JP4308604B2 - Alliinase and method for producing allicin using the same - Google Patents

Alliinase and method for producing allicin using the same Download PDF

Info

Publication number
JP4308604B2
JP4308604B2 JP2003299378A JP2003299378A JP4308604B2 JP 4308604 B2 JP4308604 B2 JP 4308604B2 JP 2003299378 A JP2003299378 A JP 2003299378A JP 2003299378 A JP2003299378 A JP 2003299378A JP 4308604 B2 JP4308604 B2 JP 4308604B2
Authority
JP
Japan
Prior art keywords
alliinase
alliin
producing
allicin
fusarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003299378A
Other languages
Japanese (ja)
Other versions
JP2005065578A (en
Inventor
俊雄 田中
浩子 谷口
聡 小池田
真孝 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Enzyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Enzyme Inc filed Critical Amano Enzyme Inc
Priority to JP2003299378A priority Critical patent/JP4308604B2/en
Publication of JP2005065578A publication Critical patent/JP2005065578A/en
Application granted granted Critical
Publication of JP4308604B2 publication Critical patent/JP4308604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、アリインからアリシンを生成させるアリイナーゼ (Alliinase, アリイン リアーゼ、EC 4.4.1.4)活性を有する微生物に由来するアリイナーゼ及びこれを用いるアリシンの製造法に関する。   The present invention relates to an alliinase derived from a microorganism having an alliinase (Alliinase, EC 4.4.1.4) activity for producing allicin from alliin, and a method for producing allicin using the same.

アリシンは、ニンニク、タマネギ、ネギ等のアリウム属植物に呈味、芳香成分として含まれ、血流改善作用、脂質代謝改善作用、抗菌作用など多彩な生理活性を有するために近年注目を集めている。アリシンは、アリウム属植物の葉肉貯蔵細胞に存在する前駆体アリインに鱗茎や茎葉部に存在するアリイナーゼが作用し、図1の反応式に示すように縮合反応と脱離反応により副生産物のピルビン酸とアンモニアと共に生成する。従って、アリイナーゼを用いてアリシンの酵素生産ができれば、アリシンを多彩な生理活性を有する医薬としての実用化が可能となる。   Allicin has been attracting attention in recent years because it is found in allium plants such as garlic, onion, and onion and is included as an aromatic component and has various physiological activities such as blood flow improvement, lipid metabolism improvement, and antibacterial activity. . Allicin is a by-product of pyrubin by condensation reaction and elimination reaction, as shown in the reaction formula of Fig. 1, where alliinase present in bulbs and stems and leaves acts on the precursor alliin present in mesophyll storage cells of the genus Allium. Produced with acid and ammonia. Accordingly, if allicin can be produced using alliinase, allicin can be put to practical use as a pharmaceutical having various physiological activities.

しかし、植物由来のアリイナーゼは、極めて不安定であり、アリシンの工業化・実用化生産には不向きである(非特許文献1参照)。そのため、にんにくアリイナーゼを固定化して用いる固定化アリイナーゼ及びアリシンを連続生産する技術の提案がある(特許文献1参照)。
S.Schwimmer, M.Mazelis, Arch.Biochem. Biophys.,100,66(1963) 特表2000-508535号公報
However, plant-derived alliinase is extremely unstable and unsuitable for industrialization and commercial production of allicin (see Non-Patent Document 1). Therefore, there is a proposal of a technique for continuously producing immobilized alliinase and allicin using garlic alliinase immobilized (see Patent Document 1).
S. Schwimmer, M. Mazelis, Arch. Biochem. Biophys., 100, 66 (1963) Special Table 2000-508535

しかし、不安定な植物由来のアリイナーゼを工業的に用いるには上記のように固定化が必要で、製造設備の複雑化や製造コスト面での問題があった。また、これまでにフザリウム属あるいは細菌類が生産するアリイナーゼに関する報告はない。   However, in order to industrially use unstable plant-derived alliinase, immobilization is necessary as described above, and there are problems in the complexity of production equipment and production cost. There has been no report on alliinase produced by Fusarium or bacteria.

本発明は、工業的規模で簡便かつ効率的にアリインからアリシンを生成させ、アリシンの医薬としての実用化に供することが可能な微生物に由来するアリイナーゼを提供し、また、これを用いるアリシンの製造法を提供することを課題とする。   The present invention provides an alliinase derived from a microorganism capable of producing allicin from alliin on an industrial scale in a simple and efficient manner and putting it into practical use as a pharmaceutical, and producing allicin using the same. The challenge is to provide a law.

本発明者らは、上記の課題を解決するために、アリイナーゼ生産能を有する微生物を広く自然界に求め、鋭意探索を試みた結果、土壌から得られた菌株が、本目的のアリイナーゼを生産することを見出し、本発明を完成するに至った。
すなわち、フザリウム エスピー(Fusarium sp.)AMA9394株(FERM P-19485)を培養した後の菌体破砕液に含まれる粗酵素であり、ニンニク由来のアリイナーゼに比べ耐熱性のあるアリイナーゼを要旨とする
In order to solve the above-mentioned problems, the present inventors have sought extensively in the natural world for microorganisms capable of producing alliinase, and as a result of diligent searches, the strain obtained from soil produced the target alliinase. As a result, the present invention has been completed.
That is, it is a crude enzyme contained in a cell disruption liquid after culturing Fusarium sp. Strain AMA9394 (FERM P-19485), and the gist of the alliinase is heat-resistant compared to garlic-derived alliinase .

