JP2011258747A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2011258747A
JP2011258747A JP2010131938A JP2010131938A JP2011258747A JP 2011258747 A JP2011258747 A JP 2011258747A JP 2010131938 A JP2010131938 A JP 2010131938A JP 2010131938 A JP2010131938 A JP 2010131938A JP 2011258747 A JP2011258747 A JP 2011258747A
Authority
JP
Japan
Prior art keywords
side tab
solar cell
surface side
tab wire
tab line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010131938A
Other languages
Japanese (ja)
Inventor
Masayuki Nakamura
真之 中村
Daisuke Echizenya
大介 越前谷
Teruhito Miura
輝人 三浦
Hiroo Sakamoto
博夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010131938A priority Critical patent/JP2011258747A/en
Publication of JP2011258747A publication Critical patent/JP2011258747A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To solve the problem that in a solar cell module configured by a plurality of solar cells connected in series, cracking and warpage of the solar cells and detachment of the electrodes are likely to occur due to residue stress caused by heating during connection of the front surface electrode of each solar cell and the back surface electrode of the adjacent solar cell by soldering a belt-shaped tab wire.SOLUTION: In two adjacent solar cells, a front surface side tab wire of one solar cell is soldered to a back surface side tab wire which extends to the back surface side of the other solar cell and which is connected to a back side electrode, and a plurality of such solar cells are connected in series. The width of the tip section of one or both of the surface side tab wire and the back surface side tab wire at the bonded part of the front surface side tab wire and the back surface side tab wire are smaller than the widths of other sections than the tip section.

Description

本発明は、隣接する太陽電池セルの電極同士をタブ線で直列接続して構成する太陽電池モジュールに関するものである。   The present invention relates to a solar battery module configured by connecting electrodes of adjacent solar battery cells in series with tab wires.

従来の太陽電池モジュールとしては、表面に表面電極を有し裏面に裏面電極を有する太陽電池セルを縦横に複数並設し、この複数の太陽電池セルを直列に接続するために、1つの太陽電池セルの表面電極と隣接する他の太陽電池セルの裏面電極とを帯状のタブ線で接続し、それを順次繰り返す構成の太陽電池モジュールが知られている。 As a conventional solar cell module, a plurality of solar cells having a surface electrode on the front surface and a back electrode on the back surface are arranged side by side, and one solar cell is used to connect the plurality of solar cells in series. There is known a solar cell module having a configuration in which a surface electrode of a cell and a back electrode of another adjacent solar cell are connected by a strip-shaped tab line and this is repeated in order.

帯状のタブ線は、一般的に銅箔などの導電性の高い金属の全面を半田被覆したものが用いられ、太陽電池セルの表面電極上から隣接する太陽電池セルの裏面電極上に延ばして配置され表面電極および裏面電極と接続している。タブ線と各電極との接続は、太陽電池セルの表面および裏面の端部から端部まで細長く形成された電極上にタブ線を配置し加熱して半田を溶融させ、部分的もしくは全長にわたりタブ線と太陽電池セルとを押圧して半田接合させることにより行われている。
ところで、半導体(シリコン)である太陽電池セルと金属であるタブ線とは線膨張係数が異なるため、半田接続の際の熱収縮の差による残留応力が太陽電池セルに生じて、太陽電池セルに反り、割れ、電極剥がれが発生しやすかった。すなわち、半田接合の際の加熱により、太陽電池セルおよびタブ線は膨張した状態で半田接合され、その後冷却する際に線膨張係数の大きいタブ線は太陽電池セルよりも大きく収縮しようとするため、そのタブ線に引っ張られて太陽電池セルには反りが生じたり、割れや電極剥がれに至ることもある。
特許文献1には銅線の0.2%耐力値を90MPa以下に低減することにより、半田接合時の残留応力を低減する構成が開示されている。また、特許文献2には、セル面積の増大に伴い発生する直列抵抗の増加を抑えるためタブ線の断面を厚くした場合に発生する残留応力によるセル割れを解消する手段として、表面側に接続するタブ線と裏面側に接続するタブ線を別々に設け、この別々に設けた表面側タブ線と裏面側タブ線を接続する構成が開示されている。
The strip-shaped tab wire is generally used by soldering the entire surface of a highly conductive metal such as copper foil, and is arranged to extend from the surface electrode of the solar cell to the back electrode of the adjacent solar cell. And connected to the front electrode and the back electrode. The tab wire is connected to each electrode by arranging the tab wire on the elongated electrode from the end to the end of the front and back surfaces of the solar cell and heating it to melt the solder. This is performed by pressing the wire and the solar battery cell and soldering them.
By the way, since the solar cell that is a semiconductor (silicon) and the tab wire that is a metal have different linear expansion coefficients, residual stress is generated in the solar cell due to a difference in thermal shrinkage at the time of solder connection. Warpage, cracking, and electrode peeling were likely to occur. That is, the solar battery cells and the tab wires are soldered in an expanded state due to heating during solder joining, and the tab wire having a large linear expansion coefficient tends to contract more than the solar cells when cooled after that. The solar battery cell may be warped by being pulled by the tab wire, or may be cracked or peeled off.
Patent Document 1 discloses a configuration in which the residual stress at the time of solder bonding is reduced by reducing the 0.2% proof stress value of a copper wire to 90 MPa or less. Further, Patent Document 2 is connected to the surface side as means for eliminating cell cracking due to residual stress that occurs when the cross section of the tab wire is increased in order to suppress an increase in series resistance that occurs with an increase in cell area. A configuration is disclosed in which a tab line connected to the tab line and the back side is provided separately, and the separately provided front side tab line and back side tab line are connected.

特開2006-54355号公報(第5頁)JP 2006-54355 A (page 5) 特開2002−359388号公報(第3−4頁、第2図)JP 2002-359388 A (page 3-4, FIG. 2)

しかしながら、特許文献1の手段で半田接合時の残留応力を低減するには0.2%耐力値の低い銅線を作成する必要があるが、耐力値が低くなるほどその製造に手間がかかり、通常の銅線と比べてコストアップになるため、太陽電池モジュールとしての価格が高くなるという課題があった。
また、特許文献2の手段により発生する残留応力をセル1枚分に抑えたとしても、表面側タブ線と裏面側タブ線が接合される部位はタブ線同士が重なってタブ線としての断面積が大きくなるため、塑性変形しにくくなって接合部位での残留応力の発生値が大きくなり、その付近でのセル割れ、反り、電極剥がれは逆に発生しやすくなるという課題があった。
However, in order to reduce the residual stress at the time of soldering by means of Patent Document 1, it is necessary to create a copper wire having a low 0.2% proof stress value. The cost of the solar cell module is increased because the cost is higher than that of the copper wire.
Moreover, even if the residual stress generated by the means of Patent Document 2 is suppressed to one cell, the cross-sectional area of the tab line overlaps with the part where the front side tab line and the back side tab line are joined. Therefore, there is a problem that plastic deformation is difficult to occur, and a residual stress generation value at a joint portion increases, and cell cracks, warpage, and electrode peeling in the vicinity thereof easily occur.

本発明は、上記に鑑みてなされたものであって、太陽電池セルを接続するタブ線として0.2%耐力値の低い銅線を使用することなく、また、タブ線を表面側と裏面側とに別々に設けた太陽電池モジュールにおいて、表面側タブ線と裏面側タブ線との接合部位での残留応力を低減し、太陽電池セルのセル割れ、反りあるいは電極の剥がれの発生を抑制して、歩留まりのよい、安価な太陽電池モジュールを得ることを目的とする。 This invention is made | formed in view of the above, Comprising: Without using a copper wire with a low 0.2% yield strength as a tab wire which connects a photovoltaic cell, a tab wire is made into the surface side and a back surface side. In the solar cell module provided separately, the residual stress at the junction between the front-side tab wire and the back-side tab wire is reduced, and the occurrence of cell cracking, warping or electrode peeling of the solar cell is suppressed. An object is to obtain an inexpensive solar cell module with a good yield.

この発明に係る太陽電池モジュールにおいては、表面に表面電極、裏面に裏面電極を有する複数枚の太陽電池セルと、太陽電池セルの表面電極に半田接合された帯状の表面側タブ線と、太陽電池セルの裏面電極に半田接合された帯状の裏面側タブ線とを備え、隣接した複数枚の太陽電池セルの、一方の太陽電池セルの表面側タブ線が、他方の太陽電池セルの裏面側に延び裏面電極に接続された裏面側タブ線に半田接合されて、複数枚の太陽電池セルが直列に接続され、表面側タブ線の長手方向における端部または裏面側タブ線の長手方向における端部の幅が端部以外の幅に対して小さいことを特徴とするものである。 In the solar cell module according to the present invention, a plurality of solar cells having a surface electrode on the front surface and a back electrode on the back surface, a strip-shaped surface-side tab wire solder-bonded to the surface electrode of the solar cell, and the solar cell A strip-like backside tab line soldered to the backside electrode of the cell, and the surface side tab line of one of the adjacent solar cells is on the backside of the other solar cell A plurality of solar cells are connected in series by soldering to the back-side tab wire connected to the extended back-side electrode, and the end in the longitudinal direction of the front-side tab line or the end in the longitudinal direction of the back-side tab wire The width of is smaller than the width other than the end portion.

この発明によれば、表面側タブ線の長手方向における端部または裏面側タブ線の長手方向における端部の幅を端部以外の幅に対して小さくすることによって、タブ線同士の接合部あるいは太陽電池セル電極とタブ線との接合部のタブ線断面積を小さくして、塑性変形しやすくし、半田接合後に太陽電池セルに発生する残留応力を低減させることができる。これにより、タブ線の耐力値を下げなくても、タブ線と太陽電池セルの接続時の熱ストレスに起因する太陽電池セルのセル割れ、反り、電極剥がれを抑制することができる。 According to this invention, by reducing the width of the end portion in the longitudinal direction of the front surface side tab line or the end portion in the longitudinal direction of the back surface side tab line with respect to the width other than the end portion, The tab line cross-sectional area of the joint between the solar cell electrode and the tab wire can be reduced to facilitate plastic deformation, and the residual stress generated in the solar cell after soldering can be reduced. Thereby, even if it does not reduce the proof stress value of a tab wire, the cell crack of the photovoltaic cell resulting from the thermal stress at the time of connection of a tab wire and a photovoltaic cell, curvature, and electrode peeling can be suppressed.

本発明の実施の形態1を示す太陽電池モジュールの表面側から見た正面図である。It is the front view seen from the surface side of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの部分断面図である。It is a fragmentary sectional view of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続を示す断面図である。It is sectional drawing which shows the connection of the two adjacent photovoltaic cell of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続を示す正面図(表面側)である。It is a front view (surface side) which shows the connection of the two adjacent photovoltaic cell of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続を示す正面図(裏面側)である。It is a front view (back side) which shows connection of two adjacent photovoltaic cells of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルにおけるタブ線接続部を示す部分図(裏面側)である。It is a fragmentary figure (back side) which shows the tab line connection part in two adjacent photovoltaic cells of a solar cell module which shows Embodiment 1 of the present invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続の他の例を示す正面図(裏面側)である。It is a front view (back surface side) which shows the other example of the connection of the two adjacent photovoltaic cell of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルにおけるタブ線接続部を示す他の部分図(裏面側)である。It is another partial view (back surface side) which shows the tab wire connection part in the two adjacent photovoltaic cell of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続のもう一つの例を示す正面図(裏面側)である。It is a front view (back side) which shows another example of the connection of two adjacent photovoltaic cells of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続のさらに他の例を示す正面図(裏面側)である。It is a front view (back surface side) which shows the further another example of the connection of the two adjacent photovoltaic cell of the solar cell module which shows Embodiment 1 of this invention. 本発明の実施の形態2を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続を示す正面図(表面側)である。It is a front view (surface side) which shows the connection of the two adjacent photovoltaic cell of the solar cell module which shows Embodiment 2 of this invention. 本発明の実施の形態2を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続の他の例を示す正面図(裏面側)である。It is a front view (back surface side) which shows the other example of the connection of the two adjacent photovoltaic cell of the solar cell module which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続を示す正面図(裏面側)である。It is a front view (back surface side) which shows the connection of two adjacent photovoltaic cells of the solar cell module which shows Embodiment 3 of this invention.

実施の形態1.
以下に、本発明にかかる太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。
図1は本発明の実施の形態1における太陽電池モジュールの全体を表面側から見た正面図である。図1において、太陽電池モジュール1は、縦横に複数配列された太陽電池セル2を樹脂封止し、その受光面側を透光性の表面カバー材3で覆い、裏面側を裏面カバー材(図示せず)で覆って構成される太陽電池パネル5と、前記太陽電池パネル5の外縁部を全周にわたって囲む枠部材6とを有している。
複数の太陽電池セル2は、表面側タブ線4および裏面側タブ線(図示せず)により、第1の方向である図中X方向に直列に接続されている。ただし、太陽電池パネル5の端部においては、Y方向に接続されている箇所もある。なお、表面側タブ線および裏面側タブ線として、半田被覆された帯状の銅箔を用いている。
枠部材6は、アルミニウムなどの押出成型にて作製され、断面コの字形を成すコ字状部で太陽電池パネル5の外縁部を全周にわたって覆っている。枠部材6は、ブチル系の封止材またはシリコン系の接着剤などを介して太陽電池パネル5に固定され、太陽電池パネル5を補強するとともに、太陽電池パネル5を住宅やビルなどの建物や地面や構造物に設けられた架台に取り付けるための役割を有する。
Embodiment 1 FIG.
Embodiments of a solar cell module according to the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a front view of the entire solar cell module according to Embodiment 1 of the present invention as viewed from the surface side. In FIG. 1, a solar cell module 1 is made by resin-sealing a plurality of solar cells 2 arranged vertically and horizontally, covering the light receiving surface side with a translucent surface cover material 3, and the back surface side with a back surface cover material (FIG. 1). And a frame member 6 that surrounds the outer edge of the solar cell panel 5 over the entire circumference.
The plurality of solar cells 2 are connected in series in the X direction in the drawing, which is the first direction, by a front surface side tab wire 4 and a back surface side tab wire (not shown). However, in the edge part of the solar cell panel 5, there is also a location connected in the Y direction. In addition, as the front surface side tab wire and the back surface side tab wire, a band-shaped copper foil coated with solder is used.
The frame member 6 is produced by extrusion molding of aluminum or the like, and covers the outer edge portion of the solar cell panel 5 over the entire circumference with a U-shaped portion having a U-shaped cross section. The frame member 6 is fixed to the solar cell panel 5 through a butyl-based sealing material or a silicon-based adhesive, and reinforces the solar cell panel 5 and also attaches the solar cell panel 5 to a building such as a house or a building. It has a role to attach to a gantry provided on the ground or structure.

図2は、図1の領域Aにおける太陽電池パネル5のB−Bで示した部分の断面図である。図2において、太陽電池パネル5は、受光面側(表面側)から、透光性の表面カバー材3と、複数の太陽電池セル2a、2bおよびこれら太陽電池セル2a、2bを直列に接続する表面側タブ線4a、4bおよび裏面側タブ線7a、7bがEVA(エチレンビニルアセテート)等の樹脂8で封止されたセル配置層9と、PET(ポリエチレンテレフタレート)やPVF(ポリビニルフルオライド)等でなる耐候性に優れたバックシート10(裏面カバー材)とが、積層された構成となっている。
なお、図3は、図2に示す積層構成から、太陽電池セル2a、2bとこれらを電気的に接続する表面側タブ線4a、4bおよび裏面側タブ線7a、7bとを抽出して示した図である。
2 is a cross-sectional view of the portion indicated by BB of the solar cell panel 5 in the region A of FIG. In FIG. 2, the solar cell panel 5 connects the translucent surface cover material 3, the plurality of solar cells 2a, 2b, and these solar cells 2a, 2b in series from the light receiving surface side (front surface side). A cell arrangement layer 9 in which the front side tab wires 4a and 4b and the back side tab wires 7a and 7b are sealed with a resin 8 such as EVA (ethylene vinyl acetate), PET (polyethylene terephthalate), PVF (polyvinyl fluoride), etc. The back sheet 10 (back cover material) having excellent weather resistance is laminated.
FIG. 3 shows the solar cell 2a, 2b and the front surface side tab wires 4a, 4b and the back surface side tab wires 7a, 7b which are electrically connected to the stacked structure shown in FIG. FIG.

図4は、図1内に示した領域Aにおける太陽電池セル2aと2bを受光面側である表面側からみた正面図である。また、図5は、図1内に示した領域Aにおける太陽電池セルの連結を裏面側から見た正面図(図4を裏側から見た図)である。 FIG. 4 is a front view of the solar cells 2a and 2b in the region A shown in FIG. 1 as viewed from the surface side that is the light receiving surface side. FIG. 5 is a front view of the connection of solar cells in the region A shown in FIG. 1 as seen from the back side (the view of FIG. 4 seen from the back side).

次に、図3、図4および図5を用いて、太陽電池セルについて詳細に説明する。
太陽電池セル2a、2bは、およそ150〜300μmほどの厚みのp型シリコンを基板として以下のように構成される。p型層となるp型シリコン基板11の表面側には、n型拡散層(図示せず)が形成され、さらに入射光の反射を防止して変換効率を向上させるための反射防止膜(図示せず)が表面処理により設けられて、太陽電池セルの受光面となっている。また、p型シリコン基板の裏面側には、高濃度不純物を含んだp層(図示せず)が形成され、さらに入射光の反射および電力の取り出しを目的として裏面のほぼ全面にアルミニウムによる裏面集電電極12が設けられている。
また、前記受光面には、入射光から変換された電気エネルギーを取り出す表面電極として、表面グリッド電極13a、13bと表面バス電極14a、14bとが設けられる。図4に示すように、表面バス電極14a、14bは隣接する太陽電池セル間の接続方向である第1の方向に沿って形成されており、表面グリッド電極13a、13bは前記表面バス電極14a、14bと直交して複数本が平行に形成される。表面グリッド電極13a、13bは、受光面にて発電した電力を無駄なく取り出すために受光面(表面)の全体にわたって形成される。
Next, a solar cell will be described in detail with reference to FIGS. 3, 4, and 5.
Solar cells 2a and 2b are configured as follows using p-type silicon having a thickness of about 150 to 300 μm as a substrate. An n-type diffusion layer (not shown) is formed on the surface side of the p-type silicon substrate 11 to be a p-type layer, and an antireflection film (not shown) for preventing reflection of incident light and improving conversion efficiency. (Not shown) is provided by surface treatment, and serves as a light receiving surface of the solar battery cell. Further, a p + layer (not shown) containing a high concentration impurity is formed on the back surface side of the p-type silicon substrate, and the back surface is made of aluminum on almost the entire back surface for the purpose of reflecting incident light and taking out electric power. A collecting electrode 12 is provided.
The light receiving surface is provided with surface grid electrodes 13a and 13b and surface bus electrodes 14a and 14b as surface electrodes for extracting electric energy converted from incident light. As shown in FIG. 4, the surface bus electrodes 14a and 14b are formed along a first direction which is a connection direction between adjacent solar cells, and the surface grid electrodes 13a and 13b are formed by the surface bus electrodes 14a, A plurality of lines are formed in parallel to each other perpendicular to 14b. The surface grid electrodes 13a and 13b are formed over the entire light receiving surface (surface) in order to take out the electric power generated on the light receiving surface without waste.

表面グリッド電極13a、13bと表面バス電極14a、14bは以下のように形成される。太陽電池セルの表面に、およそ100μm幅の銀ペーストを線状に2mm程度の間隔で複数本塗布し、また、およそ2mm幅の銀ペーストを前記100μm幅の銀ペーストと直交するように、太陽電池セルの両端からセル幅4分の1付近の位置に各々塗布し、これら銀ペーストを焼成することにより形成される。平行に複数本塗布された100μm幅の銀ペーストの部分が表面グリッド電極13a、13bとなり、表面グリッド電極13a、13bと直交するように塗布された2mm幅の銀ペーストの部分が表面バス電極14a、14bとなる。表面グリッド電極13a、13bと表面バス電極14a、14bとは、それぞれが直角方向で交わり、電気的につながっている。 The surface grid electrodes 13a and 13b and the surface bus electrodes 14a and 14b are formed as follows. A plurality of silver pastes having a width of about 100 μm are linearly applied to the surface of the solar battery cell at intervals of about 2 mm, and the solar cells are orthogonal to the silver paste having a width of about 2 mm. It is formed by coating each of the cells at positions near a quarter of the cell width from both ends of the cell and baking these silver pastes. The portions of the silver paste having a width of 100 μm applied in parallel become the surface grid electrodes 13a and 13b, and the portions of the silver paste having a width of 2 mm applied so as to be orthogonal to the surface grid electrodes 13a and 13b are the surface bus electrodes 14a, 14b. The surface grid electrodes 13a and 13b and the surface bus electrodes 14a and 14b intersect at right angles and are electrically connected.

また、裏面のほぼ全面に設けられた前記裏面集電電極12によって集められた電気エネルギーをさらに外部に取り出すために銀による裏面バス電極15a、15bが、隣接する太陽電池セル間の接続方向である第1の方向に沿って形成される。 Further, in order to take out the electric energy collected by the back surface collecting electrode 12 provided on almost the entire back surface, the back surface bus electrodes 15a and 15b made of silver are in the connecting direction between adjacent solar cells. It is formed along the first direction.

このように構成された太陽電池セルでは、太陽光が太陽電池セルの受光面側(反射防止膜側)から照射されて、内部のpn接合面(p型層とn型拡散層との接合面)に到達すると、このpn接合面において合体していたホールと電子が分離する。分離した電子はn型拡散層に向かって移動する。一方、分離したホールはp層に向かって移動する。これにより、n型拡散層とp層との間に、p層の電位が高くなるようにして電位差が発生する。その結果、n型拡散層に接続した表面電極がマイナス極、p層に接続した裏面電極がプラス極となって、外部回路(図示せず)を接続すれば電流が流れ、太陽電池としての動作を示す。
太陽電池セル1枚の出力電圧は小さいが、太陽電池モジュールにおいてはこの太陽電池セルを複数枚直列に接続することにより使用しやすい電圧まで大きくしている。
In the solar cell configured as described above, sunlight is irradiated from the light receiving surface side (antireflection film side) of the solar cell, and an internal pn junction surface (a junction surface between the p-type layer and the n-type diffusion layer). ), The holes and electrons combined at the pn junction surface are separated. The separated electrons move toward the n-type diffusion layer. On the other hand, the separated holes move toward the p + layer. As a result, a potential difference is generated between the n-type diffusion layer and the p + layer so that the potential of the p + layer becomes high. As a result, the front electrode connected to the n-type diffusion layer is a negative electrode, the back electrode connected to the p + layer is a positive electrode, and if an external circuit (not shown) is connected, current flows, The operation is shown.
Although the output voltage of one solar battery cell is small, in the solar battery module, a plurality of solar battery cells are connected in series to increase the voltage to be easy to use.

太陽電池セルの直列接続は、第1の方向に配列された複数の太陽電池セルにおいて、1枚の太陽電池セル2aの表面電極(表面バス電極14a)と、これに隣接する他の太陽電池セル2bの裏面電極(裏面バス電極15b)とを帯状のタブ線により電気的に接続することにより、なされる。 The solar cells are connected in series with each other in the plurality of solar cells arranged in the first direction. The surface electrode (surface bus electrode 14a) of one solar cell 2a and the other solar cells adjacent thereto. This is done by electrically connecting the 2b back electrode (back bus electrode 15b) with a strip-shaped tab wire.

具体的には、本実施の形態においてタブ線は表面側タブ線4a、4bと裏面側タブ線7a、7bとに分割して設けている。両タブ線のうち、表面側タブ線4a、4bは、表面バス電極14a、14bの上に延び、当該表面バス電極14a、14bに半田接合(機械的および電気的に接続)されている。なお、表面側タブ線4a、4bの長さは表面バス電極14a、14bの長さよりも長くしてあるので、表面バス電極14a、14bの一端と表面側タブ線4a、4bの一端とを合わせて配置し半田接合すると、表面バス電極14a、14bの他端からは表面側タブ線4a、4bの他端側が余長としてはみ出る。一方、裏面側タブ線7a、7bは、裏面バス電極15a、15b上に延び、当該裏面バス電極15a、15bに半田接合(機械的および電気的に接続)されている。そして、太陽電池セル2aと隣接する太陽電池セル2bを直列接続するために、太陽電池セル2aの表面側タブ線4aと太陽電池セル2bの裏面側タブ線7bとが半田接合されている。すなわち、表面側タブ線4aの端部すなわち前記余長分が、隣接する太陽電池セル2bの裏面側にもぐり込み、裏面バス電極15b上に半田接合されている裏面側タブ線7bに、半田接合される。なお、ここでは、隣接する2つの太陽電池セル2a、2bの接続のみ説明しているが、実際には、同様の接続が繰り返されて複数の太陽電池セル2が直列に接続されている。
なお、図5において、裏面側タブ線7a、7bの幅よりも表面側タブ線4a、4bの幅が小さく図示されているが、図示上見やすくしたためであり、それぞれのタブ線の幅は同じであってもいい。図6以降についても同様である。
Specifically, in the present embodiment, the tab lines are divided into front side tab lines 4a and 4b and back side tab lines 7a and 7b. Of the two tab lines, the surface side tab lines 4a and 4b extend on the surface bus electrodes 14a and 14b, and are soldered (mechanically and electrically connected) to the surface bus electrodes 14a and 14b. Since the length of the surface side tab wires 4a and 4b is longer than the length of the surface bus electrodes 14a and 14b, one end of the surface bus electrodes 14a and 14b and one end of the surface side tab wires 4a and 4b are combined. When placed and soldered, the other ends of the surface-side tab wires 4a and 4b protrude from the other ends of the surface bus electrodes 14a and 14b as extra lengths. On the other hand, the back-side tab wires 7a and 7b extend on the back-side bus electrodes 15a and 15b, and are solder-joined (mechanically and electrically connected) to the back-side bus electrodes 15a and 15b. And in order to connect the photovoltaic cell 2a and the adjacent photovoltaic cell 2b in series, the surface side tab wire 4a of the photovoltaic cell 2a and the back surface side tab wire 7b of the photovoltaic cell 2b are solder-joined. That is, the end portion of the front side tab wire 4a, that is, the extra length, digs into the back side of the adjacent solar battery cell 2b and is soldered to the back side tab wire 7b soldered onto the back side bus electrode 15b. Is done. Here, only the connection between two adjacent solar cells 2a and 2b has been described, but actually, the same connection is repeated and a plurality of solar cells 2 are connected in series.
In FIG. 5, the widths of the front-side tab lines 4a and 4b are smaller than the widths of the back-side tab lines 7a and 7b. However, the widths of the tab lines are the same. It's okay. The same applies to FIG. 6 and subsequent figures.

太陽電池セルとタブ線との接続は、具体的には以下のように行われる。
まず、表面側タブ線4aを太陽電池セル2aの表面バス電極14a上に、また裏面側タブ線7aを裏面バス電極15a上にそれぞれ配置し、次に加熱しながら部分的もしくは全長にわたりタブ線と太陽電池セルとを押圧する。タブ線は半田被覆されているので加熱により半田が溶け、その状態で押圧することによりタブ線とバス電極とが半田接合される。次に、太陽電池モジュール1において隣接することになる太陽電池セル2a、2bを並べて、一方の太陽電池セル2aの表面側タブ線4aの端部(余長分)を他方の太陽電池セル2bの裏面側にもぐりこませて裏面側タブ線7bの端部と重ね、加熱しながら押圧して半田接合させる。
なお、上記の太陽電池セルの各電極と各タブ線との接続および表面側タブ線と裏面側タブ線との接続を同時に実施してもよい。
Specifically, the connection between the solar battery cell and the tab wire is performed as follows.
First, the front side tab wire 4a is disposed on the front surface bus electrode 14a of the solar battery cell 2a, and the rear surface side tab wire 7a is disposed on the rear surface bus electrode 15a. Press against the solar cell. Since the tab wire is covered with solder, the solder is melted by heating, and the tab wire and the bus electrode are soldered by pressing in this state. Next, the solar cells 2a and 2b that will be adjacent to each other in the solar cell module 1 are arranged, and the end portion (extra length) of the surface-side tab wire 4a of one solar cell 2a is changed to that of the other solar cell 2b. It rubs over to the back side and overlaps with the end of the back side tab wire 7b and presses and solders while heating.
In addition, you may implement simultaneously the connection of each electrode of said photovoltaic cell and each tab wire, and the connection of a surface side tab wire and a back surface side tab wire.

このようにして太陽電池セル2が複数枚直列に接続された太陽電池モジュール1が構成され、その出力電圧は太陽電池セル2の電圧が複数枚分直列接続された値となる。 Thus, the solar cell module 1 in which a plurality of solar cells 2 are connected in series is configured, and the output voltage is a value obtained by connecting a plurality of solar cells 2 in series.

そして、本実施の形態において、太陽電池セル2aの表面側タブ線4aの、隣接する太陽電池セル2bの裏面側タブ線7bに接続される側の端部の幅は、表面側タブ線4aの端部以外の部分の幅よりも狭くなっている。例えば、図5に示すように表面側タブ線4aの先端は鋭角状に尖っており、その尖った部分は60°より小さくなっている。
図6を用いて、表面側タブ線4aと裏面側タブ線7bとの接続部における表面側タブ線4aの端部の形状寸法について説明する。従来の表面側タブ線、裏面側タブ線はその端部がタブ線の長手方向に対して直角に裁断されたものすなわち矩形のものが使用されていた。従って表面側タブ線と裏面側タブ線との重なる部分もやはり矩形となっていた。このような従来のタブ線接続においては、タブ線幅をWとすると、表面側タブ線と裏面側タブ線との重なる部分の長さは、W〜5W程度が一般的である。これは、表面側タブ線と裏面側タブ線との接続部の接続強度の確保、表面側タブ線と裏面側タブ線との接続部における抵抗値を小さく抑制(接続部における電力ロスの低減)、また重なり部の長さが長すぎるとタブ線長増加によるコストアップなどを考慮して選定された寸法である。本実施の形態では、上記の理由を考慮して、各寸法の望まれる値を次のように選定している。
まず、接続強度および抵抗抑制の点から、表面側タブ線4aと裏面側タブ線7bとの重なり部の面積(S)を従来と同等あるいはそれ以上とするのがよい。また、裏面側タブ線7bと重なる表面側タブ線4aにおいて、タブ線幅がWである部分の長さ(L2)については、0もしくは長くても0.5W程度以下とするのがよい。これは、L2が長いと、結局従来の接続と近くなり、その部分における残留応力の緩和ができないと想定されることによる。さらに、材料費の増加抑制の点から、表面側タブ線4aと裏面側タブ線7bとの重なり部の長さ(L1)は従来値より増えないのが望ましい。
以上により、表面側タブ線4aと裏面側タブ線7bとの接続部寸法の一例として、L2=0、S=W^2(すなわちL1=W)とすると、表面側タブ線4aの先端の鋭角形状における角度θは、θ=53°となる。
And in this Embodiment, the width | variety of the edge part of the side connected to the back surface side tab wire 7b of the adjacent photovoltaic cell 2b of the surface side tab wire 4a of the photovoltaic cell 2a is the surface side tab wire 4a. It is narrower than the width of the portion other than the end. For example, as shown in FIG. 5, the front-end | tip of the surface side tab wire 4a is sharpened acutely, and the sharp part is smaller than 60 degrees.
The shape dimension of the edge part of the surface side tab wire 4a in the connection part of the surface side tab wire 4a and the back surface side tab wire 7b is demonstrated using FIG. As for the conventional surface side tab line and the back side tab line, those whose end portions are cut at right angles to the longitudinal direction of the tab line, that is, rectangular ones are used. Therefore, the overlapping part of the front surface side tab line and the back surface side tab line was also rectangular. In such a conventional tab line connection, when the tab line width is W, the length of the overlapping portion of the front side tab line and the back side tab line is generally about W to 5W. This ensures the connection strength of the connection part between the front-side tab line and the back-side tab line, and suppresses the resistance value at the connection part between the front-side tab line and the back-side tab line to be small (reduction of power loss at the connection part). In addition, when the length of the overlapping portion is too long, the dimension is selected in consideration of the cost increase due to an increase in the tab line length. In the present embodiment, considering the above reasons, desired values of each dimension are selected as follows.
First, from the viewpoint of connection strength and resistance suppression, the area (S) of the overlapping portion between the front surface side tab wire 4a and the rear surface side tab wire 7b is preferably equal to or larger than that of the conventional one. Further, in the front side tab line 4a overlapping the back side tab line 7b, the length (L2) of the portion where the tab line width is W is preferably 0 or less and about 0.5 W or less. This is because it is assumed that if L2 is long, it will be close to the conventional connection, and the residual stress at that portion cannot be relaxed. Furthermore, from the viewpoint of suppressing an increase in material cost, it is desirable that the length (L1) of the overlapping portion between the front surface side tab line 4a and the rear surface side tab line 7b does not increase from the conventional value.
As described above, when L2 = 0 and S = W ^ 2 (that is, L1 = W) as an example of the dimension of the connecting portion between the front surface side tab wire 4a and the rear surface side tab wire 7b, the acute angle of the front end of the front surface side tab wire 4a The angle θ in the shape is θ = 53 °.

表面側タブ線4aをこのような端部形状としたとき、裏面側タブ線7bと接続される側の表面側タブ線4aの端部の幅(図5のW1)は、表面側タブ線4aの端部以外の部分の幅(図5のW)より狭くなる(W1<W)ため、接合部の断面面積としては同じ幅のタブ線が接続される場合に比べて小さくなる。断面積が小さい部分は同じ力を加えた場合に塑性変形しやすい。従って、タブ線と電極およびタブ線同士の半田接合の際に、太陽電池セルの材料のシリコン基板とタブ線の材料の銅の線膨張係数の差によって生じる熱ストレスを受けたとき、タブ線接合部の断面積が小さいタブ線部分はより塑性変形しやすくなっている。よって半田接合後に太陽電池セルの温度が下がったときの熱収縮しようとする力に対して、タブ線の断面積の小さい部分が塑性変形することによって、太陽電池セルに残る残留応力が緩和され、セル割れ、反り、タブ線の剥がれ等が起こりにくい。
なお、太陽電池セルの材料のシリコンとタブ線の材料の銅の線膨張係数差によって生じる熱ストレスは、タブ線の長手方向中心から端部に離れるにつれて集積されていくので、セル端部に近い箇所において最も残留応力が大きくなりやすい。本実施の形態ではセル端部で接続される表面側タブ線と裏面側タブ線の接合部で塑性変形しやすくしているため、残留応力の緩和に効果的である。
When the surface-side tab wire 4a has such an end shape, the width (W1 in FIG. 5) of the end of the surface-side tab wire 4a on the side connected to the back-side tab wire 7b is the surface-side tab wire 4a. Since the width (W1 <W) of the portion other than the end portion of the joint portion becomes narrower (W1 <W), the cross-sectional area of the joint portion becomes smaller than when the tab lines having the same width are connected. A portion having a small cross-sectional area is easily plastically deformed when the same force is applied. Therefore, when soldering between the tab wire and the electrode and the tab wire, when subjected to thermal stress caused by the difference in the linear expansion coefficient between the silicon substrate of the solar cell material and the copper of the tab wire material, the tab wire bonding The tab line portion where the cross-sectional area of the portion is small is more easily plastically deformed. Therefore, the residual stress remaining in the solar cell is relaxed by plastically deforming a small portion of the cross-sectional area of the tab wire with respect to the force of thermal contraction when the temperature of the solar cell decreases after soldering, Cell cracks, warpage, tab line peeling, etc. are unlikely to occur.
The thermal stress generated by the difference in linear expansion coefficient between the silicon of the solar cell material and the copper of the tab wire material is accumulated as it moves away from the center of the tab wire in the longitudinal direction, so that it is close to the cell edge. Residual stress tends to increase most at the location. In the present embodiment, plastic deformation is easily performed at the joint between the front-side tab line and the back-side tab line connected at the cell end, and therefore effective in reducing residual stress.

このような構成の太陽電池モジュール1においては、太陽電池セルを接続するタブ線として耐力値を低減した銅線を使用することなく、また表面側タブ線と裏面側タブ線とを半田接合する際に接合部位に生じる残留応力の低減が可能となり、セル割れ、反り、タブ線のはがれ等による歩留まりの悪化および太陽電池の出力低下を抑えることができるので、安価で信頼性の高い太陽電池モジュール1を提供することができる。 In the solar cell module 1 having such a configuration, when using a copper wire with reduced proof stress as a tab wire for connecting solar cells, and soldering the front side tab wire and the back side tab wire together It is possible to reduce the residual stress generated at the joint portion, and it is possible to suppress the deterioration of the yield due to cell cracking, warpage, peeling of the tab wire, and the like, and the decrease in the output of the solar cell. Therefore, the solar cell module 1 is inexpensive and highly reliable. Can be provided.

なお、図7に示すように、表面側タブ線4aと接続される側の裏面側タブ線7bの端部形状を60°より小さい鋭角形状にした構成でも、表面側タブ線4aと裏面側タブ線7bとの接合部断面積が小さくなって塑性変形しやすくなるため、半田接合の際に生じる残留応力の低減が可能となって、前述したのと同じ効果が得られる。
さらに、表面側タブ線4aと裏面側タブ線7bとの接合部において、表面側タブ線4aの端部形状と裏面側タブ線7bの端部形状とを共に60°より小さい鋭角形状にした構成にすれば、表面側タブ線4aと裏面側タブ線7bとの接合部断面積が小さくなる部分が増えるのでさらに塑性変形しやすくなるため、半田接合の際に生じる残留応力の低減が可能となって、前述したのと同じ効果が得られる。
In addition, as shown in FIG. 7, even if it is the structure which made the edge part shape of the back surface side tab wire 7b of the side connected with the surface side tab wire 4a into the acute angle shape smaller than 60 degrees, the surface side tab wire 4a and the back surface side tab Since the cross-sectional area of the joint with the wire 7b is reduced and plastic deformation is likely to occur, it is possible to reduce the residual stress generated during solder joining, and the same effect as described above can be obtained.
Further, at the joint portion between the front surface side tab wire 4a and the rear surface side tab wire 7b, both the end portion shape of the front surface side tab wire 4a and the end portion shape of the rear surface side tab wire 7b are formed into acute angles smaller than 60 °. By doing so, since the portion where the cross-sectional area of the joint between the front surface side tab wire 4a and the back surface side tab wire 7b becomes smaller increases, it becomes easier to be plastically deformed, so it becomes possible to reduce the residual stress generated during solder joint. Thus, the same effect as described above can be obtained.

なお、前述の説明では表面側タブ線あるいは裏面側タブ線の端部形状は60°より小さい鋭角形状としたが、その先端部分を弧状としても良い。具体的には図8に示したように、前述の60°より小さい鋭角形状の端部を丸くした形状である。先端部分に弧状を有している形態は、鋭角形状の場合に懸念される先端のとがった部分の変形等によってバックシート10を傷つけることなく製造することが可能となる利点を有する。 In the above description, the shape of the end portion of the front surface side tab line or the back surface side tab wire is an acute angle shape smaller than 60 °, but the tip portion may be an arc shape. Specifically, as shown in FIG. 8, the end portion of the acute angle shape smaller than 60 ° is rounded. The form having an arc shape at the tip portion has an advantage that it can be manufactured without damaging the back sheet 10 due to deformation of the sharp portion of the tip which is a concern in the case of an acute angle shape.

また、表面側タブ線あるいは裏面側タブ線の端部形状はタブ線幅より小さい形状をとることにより効果がでるために、図9に示すように、複数の鋭角形状からなっていても良い。この場合、前述したように接続強度および抵抗を従来形状と同等以上に保つために、表面側タブ線と裏面側タブ線との重なり部の面積を従来と同等以上にすることが望ましい。そのとき、例えば鋭角形状の個数が2つの場合であれば、その鋭角形状先端部の角度θとしては、それぞれ30°より小さい角度を選ぶのがよい。さらに、端部が複数の弧状になっていてもよい。 In addition, since the end portion of the front-side tab line or the back-side tab line has an effect by taking a shape smaller than the tab line width, it may have a plurality of acute-angle shapes as shown in FIG. In this case, as described above, in order to keep the connection strength and the resistance equal to or higher than those of the conventional shape, it is desirable that the area of the overlapping portion between the front surface side tab line and the rear surface side tab line is equal to or higher than that of the conventional shape. At that time, for example, when the number of acute-angled shapes is two, it is preferable to select angles smaller than 30 ° as the angles θ of the acute-angled tips. Further, the end portion may have a plurality of arc shapes.

図10に、表面側タブ線4aと裏面側タブ線7bとの接合部において、表面側タブ線4aの端部形状を60°より小さい鋭角形状、裏面側タブ線7bの端部形状を複数の鋭角形状(例えば端部の角度が30°より小さい2つの鋭角形状)とした例を示す。表面側タブ線4aと裏面側タブ線7bとの接合部断面積が小さくなる部分が増えるのでさらに塑性変形しやすくなるため、前述したのと同じ効果が得られる。 In FIG. 10, at the joint portion between the front surface side tab wire 4a and the back surface side tab wire 7b, the end surface shape of the front surface side tab wire 4a is an acute angle shape smaller than 60 °, and the back surface side tab wire 7b has a plurality of end shape shapes. An example of an acute-angle shape (for example, two acute-angle shapes whose end portions are smaller than 30 °) is shown. Since the portion where the joint cross-sectional area between the front surface side tab wire 4a and the back surface side tab wire 7b becomes small increases, plastic deformation is further facilitated, and thus the same effect as described above can be obtained.

実施の形態2.
図11は、本発明の実施の形態2を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続を示す正面図(表面側)である。
図11において、表面側タブ線4aの裏面側タブ線7bとは接続しない側の端部の幅を狭くしたものである。具体的には60°より小さい鋭角形状とした。
前述したように、太陽電池セルの材料のシリコンとタブ線の材料の銅の線膨張係数差によって生じる熱ストレスは、タブ線の長手方向中心から端部に離れるにつれて集積されていくので、セル端部に近い箇所において最も残留応力が大きくなりやすい。従って、実施の形態1に示したような表面側タブ線4aと裏面側タブ線7bとの接合部に限らず、セル端部の電極に接続されるタブ線端部の幅を狭くすることでもセル端部での残留応力を低減させる効果が得られる。すなわち、表面側タブ線4aと表面バス電極14aとの接合部において、裏面側タブ線7bと接続されない側の表面側タブ線4aの端部の幅を狭くすれば、その端部は半田接合時に塑性変形が起こりやすく、その部分での残留応力を低減できるため、セル割れ、反り、タブ線のはがれ等による歩留まりの悪化および太陽電池の出力低下を抑えることができるので、安価で信頼性の高い太陽電池モジュール1を提供することができる。
ただし、端部の鋭角形状の角度を極端に小さくしすぎると、表面側タブ線4aの端部がより幅が狭くなり、しかもその部分が長くなるので、表面バス電極14aと表面側タブ線4aとの接続強度や表面バス電極14aから電流を取り込む際の抵抗について懸念が生ずるため、例えばL3<5W程度に抑えることが望ましい。そのためには、端部の鋭角形状の角度θを例えば10°以上とするのが望ましい。
なお、図12に示すように裏面側タブ線7bの表面側タブ線4aとは接続しない側の端部形状を60°より小さい鋭角形状としても同様の効果が得られる。
また、本実施の形態においては、表面側タブ線4a、4bあるいは裏面側タブ線7a、7bの端部の幅が全体のタブ線幅より小さい形状をとることにより効果がでるため、複数の鋭角形状(例えば先端部の角度が30°より小さい2つの鋭角形状)からなっていても良い。さらに、先端部が弧状になっていてもよいし、複数の弧状であってもよい。
Embodiment 2. FIG.
FIG. 11: is a front view (surface side) which shows the connection of two adjacent photovoltaic cells of the solar cell module which shows Embodiment 2 of this invention.
In FIG. 11, the width | variety of the edge part of the side which is not connected with the back surface side tab wire 7b of the surface side tab wire 4a is narrowed. Specifically, it was an acute angle shape smaller than 60 °.
As described above, since the thermal stress caused by the difference in linear expansion coefficient between the silicon of the solar cell material and the copper of the tab wire material is accumulated as it moves away from the longitudinal center of the tab wire to the end, Residual stress tends to increase most at locations close to the part. Therefore, not only the junction between the front-side tab wire 4a and the back-side tab wire 7b as shown in the first embodiment, but also by reducing the width of the tab line end connected to the electrode at the cell end. The effect of reducing the residual stress at the cell edge can be obtained. That is, if the width of the end portion of the front surface side tab wire 4a on the side not connected to the back surface side tab wire 7b is made narrower at the joint portion between the front surface side tab wire 4a and the front surface bus electrode 14a, the end portion is at the time of soldering. Since plastic deformation is likely to occur and the residual stress at that part can be reduced, it is possible to suppress the deterioration of yield due to cell cracking, warpage, peeling of the tab wire, etc. and the decrease in output of the solar cell, so it is inexpensive and highly reliable. The solar cell module 1 can be provided.
However, if the acute angle of the end portion is made extremely small, the end portion of the surface-side tab wire 4a becomes narrower and the portion becomes longer, so that the surface bus electrode 14a and the surface-side tab wire 4a Therefore, for example, it is desirable to suppress L3 <5W. For this purpose, it is desirable that the acute angle θ of the end portion is, for example, 10 ° or more.
As shown in FIG. 12, the same effect can be obtained even if the end portion of the back surface side tab wire 7b that is not connected to the front surface side tab wire 4a has an acute angle shape smaller than 60 °.
In the present embodiment, the effect is obtained by taking a shape in which the widths of the end portions of the front-side tab lines 4a and 4b or the back-side tab lines 7a and 7b are smaller than the entire tab line width. You may consist of shape (For example, two acute angle shapes whose angle of a front-end | tip part is smaller than 30 degrees). Furthermore, the tip may be arcuate or may be arcuate.

実施の形態3.
図13は、本発明の実施の形態3を示す太陽電池モジュールの隣接する2枚の太陽電池セルの接続を示す正面図(裏面側)である。
図13において、表面側タブ線4a、4bと接続する側の裏面側タブ線の7a、7bの端部は、先端部の角度が30°より小さい2つの鋭角形状であり、表面側タブ線4a、4bと接続しない側の裏面側タブ線の7a、7bの先端は60°より小さい鋭角形状である。なお、この裏面側タブ線の両端形状は互いに対となる形状であり、1本のタブ線をくの字形に切断して作成することができる。従って前述の塑性変形しやすく残留応力を低減してセル割れ、反り、タブ線のはがれ等を抑制する効果の他に、金型等による一度のタブ線の切断により形状を形成することができ、加工による費用を抑えることが可能であるという効果も有する。
なお、表面側タブ線4a、4bと接続する側の裏面側タブ線の7a、7bの端部形状を60°より小さい鋭角形状とし、表面側タブ線4a、4bと接続しない側の裏面側タブ線の7a、7bの端部形状を30°より小さい2つの鋭角形状としても同様である。
また、表面側タブ線の両端形状をそれぞれ60°より小さい鋭角形状、30°より小さい2つの鋭角形状としても同様の効果が得られる。
Embodiment 3 FIG.
FIG. 13: is a front view (back surface side) which shows the connection of two adjacent photovoltaic cells of the solar cell module which shows Embodiment 3 of this invention.
In FIG. 13, the end portions of the back surface side tab wires 7a, 7b on the side connected to the front surface side tab wires 4a, 4b have two acute angles with the tip portion angle smaller than 30 °, and the front surface side tab wires 4a The tips of the back-side tab wires 7a and 7b on the side not connected to 4b have an acute angle smaller than 60 °. In addition, both end shapes of this back surface side tab line are shapes which become a pair, and can cut and produce one tab line in a dogleg shape. Therefore, in addition to the effects of suppressing cell cracking, warpage, tab line peeling, etc., by reducing residual stress that is easily plastically deformed, the shape can be formed by cutting the tab line once with a mold, There is also an effect that costs due to processing can be suppressed.
The back-side tab lines 7a and 7b on the side connected to the front-side tab lines 4a and 4b have an acute end shape smaller than 60 ° and the back-side tabs on the side not connected to the front-side tab lines 4a and 4b. The same applies to the shape of the ends of the lines 7a and 7b, which are two acute angles smaller than 30 °.
Further, the same effect can be obtained when both end shapes of the surface-side tab line are formed as an acute angle shape smaller than 60 ° and two acute angle shapes smaller than 30 °.

1 太陽電池モジュール
2a 太陽電池セル
2b 太陽電池セル
4a 表面側タブ線
4b 表面側タブ線
7a 裏面側タブ線
7b 裏面側タブ線
14a 表面バス電極(表面電極)
14b 表面バス電極(表面電極)
15a 裏面バス電極(裏面電極)
15b 裏面バス電極(裏面電極)
DESCRIPTION OF SYMBOLS 1 Solar cell module 2a Solar cell 2b Solar cell 4a Surface side tab wire 4b Surface side tab wire 7a Back surface side tab wire 7b Back surface side tab wire 14a Surface bus electrode (surface electrode)
14b Surface bus electrode (surface electrode)
15a Back bus electrode (back electrode)
15b Backside bus electrode (backside electrode)

Claims (6)

表面に表面電極、裏面に裏面電極を有する複数枚の太陽電池セルと、
前記太陽電池セルの表面電極に半田接合された帯状の表面側タブ線と、
前記太陽電池セルの裏面電極に半田接合された帯状の裏面側タブ線とを備え、
隣接した前記複数枚の太陽電池セルの、一方の太陽電池セルの前記表面側タブ線が、他方の太陽電池セルの裏面側に延び前記裏面電極に接続された前記裏面側タブ線に半田接合されて、前記複数枚の太陽電池セルが直列に接続され、
前記表面側タブ線の長手方向における端部または前記裏面側タブ線の長手方向における端部の幅が端部以外の幅に対して小さい
ことを特徴とする太陽電池モジュール。
A plurality of solar cells having a surface electrode on the front surface and a back electrode on the back surface;
A strip-shaped surface-side tab wire solder-bonded to the surface electrode of the solar battery cell,
A strip-shaped backside tab wire solder-bonded to the backside electrode of the solar cell,
Of the plurality of adjacent solar cells, the front side tab line of one solar cell is soldered to the back side tab line connected to the back electrode extending to the back side of the other solar cell. The plurality of solar cells are connected in series,
The solar cell module, wherein a width of an end portion in the longitudinal direction of the front surface side tab line or an end portion in the longitudinal direction of the back surface side tab line is smaller than a width other than the end portion.
前記表面側タブ線の長手方向における端部または前記裏面側タブ線の長手方向における端部が60°より小さい鋭角形状を有する
ことを特徴とする請求項1に記載の太陽電池モジュール。
2. The solar cell module according to claim 1, wherein an end portion in the longitudinal direction of the front surface side tab line or an end portion in the longitudinal direction of the back surface side tab line has an acute angle shape smaller than 60 °.
前記表面側タブ線の長手方向における端部または前記裏面側タブ線の長手方向における端部が弧状の先端形状を有する
ことを特徴とする請求項1に記載の太陽電池モジュール。
2. The solar cell module according to claim 1, wherein an end portion in the longitudinal direction of the front surface side tab line or an end portion in the longitudinal direction of the back surface side tab line has an arcuate tip shape.
前記表面側タブ線と前記裏面側タブ線との前記半田接合部における表面側タブ線の端部と裏面側タブ線の端部のいずれか一方または両方の幅が端部以外の幅に対して小さい
ことを特徴とする請求項1に記載の太陽電池モジュール。
The width of one or both of the end of the front-side tab line and the end of the back-side tab line in the solder joint between the front-side tab line and the back-side tab line is a width other than the end. The solar cell module according to claim 1, wherein the solar cell module is small.
前記表面側タブ線と前記裏面側タブ線との前記半田接合部における表面側タブ線の端部と裏面側タブ線の端部のいずれか一方または両方が60°より小さい鋭角形状を有する
ことを特徴とする請求項2に記載の太陽電池モジュール。
Either one or both of the end of the front-side tab line and the end of the back-side tab line in the solder joint between the front-side tab line and the back-side tab line have an acute shape smaller than 60 °. The solar cell module according to claim 2, wherein
前記表面側タブ線と前記裏面側タブ線との前記半田接合部における表面側タブ線の端部と裏面側タブ線の端部のいずれか一方または両方が弧状の先端形状を有する
ことを特徴とする請求項3に記載の太陽電池モジュール。
One or both of an end portion of the surface-side tab line and an end portion of the back-side tab line in the solder joint between the front-side tab line and the back-side tab line have an arcuate tip shape. The solar cell module according to claim 3.
JP2010131938A 2010-06-09 2010-06-09 Solar cell module Pending JP2011258747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131938A JP2011258747A (en) 2010-06-09 2010-06-09 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131938A JP2011258747A (en) 2010-06-09 2010-06-09 Solar cell module

Publications (1)

Publication Number Publication Date
JP2011258747A true JP2011258747A (en) 2011-12-22

Family

ID=45474619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131938A Pending JP2011258747A (en) 2010-06-09 2010-06-09 Solar cell module

Country Status (1)

Country Link
JP (1) JP2011258747A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137007A1 (en) * 2012-03-12 2013-09-19 株式会社Neomaxマテリアル Interconnector for solar cell, production method for interconnector for solar cell, and solar cell module
CN103606593A (en) * 2013-11-15 2014-02-26 英利集团有限公司 A processing method for a solar cell panel welding strip
CN113471362A (en) * 2021-05-18 2021-10-01 宣城先进光伏技术有限公司 Interconnection process method of perovskite battery
WO2022016746A1 (en) * 2020-07-22 2022-01-27 泰州隆基乐叶光伏科技有限公司 Triangular photovoltaic ribbon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359388A (en) * 2002-05-28 2002-12-13 Kyocera Corp Solar battery device
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
JP2007281530A (en) * 2007-07-31 2007-10-25 Sanyo Electric Co Ltd Solar battery module
JP2009064910A (en) * 2007-09-05 2009-03-26 Sharp Corp Solar battery with interconnector and solar battery module
JP2010016246A (en) * 2008-07-04 2010-01-21 Sanyo Electric Co Ltd Solar cell module and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359388A (en) * 2002-05-28 2002-12-13 Kyocera Corp Solar battery device
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
JP2007281530A (en) * 2007-07-31 2007-10-25 Sanyo Electric Co Ltd Solar battery module
JP2009064910A (en) * 2007-09-05 2009-03-26 Sharp Corp Solar battery with interconnector and solar battery module
JP2010016246A (en) * 2008-07-04 2010-01-21 Sanyo Electric Co Ltd Solar cell module and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137007A1 (en) * 2012-03-12 2013-09-19 株式会社Neomaxマテリアル Interconnector for solar cell, production method for interconnector for solar cell, and solar cell module
CN103606593A (en) * 2013-11-15 2014-02-26 英利集团有限公司 A processing method for a solar cell panel welding strip
CN103606593B (en) * 2013-11-15 2016-02-24 英利集团有限公司 The processing method of solar panel welding
WO2022016746A1 (en) * 2020-07-22 2022-01-27 泰州隆基乐叶光伏科技有限公司 Triangular photovoltaic ribbon
CN113471362A (en) * 2021-05-18 2021-10-01 宣城先进光伏技术有限公司 Interconnection process method of perovskite battery

Similar Documents

Publication Publication Date Title
JP5861044B2 (en) Solar cell module
JP5714080B2 (en) Solar cell module
US20100243024A1 (en) Solar cell, solar cell module and solar cell system
WO2012001815A1 (en) Solar cell module and method for manufacturing same
JP2008159895A (en) Solar cell and solar cell module
JP5036157B2 (en) Solar cell module
JP2009043842A (en) Solar battery module
JP5328996B2 (en) SOLAR BATTERY CELL, SOLAR BATTERY MODULE AND SOLAR CELL LEAD JOIN
JP6646149B2 (en) Solar cell module
EP2731147A1 (en) Solar cell module and solar cell
JP4781074B2 (en) Solar cell module
JP2012129359A (en) Solar cell module and solar cell
JP5047134B2 (en) Solar cell module
JP2011258747A (en) Solar cell module
JP4958525B2 (en) Solar cell module and method for manufacturing solar cell module
JP2007281530A (en) Solar battery module
JP2012019047A (en) Solar cell and lead wire joining method of the same
JP2011054660A (en) Solar-cell string and solar-cell module using the same
JP2008235819A (en) Solar cell module
JP5100216B2 (en) Solar cell group and manufacturing method thereof, solar cell module including solar cell group and manufacturing method thereof
JP2014229663A (en) Solar cell module
JP2012015362A (en) Method of connecting lead wire of solar battery cell
JP3133269B2 (en) Solar panel
JP5709784B2 (en) Solar cell and solar cell module
JP2012134247A (en) Solar cell module and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415