JP4307137B2 - Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member - Google Patents

Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member Download PDF

Info

Publication number
JP4307137B2
JP4307137B2 JP2003116001A JP2003116001A JP4307137B2 JP 4307137 B2 JP4307137 B2 JP 4307137B2 JP 2003116001 A JP2003116001 A JP 2003116001A JP 2003116001 A JP2003116001 A JP 2003116001A JP 4307137 B2 JP4307137 B2 JP 4307137B2
Authority
JP
Japan
Prior art keywords
guide member
light guide
incident
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116001A
Other languages
Japanese (ja)
Other versions
JP2004327077A (en
Inventor
武彦 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2003116001A priority Critical patent/JP4307137B2/en
Priority to KR1020040027043A priority patent/KR100642860B1/en
Priority to CNB2004100422029A priority patent/CN100437269C/en
Publication of JP2004327077A publication Critical patent/JP2004327077A/en
Application granted granted Critical
Publication of JP4307137B2 publication Critical patent/JP4307137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、透過型又は半透過型の液晶表示パネルやそれを表示画面として備える電子機器に搭載される導光部材、当該導光部材を備える面光源装置、及び当該導光部材を面光源として備える液晶表示装置、並びに当該導光部材の加工方法に関する。
【0002】
また、本発明は、例えば、バックライト方式或いはフロントライト方式の表示装置やそれを表示画面として備える電子機器に搭載される導光部材、当該導光部材を備える面光源装置、及び当該導光部材を面光源として備える液晶表示装置、並びに当該導光部材の加工方法に関する。
【0003】
【従来の技術】
従来より、輝度ムラの低減化などを目的として、液晶表示装置などのバックライトユニットに導光部材が搭載されている(例えば、特許文献1参照)。
【0004】
そして、従来の導光部材としては、出射面に対向した反射面にプリズムを形成した構成(例えば、特許文献2参照)、出射面に対向した反射面にプリズム加工を施し、出射面にはりつき防止のために(光学特性に影響しない)凸状の条を形成した構成(例えば、特許文献3参照)、出射面に対向する反射面にプリズムの代りにヘアライン加工を施すもの(例えば、特許文献4参照)、或いは出射面とこの出射面に対向する反射面にプリズムを形成した構成(例えば、特許文献5参照)がある。
【0005】
【特許文献1】
特開平9−184920号公報
【特許文献2】
特開平11−219609号公報
【特許文献3】
特開2000−56137号公報
【特許文献4】
特開昭51−88042号公報
【特許文献5】
特開平10−282342号公報。
【0006】
【発明が解決しようとする課題】
図9に示す従来の表示装置31は、複数の画素がマトリクス状に形成された透過型又は半透過型の電気光学式(液晶、LCD)パネル2と、このパネル2の裏面に設けられる拡散シート又はプリズムシートなどの透光性のシート部材3と、このシート部材3の裏面に設けられる透光性の導光部材34と、この導光部材34の裏面に配置される反射部材5と、導光部材34の入射面4a以外の各面を覆う反射枠6と、導光部材34の入射面4aから光を入光する線状(冷陰極管など)又は複数の点状(白色LEDなど)の光源7とを備える。
【0007】
上記光源7から出光した光は、導光部材34の入射面4aから入光し、導光部材34の反射面4b及び反射部材5で反射され、導光部材34を透過してシート部材3により法線方向に矯正されてパネル2を照明する。
【0008】
上記構成において、特許文献1及び2では、導光部材34の出射面34bに対向する反射面34aに三角形状のプリズム溝4eを形成することにより出射面34bからの出光効率を高めている。ところが、プリズム溝4eを反射面4aに形成し、出射面34bは平坦のまま加工を施さない場合、特に点状光源の場合には光源近傍における輝度分布が、光源から直進した位置では明るくなり、点状光源の間の領域では暗くなるという輝度ムラが発生してしまう。
【0009】
また、上記反射面4aに形成されたプリズム溝4eは入射面4aに平行で、且つ全幅に亘って線状に形成されているため、光源点灯時に出射面34bを上部から見ると線状の筋ができてしまう。
【0010】
また、特許文献4のように、出射面に対向する反射面にプリズムの代りにヘアライン加工を施した場合には、加工面が粗くなり、光源近傍での出光量が多くなってしまう。
【0011】
更に、特許文献3及び5のように、出射面とこの出射面に対向する反射面の両方に加工を施した場合、出射面が粗面化されておらず光の出射方向は常に一定であるので拡散効果が低くなる。また、規則的な幅方向の溝は液晶画素との間でモアレ現象を引き起こし、結局のところ拡散シートなどが必要となるため、光量の低下やコストアップなどの問題がある。
【0012】
本発明は、上記課題に鑑みてなされ、その目的は、出射面の全域に亘って輝度ムラを抑え、均一な輝度にできる導光部材、当該導光部材を備える面光源装置、及び当該導光部材を面光源として備える液晶表示装置、並びに当該導光部材の加工方法を提供することである。
【0013】
【課題を解決するための手段】
上述の課題を解決し、目的を達成するために、本発明に係る、点状光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材は、前記反射面に、当該入射面に沿う方向に規則的な凹凸が形成され、前記出射面に、前記入射面から当該入射面に対向する端に沿う方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸が形成され、前記出射面の前記入射面から当該入射面に対向する端面に沿う方向の凹凸の表面精度を、前記入射面に沿う方向の凹凸の表面精度より小さな値とした
【0014】
また、本発明に係る面光源装置は、上記導光部材を備える。
【0015】
また、本発明に係る液晶表示装置は、上記導光部材を面光源として備える。
【0016】
また、本発明に係る、点状光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材の加工方法は、多結晶粒状体が接着された表面を有する回転体を前記導光部材の前記出射面に接触させた状態で、前記回転体と前記導光部材とを前記入射面から当該入射面に対向する端に沿う方向に相対的に移動させて、前記出射面を厚さ方向に沿って研削加工し、前記出射面に、前記入射面から当該入射面に対向する端に向けた方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸を形成し、前記出射面の前記入射面から当該入射面に対向する端面に沿う方向の凹凸の表面精度を、前記入射面に沿う方向の凹凸の表面精度より小さな値とした
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態について、添付図面を参照して詳細に説明する。
【0018】
尚、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明は、その趣旨を逸脱しない範囲で下記実施形態を修正又は変形したものに適用可能である。
【0019】
[表示装置の構成]
図1は本発明に係る実施形態の表示装置を示す分解斜視図(a)及び側断面図(b)であり、図2は本発明に係る実施形態の導光部材の平面図(a)及び正面図(b)である。尚、以下の説明では、図9に示す従来の構成と同一の機能を有する部材には、同一の符号を付して示している。
【0020】
図1及び図2に示すように、本発明に係る実施形態として例示するバックライト方式の表示装置1は、複数の画素がマトリクス状に形成された透過型又は半透過型の電気光学式(液晶、LCD)パネル2と、このパネル2の裏面に設けられる拡散シート又はプリズムシートなどの透光性のシート部材3と、このシート部材3の裏面に設けられる透光性の導光部材4と、この導光部材4の裏面に配置される反射部材5と、導光部材4の入射面4a以外の各面を覆う反射枠6と、導光部材4の入射面4aから光を入光する線状(冷陰極管など)又は複数の点状(白色LEDなど)の光源7とを備える。
【0021】
導光部材4は、光源からの光を入射する入射面4aと、この入射面4aから入射した光を拡散・散乱させて反射する反射面4bと、この反射面4bに対向配置されて当該反射面4bで反射した光を出射する出射面4cと、入射面4aに対して平行で当該入射面4aに対向する端面4dとを有し、略均一の厚さを有する矩形状の板材により構成されている。尚、導光部材4の厚さは均一の構成に限らず、入射面4aから端面4dに向けて厚さが線形又は非連続(非線形)に変化する構成であってもよい。
【0022】
上記導光部材4は、例えば、透明なアクリル、(高透明を含む)ポリカーボネイト、ウレタン、ゼオノアなどの透光性の材料から構成される。
【0023】
導光部材4の反射面4bには、当該入射面4に沿う方向(Y方向)に線状のプリズム溝若しくは半球状のドットパターンなどからなるX方向に沿う断面が三角形状の規則的(周期的)な凹凸形状4eが形成され、出射面4cを平面から見てY方向に縦筋状の縞模様を形成する構造となっている。この凹凸形状4eは研削加工により形成することが望ましい。
【0024】
上記反射面4bに形成された凹凸形状4eは、入射面4aから入光した光を拡散させる効果、及び出射面4cに屈曲させる働きを持っている。但し、面光源の機能として、面内全域の輝度は均一であることが要求されるため、入射面4の近傍での強い光の出射は好ましくなく、光の屈曲が極端になって導光の妨げになることは避けるよう手当てされている。
【0025】
上記出射面4cには、後述する研削加工によって、上記入射面4aから当該入射面4aに対向する端4dに沿う方向(X方向)の算術平均面粗さRaが0.01から0.5μmで、上記入射面4aに沿う方向(Y方向)の算術平均面粗さRaが0.01から1.0μmの微細で不規則な凹凸形状4fが形成されて粗面化されている。
【0026】
[導光部材の出射面の加工方法]
次に、本実施形態の導光部材の出射面の加工方法について説明する。
【0027】
図4は、導光部材の出射面の加工方法を説明する図である。
【0028】
図4に示すように、上記導光部材4の出射面4cは、回転体としての円盤状の研削ブレード(砥石)11により研削加工される。研削ブレード11の径方向の外周縁部(研削面11a)を含む外表面には、と粒としてダイヤモンドなどの多結晶粒状体が結合剤によって接着されている。研削ブレード11は、直径がφ50〜60mm、厚さ(研削面の幅)L1が0.1〜0.5mm(本実施形態では、0.2mm)、研削面11aのR形状(丸み)の高さL2が径方向に0.09mm程度のほぼ平坦な形状を有する。
【0029】
加工の際には、導光部材4をX方向及びY方向に往復移動可能な不図示のテーブルにチャックし、10000〜30000rpmという高速回転数で研削ブレード11を導光部材4の相対移動方向と同方向(図3で右回転)に回転させ、研削ブレード11の研削面11aが導光部材4の出射面4cに所定の押圧力で接触する高さに調整した状態で、研削ブレード11を固定したままテーブルを矢印S1方向に移動させることで導光部材4を研削ブレード11に対して入射面4aから端4dに向けてX方向に相対的に0.5〜10mm/秒程度の送り速度で移動させて、所定の研削代12で出射面4cを厚さ方向に研削加工する(往路研削)。
【0030】
その後、テーブルを矢印S3方向に移動させることで導光部材4を入射面4aに沿う方向(Y方向)に10〜100μm程度の送り量(ピッチ)で移動させる(Y方向送り)。
【0031】
次に、研削ブレード11を導光部材4の相対移動方向と同方向となるように往路研削とは逆に回転(図3で左回転)させ、テーブルを矢印S1とは反対の矢印S2方向に移動させることで導光部材4を端面4dから当該入射面4aに向けてX方向に相対的に同様の送り速度で移動させてX方向の研削を行う(復路研削)。
【0032】
上記方法により導光部材4の出射面4cの全面について研削加工を施すことで、出射面4cに入射面4から当該入射面4に対向する端4dに向けた方向(X方向)の平均面粗さRaが0.01から0.5μm、入射面4に沿う方向(Y方向)の平均面粗さRaが0.01から1.0μmの不規則な凹凸形状4fが形成される。
【0033】
尚、上記実施形態では、研削ブレード11を固定したまま導光部材4を移動したが、導光部材4を固定して研削ブレード11を相対的に移動させてもよい。また、テーブルを矢印S3方向に移動させる際には、直前に研削した加工面と次に研削する加工面とがオーバラップした状態となるようにY方向に送られる。また、切削加工や同じ研削でも研磨加工では、加工面が鏡面となってしまうため、本実施形態のような高輝度化や均一化の効果が得られない。
【0034】
[研削結果]
図5〜図7は、Y方向への送り量を100μm、50μm、10μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の各測定結果を示す図である。
【0035】
図5〜図7に示すように、出射面4cのY方向に沿う平均面粗さRaは0.5μm以下となり、出射面4cはY方向に略規則的(周期的)な凹凸形状となっている。また、出射面4cのY方向に沿う表面精度は10μmp−p(peak to peak)以下となる。Y方向の表面精度は、研削ブレード11の厚みL1や送り速度に依存している。
【0036】
また、図5〜図7に示すように、出射面4cのX方向に沿う平均面粗さRaは0.3μm以下となり、出射面4cはX方向に不規則な凹凸形状となっている。また、出射面4cのX方向に沿う表面精度は3μmp−p以下となる。X方向の表面精度は、研削ブレード11の多結晶粒状体の粒度に依存して不規則となっている。
【0037】
ここで、上記出射面4cのX方向を見た場合、上記凹凸形状4fは、上記入射面4aから端面4dに沿って光の進行方向に略平行な(入射面4aに略垂直に)溝として形成され、平均面粗さRaと表面精度が共にY方向に比べて小さな値を示している。その理由としては、面内輝度の均一化を目指すためには極端な導光の妨げは避けなければならないという理由による。反射面4bに設けられた凹凸形状4e(線状のプリズム溝若しくは半球状のドットパターン)には、X方向に対する出光量がどの位置においてもある程度均一となるようなグラデーションが施されており、出射面4cが極端に粗面化された場合、入射面4aに近い領域で本来は導光すべき光(図3のR2)が入射面4aの近傍で多く出光(図3のR1)してしまい、結果として、入射面から遠い端面4dの近傍での輝度が低下してしまう。また、出射面4cから出光する光R1は出射面4cに対して法線方向に出光するのが理想的であるが、出射面4cが極端に粗面化されると出光する光と法線とのなす角度が大きくなってしまい輝度が低下してしまう。よって、図5〜図7に示すように、出射面4cは不規則な凹凸形状となっているが、その表面精度のバラツキは少ない方が良く、実験的には3μmp−p以下が望ましい。
【0038】
上記出射面4cを粗面化することにより、図3に示すように、出射面を粗面化しない従来の構成では光源7から入射面4aに入光した光Rが出射面4cに対して一定の角度θ1以上で出射面4cから光R1として出射して光源7付近に輝度ムラを発生させていたのに対して、角度θ1以上であっても出射面4cから出射せずに光R2としてX−Y平面内のあらゆる方向に反射しながら端面4dに向けてより光源7から遠い位置まで導光させることができる。また、X方向に対しては光の屈折を抑え、Y方向に対しては屈折を促すので、光源近傍での輝度ムラを抑え、出射面4cの全面に亘って高輝度化及び均一化した面光源を実現できる。
【0039】
図8は、粗面化していない出射面を持つ従来の導光部材(a)と粗面化した出射面を持つ本実施形態の導光部材(b)の各面発光状態を比較して示す図であり、従来の構造(a)では入射面4aの近傍での輝度ムラが目立つのに対して、本実施形態の構造(b)では、上記輝度ムラが大幅に改善されている。また、出射面4cの平均輝度値も従来に比べて低下することなく出光効率は高くなっており、出射面4cの全面に亘って高輝度化及び均一化できていることがわかる。
【0040】
尚、図8はY方向への送り量が50μmの場合を例示しているが、送り量が100μmでは光源に近い領域の出光量が多くなり、10μmでは図8(a)のように光源から輝線が見えてしまうため、Y方向への送り量は50μm程度が最適といえる。
【0041】
本実施形態の導光部材の適用例としては、上記導光部材4を備える面光源装置(符号3,4,5,6,7の各要素を備える構成)や上記導光部材を面光源として備える液晶表示装置(符号2,3,4,5,6,7の各要素を備える構成)などで、小型携帯端末や携帯電話などの液晶画面に用いられる。
【0042】
【発明の効果】
以上説明したように、本発明によれば、導光部材の出射面の全域に亘って出光効率を損ねることなく輝度ムラを抑え、均一な輝度にできる。
【図面の簡単な説明】
【図1】本発明に係る実施形態の表示装置を示す分解斜視図(a)及び側断面図(b)である。
【図2】本発明に係る実施形態の導光部材の平面図(a)及び正面図(b)である。
【図3】本実施形態の導光部材の作用を説明するために側断面の一部を示す図である。
【図4】導光部材の出射面の加工方法を説明する図である。
【図5】Y方向への送り量を100μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の測定結果を示す図である。
【図6】Y方向への送り量を50μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の測定結果を示す図である。
【図7】Y方向への送り量を10μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の測定結果を示す図である。
【図8】粗面化していない出射面を持つ従来の導光部材(a)と粗面化した出射面を持つ本実施形態の導光部材(b)の各面発光状態を比較して示す図である。
【図9】従来の導光部材の正面図(a)、平面図(b)及び導光部材の作用を説明するために側断面の一部を示す図(c)である。
【符号の説明】
1 表示装置
2 電気光学式パネル
3 シート部材
4 導光部材
4a 入射面
4b 反射面
4c 出射面
4d 端面
4e 規則的な凹凸形状
4f 不規則な凹凸形状
5 反射部材
6 反射枠
7 光源
11 研削ブレード
12 研削代
[0001]
BACKGROUND OF THE INVENTION
The present invention provides, for example, a light guide member mounted on a transmissive or transflective liquid crystal display panel or an electronic device including the same as a display screen, a surface light source device including the light guide member, and a surface of the light guide member. The present invention relates to a liquid crystal display device provided as a light source and a method for processing the light guide member.
[0002]
In addition, the present invention provides, for example, a backlight type or front light type display device or a light guide member mounted on an electronic apparatus including the display device as a display screen, a surface light source device including the light guide member, and the light guide member. And a processing method of the light guide member.
[0003]
[Prior art]
2. Description of the Related Art Conventionally, a light guide member is mounted on a backlight unit such as a liquid crystal display device for the purpose of reducing luminance unevenness (for example, see Patent Document 1).
[0004]
And as a conventional light guide member, the structure which formed the prism in the reflective surface facing the output surface (for example, refer patent document 2), prism processing is given to the reflective surface facing the output surface, and sticking to an output surface is prevented. For this reason, a configuration in which convex stripes (which do not affect the optical characteristics) are formed (see, for example, Patent Document 3), and a reflective surface facing the exit surface is subjected to hairline processing instead of a prism (for example, Patent Document 4) Or a configuration in which a prism is formed on the exit surface and a reflective surface facing the exit surface (see, for example, Patent Document 5).
[0005]
[Patent Document 1]
JP-A-9-184920 [Patent Document 2]
JP-A-11-219609 [Patent Document 3]
JP 2000-56137 A [Patent Document 4]
Japanese Patent Laid-Open No. 51-88042 [Patent Document 5]
Japanese Patent Laid-Open No. 10-282342.
[0006]
[Problems to be solved by the invention]
9 includes a transmissive or transflective electro-optical (liquid crystal, LCD) panel 2 in which a plurality of pixels are formed in a matrix, and a diffusion sheet provided on the back surface of the panel 2. Alternatively, a translucent sheet member 3 such as a prism sheet, a translucent light guide member 34 provided on the back surface of the sheet member 3, a reflection member 5 disposed on the back surface of the light guide member 34, and a light guide The reflective frame 6 that covers each surface other than the incident surface 4a of the light member 34, and a linear shape (such as a cold-cathode tube) that receives light from the incident surface 4a of the light guide member 34 or a plurality of dot shapes (such as a white LED). The light source 7 is provided.
[0007]
The light emitted from the light source 7 enters from the incident surface 4 a of the light guide member 34, is reflected by the reflective surface 4 b and the reflective member 5 of the light guide member 34, passes through the light guide member 34, and is transmitted by the sheet member 3. The panel 2 is illuminated after being corrected in the normal direction.
[0008]
In the above configuration, in Patent Documents 1 and 2, the light emission efficiency from the emission surface 34b is increased by forming the triangular prism groove 4e on the reflection surface 34a facing the emission surface 34b of the light guide member 34. However, when the prism groove 4e is formed on the reflecting surface 4a and the exit surface 34b is not processed while being flat, particularly in the case of a point light source, the luminance distribution in the vicinity of the light source becomes bright at a position straight from the light source, In the region between the point light sources, luminance unevenness that is dark occurs.
[0009]
The prism groove 4e formed on the reflecting surface 4a is formed in a linear shape parallel to the incident surface 4a and over the entire width. Therefore, when the emission surface 34b is viewed from above when the light source is turned on, the linear stripes are formed. Can be done.
[0010]
In addition, as in Patent Document 4, when the hairline processing is performed on the reflection surface facing the emission surface instead of the prism, the processing surface becomes rough and the amount of light emitted in the vicinity of the light source increases.
[0011]
Furthermore, as in Patent Documents 3 and 5, when processing is performed on both the exit surface and the reflective surface facing the exit surface, the exit surface is not roughened and the light exit direction is always constant. So the diffusion effect is low. Further, the regular widthwise grooves cause a moire phenomenon with the liquid crystal pixels, and eventually a diffusion sheet or the like is required, which causes problems such as a reduction in light amount and an increase in cost.
[0012]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a light guide member capable of suppressing luminance unevenness over the entire area of the emission surface and achieving uniform brightness, a surface light source device including the light guide member, and the light guide. It is to provide a liquid crystal display device including a member as a surface light source and a method for processing the light guide member.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, according to the present invention, an incident surface for incident light from a point light source, a reflecting surface for reflecting light incident from the incident surface, and the reflecting surface light guide member disposed opposite and a emission surface for emitting the light reflected by the reflecting surface, the reflecting surface, regular unevenness in a direction along the said incident surface is formed, on the emission surface The average surface roughness in the direction along the end surface facing the incident surface from the incident surface is 0.01 to 0.5 μm, and the average surface roughness in the direction along the incident surface is 0.01 to 1.0 μm. Irregular surface irregularities are formed, and the surface accuracy of the irregularities in the direction along the end surface facing the incident surface from the incident surface of the exit surface is set to a value smaller than the surface accuracy of the irregularities in the direction along the incident surface. .
[0014]
The surface light source device according to the present invention includes the light guide member.
[0015]
The liquid crystal display device according to the present invention includes the light guide member as a surface light source.
[0016]
Further, according to the present invention, an incident surface on which light from a point light source is incident, a reflecting surface that reflects light incident from the incident surface, and light that is disposed opposite to the reflecting surface and reflected by the reflecting surface working method of the light guide member having an exit surface for emitting, in a state where polycrystalline granules have contacted with the exit surface of the light guide member rotating member having an adhesive surface, said guide and said rotary member The light member is relatively moved from the incident surface in a direction along the end surface facing the incident surface, the exit surface is ground along the thickness direction, and the exit surface is moved from the entrance surface to the exit surface. An irregular surface having an average surface roughness in the direction toward the end surface facing the incident surface of 0.01 to 0.5 μm and an average surface roughness in the direction along the incident surface of 0.01 to 1.0 μm. An unevenness is formed, in a direction along the end surface facing the incident surface from the incident surface of the emission surface. The surface accuracy of the unevenness was set to a value smaller than the surface accuracy of the unevenness in the direction along the incident surface .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0018]
The embodiment described below is an example as means for realizing the present invention, and the present invention can be applied to a modified or modified embodiment described below without departing from the spirit of the present invention.
[0019]
[Configuration of display device]
FIG. 1 is an exploded perspective view (a) and a side sectional view (b) showing a display device according to an embodiment of the present invention, and FIG. 2 is a plan view (a) of a light guide member according to the embodiment of the present invention. It is a front view (b). In the following description, members having the same functions as those of the conventional configuration shown in FIG. 9 are denoted by the same reference numerals.
[0020]
As shown in FIGS. 1 and 2, a backlight type display device 1 exemplified as an embodiment according to the present invention includes a transmissive or semi-transmissive electro-optical (liquid crystal) in which a plurality of pixels are formed in a matrix. LCD) panel 2, a translucent sheet member 3 such as a diffusion sheet or a prism sheet provided on the back surface of the panel 2, a translucent light guide member 4 provided on the back surface of the sheet member 3, A reflection member 5 disposed on the back surface of the light guide member 4, a reflection frame 6 covering each surface other than the incident surface 4 a of the light guide member 4, and a line for entering light from the incident surface 4 a of the light guide member 4. And a plurality of point-like (white LED etc.) light sources 7.
[0021]
The light guide member 4 has an incident surface 4a on which light from a light source is incident, a reflective surface 4b that diffuses and scatters light incident from the incident surface 4a, and is disposed so as to face the reflective surface 4b. The output surface 4c that emits the light reflected by the surface 4b and the end surface 4d that is parallel to the incident surface 4a and that faces the incident surface 4a are configured by a rectangular plate having a substantially uniform thickness. ing. The thickness of the light guide member 4 is not limited to a uniform configuration, and may be a configuration in which the thickness changes linearly or discontinuously (non-linearly) from the incident surface 4a toward the end surface 4d.
[0022]
The light guide member 4 is made of a translucent material such as transparent acrylic, polycarbonate (including highly transparent), urethane, zeonore, and the like.
[0023]
The reflecting surface 4b of the light guide member 4, the incidence surface 4 along the a (Y direction) cross section of the triangular regularly along the X direction and the like linear prism grooves or hemispherical dot pattern ( A periodic uneven shape 4e is formed, and a vertical stripe pattern is formed in the Y direction when the emission surface 4c is viewed from the plane. The uneven shape 4e is preferably formed by grinding.
[0024]
The uneven shape 4e formed on the reflection surface 4b has the effect of diffusing the light incident from the incident surface 4a and the function of bending the output surface 4c. However, as a function of the surface light source, the luminance of the over the entire surface is required to be uniform, strong light emission is undesirable in the vicinity of the incidence surface 4 a, electrically bending of light becomes extremely light Rukoto are allowance to avoid such in the hinder.
[0025]
The output surface 4c has an arithmetic average surface roughness Ra of 0.01 to 0.5 μm in a direction (X direction) along the end surface 4d facing the incident surface 4a from the incident surface 4a by grinding processing described later. Thus, a fine and irregular concavo-convex shape 4f having an arithmetic average surface roughness Ra in a direction along the incident surface 4a (Y direction) of 0.01 to 1.0 μm is formed and roughened.
[0026]
[Processing method of exit surface of light guide member]
Next, the processing method of the output surface of the light guide member of this embodiment will be described.
[0027]
FIG. 4 is a diagram illustrating a method for processing the exit surface of the light guide member.
[0028]
As shown in FIG. 4, the exit surface 4 c of the light guide member 4 is ground by a disk-shaped grinding blade (grinding stone) 11 as a rotating body. On the outer surface including the outer peripheral edge (grinding surface 11a) in the radial direction of the grinding blade 11, a polycrystalline granular material such as diamond is adhered as a grain with a binder. The grinding blade 11 has a diameter of φ50 to 60 mm, a thickness (width of the grinding surface) L1 of 0.1 to 0.5 mm (0.2 mm in this embodiment), and a high R shape (roundness) of the grinding surface 11a. The length L2 has a substantially flat shape of about 0.09 mm in the radial direction.
[0029]
At the time of processing, the light guide member 4 is chucked on a table (not shown) that can reciprocate in the X direction and the Y direction, and the grinding blade 11 is moved in the relative movement direction of the light guide member 4 at a high speed of 10,000 to 30,000 rpm. Rotate in the same direction (right rotation in FIG. 3), and fix the grinding blade 11 in a state where the grinding surface 11a of the grinding blade 11 is adjusted to a height at which it is in contact with the light exit surface 4c of the light guide member 4 with a predetermined pressing force. By moving the table in the direction of arrow S1 while moving the light guide member 4 relative to the grinding blade 11 from the incident surface 4a toward the end surface 4d, a feed speed of about 0.5 to 10 mm / second in the X direction. And the exit surface 4c is ground in the thickness direction at a predetermined grinding allowance 12 (forward grinding).
[0030]
Thereafter, the light guide member 4 is moved in the direction (Y direction) along the incident surface 4a with a feed amount (pitch) of about 10 to 100 μm (Y direction feed) by moving the table in the arrow S3 direction.
[0031]
Next, the grinding blade 11 is rotated in the opposite direction to the forward grinding so as to be in the same direction as the relative movement direction of the light guide member 4 (left rotation in FIG. 3), and the table is moved in the direction of the arrow S2 opposite to the arrow S1. By moving, the light guide member 4 is moved from the end face 4d toward the incident surface 4a at a relatively similar feed speed in the X direction to perform grinding in the X direction (return grinding).
[0032]
By performing the entire surface grinding for the exit surface 4c of the light guide member 4 by the above method, the direction (X direction) toward the end face 4d facing the incidence surface 4 a to the incidence surface 4 a on the exit surface 4c the average surface roughness Ra 0.5μm 0.01, irregular uneven shape 4f of the average surface roughness Ra 1.0μm 0.01 to direction (Y-direction) along the incidence surface 4 a is formed .
[0033]
In the above embodiment, the light guide member 4 is moved while the grinding blade 11 is fixed, but the light guide member 4 may be fixed and the grinding blade 11 may be moved relatively. Further, when the table is moved in the direction of arrow S3, the table is fed in the Y direction so that the machined surface just ground and the machined surface to be ground next overlap each other. In addition, even in the cutting process or the same grinding process, the processed surface becomes a mirror surface, so that the effect of increasing the brightness and uniformity as in the present embodiment cannot be obtained.
[0034]
[Grinding result]
5 to 7 show the measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the exit surface when the feed amount in the Y direction is ground at 100 μm, 50 μm, and 10 μm. FIG.
[0035]
As shown in FIG. 5 to FIG. 7, the average surface roughness Ra along the Y direction of the emission surface 4 c is 0.5 μm or less, and the emission surface 4 c has a substantially regular uneven shape in the Y direction. Yes. Further, the surface accuracy along the Y direction of the emission surface 4c is 10 μmp-p (peak to peak) or less. The surface accuracy in the Y direction depends on the thickness L1 of the grinding blade 11 and the feed speed.
[0036]
As shown in FIGS. 5 to 7, the average surface roughness Ra along the X direction of the emission surface 4c is 0.3 μm or less, and the emission surface 4c has irregular irregular shapes in the X direction. Further, the surface accuracy along the X direction of the emission surface 4c is 3 μmp-p or less. The surface accuracy in the X direction is irregular depending on the grain size of the polycrystalline particles of the grinding blade 11.
[0037]
Here, when the X direction of the exit surface 4c is viewed, the uneven shape 4f is a groove substantially parallel to the light traveling direction from the entrance surface 4a to the end surface 4d (substantially perpendicular to the entrance surface 4a). The average surface roughness Ra and the surface accuracy are both smaller than those in the Y direction. The reason is that, in order to aim for uniform in-plane brightness, extreme obstruction of the light guide must be avoided. The concavo-convex shape 4e (linear prism groove or hemispherical dot pattern) provided on the reflecting surface 4b is provided with a gradation so that the amount of emitted light in the X direction is uniform to some extent at any position. When the surface 4c is extremely roughened, a large amount of light (R2 in FIG. 3) that should originally be guided in a region near the incident surface 4a is emitted in the vicinity of the incident surface 4a (R1 in FIG. 3). As a result, the luminance in the vicinity of the end surface 4d far from the incident surface is lowered. The light R1 emitted from the exit surface 4c is ideally emitted in the normal direction with respect to the exit surface 4c, but the emitted light and the normal line when the exit surface 4c is extremely roughened. As a result, the angle is increased and the luminance is lowered. Therefore, as shown in FIGS. 5 to 7, the emission surface 4 c has an irregular concavo-convex shape, but it is better that the variation of the surface accuracy is small, and it is desirably 3 μmp-p or less experimentally.
[0038]
By roughening the exit surface 4c, as shown in FIG. 3, in the conventional configuration in which the exit surface is not roughened, the light R incident on the entrance surface 4a from the light source 7 is constant with respect to the exit surface 4c. When the angle θ1 is equal to or larger than the angle θ1, the light is emitted as the light R1 from the light emitting surface 4c, and uneven brightness is generated in the vicinity of the light source 7. The light can be guided to a position farther from the light source 7 toward the end face 4d while being reflected in all directions in the −Y plane. In addition, since refraction of light is suppressed in the X direction and refraction is promoted in the Y direction, luminance unevenness in the vicinity of the light source is suppressed, and the luminance is increased and made uniform over the entire emission surface 4c. A light source can be realized.
[0039]
FIG. 8 shows a comparison of each surface emission state of a conventional light guide member (a) having a non-roughened exit surface and a light guide member (b) of this embodiment having a rough exit surface. In the conventional structure (a), the luminance unevenness in the vicinity of the incident surface 4a is conspicuous, whereas in the structure (b) of the present embodiment, the luminance unevenness is greatly improved. In addition, it can be seen that the light emission efficiency is high without lowering the average luminance value of the emission surface 4c as compared with the conventional case, and that the luminance can be increased and made uniform over the entire emission surface 4c.
[0040]
FIG. 8 illustrates the case where the feed amount in the Y direction is 50 μm. However, when the feed amount is 100 μm, the amount of emitted light in the region close to the light source increases, and when the feed amount is 10 μm, from the light source as shown in FIG. Since bright lines can be seen, the optimum feed amount in the Y direction is about 50 μm.
[0041]
As an application example of the light guide member of the present embodiment, a surface light source device including the light guide member 4 (configuration including each element of reference numerals 3, 4, 5, 6, and 7) or the light guide member as a surface light source. It is used for liquid crystal screens such as small portable terminals and mobile phones in liquid crystal display devices (configurations having elements 2, 3, 4, 5, 6, and 7).
[0042]
【The invention's effect】
As described above, according to the present invention, luminance unevenness can be suppressed and uniform luminance can be achieved without impairing light output efficiency over the entire exit surface of the light guide member.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view (a) and a side sectional view (b) showing a display device according to an embodiment of the present invention.
FIG. 2 is a plan view (a) and a front view (b) of a light guide member according to an embodiment of the present invention.
FIG. 3 is a diagram showing a part of a side cross section for explaining the operation of the light guide member of the present embodiment.
FIG. 4 is a diagram for explaining a method of processing an exit surface of a light guide member.
FIG. 5 is a diagram showing the measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the exit surface when grinding is performed with the feed amount in the Y direction being 100 μm.
FIG. 6 is a diagram showing the measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the exit surface when grinding is performed with the feed amount in the Y direction being 50 μm.
FIG. 7 is a diagram showing the measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the exit surface when grinding is performed with the feed amount in the Y direction being 10 μm.
FIG. 8 shows a comparison of each surface emission state of a conventional light guide member (a) having a non-roughened output surface and a light guide member (b) of the present embodiment having a rough output surface. FIG.
FIG. 9A is a front view of a conventional light guide member, FIG. 9B is a plan view of the conventional light guide member, and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Display apparatus 2 Electro-optical panel 3 Sheet | seat member 4 Light guide member 4a Incident surface 4b Reflective surface 4c Output surface 4d End surface 4e Regular uneven | corrugated shape 4f Irregular uneven | corrugated shape 5 Reflective member 6 Reflective frame 7 Light source 11 Grinding blade 12 Grinding allowance

Claims (4)

点状光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材であって、
前記反射面には、当該入射面に沿う方向に規則的な凹凸が形成され、
前記出射面には、前記入射面から当該入射面に対向する端に沿う方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸が形成され
前記出射面の前記入射面から当該入射面に対向する端面に沿う方向の凹凸の表面精度を、前記入射面に沿う方向の凹凸の表面精度より小さな値としたことを特徴とする導光部材。
An incident surface on which light from a point light source is incident, a reflective surface that reflects light incident from the incident surface, and an output surface that is disposed opposite to the reflective surface and emits light reflected on the reflective surface A light guide member,
Regular irregularities are formed on the reflecting surface in a direction along the incident surface,
The exit surface has an average surface roughness of 0.01 to 0.5 μm along the end surface facing the entrance surface from the entrance surface, and an average surface roughness along the entrance surface of 0.1 μm. Irregular irregularities of 01 to 1.0 μm are formed ,
The light guide member , wherein the surface accuracy of the unevenness in the direction along the end surface facing the incident surface from the incident surface of the exit surface is set to a value smaller than the surface accuracy of the unevenness in the direction along the incident surface .
請求項1に記載の導光部材を備えることを特徴とする面光源装置。  A surface light source device comprising the light guide member according to claim 1. 請求項1に記載の導光部材を面光源として備えることを特徴とする液晶表示装置。  A liquid crystal display device comprising the light guide member according to claim 1 as a surface light source. 点状光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材の加工方法であって、
多結晶粒状体が接着された表面を有する回転体を前記導光部材の前記出射面に接触させた状態で、前記回転体と前記導光部材とを前記入射面から当該入射面に対向する端に沿う方向に相対的に移動させて、前記出射面を厚さ方向に沿って研削加工し、
前記出射面に、前記入射面から当該入射面に対向する端に向けた方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸を形成し、
前記出射面の前記入射面から当該入射面に対向する端面に沿う方向の凹凸の表面精度を、前記入射面に沿う方向の凹凸の表面精度より小さな値としたことを特徴とする方法。
An incident surface on which light from a point light source is incident, a reflective surface that reflects light incident from the incident surface, and an output surface that is disposed opposite to the reflective surface and emits light reflected on the reflective surface A method of processing a light guide member,
In a state where the polycrystalline granules have contacted with the exit surface of the light guide member rotating member having an adhesive surface, opposite ends to the incident surface and the light guide member and the rotating member from the incident surface Relatively moving in the direction along the surface , grinding the emission surface along the thickness direction,
The average surface roughness in the direction from the incident surface to the end surface facing the incident surface is 0.01 to 0.5 μm, and the average surface roughness in the direction along the incident surface is 0. Forming irregular irregularities of 01 to 1.0 μm ,
The surface accuracy of the irregularities in the direction along the end surface facing the incident surface from the incident surface of the exit surface is set to a value smaller than the surface accuracy of the irregularities in the direction along the incident surface .
JP2003116001A 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member Expired - Fee Related JP4307137B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003116001A JP4307137B2 (en) 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member
KR1020040027043A KR100642860B1 (en) 2003-04-21 2004-04-20 Light guiding member, apparatus of plane light source with the light guiding member, liquid crystal display device with the light guiding member as a plane light source, and processing method of the light guiding member
CNB2004100422029A CN100437269C (en) 2003-04-21 2004-04-21 Light guide member and its processing method, LCD device and its face light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116001A JP4307137B2 (en) 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member

Publications (2)

Publication Number Publication Date
JP2004327077A JP2004327077A (en) 2004-11-18
JP4307137B2 true JP4307137B2 (en) 2009-08-05

Family

ID=33496388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116001A Expired - Fee Related JP4307137B2 (en) 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member

Country Status (3)

Country Link
JP (1) JP4307137B2 (en)
KR (1) KR100642860B1 (en)
CN (1) CN100437269C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2904436A4 (en) * 2012-10-08 2016-06-01 Corning Inc Methods and apparatus for providing improved display components

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179322A (en) * 1994-12-27 1996-07-12 Fujitsu Kasei Kk Backlight unit for liquid crystal display device
JPH0943433A (en) * 1995-08-02 1997-02-14 Otari Kk Light transmission plate for liquid crystal display
JPH09101521A (en) * 1995-10-06 1997-04-15 Shin Etsu Polymer Co Ltd Light transmission body for surface light source and its production
JP3783379B2 (en) * 1997-11-21 2006-06-07 ソニー株式会社 Diffusion reflector manufacturing method and reflective display device
KR19980042692A (en) * 1997-11-24 1998-08-17 우에마쯔도미지 Light guide plate and back light device using same
KR100328106B1 (en) * 1999-01-27 2002-03-09 나카무라 하사오 lightguide
KR100380855B1 (en) 1999-02-10 2003-04-18 주식회사 엘지화학 A Backlight System for Liquid Crystal Display Devices
JP4113633B2 (en) 1999-04-20 2008-07-09 日東電工株式会社 Liquid crystal display
JP2000352607A (en) 1999-06-11 2000-12-19 Dainippon Printing Co Ltd Light diffusing film, its production, surface light source and display device
JP2001183663A (en) * 1999-12-24 2001-07-06 Kyocera Corp Reflection type liquid crystal display device
JP2001281654A (en) * 2000-03-29 2001-10-10 Mitsubishi Chemicals Corp Backlight for liquid crystal display element
JP3876631B2 (en) * 2001-03-01 2007-02-07 オムロン株式会社 Optical element provided with resin thin film having micro uneven pattern, manufacturing method and apparatus of reflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2904436A4 (en) * 2012-10-08 2016-06-01 Corning Inc Methods and apparatus for providing improved display components
US9989692B2 (en) 2012-10-08 2018-06-05 Corning Incorporated Methods and apparatus for providing improved display components

Also Published As

Publication number Publication date
KR100642860B1 (en) 2006-11-10
KR20040091565A (en) 2004-10-28
CN1540418A (en) 2004-10-27
CN100437269C (en) 2008-11-26
JP2004327077A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US6742921B2 (en) Light pipe, plate light source unit and reflection type liquid-crystal display device
JP5102623B2 (en) Long curved wedges in optical films
JP4307477B2 (en) Light guide plate and backlight unit
KR100863865B1 (en) Area light source and lightguide used therefor
JP3944816B2 (en) Surface lighting device
JP3527961B2 (en) Front-light reflective liquid crystal display
CN1170191C (en) Background light and LCD
US6659615B2 (en) Light pipe and method for producing the same
EP1108948B1 (en) Light pipe, plane light source unit and liquid-crystal display device
US20040076396A1 (en) Light guiding body, light reflective sheet, surface light source device and liquid crystal display device using the light reflective sheet, and method of manufacturing the light reflective sheet
EP1256834A2 (en) Reflective liquid-crystal display device
JP3360785B2 (en) Sidelight type surface light source device
JP4662402B2 (en) Light guide plate for front light for both external light and illumination modes, surface light source device for front light for both external light and illumination modes, and front light type reflective liquid crystal display device for both external light and illumination modes
US6971782B2 (en) Illumination device and liquid crystal display device
JP4144829B2 (en) Reflective and transmissive liquid crystal display device
JP3835770B2 (en) Surface light source device
JPWO2005101065A1 (en) Optical member and backlight unit using the same
KR100784021B1 (en) Backlight unit of a liquid crystal display device
JPH04191704A (en) Surface luminous device and its manufacture
JP4113633B2 (en) Liquid crystal display
JP4307137B2 (en) Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member
JP2001210129A (en) Sidelight surface light emitting device
JP3437029B2 (en) Sidelight type surface light source device
KR20030043257A (en) Light guide panel having lenticular lens and Back light apparatus using thereof
JP2003109417A (en) Surface light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees