JP4308504B2 - Electron beam apparatus and device manufacturing method using the apparatus - Google Patents

Electron beam apparatus and device manufacturing method using the apparatus Download PDF

Info

Publication number
JP4308504B2
JP4308504B2 JP2002337401A JP2002337401A JP4308504B2 JP 4308504 B2 JP4308504 B2 JP 4308504B2 JP 2002337401 A JP2002337401 A JP 2002337401A JP 2002337401 A JP2002337401 A JP 2002337401A JP 4308504 B2 JP4308504 B2 JP 4308504B2
Authority
JP
Japan
Prior art keywords
electron beam
beam apparatus
axis
optical
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002337401A
Other languages
Japanese (ja)
Other versions
JP2004172428A (en
Inventor
隆男 加藤
徹 佐竹
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002337401A priority Critical patent/JP4308504B2/en
Publication of JP2004172428A publication Critical patent/JP2004172428A/en
Application granted granted Critical
Publication of JP4308504B2 publication Critical patent/JP4308504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【0001】
【産業上の利用分野】
本発明は最小線幅0.1μm以下のパターンを形成したり、或いは評価したりする作業を高い信頼性と、高いスループットで行える電子線装置に関する。
【0002】
【従来技術】
従来から、それぞれが一つの電子光学系(光学系)を内蔵した複数個の鏡筒を一枚のウエハのような試料に対して配置し、一枚の試料に対して複数のチップを同時に描画したり、或いは複数のチップの検査等の評価を同時に行う方法及び装置は既知である。
【0003】
【特許文献1】
特開平10―134757
複数の光学系を配置した電子線装置を開示している。
【0004】
【発明が解決しようとする課題】
既知の上記のような描画方法或いは評価方法では、複数の光学系が全て異なるチップの同じ場所を描画したり或いは評価したりできれば、パターンデータの転送が楽で、そのためのメモリーも小容量で済み、装置を簡素化できる。更に、ダイシングライン上等のパターン形成不要な領域や、検査を行う必要のない場所を処理する時刻が各ビームでほぼ共通であれば、その領域をスキップできる利点があり、それだけ高スループット化が可能になる。
【0005】
このためには、試料上のチップに描画すべき配列或いは試料上に形成されたチップの配列のピッチ(隣接するチップ間のピッチ)と、複数の光学系の隣接する光学系の光軸間の距離との間には簡単な整数比の関係が必要である。しかしながら、描画したいチップ或いは評価したいチップの寸法が変わると、このような関係が崩れ無駄が生じる問題がある。しかしながら、従来においては、このような問題を解決する方策は何ら採られていなかった。
【0006】
本発明は、上記の問題を解決するために成されたものであって、その目的とするところは、チップの寸法が変化しても、それに対応して隣接する光学系の光軸間の距離を容易に調整可能にした電子線装置を提供することである。
本発明の他の目的は、鉛直軸線を中心に旋回可能な支持部材上に複数の光学系を一列又は複数列配置し、その支持部材を旋回角度を調整することによってチップの寸法が変化しても、それに対応して隣接する光学系の光軸間の距離を容易に調整可能にした電子線装置を提供することである。
本発明の別の目的は、上記電子線装置を使用したデバイスの製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明は、複数の光学系を一列又は複数列に直線状に配置し、試料の評価或いは加工を行う電子線装置において、試料上の複数のチップの並びの方向と上記光学系が配列されたラインとの成す角度を調整し、前記複数のチップの隣接するチップ間のピッチ寸法と、光学系のチップの配列方向へ投影した寸法がm:n(m、nは整数)の関係を有する点に特徴を有する。
【0008】
上記電子線装置において、上記光学系がビーム成形開口或いはキャラクターマスクを有し、上記角度を調整変化させる時、上記ビーム成形開口或いは上記キャラクターマスクの光軸の回りの姿勢を調整変化させるようにしてもよい。また、上記光学系が複数のビームを発生させる機能を有し、上記角度を調整変化させる時、上記複数のビームを光軸の回りに回転可能にしてもよい。
更に、試料台を上記チップの一方の並びの方向に連続移動し、他の方向へはステップアンドリピート移動するようにしてもよい。
本願の他の発明は、上記電子線装置を使用してデバイスを製造するデバイスの製造方法である。
【0009】
【実施例】
以下、図面を参照して本発明の実施形態について説明する。
図1は、試料としてのウエハWに対する本発明の電子線装置における電子光学系(以下光学系)の配置を示す図である。ここで、ウエハWのサイズを30.48cm(12インチ)とし、チップのサイズが16mm×32mmの矩形であるとすると、ウエハWにはチップCが図に示されるように、X軸に沿う方向(以下X軸方向)に14列、Y軸に沿う方向(以下Y軸方向)に7列配置される。一方、電子線装置の複数の光学系は、隣接する光学系の光軸間の間隔Lが36mm(L=36mm)で配置可能であるとすると、OS1からOS14の14台の光学系を配置することができ、その光学系の光軸をOax1〜Oax14とすると、図3のようになる。ウエハWを載置したステージ装置の載置台をY軸に沿う方向に連続移動させ、X軸方向にはステップ・アンド・リピートの移動(X軸方向の1回の走査幅は非常に狭いので、1列(Y軸方向に)に並んだチップCにつき複数回ステップ移動して走査を行う移動)を行わせて、例えば、チップの欠陥検査のような評価を行うとする。また、光学系OD1ないしOD14のが配列されている配列ラインA−AとX軸との成す角度をθとする。各チップの内部には詳細に検査をしたい領域a1と粗い検査で十分な領域a2があるとすると、全ての光学系が詳細に検査したい領域a1をそろって検査しているという状況が最も効率が良いので、X軸上に投影した隣接する光学系の光軸間の距離が隣接するチップ間のX軸方向のピッチPxに等しくすれば良いことになる。
この場合、隣接する光学系の光軸間の距離をLとすると、
【数1】

Figure 0004308504
となる。
なお、上記式においてX軸方向の隣接チップ間のピッチPxを20mmとしたのは、チップのX軸方向の寸法を16mmとし、隣接するチップ間の間隔を4mmに取ったためである。
【0010】
従来の複数の光学系の配列方式では、X軸に沿って配置されているので、N1で示されたように7台の光学系しか配置できない。従来の場合では載置台をY軸方向にLy1=280mm移動させるのみでよいが、本発明の方法ではLy1=490mm移動させる必要がある。これは、図1から明らかなように、電子線装置の配列ラインA−Aが一番左下端のチップCの左下端にかかる位置と一番右上端のチップCの右上端にかかる位置との間でY軸方向に移動する必要があるからである。しかしながら、光学系の台数が従来の7台に比べて2倍の14台になるので、スループットを大きくできる。
【0011】
次に、チップ間のX軸方向のピッチが20mmではなく25mmのウエハを検査する場合には、
【数2】
Figure 0004308504
とすれば良いことになる。
【0012】
θを可変にする具体的な方法は、例えば、図2に示されるように、全ての光学系を、ウエハをX軸に沿った方向及びY軸に沿った方向に移動させるステージ装置30の鉛直の中心軸線(載置台が基準位置にあるときの載置台及びウエハの中心を通る軸線)を中心とする円周上にあるノック溝41内で移動可能な一対のノックピン42に支持台43を設けて、その支持台を前記中心軸心Oを中心として旋回可能にし、その支持台に上記複数台(この実施形態では14台)の光学系を配置すればよい。このような狭い間隔で光学系を配置するには、複数枚のセラミック基板をZ軸に沿う方向(紙面に垂直な方向で以下Z方向)に所定の間隔で隔てて配置し、そのセラミック基板に複数の光学系を直接形成することにより可能になり、この場合には、複数のセラミック基板に光学系の個数に相当する個数の穴をZ軸方向に整合して設け、その複数のセラミック基板を前記ノックピンに取りつけて支持台と同様に軸心Oを中心に旋回可能にすれば良い。
【0013】
図3において、本発明による電子線装置をリソグラフィ装置に適用した場合における、その電子線装置の1台の光学系10(OS)の例が示されている。同図において、11は電子銃、12はコンデンサレンズ、13は静電偏向器、14はコンデンサレンズ、15は縮小レンズ、16は対物レンズ、Wは試料としてのウエハである。これらの各電子光学部品(以下単に光学部品)で構成される光学系を前述のように小さな間隔で複数台配置するには、前述及び図4に示されるように、Z軸方向に隔てて配置された複数枚のセラミック基板に形成してもよい。この場合、各セラミック基板には前述のようにZ軸に沿って整合する穴を形成し、そのセラミック基板の表面(穴の内面も含む)に金属を選択的にコーティングして形成すれば良い。図4において、上記光学部品に対応する参照番号が右側に示されている。
隣接するチップ間のピッチPxが異なるデバイスのパターンを描画する場合には、前述のように支持台を軸線Oを中心に旋回させてθを調整し、光学系のX軸方向の寸法とピッチPxとを一致させる。このとき、偏向器13、17及び18も同時に光軸Oaxを中心に旋回するので、電子線の走査方向も対応して変化させることが可能になる。成形開口板20とキャラクタマスク21は、図示しない公知の構造の回転機構により、図3[B]及び[C]に示されるように、光軸を中心として旋回させて、θの変化に対応させて調整し、描画するようにする。
【0014】
図4において、マルチビーム式の光学系を複数台並べて本発明の電子線装置とする場合の1台の光学系50ついて示したものである。同図において、51は複数(この実施形態では6本)の電子線を放出可能な電子銃、52はコンデンサレンズ、55は縮小レンズ、56は対物レンズ、57は走査偏向器、58はE×B分離器である。これらの光学機器は公知の構造のものでも良いが、前述のようにZ軸方向に隔てて配置された複数枚のセラミック基板に形成してもよい。この場合、各セラミック基板には前述のようにZ軸に沿って整合する穴を形成し、そのセラミック基板の表面(穴の内面も含む)に金属を選択的にコーティングして形成すれば良い。そして、この実施形態の電子線装置を用いて試料としてのウエハに形成されたチップの欠陥検査を行う場合にはステージ装置の載置台をY軸方向に連続移動させながら行う。各光学系に対しては、E×B分離器58により偏向された二次電子(試料であるウエハから放出された電子)を検出するMCP検出器61とアノード62とが設けられ、複数本の電子線を独立して検出できるようになっている。検出された電子線の電気信号は増幅器63で増幅され、画像形成回路64で試料の像を電子線の数(この実施形態では6)×光学系の数(この実施形態では14)の数だけ形成し、高いスループットで検査を行う。
なお、6本の電子線は図4に示したように、X軸上に投影した場合のみビーム間の間隔L1が皆等しくなるので、光学系のX軸方向のピッチと検査されるチップ間のピッチとを一致させるため、△θだけ複数の光学系を前記のように軸線Oを中心として旋回させた場合、マルチ開口板53を△θだけ回転させ、ビーム間の間隔のX成分が等間隔になるようにして検査を行う。
同じ場所を必ずしも検査する必要がない場合には、複数の光学系の配列を2列或いは3列に平行に配置してもよい。
【0015】
次に図5及び図6を参照して本発明による半導体デバイスの製造方法の実施例を説明する。
図5は、本発明による半導体デバイスの製造方法の一実施例を示すフローチャートである。この実施例の製造工程は以下の主工程を含んでいる。
(1)ウエハを製造するウエハ製造工程(又はウエハを準備するウエハ準備工程)
(2)露光に使用するマスクを製造するマスク製造工程(又はマスクを準備するマスク準備工程)
(3)ウエハに必要な加工処理を行うウエハプロセッシング工程
(4)ウエハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程
(5)できたチップを検査するチップ検査工程
なお、上記のそれぞれの主工程は更に幾つかのサブ工程からなっている。
【0016】
これらの主工程中の中で、半導体デバイスの性能に決定的な影響を及ぼすのが(3)のウエハプロセッシング工程である。この工程では、設計された回路パターンをウエハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウエハプロセッシング工程は以下の各工程を含んでいる。
(A)絶縁層となる誘電体薄膜や配線部、或いは電極部を形成する金属薄膜等を形成する薄膜形成工程(CVDやスパッタリング等を用いる)
(B)この薄膜層やウエハ基板を酸化する酸化工程
(C)薄膜層やウエハ基板等を選択的に加工するためにマスク(レチクル)を用いてレジストパターンを形成するリソグラフィー工程
(D)レジストパターンに従って薄膜層や基板を加工するエッチング工程(例えばドライエッチング技術を用いる)
(E)イオン・不純物注入拡散工程
(F)レジスト剥離工程
(G)加工されたウエハを検査する工程
なお、ウエハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作する半導体デバイスを製造する。
【0017】
図6は、図5のウエハプロセッシング工程の中核をなすリソグラフィー工程を示すフローチャートである。このリソグラフィー工程は以下の各工程を含む。
(a)前段の工程で回路パターンが形成されたウエハ上にレジストをコートするレジスト塗布工程
(b)レジストを露光する工程
(c)露光されたレジストを現像してレジストのパターンを得る現像工程
(d)現像されたレジストパターンを安定化するためのアニール工程
上記の半導体デバイス製造工程、ウエハプロセッシング工程、リソグラフィー工程については、周知のものでありこれ以上の説明を要しないであろう。
上記(G)の検査工程に本発明に係る欠陥検査方法、欠陥検査装置を用いると、微細なパターンを有する半導体デバイスでも、スループット良く検査できるので、全数検査が可能となり、製品の歩留まりの向上、欠陥製品の出荷防止が可能と成る。
【0018】
【発明の効果】
本発明によれば、次のような効果を奏することが可能である。
(イ)光学系の間隔をあまり小さくできない場合でも、多くの光学系を一枚のウエハ上に配置できる。
(ロ)光学系のX軸方向のピッチとチップのピッチとを一致させること或いはそれらを整数倍の関係にすることができるので、全ての光学系がチップの同一箇所を描画或いは評価できるので、描画のためのデータ転送回路簡略化でき、また評価のための検査データを転送する回路も簡単になる。一つのチップに2台の光学系で描画或いは検査できる場合には、2倍のデータ転送回路で良いことになる。
(ハ)光学系がキャラクタープロジェクション型であっても、光学系が配列されている直線とX軸との成す角度θをΔθ変化させた場合も、キャラクターマスクを−Δθ変化させ、X軸とキャラクターマスクの座標変化を無くすことができるので、パターン形成誤差は生じない。
(ニ)光学系が複数の電子線(マルチビーム)を用いている電子線装置を欠陥検査装置として使用した場合でも、1台の光学系内のマルチビーム間のビーム間隔のX軸方向の成分は等間隔にできる。
(ホ)データ転送回路に余裕があれば、光学系の配列を2列、3列と複数にすることによって、更にスループットを向上できる。
【図面の簡単な説明】
【図1】本発明による電子線装置の一つの実施形態の概念図である。
【図2】図1の電子線装置の一列に並べられた複数の光学系を旋回させる手段の概略説明図である。
【図3】[A]は本発明による電子線装置の光学系の一実施形態の模式図であり、[B]は成形開口板の概略平面を示す図であり、[C]はキャラクタマスクの概略平面を示す図である。
【図4】光学系の複数の光学要素をZ軸方向に重ねて並べられたセラミック板によってつくる場合の例を示す図である。
【図5】[A]は本発明による電子線装置の光学系の他の実施形態の模式図であり、[B]はマルチ開口板の開口の位置をX軸上に投影した時の開口間のX軸方向の間隔を示す図である。
【図6】本発明による半導体デバイスの製造方法の一実施例を示すフローチャートである。
【図7】図5のウエハプロセッシング工程の中核をなすリソグラフィー工程を示すフローチャートである。
【符号の説明】
1 電子線装置
OS、10 50 光学系 C チップ[0001]
[Industrial application fields]
The present invention relates to an electron beam apparatus that can perform a process of forming or evaluating a pattern having a minimum line width of 0.1 μm or less with high reliability and high throughput.
[0002]
[Prior art]
Conventionally, a plurality of lens barrels each containing a single electron optical system (optical system) are arranged on a sample such as a single wafer, and a plurality of chips are simultaneously drawn on a single sample. Or a method and apparatus for simultaneously evaluating a plurality of chips or the like is known.
[0003]
[Patent Document 1]
JP-A-10-134757
An electron beam apparatus having a plurality of optical systems is disclosed.
[0004]
[Problems to be solved by the invention]
In the known drawing method or evaluation method as described above, if a plurality of optical systems can draw or evaluate the same place on all different chips, pattern data can be easily transferred, and the memory for this can be reduced. The device can be simplified. In addition, if the time for processing areas that do not require pattern formation, such as dicing lines, and places where inspection is not required, is almost the same for each beam, there is an advantage that the area can be skipped, and throughput can be increased accordingly. become.
[0005]
For this purpose, the pitch of the array to be drawn on the chip on the sample or the chip array formed on the sample (the pitch between adjacent chips) and the optical axis of the adjacent optical system of a plurality of optical systems A simple integer ratio relationship is necessary between the distances. However, when the size of a chip to be drawn or a chip to be evaluated changes, there is a problem that such a relationship is lost and waste is generated. However, conventionally, no measures have been taken to solve such problems.
[0006]
The present invention has been made to solve the above-described problems, and the object of the present invention is to provide a distance between optical axes of adjacent optical systems corresponding to changes in the size of a chip. It is an object to provide an electron beam apparatus that can be easily adjusted.
Another object of the present invention is to arrange a plurality of optical systems on a support member that can turn around a vertical axis, and to adjust the turning angle of the support member to change the size of the chip. Another object of the present invention is to provide an electron beam apparatus that can easily adjust the distance between the optical axes of adjacent optical systems.
Another object of the present invention is to provide a device manufacturing method using the electron beam apparatus.
[0007]
[Means for Solving the Problems]
The present invention provides an electron beam apparatus in which a plurality of optical systems are linearly arranged in one or a plurality of rows, and a sample is evaluated or processed, and the arrangement direction of a plurality of chips on the sample and the optical system are arranged. The angle formed with the line is adjusted, and the pitch dimension between adjacent chips of the plurality of chips and the dimension projected in the arrangement direction of the chips of the optical system have a relationship of m: n (m, n is an integer) It has the characteristics.
[0008]
In the electron beam apparatus, when the optical system has a beam shaping aperture or a character mask and the angle is adjusted and changed, the posture around the optical axis of the beam shaping aperture or the character mask is adjusted and changed. Also good. Further, the optical system may have a function of generating a plurality of beams, and when the angle is adjusted and changed, the plurality of beams may be rotatable around an optical axis.
Furthermore, the sample stage may be continuously moved in one direction of the chips, and may be step-and-repeat moved in the other direction.
Another invention of the present application is a device manufacturing method for manufacturing a device using the electron beam apparatus.
[0009]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an arrangement of an electron optical system (hereinafter referred to as an optical system) in an electron beam apparatus of the present invention with respect to a wafer W as a sample. Here, if the size of the wafer W is 30.48 cm (12 inches) and the chip size is a rectangle of 16 mm × 32 mm, the wafer C has a chip C in the direction along the X axis as shown in the figure. 14 rows are arranged (hereinafter referred to as X-axis direction) and 7 rows are arranged along the Y-axis (hereinafter referred to as Y-axis direction). On the other hand, assuming that the plurality of optical systems of the electron beam apparatus can be arranged with an interval L between the optical axes of adjacent optical systems of 36 mm (L = 36 mm), 14 optical systems of OS1 to OS14 are arranged. If the optical axis of the optical system is Oax1 to Oax14, the result is as shown in FIG. The stage table mounting stage on which the wafer W is mounted is continuously moved in the direction along the Y axis, and step-and-repeat movement is performed in the X axis direction (since the single scanning width in the X axis direction is very narrow, Assume that the chip C arranged in one row (in the Y-axis direction) is moved a plurality of times to perform scanning to perform scanning), and evaluation such as chip defect inspection is performed, for example. In addition, an angle formed by the array line AA in which the optical systems OD1 to OD14 are arrayed and the X axis is defined as θ. If each chip has a region a1 to be inspected in detail and a region a2 sufficient for a rough inspection, the situation in which all the optical systems inspect the region a1 to be inspected in detail is the most efficient. Since it is good, the distance between the optical axes of the adjacent optical systems projected on the X axis should be equal to the pitch Px in the X axis direction between adjacent chips.
In this case, if the distance between the optical axes of adjacent optical systems is L,
[Expression 1]
Figure 0004308504
It becomes.
The reason why the pitch Px between adjacent chips in the X-axis direction in the above formula is 20 mm is that the size of the chip in the X-axis direction is 16 mm and the distance between adjacent chips is 4 mm.
[0010]
In the conventional arrangement method of a plurality of optical systems, since they are arranged along the X axis, only seven optical systems can be arranged as indicated by N 1 . In the conventional case, it is only necessary to move the mounting table in the Y-axis direction by Ly 1 = 280 mm, but in the method of the present invention, it is necessary to move Ly 1 = 490 mm. As is apparent from FIG. 1, the arrangement line A-A of the electron beam apparatus is located between the position on the lower left end of the leftmost lower end chip C and the position on the upper right end of the uppermost rightmost chip C. This is because it is necessary to move in the Y-axis direction. However, since the number of optical systems is 14 which is twice that of the conventional seven, the throughput can be increased.
[0011]
Next, in the case of inspecting a wafer having a pitch of 25 mm instead of 20 mm in the X-axis direction between chips,
[Expression 2]
Figure 0004308504
It will be good.
[0012]
A specific method for making θ variable is, for example, as shown in FIG. 2, the vertical movement of the stage apparatus 30 that moves all the optical systems in the direction along the X axis and the direction along the Y axis. A support base 43 is provided on a pair of knock pins 42 that are movable in a knock groove 41 on the circumference centered on the center axis of the base plate (the axis passing through the center of the mounting base and the wafer when the mounting base is at the reference position). Then, the support base can be turned around the central axis O, and the plurality of optical systems (14 in this embodiment) may be arranged on the support base. In order to arrange the optical system at such a narrow interval, a plurality of ceramic substrates are arranged at a predetermined interval in a direction along the Z axis (a direction perpendicular to the paper surface and hereinafter referred to as a Z direction). This is possible by directly forming a plurality of optical systems. In this case, a number of holes corresponding to the number of optical systems are provided in the plurality of ceramic substrates in alignment in the Z-axis direction. It may be attached to the knock pin so as to be pivotable about the axis O in the same manner as the support base.
[0013]
FIG. 3 shows an example of one optical system 10 (OS) of the electron beam apparatus when the electron beam apparatus according to the present invention is applied to a lithography apparatus. In the figure, 11 is an electron gun, 12 is a condenser lens, 13 is an electrostatic deflector, 14 is a condenser lens, 15 is a reduction lens, 16 is an objective lens, and W is a wafer as a sample. In order to arrange a plurality of optical systems composed of these electro-optical components (hereinafter simply referred to as optical components) at a small interval as described above, as shown in the foregoing and FIG. 4, they are arranged apart from each other in the Z-axis direction. It may be formed on a plurality of ceramic substrates. In this case, holes may be formed in each ceramic substrate along the Z-axis as described above, and the surface (including the inner surface of the hole) of the ceramic substrate may be selectively coated with metal. In FIG. 4, reference numbers corresponding to the optical components are shown on the right side.
When drawing a pattern of a device having a different pitch Px between adjacent chips, as described above, the support is turned around the axis O to adjust θ, and the X-axis dimension and pitch Px of the optical system are adjusted. To match. At this time, since the deflectors 13, 17 and 18 simultaneously rotate around the optical axis Oax, the scanning direction of the electron beam can be changed correspondingly. The formed aperture plate 20 and the character mask 21 are rotated about the optical axis as shown in FIGS. 3B and 3C by a rotation mechanism having a known structure (not shown) to correspond to the change in θ. Adjust and draw.
[0014]
FIG. 4 shows one optical system 50 when a plurality of multi-beam optical systems are arranged to form the electron beam apparatus of the present invention. In this figure, 51 is an electron gun capable of emitting a plurality (six in this embodiment) of electron beams, 52 is a condenser lens, 55 is a reduction lens, 56 is an objective lens, 57 is a scanning deflector, and 58 is E ×. B separator. These optical devices may be of a known structure, but may be formed on a plurality of ceramic substrates arranged apart from each other in the Z-axis direction as described above. In this case, holes may be formed in each ceramic substrate along the Z-axis as described above, and the surface (including the inner surface of the hole) of the ceramic substrate may be selectively coated with metal. And when performing the defect inspection of the chip | tip formed in the wafer as a sample using the electron beam apparatus of this embodiment, it carries out, moving the mounting base of a stage apparatus continuously in a Y-axis direction. Each optical system is provided with an MCP detector 61 and an anode 62 for detecting secondary electrons deflected by the E × B separator 58 (electrons emitted from a wafer as a sample), and a plurality of them. The electron beam can be detected independently. The detected electrical signal of the electron beam is amplified by the amplifier 63, and the image forming circuit 64 converts the sample image into the number of electron beams (6 in this embodiment) × the number of optical systems (14 in this embodiment). Form and test with high throughput.
In addition, as shown in FIG. 4, since the distance L 1 between the beams becomes equal only when the six electron beams are projected onto the X axis, the pitch in the X axis direction of the optical system and the distance between the chips to be inspected When the plurality of optical systems are rotated about the axis O as described above in order to match the pitch of the multi-aperture plate 53, the multi-aperture plate 53 is rotated by Δθ so that the X component of the spacing between the beams is equal. Inspect at intervals.
If it is not always necessary to inspect the same place, an array of a plurality of optical systems may be arranged in parallel in two or three rows.
[0015]
Next, an embodiment of a semiconductor device manufacturing method according to the present invention will be described with reference to FIGS.
FIG. 5 is a flowchart showing an embodiment of a semiconductor device manufacturing method according to the present invention. The manufacturing process of this embodiment includes the following main processes.
(1) Wafer manufacturing process for manufacturing a wafer (or wafer preparation process for preparing a wafer)
(2) Mask manufacturing process for manufacturing a mask used for exposure (or mask preparation process for preparing a mask)
(3) Wafer processing step for performing necessary processing on the wafer (4) Chip assembly step for cutting out chips formed on the wafer one by one and making them operable (5) Chip inspection step for inspecting the completed chips Each of the main processes described above further includes several sub-processes.
[0016]
Among these main processes, the wafer processing process (3) has a decisive influence on the performance of the semiconductor device. In this step, designed circuit patterns are sequentially stacked on a wafer to form a large number of chips that operate as memories and MPUs. This wafer processing step includes the following steps.
(A) A thin film forming process for forming a dielectric thin film to be an insulating layer, a wiring portion, or a metal thin film for forming an electrode portion (using CVD, sputtering, etc.)
(B) Oxidation process for oxidizing the thin film layer and wafer substrate (C) Lithography process for forming a resist pattern using a mask (reticle) to selectively process the thin film layer and wafer substrate, etc. (D) Resist pattern Etching process (eg using dry etching technology) to process thin film layers and substrates according to
(E) Ion / impurity implantation / diffusion process (F) Resist stripping process (G) Process for inspecting the processed wafer The wafer processing process is repeated as many times as necessary to manufacture a semiconductor device that operates as designed.
[0017]
FIG. 6 is a flowchart showing a lithography process which forms the core of the wafer processing process of FIG. This lithography process includes the following steps.
(A) A resist coating step for coating a resist on the wafer on which a circuit pattern has been formed in the previous step (b) a step for exposing the resist (c) a development step for developing the exposed resist to obtain a resist pattern ( d) Annealing Process for Stabilizing the Developed Resist Pattern The semiconductor device manufacturing process, wafer processing process, and lithography process are well known and will not require further explanation.
When the defect inspection method and the defect inspection apparatus according to the present invention are used in the inspection step (G), even a semiconductor device having a fine pattern can be inspected with high throughput, so that 100% inspection is possible, and the yield of products is improved. It becomes possible to prevent shipment of defective products.
[0018]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(A) Even when the distance between the optical systems cannot be made very small, many optical systems can be arranged on one wafer.
(B) Since the pitch of the optical system in the X-axis direction and the pitch of the chip can be made to coincide or have an integer multiple relationship, all the optical systems can draw or evaluate the same part of the chip. A data transfer circuit for drawing can be simplified, and a circuit for transferring inspection data for evaluation is also simplified. When drawing or inspection can be performed with two optical systems on one chip, a double data transfer circuit is sufficient.
(C) Even if the optical system is a character projection type, even if the angle θ between the straight line on which the optical system is arranged and the X axis is changed by Δθ, the character mask is changed by −Δθ, and the X axis and the character are changed. Since the change in the coordinates of the mask can be eliminated, no pattern formation error occurs.
(D) Even when an electron beam apparatus in which the optical system uses a plurality of electron beams (multi-beams) is used as a defect inspection apparatus, the component in the X-axis direction of the beam interval between the multi-beams in one optical system Can be evenly spaced.
(E) If there is a margin in the data transfer circuit, it is possible to further improve the throughput by arranging the optical system in a plurality of two rows and three rows.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of one embodiment of an electron beam apparatus according to the present invention.
2 is a schematic explanatory view of a means for rotating a plurality of optical systems arranged in a line of the electron beam apparatus of FIG. 1;
[A] is a schematic diagram of an embodiment of an optical system of an electron beam apparatus according to the present invention, [B] is a diagram showing a schematic plane of a shaped aperture plate, and [C] is a character mask. It is a figure which shows a schematic plane.
FIG. 4 is a diagram showing an example in which a plurality of optical elements of an optical system are made of ceramic plates arranged in an overlapping manner in the Z-axis direction.
FIG. 5A is a schematic diagram of another embodiment of the optical system of the electron beam apparatus according to the present invention, and FIG. 5B is a diagram illustrating the space between the apertures when the position of the aperture of the multi aperture plate is projected on the X axis. It is a figure which shows the space | interval of the X-axis direction.
FIG. 6 is a flowchart showing an embodiment of a semiconductor device manufacturing method according to the present invention.
7 is a flowchart showing a lithography process that forms the core of the wafer processing process of FIG. 5;
[Explanation of symbols]
1 electron beam device OS, 10 50 optical system C chip

Claims (5)

複数の光学系を一列又は複数列に直線状に配置し、試料の評価或いは加工を行う電子線装置において、試料上の複数のチップの並びの方向と上記光学系が配列されたラインとの成す角度を、前記複数のチップの隣接するチップ間のX軸方向のピッチ寸法と、隣接する光学系の光軸間の、前記X軸上に投影した寸法がm:n(m、nは整数)の関係を有するように調整することを特徴とする電子線装置。In an electron beam apparatus in which a plurality of optical systems are linearly arranged in one or a plurality of rows and a sample is evaluated or processed, a direction in which a plurality of chips on the sample are arranged and a line in which the optical systems are arranged The angle is m: n (where m and n are integers) the pitch dimension in the X-axis direction between adjacent chips of the plurality of chips and the projected dimension between the optical axes of adjacent optical systems on the X-axis. The electron beam apparatus is adjusted so as to have the following relationship. 請求項1に記載の電子線装置において、更に、上記光学系にはビーム成形開口或いはキャラクターマスクを有し、上記角度を調整変化させる時、上記ビーム成形開口或いは上記キャラクターマスクの光軸の回りの姿勢を調整変化させることを特徴とする電子線装置。2. The electron beam apparatus according to claim 1, further comprising a beam shaping aperture or a character mask in the optical system, and when the angle is adjusted and changed, the optical system is arranged around the optical axis of the beam shaping aperture or the character mask. An electron beam apparatus characterized by adjusting and changing the posture. 請求項1に記載の電子線装置において、更に上記光学系には複数のビームを発生させる機能を有し、上記角度を調整変化させる時、上記複数のビームを光軸の回りに回転可能にしたことを特徴とする電子線装置。2. The electron beam apparatus according to claim 1, wherein the optical system further has a function of generating a plurality of beams, and the plurality of beams can be rotated around an optical axis when the angle is adjusted and changed. An electron beam apparatus characterized by that. 請求項1に記載の電子線装置において、試料台を上記チップの一方の並びの方向に連続移動し、他の方向へはステップアンドリピート移動することを特徴とする電子線装置。2. The electron beam apparatus according to claim 1, wherein the sample stage is continuously moved in the direction of one of the chips, and step-and-repeat is moved in the other direction. 請求項1ないし4に記載された電子線装置を使用してデバイスを製造するデバイスの製造方法。A device manufacturing method for manufacturing a device using the electron beam apparatus according to claim 1.
JP2002337401A 2002-11-21 2002-11-21 Electron beam apparatus and device manufacturing method using the apparatus Expired - Lifetime JP4308504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337401A JP4308504B2 (en) 2002-11-21 2002-11-21 Electron beam apparatus and device manufacturing method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337401A JP4308504B2 (en) 2002-11-21 2002-11-21 Electron beam apparatus and device manufacturing method using the apparatus

Publications (2)

Publication Number Publication Date
JP2004172428A JP2004172428A (en) 2004-06-17
JP4308504B2 true JP4308504B2 (en) 2009-08-05

Family

ID=32700922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337401A Expired - Lifetime JP4308504B2 (en) 2002-11-21 2002-11-21 Electron beam apparatus and device manufacturing method using the apparatus

Country Status (1)

Country Link
JP (1) JP4308504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236224B2 (en) 2013-04-26 2016-01-12 Canon Kabushiki Kaisha Drawing apparatus and method of manufacturing article

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390886B2 (en) 2005-02-17 2016-07-12 Ebara Corporation Electro-optical inspection apparatus using electron beam
JP2006226833A (en) * 2005-02-17 2006-08-31 Ebara Corp Defect inspection apparatus and device manufacturing method using it
JP5020745B2 (en) * 2007-08-29 2012-09-05 株式会社ニューフレアテクノロジー Drawing data creation method and charged particle beam drawing apparatus
JP2014216631A (en) 2013-04-30 2014-11-17 キヤノン株式会社 Drawing apparatus, and method of manufacturing article
JP2016086102A (en) 2014-10-27 2016-05-19 キヤノン株式会社 Lithography system and method of manufacturing article
JP2016086103A (en) 2014-10-27 2016-05-19 キヤノン株式会社 Drawing device, lithography system, pattern data creation method, drawing method and method of manufacturing article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236224B2 (en) 2013-04-26 2016-01-12 Canon Kabushiki Kaisha Drawing apparatus and method of manufacturing article

Also Published As

Publication number Publication date
JP2004172428A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
TWI654428B (en) Electron beam inspection device and method
US7459705B2 (en) Charged particle beam exposure method of character projection system, charged particle beam exposure device of character projection system, program for use in charged particle beam exposure device, and manufacturing method of semiconductor device
US10727026B2 (en) Charged particle beam inspection method
JP4308504B2 (en) Electron beam apparatus and device manufacturing method using the apparatus
JP3829810B2 (en) INSPECTION METHOD FOR EXPOSURE PATTERN OR MASK, MANUFACTURING METHOD THEREOF, AND EXPOSURE PATTERN OR MASK
US20020071994A1 (en) Manufacturing method of mask for electron beam proximity exposure and mask
TWI810517B (en) Multi-charged particle beam drawing method and multi-charged particle beam drawing device
KR100389567B1 (en) Electron beam exposure mask, electron beam exposure method, method of fabricating semiconductor device, and electron beam exposure apparatus
US6894295B2 (en) Electron beam proximity exposure apparatus and mask unit therefor
JP2002141010A (en) Electron beam device and manufacturing method of device using the same
JP2006210459A (en) Charged particle beam exposure apparatus and method, and method of fabricating device
US20040126673A1 (en) Microlithography reticles including high-contrast reticle-identification codes, and apparatus and methods for identifying reticles based on such codes
JP3068398B2 (en) Reticle manufacturing method and reticle manufacturing apparatus
JP2003249445A (en) Position adjustment method, hollow aperture optical system, and charged particle beam projection aligner
Slodowski et al. Multi-Shaped-Beam (MSB): an evolutionary approach for high throughput e-beam lithography
JP4053461B2 (en) Pattern evaluation method and device manufacturing method
JP2002352763A (en) Electron beam system and device manufacturing method using the same
JP2002141009A (en) Electron beam device and manufacturing method of device using the same
US6649920B1 (en) Cell projection using an electron beam
JP2000349000A (en) Standard mark for charged particle beam, and manufacture of charged particle beam exposure device and semiconductor device having the standard mark
JP2002169270A (en) Mask inspection apparatus and method of manufacturing semiconductor device
JP2003234078A (en) Electron beam device
JP2001133234A (en) Method and apparatus for inspection of defect as well as manufacturing method for semiconductor device using them
JP2003133380A (en) Electron beam apparatus, evaluation method and device manufacturing method using the same
WO2005048327A1 (en) Exposure method and exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4308504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term