また、本発明は、アリイナーゼの生産能を有するフザリウム(Fusarium)属に属する微生物を培養し、培養物中にアリイナーゼを産生せしめ、これを採取するアリイナーゼの製造法を要旨とする。   In addition, the gist of the present invention is a method for producing alliinase in which a microorganism belonging to the genus Fusarium having the ability to produce alliinase is cultured, alliinase is produced in the culture, and this is collected.

上記の発明において、培地中にL-システィン、S-アリル L-システィン、N-アセチル L-システィン、アリインから選ばれた少なくとも1種以上を添加して培養する。また、誘導物質が添加されない培地で所定期間培養後、アリインのみを誘導物質として添加した培地で更に培養する。   In the above invention, at least one selected from L-cysteine, S-allyl L-cysteine, N-acetyl L-cysteine and alliin is added to the medium and cultured. Further, after culturing for a predetermined period in a medium to which no inducer is added, the culture is further performed in a medium to which only alliin is added as an inducer.

また、本発明は、アリウム属植物の抽出物またはアリインを含む溶液に上記のアリイナーゼを作用させ、アリシンを生成させるアリシンの製造法を要旨とする。   Moreover, this invention makes the summary the manufacturing method of allicin which makes said alliinase act on the solution containing an allium plant extract or alliin, and produces | generates allicin.

本発明のアリイナーゼは、耐熱性を有し安定性があるので、固定化することなく工業的規模で簡便かつ効率的にアリインからアリシンを製造できる。 Alliinase of the present invention, since the stability has heat resistance, Ru can produce allicin from easily and efficiently alliin on an industrial scale without immobilization.

本発明のアリイナーゼの製造法は、上記の性質を有するアリイナーゼを生産できるので、アリシンの効率的な製造に資することができる。   Since the alliinase production method of the present invention can produce alliinase having the above properties, it can contribute to the efficient production of allicin.

本発明のアリシンの製造法は、工業的規模で簡便かつ効率的にアリシンを製造できるので、多彩な生理活性を有する医薬としてのアリシンを提供できる。   Since the allicin production method of the present invention can produce allicin simply and efficiently on an industrial scale, it can provide allicin as a pharmaceutical having various physiological activities.

本発明のアリイナーゼは、フザリウム(Fusarium)属の微生物により生産される。このような微生物として土壌中から見出された新規な微生物、フザリウム(Fusarium)属に属するフザリウム エスピー(Fusarium sp.)AMA9394株を挙げることができる。 The alliinase of the present invention is produced by a microorganism belonging to the genus Fusarium. Examples of such microorganisms include a novel microorganism found in soil, Fusarium sp. AMA9394 strain belonging to the genus Fusarium.

フザリウム エスピー(Fusarium sp.)AMA9394株の形態学的特徴は次の通りであった。
Bacto Potate Dextrose Agar (PDA) (Becton Dickinson, NJ, USA : 以下BD), Bacto
Oatmeal Agar (OA) (BD)および2% Bacto Malt extract (BD) + 1.5% Agar (MEA)の各プレートに接種し、25℃で最長2週間の培養を行い、コロニーの巨視的特徴の観察を行った。
コロニー色調に関する記述は Korncrup & Wanscher (1978)に従った。
(巨視的観察結果)
気中菌糸はビロード状(veltinous)から綿毛状(cottony)で、表面色調はwhite-yellowish white (3A1-2)を示し、OAプレートでは茶褐色の裏面着色(reverse coloration)を示した。
分生子(conidia)の着生によるコロニー表面の色調変化は認められなかった。長期培養後のPDAおよびOAプレートからは透明の滲出液 (exudate)の産生が認められ、OAプレートにおいて茶褐色の可溶性色素 (soluble pigment)の産生が観察された。
(微視的観察)
小分生子 (microconidia)と大分生子 (macroconidia) が観察された。小分生子はフィアロ型 (phialidic)。
分生子柄はほぼ単生、柄 (stipe)の長さは中程度で、分枝 (branching)はほとんど観察されない。
小分生子は、柄先端より塊状 (slimy)となり、形状は紡錘型 (fusiform)や三日月 (luniform)。大分生子は気中菌糸基部を中心に観察され、三日月形で、脚胞 (foot cell)を有していた。大分生子の幅はやや肉厚で長さは比較的短い。
また、長期培養検体から圧壁胞子 (chlamydospore) やテレオモルフ (teleomorph)は確認されない。
The morphological characteristics of Fusarium sp. Strain AMA9394 were as follows.
Bacto Potate Dextrose Agar (PDA) (Becton Dickinson, NJ, USA: BD), Bacto
Oatmeal Agar (OA) (BD) and 2% Bacto Malt extract (BD) + 1.5% Agar (MEA) plates are inoculated and cultured at 25 ° C for up to 2 weeks to observe the macroscopic characteristics of the colonies. went.
The description of colony color was according to Korncrup & Wanscher (1978).
(Macroscopic observation results)
The aerial hyphae were veltinous to fluffy (cottony), the surface color was white-yellowish white (3A1-2), and the OA plate showed a brown-colored reverse coloration.
There was no change in color on the colony surface due to conidia growth. Production of clear exudate was observed from PDA and OA plates after long-term culture, and production of a brown soluble pigment was observed on OA plates.
(Microscopic observation)
Microconidia and macroconidia were observed. Small conidia are phialidic.
The conidial pattern is almost single, the length of the stipe is medium, and almost no branching is observed.
Small conidia are slimy from the tip of the handle, and the shape is fusiform or luniform. Oiko was observed mainly in the aerial mycelium and was crescent-shaped and had a foot cell. Oita Ikuko is slightly thick and relatively short in length.
In addition, no pressure wall spore (chlamydospore) or telemorph (telemorph) has been confirmed from long-term culture specimens.

また、28SrDNA(rRNA遺伝子)のD2領域の約320bp(配列表の配列番号1)の遺伝子配列を決定し、分子遺伝学的手法によりどの分類群の菌種に近縁であるかの推定を行った。当該塩基配列をDDBJ/GENE BANKデータベースを基にブラストサーチを行うことにより、98%以上の高い相同性が認められるフザリウム属あるいはフザリウムソラニーコンプレックスに最も近縁であることが示唆された。また、系統関係を導くため任意のフザリウム属菌株及びAMA9394株に分子遺伝学的に近縁と推定される株を選定し、系統樹を作成した(図3)。
その結果フザリウム属菌株は系統的に幾つかのグループが認められたが、AMA9394株は、ある一群のグループに属し、99%以上の相同性によりフザリウム エスピー1株、フザリウム エスピー2株(AF513980、AY234907)と最も近縁であった。また、3株めのフザリウムソラニ種と近縁であることも示唆された。この新規なアリイナーゼ活性物質を生産する微生物は、上記の形態学的特徴及び分子遺伝学的な解析により不完全菌亜門Fusaruiumであると判断され、独立行政法人産業技術総合研究所特許生物寄託センター(IPOD、〒305-8566 茨城県つくば市東1丁目1番地中央第6)に寄託され、その受託番号はFERM P-19485である。本発明のアリイナーゼを生産する菌株は、前記の寄託されたものに限定されず、配列番号1の28SrDNA(rRNA遺伝子)のD2領域と好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上、最も好ましくは100%の相同性を示すD2領域を有する糸状菌でかつアリイナーゼを生産するものを用いることができる。
In addition, the gene sequence of about 320 bp (SEQ ID NO: 1 in the sequence listing) of the D2 region of 28SrDNA (rRNA gene) is determined, and the classification of which taxon is closely related by molecular genetic techniques It was. A blast search of the nucleotide sequence based on the DDBJ / GENE BANK database suggested that the nucleotide sequence was most closely related to the Fusarium genus or Fusarium solani complex with a high homology of 98% or more. In addition, in order to derive phylogenetic relationships, arbitrary strains belonging to the genus Fusarium and AMA9394 strains were selected that were closely related by molecular genetics, and a phylogenetic tree was created (FIG. 3).
As a result, several groups of Fusarium sp. Strains were systematically recognized, but AMA9394 strain belongs to a group, and Fusarium sp. 1 strain, Fusarium sp. 2 strain (AF513980, AY234907) due to homology of 99% or more. ). It was also suggested that it is closely related to the third strain of Fusarium solani. The microorganism that produces this novel alliinase active substance is judged to be Fusarium, an imperfect fungus, based on the above morphological characteristics and molecular genetic analysis. (IPOD, 〒305-8566 Tsukuba City, Ibaraki Pref., 1st Higashi 1-chome, 1st Central, 6th) The deposit number is FERM P-19485. The strain producing the alliinase of the present invention is not limited to the above-deposited strain, and is preferably 95% or more, more preferably 98% or more, and more preferably, the D2 region of 28S rDNA (rRNA gene) of SEQ ID NO: 1. A filamentous fungus having a D2 region showing 99% or more, most preferably 100% homology, and producing alliinase can be used.

の菌株を利用して、粗酵素のアリイナーゼを生産するためには、当該菌株が良好に生育し、酵素を順調に生産するために必要な炭素源、窒素源、無機塩等の栄養源を含有する合成培地又は天然培地中でこれを培養する。培養するための培地は格別である必要はなく、通常の培地を用いることができる。 Using the Strain this, in order to produce the alliinase crude enzyme, a carbon source necessary for the strain satisfactorily growing is produced steadily enzymes, nitrogen sources, nutrients such as inorganic salts This is cultured in a synthetic or natural medium containing The medium for culturing does not need to be special, and a normal medium can be used.

炭素源としては、例えば、澱粉又はその組成画分、グルコース、スクロース等の炭水化物が使用できる。   As a carbon source, carbohydrates, such as starch or its composition fraction, glucose, sucrose, can be used, for example.

窒素源としては、例えば、ポリペプトン、カゼイン、肉エキス、酵母エキス、コーンスティープリカー或いは大豆又は大豆粕などの抽出物等の有機窒素源物質、硫酸アンモニウム、リン酸アンモニウム等の無機塩窒素化合物、グルタミン酸等のアミノ酸類を使用できる。   Examples of the nitrogen source include polypeptone, casein, meat extract, yeast extract, corn steep liquor, organic nitrogen source substances such as extracts such as soybeans or soybean meal, inorganic salt nitrogen compounds such as ammonium sulfate and ammonium phosphate, glutamic acid, etc. The amino acids can be used.

アリイナーゼの生産性を高めるために、L-システイン、S-アリル-L-システイン、N-アセチル-L-システイン等のシステイン誘導体やアリインを使用できる。特に、誘導物質が添加されない培地で所定期間培養した後、誘導物質としてアリインのみを添加した培地で更に培養することが好ましい。この培養方法により、アリイナーゼを高生産できる。   In order to increase the productivity of alliinase, cysteine derivatives such as L-cysteine, S-allyl-L-cysteine, N-acetyl-L-cysteine and alliin can be used. In particular, after culturing for a predetermined period in a medium to which no inducer is added, it is preferable to further culture in a medium to which only alliin is added as an inducer. By this culture method, alliinase can be produced at high yield.

無機塩類としては、例えば、リン酸1カリウム、リン酸2カリウム等のリン酸塩、硫酸マグネシウム等のマグネシウム塩、塩化カリウム等のカリウム塩、硫酸鉄のような鉄塩、硫酸亜鉛等の亜鉛塩、硫酸銅等の銅塩を使用できる。   Examples of inorganic salts include phosphates such as monopotassium phosphate and dipotassium phosphate, magnesium salts such as magnesium sulfate, potassium salts such as potassium chloride, iron salts such as iron sulfate, and zinc salts such as zinc sulfate. Copper salts such as copper sulfate can be used.

培養は、振盪培養若しくは、通気攪拌培養等の好気的条件下に於いて培地pH5〜10の範囲、好ましくはpH6〜8の範囲に調整し、温度10〜40℃の範囲、好ましくは、25〜37℃で実施するのが望ましいが、この条件以外であっても微生物が生育し、目的とする酵素を生成する条件であれば特に制限されない。   The culture is adjusted to a medium pH range of 5 to 10, preferably pH 6 to 8, and a temperature range of 10 to 40 ° C., preferably 25 under aerobic conditions such as shaking culture or aeration and agitation culture. Although it is desirable to carry out at ˜37 ° C., there is no particular limitation as long as it is a condition that allows microorganisms to grow and produce the target enzyme even under other conditions.

このようにして培養を行うと、通常は培養を開始して2〜7日間で菌体中にアリイナーゼが生産される。   When culturing is carried out in this manner, alliinase is usually produced in the cells in 2 to 7 days after the start of the culturing.

次いで、培養液から菌体を回収し、リン酸緩衝液等で洗浄しグラスビーズ等により菌体を破砕し、酵素を回収する。   Next, the microbial cells are collected from the culture solution, washed with a phosphate buffer or the like, crushed by glass beads or the like, and the enzyme is recovered.

こうして得られた粗酵素のアリイナーゼは、そのままでもアリシン生成反応に使用できるが、必要に応じて、陽イオン交換樹脂、陰イオン交換樹脂、疎水クロマト樹脂、ゲルろ過による分画等公知の精製操作を講じて精製酵素として使用することもできる。   The crude enzyme alliinase thus obtained can be used as it is for the allicin production reaction, but if necessary, known purification operations such as cation exchange resin, anion exchange resin, hydrophobic chromatographic resin, fractionation by gel filtration, etc. It can also be used as a purified enzyme.

以上説明したフザリウム(Fusarium)属の微生物が生産するアリイナーゼは、耐熱性を有し安定性があるので、工業的規模の酵素反応でアリインからアリシンを製造するのに有用である Since the alliinase produced by the microorganisms of the genus Fusarium described above has heat resistance and stability, it is useful for producing allicin from alliin by an industrial scale enzymatic reaction .

以下、本発明を実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

〔参考例1〕(アリインの製造)
下記の各実施例で用いたアリインは、以下のように製造した。
L-アリル-システィン(東京化成工業社製)にH2O2溶液をモル濃度で10倍量になるように混合した。室温で30分反応させた後、アセトンを90%になるように混合し、軽く撹拌した後氷浴で30分放置した。沈殿を確認した後、5000rpmで5分遠心し、上清を捨てた。沈殿に新たに90%アセトンを加え、同様の作業を2, 3 回繰り返した。洗滌した沈殿をデシケーターにて一晩乾燥させた。これにより、異性体を含む(±)アリイン(S(±)-L-システィン スルフォキシド)が合成された。L-アリル-システィンと(±)アリインは、TLC(1-ブタノール:酢酸:H2O=4:1:1)によって分離され、ニンヒドリン反応によって検出した。
[Reference Example 1] (Production of alliin)
Alliin used in the following examples was produced as follows.
H 2 O 2 solution was mixed with L-allyl-cystine (manufactured by Tokyo Chemical Industry Co., Ltd.) so that the molar concentration was 10 times. After reacting at room temperature for 30 minutes, acetone was mixed to 90%, stirred gently, and left in an ice bath for 30 minutes. After confirming the precipitate, it was centrifuged at 5000 rpm for 5 minutes, and the supernatant was discarded. 90% acetone was newly added to the precipitate, and the same operation was repeated a few times. The washed precipitate was dried overnight in a desiccator. Thereby, (±) alliin (S (±) -L-cysteine sulfoxide) containing an isomer was synthesized. L-allyl-cystine and (±) alliin were separated by TLC (1-butanol: acetic acid: H 2 O = 4: 1: 1) and detected by ninhydrin reaction.

〔参考例2〕(アリイナーゼ活性の測定法)
下記の各実施例におけるアリイナーゼの酵素活性は、以下のように測定した。
基質として、200 mM (±)アリイン 20μl、100 mM ピリドキサル5'リン酸 20μl、20%グリセロールを含む100 mM リン酸ナトリウム緩衝液 (pH 6.5) 40μlにフザリウム エスピー(Fusarium sp.)AMA9394株の無細胞抽出液 20μlを加え、全容を100μlとした反応液 100μlを30℃で30分間インキュベートした。反応後、1 mM 2, 4-ジニトロフェニルヒドラゾン(2,4-dinitrophenyl hydrazone )溶液−2 N 塩酸を100μl加え、室温で20分間放置した。その後0.4 NのNaOHを1. 0 ml加え、軽く撹拌したのち、分光光度計にてピルビン酸に由来する505 nmの吸光度を測定し、アリイナーゼ活性を測定した。
ピルビン酸の測定は以下のように測定した。図2にその反応式を示す。
100μlの1 mM 2, 4-ジニトロフェニルヒドラジン(2,4-dinitorophenyl hydorazine)溶液- 2 N 塩酸に100μlの酵素反応液を加えて室温にて20分間放置する。その後、0.4 Nの水酸化ナトリウムを1.0 ml加え、攪拌した後、505 nmの吸収を測定する。その際反応前の反応液も測定しておきUV吸収値は正味の増加量を測定値とする。予め購入しておいたピルビン酸ナトリウムで検量線を引いておき測定値を濃度に換算する。
この測定条件で、1分間に1μMのピルビン酸を生成する酵素量を1単位とした。
[Reference Example 2] (Measurement method of alliinase activity)
The enzyme activity of alliinase in each of the following examples was measured as follows.
As a substrate, 20 μl of 200 mM (±) alliin, 20 μl of 100 mM pyridoxal 5 ′ phosphate, 100 μm of sodium phosphate buffer (pH 6.5) containing 20% glycerol, 40 μl, Fusarium sp. AMA9394 cell-free 20 μl of the extract was added, and 100 μl of the reaction solution with a total volume of 100 μl was incubated at 30 ° C. for 30 minutes. After the reaction, 100 μl of 1 mM 2,4-dinitrophenyl hydrazone (2,4-dinitrophenyl hydrazone) solution—2 N hydrochloric acid was added and left at room temperature for 20 minutes. Thereafter, 1.0 ml of 0.4 N NaOH was added and stirred gently, and then the absorbance at 505 nm derived from pyruvic acid was measured with a spectrophotometer to measure alliinase activity.
The measurement of pyruvic acid was performed as follows. Figure 2 shows the reaction formula.
Add 100 μl of the enzyme reaction solution to 100 μl of 1 mM 2,4-dinitrophenyl hydrazine (2,4-dinitorophenyl hydorazine) solution-2 N hydrochloric acid and let stand at room temperature for 20 minutes. Thereafter, 1.0 ml of 0.4 N sodium hydroxide is added and stirred, and then the absorption at 505 nm is measured. At that time, the reaction solution before the reaction is also measured, and the UV absorption value is the net increase. A calibration curve is drawn with sodium pyruvate purchased in advance, and the measured value is converted to a concentration.
Under this measurement condition, the amount of enzyme that produces 1 μM pyruvic acid per minute was defined as 1 unit.

〔実施例1〕
L-システイン、S-アリル-L-システイン, N-アセチル-L-システイン、アリインをそれぞれ酵母エキス 1.0 %、ポリペプトン 2.0%、グルコース 2.0 % からなる培地(YPD培地)中に0.5 % 含んだ培養液にてフザリウム エスピー(Fusarium sp.)AMA9394株を37℃、4日間培養し、乾燥重量及びアリイナーゼ活性を測定した。培養はすべて試験管にて行い、5 ml の培地を用いた。
Example 1
Medium containing 0.5% L-cysteine, S-allyl-L-cysteine, N-acetyl-L-cysteine and alliin in a medium (YPD medium) consisting of 1.0% yeast extract, 2.0% polypeptone and 2.0% glucose Fusarium sp. AMA9394 strain was cultured at 37 ° C. for 4 days, and dry weight and alliinase activity were measured. All cultures were performed in test tubes and 5 ml of medium was used.

培養後、菌体をリン酸バッファ(50 mM, pH 6.5)と10 % グリセロールを含む溶液による洗滌 (溶液を加え数秒voltexした後、8000 rpm 30分で沈殿させ上清を捨てる)を数回行った後、グラスビーズにより1分 voltex, 1分 氷浴を1サイクルとし、15サイクル(30分)行った。この時菌糸が破壊されているかを光学顕微鏡により確認し、十分に破壊されてなければさらに数サイクルを行い粗酵素の菌体破砕液を得た。
各培養後の菌体を蒸留水で数回洗滌し、60℃の通風乾燥機で2日間乾燥させた後の重量を菌体の乾燥重量とした。なお、活性測定のアリインの終濃度は100 mMで行った。その結果を表1に示す。
After culturing, the cells are washed with a solution containing phosphate buffer (50 mM, pH 6.5) and 10% glycerol (add the solution, voltex for a few seconds, precipitate at 8000 rpm for 30 minutes, and discard the supernatant) several times. After that, 15 cycles (30 minutes) were performed with glass beads for 1 minute voltex and 1 minute ice bath. At this time, it was confirmed with an optical microscope whether the mycelium was destroyed. If it was not sufficiently destroyed, several cycles were performed to obtain a crude enzyme cell disruption solution.
The microbial cells after each culture were washed several times with distilled water, and the weight after drying for 2 days with a 60 ° C. air dryer was taken as the dry weight of the microbial cells. The final concentration of alliin for activity measurement was 100 mM. The results are shown in Table 1.

Figure 0004308604
Figure 0004308604

表1より菌体破砕液のアリイナーゼ活性が高まったのはS-アリル-L-システイン、N-アセチル-L-システインを含む培地であり、菌体の乾燥重量も他と比較し増加していた。しかし、アリインを添加した場合、極端に乾燥重量が減少し菌体の生育は十分でなかった。   From Table 1, alliinase activity of the cell disruption liquid was increased in the medium containing S-allyl-L-cysteine and N-acetyl-L-cysteine, and the dry weight of the cells was also increased compared to others. . However, when alliin was added, the dry weight was extremely reduced and the growth of the cells was not sufficient.

〔実施例2〕
YPD培地 5 mlを試験管に入れ、常法にて殺菌後フザリウム エスピー(Fusarium sp.)AMA9394株を接種し、37℃にて4日間培養した。
[Example 2]
5 ml of YPD medium was put in a test tube, sterilized by a conventional method, inoculated with Fusarium sp. AMA9394 strain, and cultured at 37 ° C. for 4 days.

YPD培地にて培養後、菌体をリン酸バッファ(50 mM, pH 6.5)で数回洗滌した後、K2HPO4 0.1%、MgSO4・7H2O 0.05%、KCl 0.001 %、FeSO4・7H2O 0.001%、ZnSO4・7H2O 0.0005 %、CuSO4・5H2O 0.0005 % にアリインを終濃度 0.5 %となるように添加し、pH 7.0に調整した培地(A培地)にてさらに37℃、1日間培養した。
その結果をYPD培地のみで37℃、5日間培養した場合のそれと比較検討した。
After culturing in YPD medium, the cells were washed several times with phosphate buffer (50 mM, pH 6.5), then K 2 HPO 4 0.1%, MgSO 4 7H 2 O 0.05%, KCl 0.001%, FeSO 4 Alliin was added to 7H 2 O 0.001%, ZnSO 4 · 7H 2 O 0.0005%, CuSO 4 · 5H 2 O 0.0005% to a final concentration of 0.5%, and further adjusted to pH 7.0 (A medium). The cells were cultured at 37 ° C for 1 day.
The results were compared with those obtained when cultured for 5 days at 37 ° C. using only YPD medium.

A培地にて培養後、菌体をリン酸バッファ(50 mM, pH 6.5)と10 % グリセロールを含む溶液により洗滌 (溶液を加え数秒voltexした後、8000 rpm 30分で沈殿させ上清を捨てる)を数回した後、グラスビーズにより1分 voltex, 1分 氷浴 を1サイクルとし、15サイクル(30分)行った。この時菌糸が破壊されているかを光学顕微鏡により確認し、十分に破壊されてなければさらに数サイクルを行い粗酵素の菌体破砕液を得た。
蒸留水で数回洗滌し、60℃の通風乾燥機で2日間乾燥させた後の重量を菌体の乾燥重量とする。なお、活性測定のアリインの終濃度は100 mMで行った。結果を表2に示す。
After culturing in medium A, the cells are washed with a solution containing phosphate buffer (50 mM, pH 6.5) and 10% glycerol (add the solution, voltex for several seconds, precipitate at 8000 rpm for 30 minutes, and discard the supernatant) After several times, 15 cycles (30 minutes) were performed using glass beads for 1 minute voltex and 1 minute ice bath. At this time, it was confirmed with an optical microscope whether the mycelium was destroyed. If it was not sufficiently destroyed, several cycles were performed to obtain a crude enzyme cell disruption solution.
The weight after washing several times with distilled water and drying for 2 days with a 60 ° C. ventilator is taken as the dry weight of the cells. The final concentration of alliin for activity measurement was 100 mM. The results are shown in Table 2.

Figure 0004308604
Figure 0004308604

YPD培地で4日間培養した後、A培地で1日間培養することで菌体破砕液のアリイナーゼ活性が高まったことから、アリイナーゼがその間に誘導生成されることが判明した。また、アリインの添加により菌体重量が減少することはなく、菌体が十分に生育しアリイナーゼを高生産させることができた。   After culturing in YPD medium for 4 days and culturing in A medium for 1 day, alliinase activity of the cell disruption liquid increased, and it was found that alliinase was induced and produced during that time. Further, the addition of alliin did not reduce the weight of the cells, and the cells were sufficiently grown and alliinase could be produced at a high yield.

〔実施例3〕
アリイナーゼの理化学的性質を、実施例2のYPD培地とA培地で培養して得られた菌体破砕液を用いて検討した。対照として、ニンニク断片を破砕し、濾過を行った濾過液(以下、ニンニク破砕液)を用いた。なお、以下の図4〜図7において、フザリウム エスピー(Fusarium sp.)AMA9394株に由来するアリイナーゼをAMA9394、ニンニクに由来するアリイナーゼをニンニクと表示した。
(1)最適温度
各種温度にてアリインに菌体破砕液とニンニク破砕液を各々作用させ、それぞれのアリイナーゼ活性を測定し、その結果を図4に示した。
Example 3
The physicochemical properties of alliinase were examined using the cell disruption solution obtained by culturing in the YPD medium and A medium of Example 2. As a control, a filtrate obtained by crushing garlic fragments and performing filtration (hereinafter, garlic crush solution) was used. In FIGS. 4 to 7 below, alliinase derived from Fusarium sp. Strain AMA9394 is indicated as AMA9394, and alliinase derived from garlic is indicated as garlic.
(1) optimum temperature various temperatures each reacted with bacterial cell lysate and garlic lysate to alliin in to measure the respective alliinase activity, and the results are shown in FIG.

4から明らかなように菌体破砕液中のアリイナーゼ(以下、本酵素ともいう)はニンニク破砕液中のアリイナーゼと同様に37℃に最適温度を有していた。 As is clear from FIG. 4 , the alliinase (hereinafter also referred to as the present enzyme) in the cell disruption liquid had an optimum temperature at 37 ° C. like the alliinase in the garlic disruption liquid.

(2)最適pH
pH 4〜9のpH条件下で、アリインに菌体破砕液とニンニク破砕液を各々作用させて酵素反応を行い、それぞれのアリイナーゼ活性を測定し、その結果を図5に示した。なお、緩衝液として、10%グリセロールを含む500mMリン酸ナトリウム緩衝液(pH4〜9)を使用した。
(2) Optimum pH
under pH conditions of pH 4 to 9, subjected to the enzymatic reaction respectively reacted with bacterial cell lysate and garlic lysate to alliin to measure the respective alliinase activity, and the results are shown in Figure 5. A 500 mM sodium phosphate buffer (pH 4-9) containing 10% glycerol was used as the buffer.

5から明らかなように本酵素の最適pHは7.5付近であり、ニンニク破砕液のアリイナーゼは6.5付近であった。 As is clear from FIG. 5, the optimum pH of this enzyme was around 7.5, and the alliinase in the garlic crushing solution was around 6.5.

(3)温度安定性
菌体破砕液とニンニク破砕液を0〜55℃の温度下で2時間放置後、それぞれの残存活性を測定し、その結果を図6に示した。
(3) after 2 hours standing the temperature stability cell lysate and garlic lysate at a temperature of 0 to 55 ° C., to determine their residual activity, and the results are shown in Figure 6.

6から明らかなように本酵素は、35℃で約80%の残存活性を示したが、ニンニク破砕液のアリイナーゼは10%以下と極めて悪かった。 As is apparent from FIG. 6 , the present enzyme showed a residual activity of about 80% at 35 ° C., but the alliinase in the garlic crushing liquid was extremely poor at 10% or less.

(4)光学異性体に対する特異性
基質である(+)アリイン、(-)アリインの終濃度はいずれも500 mMとして、光学異性体に対する菌体破砕液とニンニク破砕液の作用を検討した。なお、(+)アリイン、(-)アリインをHPLCによって分離した (ODSカラム、流速 1.0 ml/min、10 mM リン酸バッファ (pH 7.5, 5 mM リン酸2水素テトラ n-ブチルアンモニウム)、UV 220 nm 検出)。
反応液を各時間ごとにサンプリングし、HPLC分析を行った。そして、予め作成した検量線を用いて、ピークエリアを濃度に換算した。その結果を図7に示した。
(4) Specificity for optical isomers The final concentrations of the substrates (+) alliin and (−) alliin were 500 mM, and the effects of the bacterial cell disruption solution and garlic crushing solution on the optical isomers were examined. In addition, (+) alliin and (-) alliin were separated by HPLC (ODS column, flow rate 1.0 ml / min, 10 mM phosphate buffer (pH 7.5, 5 mM tetra-n-butylammonium dihydrogen phosphate), UV 220 nm detection).
The reaction solution was sampled every hour and subjected to HPLC analysis. And the peak area was converted into the density | concentration using the analytical curve created beforehand. The results are shown in FIG.

7から本酵素は、ニンニク破砕液と同様に(-)アリインに比べ(+)アリインにより反応した。また両者を比較すると、(-)アリインに対する作用に若干の差があった。 From FIG. 7 , this enzyme reacted with (+) alliin compared to (−) alliin, like the garlic crush solution. When both were compared, there was a slight difference in the effect on (-) alliin.

アリイナーゼによるアリインからアリシンが生成される反応式を示す。The reaction formula by which allicin is produced from alliin by alliinase is shown. アリイナーゼ活性の測定法における反応式を示す。The reaction formula in the measuring method of alliinase activity is shown. フザリウム エスピー(Fusarium sp.)AMA9394株を同定するために作成した系統樹を示す。The phylogenetic tree created in order to identify Fusarium sp. AMA9394 strain is shown. フザリウム エスピー(Fusarium sp.)AMA9394株由来のアリイナーゼとニンニク由来アリイナーゼを比較した最適温度のグラフである。It is a graph of the optimal temperature which compared the alliinase derived from a Fusarium sp. AMA9394 strain and the alliinase derived from a garlic. フザリウム エスピー(Fusarium sp.)AMA9394株由来のアリイナーゼとニンニク由来アリイナーゼを比較した最適pHのグラフである。It is the graph of the optimal pH which compared the alliinase derived from Fusarium sp (Fusarium sp.) AMA9394 strain and the alliinase derived from a garlic. フザリウム エスピー(Fusarium sp.)AMA9394株由来のアリイナーゼとニンニク由来アリイナーゼを比較した温度安定性のグラフである。It is a graph of temperature stability comparing the alliinase derived from Fusarium sp. AMA9394 strain and the alliinase derived from garlic. フザリウム エスピー(Fusarium sp.)AMA9394株由来のアリイナーゼとニンニク由来アリイナーゼを比較した光学異性体への反応性を示すグラフである。It is a graph which shows the reactivity to the optical isomer which compared the alliinase derived from a Fusarium sp. AMA9394 strain and the alliinase derived from a garlic.

Claims (5)

フザリウム エスピー(Fusarium sp.)AMA9394株(FERM P-19485)を培養した後の菌体破砕液に含まれる粗酵素であり、ニンニク由来のアリイナーゼに比べ耐熱性のあるアリイナーゼ。 An alliinase that is a crude enzyme contained in a cell disruption liquid after culturing Fusarium sp. AMA9394 strain (FERM P-19485), and has higher heat resistance than an alliinase derived from garlic . アリイナーゼの生産能を有するフザリウム(Fusarium)属に属する微生物を培養し、培養物中にアリイナーゼを産生せしめ、これを採取するアリイナーゼの製造法。   A method for producing alliinase, comprising culturing a microorganism belonging to the genus Fusarium having the ability to produce alliinase, producing alliinase in the culture, and collecting this. 培地中にL-システィン、S-アリル L-システィン、N-アセチル L-システィン、アリインから選ばれた誘導物質の少なくとも1種以上を添加して培養する請求項2に記載のアリイナーゼの製造法。   The method for producing alliinase according to claim 2, wherein at least one inducer selected from L-cysteine, S-allyl L-cysteine, N-acetyl L-cysteine and alliin is added to the medium and cultured. 誘導物質が添加されない培地で所定期間培養後、アリインのみを誘導物質として添加した培地で更に培養する請求項3に記載のアリイナーゼの製造法。   The method for producing alliinase according to claim 3, further comprising culturing in a medium to which only alliin is added as an inducer after culturing in a medium to which no inducer is added. アリウム属植物の抽出物またはアリインを含む溶液に請求項1に記載のアリイナーゼを作用させ、アリシンを生成させるアリシンの製造法。 The solution containing the extract or alliin in Allium plant by the action of alliinase mounting serial to claim 1, method for producing allicin to produce allicin.
JP2003299378A 2003-08-22 2003-08-22 Alliinase and method for producing allicin using the same Expired - Fee Related JP4308604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299378A JP4308604B2 (en) 2003-08-22 2003-08-22 Alliinase and method for producing allicin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299378A JP4308604B2 (en) 2003-08-22 2003-08-22 Alliinase and method for producing allicin using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009025767A Division JP4379897B2 (en) 2009-02-06 2009-02-06 Alliinase and method for producing allicin using the same

Publications (2)

Publication Number Publication Date
JP2005065578A JP2005065578A (en) 2005-03-17
JP4308604B2 true JP4308604B2 (en) 2009-08-05

Family

ID=34404602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299378A Expired - Fee Related JP4308604B2 (en) 2003-08-22 2003-08-22 Alliinase and method for producing allicin using the same

Country Status (1)

Country Link
JP (1) JP4308604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446899A (en) * 2014-11-12 2015-03-25 成都新柯力化工科技有限公司 Special fertilizer for increasing original ecological fragrance of garlic and application of special fertilizer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501181B (en) * 2006-09-01 2011-08-31 兴和株式会社 Novel microorganism capable of degrading diphenylarsinic acid
KR100877669B1 (en) * 2007-07-06 2009-01-08 보령메디앙스 주식회사 Cosmetic composition containing the extract of allium monanthum, allium scorodorpasum, allium tuberosum, allium fistulosum and scilla scilloides
CN104928273B (en) * 2015-06-24 2018-03-02 中国农业科学院生物技术研究所 A kind of garlic allinnase and its encoding gene and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446899A (en) * 2014-11-12 2015-03-25 成都新柯力化工科技有限公司 Special fertilizer for increasing original ecological fragrance of garlic and application of special fertilizer

Also Published As

Publication number Publication date
JP2005065578A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
Jeong et al. Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5
CN109439601B (en) Bacterial strain capable of producing protease and method for preparing alkaline protease by using bacterial strain
JP2001519654A (en) Method for producing pravastatin sodium using Streptomyces exophoriatus YJ-118 and the above strain
JP4308604B2 (en) Alliinase and method for producing allicin using the same
JPS6247520B2 (en)
CN116135965B (en) Bacillus megaterium PH3 for biosynthesis of resveratrol and application thereof
JPS6322188A (en) Novel l-aminoacylase
JP2003210164A (en) Hydrolyzing and synthesizing enzyme for capsaicin and method for producing the same
JP5022044B2 (en) Method for producing new uricase
JP4379897B2 (en) Alliinase and method for producing allicin using the same
CN108949657A (en) A kind of engineering bacteria and its application in danshensu and α-ketoglutaric acid coproduction
EP0091810B1 (en) Aldehyde oxidase, process for its production and microorganism therefor
JP5053648B2 (en) Method for producing new uricase
JP5010291B2 (en) Method for producing new uricase
JPH03259090A (en) Production of difructose dianhydride iii
JP4643873B2 (en) Heat-resistant laccase and method for producing the same
JPS6243671B2 (en)
Lee et al. Flavisolibacter aluminii sp. nov., a novel member of the genus Flavisolibacter isolated from an automotive air conditioning system
JPH1042886A (en) Production of beta-alanine by microorganism
KR100229284B1 (en) Novel thermophillic symbiobacterium sp and thermostable tyrosine phenol lyase and tryptonase
JP2017112847A (en) Method for producing protease
JP3892427B2 (en) Method for producing hydroxycitric acid
CN113980823A (en) New strain of genus of Nostoc of family Nostocaceae and application thereof
KR0184716B1 (en) Bacillus sp. lk-2 having d-alanine aminotransferase
JPH0856666A (en) Heat-resistant o-acetylserinesulfhydrylase and production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees