode inside the periphery of the finger electrode preparative has an output extraction electrode formed in solder wettability good second metal than the first metal,
With
In the output extraction electrode , the contact region is in contact with a portion of the semiconductor substrate where the current collecting electrode is not formed, and a peripheral portion in the vicinity of the tip of the finger electrode is in contact with the current collecting electrode. A solar cell element characterized by comprising :
半導体接合部を有する半導体基板
前記半導体基板の裏面設けられ、第一の金属で形成された集電電極と、
前記集電電極上に接触して設けられた帯状のバスバー電極及び該バスバー電極から突出する複数のフィンガー電極と、該フィンガー電極の周縁より内側で該フィンガー電極の周縁に沿った部分にのみ設けられた接触領域とを有しており、前記第一の金属よりも半田濡れ性のよい第二の金属で形成された出力取出電極
を備え、
前記出力取出電極は、前記接触領域が、前記半導体基板上における前記集電電極が形成されていない部分に接触するとともに、前記フィンガー電極の周縁部分が、前記集電電極に接触していることを特徴とする太陽電池素子。
A semiconductor substrate having a semiconductor junction,
A current collecting electrode provided on the back surface of the semiconductor substrate and formed of a first metal;
A strip-shaped bus bar electrode provided in contact with the current collecting electrode, a plurality of finger electrodes protruding from the bus bar electrode, and provided only in a portion along the periphery of the finger electrode inside the periphery of the finger electrode It has a contact region, and the output extracting electrode formed with a solder wettability good second metal than the first metal,
With
In the output extraction electrode , the contact region is in contact with a portion on the semiconductor substrate where the current collecting electrode is not formed, and a peripheral portion of the finger electrode is in contact with the current collecting electrode. A characteristic solar cell element.
前記第一の金属がアルミニウムを主成分とすることを特徴とする請求項1または2に記載の太陽電池素子。 The solar cell element according to claim 1 , wherein the first metal is mainly composed of aluminum. 前記第二の金属が銀を主成分とすることを特徴とする請求項1ないし3のいずれかに記載の太陽電池素子。
The second metal is characterized by containing silver as a main component, a solar cell element according to any one of claims 1 to 3.
JP2003333111A 2003-09-25 2003-09-25 Solar cell element Expired - Fee Related JP4309731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333111A JP4309731B2 (en) 2003-09-25 2003-09-25 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333111A JP4309731B2 (en) 2003-09-25 2003-09-25 Solar cell element

Publications (2)

Publication Number Publication Date
JP2005101273A JP2005101273A (en) 2005-04-14
JP4309731B2 true JP4309731B2 (en) 2009-08-05

Family

ID=34461214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333111A Expired - Fee Related JP4309731B2 (en) 2003-09-25 2003-09-25 Solar cell element

Country Status (1)

Country Link
JP (1) JP4309731B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613147B2 (en) * 2006-05-31 2011-01-12 信越半導体株式会社 Solar cell
EP2325896A4 (en) * 2008-09-12 2017-10-18 LG Chem, Ltd. Front electrode for solar cell which minimizes power loss, and solar cell including the same
JP5377101B2 (en) * 2008-12-24 2013-12-25 京セラ株式会社 Solar cell element, solar cell module, and solar power generation device
JP6393061B2 (en) 2014-04-04 2018-09-19 アルパイン株式会社 Radio broadcast receiving apparatus, broadcast frequency detection method, broadcast frequency search method, and broadcast frequency scan method
KR101637825B1 (en) * 2015-04-06 2016-07-07 현대중공업 주식회사 Back electrode of solar cell and method for the same

Also Published As

Publication number Publication date
JP2005101273A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP5989243B2 (en) SOLAR BATTERY CELL, ITS MANUFACTURING METHOD, AND SOLAR BATTERY MODULE
JP5301758B2 (en) Solar cell
US8916038B2 (en) Free-standing metallic article for semiconductors
US20130298988A1 (en) Solar battery and method of manufacturing solar battery
JP5726303B2 (en) Solar cell and method for manufacturing the same
US20070209697A1 (en) Solar Cell And Manufacturing Method Therefor
EP2738816B1 (en) Solar cell, solar cell module, and method for producing solar cell
JP2000164902A (en) Solar battery
JP2007266262A (en) Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
JP2001068699A (en) Solar cell
JP4780953B2 (en) Solar cell element and solar cell module using the same
JP4309731B2 (en) Solar cell element
JP4903444B2 (en) Photoelectric conversion element
JP6444268B2 (en) Solar cell and method for manufacturing solar cell
JP2000164901A (en) Solar battery
JP4443098B2 (en) Solar cell element and solar cell module
JP2011258747A (en) Solar cell module
JP2006041309A (en) Connection structure of solar-cell element and solar-cell module containing its connection structure
JP3847188B2 (en) Solar cell element
JP2005191116A (en) Inner lead for connecting solar cell element and solar cell module
JPH09293889A (en) Solar battery element
JP4565976B2 (en) Solar cell module
JP2005136148A (en) Solar cell device and method of manufacturing the same
JP5944081B1 (en) Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module
KR101358513B1 (en) Structure for improving adhesive strength in solar cell with plated electrode and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees