JP2004327077A - Light guide member, surface light source device equipped with it, liquid crystal display device equipped with light guide member as surface light source, and machining method of light guide member - Google Patents

Light guide member, surface light source device equipped with it, liquid crystal display device equipped with light guide member as surface light source, and machining method of light guide member Download PDF

Info

Publication number
JP2004327077A
JP2004327077A JP2003116001A JP2003116001A JP2004327077A JP 2004327077 A JP2004327077 A JP 2004327077A JP 2003116001 A JP2003116001 A JP 2003116001A JP 2003116001 A JP2003116001 A JP 2003116001A JP 2004327077 A JP2004327077 A JP 2004327077A
Authority
JP
Japan
Prior art keywords
light
guide member
light guide
incident
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003116001A
Other languages
Japanese (ja)
Other versions
JP4307137B2 (en
Inventor
Takehiko Kumagai
武彦 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2003116001A priority Critical patent/JP4307137B2/en
Priority to KR1020040027043A priority patent/KR100642860B1/en
Priority to CNB2004100422029A priority patent/CN100437269C/en
Publication of JP2004327077A publication Critical patent/JP2004327077A/en
Application granted granted Critical
Publication of JP4307137B2 publication Critical patent/JP4307137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Abstract

<P>PROBLEM TO BE SOLVED: To provide uniform luminance by restraining luminance irregularity throughout the entire area of an emission surface of a light guide member. <P>SOLUTION: An irregular uneven shape 4f having an average surface roughness Ra of 0.01-0.5 μm in the X-direction along an incident surface 4a through an end 4d facing the the incident surface 4a and an average surface roughness Ra of 0.01-1.0 μm in the Y-direction along the incident surface 4a is formed on the emission surface 4c to roughen it. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、透過型又は半透過型の液晶表示パネルやそれを表示画面として備える電子機器に搭載される導光部材、当該導光部材を備える面光源装置、及び当該導光部材を面光源として備える液晶表示装置、並びに当該導光部材の加工方法に関する。
【0002】
また、本発明は、例えば、バックライト方式或いはフロントライト方式の表示装置やそれを表示画面として備える電子機器に搭載される導光部材、当該導光部材を備える面光源装置、及び当該導光部材を面光源として備える液晶表示装置、並びに当該導光部材の加工方法に関する。
【0003】
【従来の技術】
従来より、輝度ムラの低減化などを目的として、液晶表示装置などのバックライトユニットに導光部材が搭載されている(例えば、特許文献1参照)。
【0004】
そして、従来の導光部材としては、出射面に対向した反射面にプリズムを形成した構成(例えば、特許文献2参照)、出射面に対向した反射面にプリズム加工を施し、出射面にはりつき防止のために(光学特性に影響しない)凸状の条を形成した構成(例えば、特許文献3参照)、出射面に対向する反射面にプリズムの代りにヘアライン加工を施すもの(例えば、特許文献4参照)、或いは出射面とこの出射面に対向する反射面にプリズムを形成した構成(例えば、特許文献5参照)がある。
【0005】
【特許文献1】
特開平9−184920号公報
【特許文献2】
特開平11−219609号公報
【特許文献3】
特開2000−56137号公報
【特許文献4】
特開昭51−88042号公報
【特許文献5】
特開平10−282342号公報。
【0006】
【発明が解決しようとする課題】
図9に示す従来の表示装置31は、複数の画素がマトリクス状に形成された透過型又は半透過型の電気光学式(液晶、LCD)パネル2と、このパネル2の裏面に設けられる拡散シート又はプリズムシートなどの透光性のシート部材3と、このシート部材3の裏面に設けられる透光性の導光部材34と、この導光部材34の裏面に配置される反射部材5と、導光部材34の入射面4a以外の各面を覆う反射枠6と、導光部材34の入射面4aから光を入光する線状(冷陰極管など)又は複数の点状(白色LEDなど)の光源7とを備える。
【0007】
上記光源7から出光した光は、導光部材34の入射面4aから入光し、導光部材34の反射面4b及び反射部材5で反射され、導光部材34を透過してシート部材3により法線方向に矯正されてパネル2を照明する。
【0008】
上記構成において、特許文献1及び2では、導光部材34の出射面34bに対向する反射面34aに三角形状のプリズム溝4eを形成することにより出射面34bからの出光効率を高めている。ところが、プリズム溝4eを反射面4aに形成し、出射面34bは平坦のまま加工を施さない場合、特に点状光源の場合には光源近傍における輝度分布が、光源から直進した位置では明るくなり、点状光源の間の領域では暗くなるという輝度ムラが発生してしまう。
【0009】
また、上記反射面4aに形成されたプリズム溝4eは入射面4aに平行で、且つ全幅に亘って線状に形成されているため、光源点灯時に出射面34bを上部から見ると線状の筋ができてしまう。
【0010】
また、特許文献4のように、出射面に対向する反射面にプリズムの代りにヘアライン加工を施した場合には、加工面が粗くなり、光源近傍での出光量が多くなってしまう。
【0011】
更に、特許文献3及び5のように、出射面とこの出射面に対向する反射面の両方に加工を施した場合、出射面が粗面化されておらず光の出射方向は常に一定であるので拡散効果が低くなる。また、規則的な幅方向の溝は液晶画素との間でモアレ現象を引き起こし、結局のところ拡散シートなどが必要となるため、光量の低下やコストアップなどの問題がある。
【0012】
本発明は、上記課題に鑑みてなされ、その目的は、出射面の全域に亘って輝度ムラを抑え、均一な輝度にできる導光部材、当該導光部材を備える面光源装置、及び当該導光部材を面光源として備える液晶表示装置、並びに当該導光部材の加工方法を提供することである。
【0013】
【課題を解決するための手段】
上述の課題を解決し、目的を達成するために、本発明に係る、光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材は、前記反射面に、当該入射面に沿う方向に規則的な凹凸が形成され、前記出射面に、前記入射面から当該入射面に対向する端部に沿う方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸が形成されている。
【0014】
また、本発明に係る面光源装置は、上記導光部材を備える。
【0015】
また、本発明に係る液晶表示装置は、上記導光部材を面光源として備える。
【0016】
また、本発明に係る、光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材の加工方法は、多結晶粒状体が接着された表面を有する回転体を前記導光部材の出射面に接触させた状態で、前記回転体と前記導光部材とを前記入射面から当該入射面に対向する端部に沿う方向に相対的に移動させて、前記出射面を厚さ方向に沿って研削加工し、前記出射面に、前記入射面から当該入射面に対向する端部に向けた方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸を形成する。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態について、添付図面を参照して詳細に説明する。
【0018】
尚、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明は、その趣旨を逸脱しない範囲で下記実施形態を修正又は変形したものに適用可能である。
【0019】
[表示装置の構成]
図1は本発明に係る実施形態の表示装置を示す分解斜視図(a)及び側断面図(b)であり、図2は本発明に係る実施形態の導光部材の平面図(a)及び正面図(b)である。尚、以下の説明では、図9に示す従来の構成と同一の機能を有する部材には、同一の符号を付して示している。
【0020】
図1及び図2に示すように、本発明に係る実施形態として例示するバックライト方式の表示装置1は、複数の画素がマトリクス状に形成された透過型又は半透過型の電気光学式(液晶、LCD)パネル2と、このパネル2の裏面に設けられる拡散シート又はプリズムシートなどの透光性のシート部材3と、このシート部材3の裏面に設けられる透光性の導光部材4と、この導光部材4の裏面に配置される反射部材5と、導光部材4の入射面4a以外の各面を覆う反射枠6と、導光部材4の入射面4aから光を入光する線状(冷陰極管など)又は複数の点状(白色LEDなど)の光源7とを備える。
【0021】
導光部材4は、光源からの光を入射する入射面4aと、この入射面4aから入射した光を拡散・散乱させて反射する反射面4bと、この反射面4bに対向配置されて当該反射面4bで反射した光を出射する出射面4cと、入射面4aに対して平行で当該入射面4aに対向する端面4dとを有し、略均一の厚さを有する矩形状の板材により構成されている。尚、導光部材4の厚さは均一の構成に限らず、入射面4aから端面4dに向けて厚さが線形又は非連続(非線形)に変化する構成であってもよい。
【0022】
上記導光部材4は、例えば、透明なアクリル、(高透明を含む)ポリカーボネイト、ウレタン、ゼオノアなどの透光性の材料から構成される。
【0023】
導光部材4の反射面4bには、当該入射面4bに沿う方向(Y方向)に線状のプリズム溝若しくは半球状のドットパターンなどからなるX方向に沿う断面が三角形状の規則的(周期的)な凹凸形状4eが形成され、出射面4cを平面から見てY方向に縦筋状の縞模様を形成する構造となっている。この凹凸形状4eは研削加工により形成することが望ましい。
【0024】
上記反射面4bに形成された凹凸形状4eは、入射面4aから入光した光を拡散させる効果、及び出射面4cに屈曲させる働きを持っている。但し、面光源の機能として、面内全域の輝度は均一であることが要求されるため、入射面4bの近傍での強い光の出射は好ましくなく、光の屈曲が極端になって導光の妨げにならなることは避けるよう手当てされている。
【0025】
上記出射面4cには、後述する研削加工によって、上記入射面4aから当該入射面4aに対向する端部4dに沿う方向(X方向)の算術平均面粗さRaが0.01から0.5μmで、上記入射面4aに沿う方向(Y方向)の算術平均面粗さRaが0.01から1.0μmの微細で不規則な凹凸形状4fが形成されて粗面化されている。
【0026】
[導光部材の出射面の加工方法]
次に、本実施形態の導光部材の出射面の加工方法について説明する。
【0027】
図4は、導光部材の出射面の加工方法を説明する図である。
【0028】
図4に示すように、上記導光部材4の出射面4cは、回転体としての円盤状の研削ブレード(砥石)11により研削加工される。研削ブレード11の径方向の外周縁部(研削面11a)を含む外表面には、と粒としてダイヤモンドなどの多結晶粒状体が結合剤によって接着されている。研削ブレード11は、直径がφ50〜60mm、厚さ(研削面の幅)L1が0.1〜0.5mm(本実施形態では、0.2mm)、研削面11aのR形状(丸み)の高さL2が径方向に0.09mm程度のほぼ平坦な形状を有する。
【0029】
加工の際には、導光部材4をX方向及びY方向に往復移動可能な不図示のテーブルにチャックし、10000〜30000rpmという高速回転数で研削ブレード11を導光部材4の相対移動方向と同方向(図3で右回転)に回転させ、研削ブレード11の研削面11aが導光部材4の出射面4cに所定の押圧力で接触する高さに調整した状態で、研削ブレード11を固定したままテーブルを矢印S1方向に移動させることで導光部材4を研削ブレード11に対して入射面4aから端部4dに向けてX方向に相対的に0.5〜10mm/秒程度の送り速度で移動させて、所定の研削代12で出射面4cを厚さ方向に研削加工する(往路研削)。
【0030】
その後、テーブルを矢印S3方向に移動させることで導光部材4を入射面4aに沿う方向(Y方向)に10〜100μm程度の送り量(ピッチ)で移動させる(Y方向送り)。
【0031】
次に、研削ブレード11を導光部材4の相対移動方向と同方向となるように往路研削とは逆に回転(図3で左回転)させ、テーブルを矢印S1とは反対の矢印S2方向に移動させることで導光部材4を端面4dから当該入射面4aに向けてX方向に相対的に同様の送り速度で移動させてX方向の研削を行う(復路研削)。
【0032】
上記方法により導光部材4の出射面4cの全面について研削加工を施すことで、出射面4cに入射面4bから当該入射面4bに対向する端部4dに向けた方向(X方向)の平均面粗さRaが0.01から0.5μm、入射面4bに沿う方向(Y方向)の平均面粗さRaが0.01から1.0μmの不規則な凹凸形状4fが形成される。
【0033】
尚、上記実施形態では、研削ブレード11を固定したまま導光部材4を移動したが、導光部材4を固定して研削ブレード11を相対的に移動させてもよい。また、テーブルを矢印S3方向に移動させる際には、直前に研削した加工面と次に研削する加工面とがオーバラップした状態となるようにY方向に送られる。また、切削加工や同じ研削でも研磨加工では、加工面が鏡面となってしまうため、本実施形態のような高輝度化や均一化の効果が得られない。
【0034】
[研削結果]
図5〜図7は、Y方向への送り量を100μm、50μm、10μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の各測定結果を示す図である。
【0035】
図5〜図7に示すように、出射面4cのY方向に沿う平均面粗さRaは0.5μm以下となり、出射面4cはY方向に略規則的(周期的)な凹凸形状となっている。また、出射面4cのY方向に沿う表面精度は10μmp−p(peak to peak)以下となる。Y方向の表面精度は、研削ブレード11の厚みL1や送り速度に依存している。
【0036】
また、図5〜図7に示すように、出射面4cのX方向に沿う平均面粗さRaは0.3μm以下となり、出射面4cはX方向に不規則な凹凸形状となっている。また、出射面4cのX方向に沿う表面精度は3μmp−p以下となる。X方向の表面精度は、研削ブレード11の多結晶粒状体の粒度に依存して不規則となっている。
【0037】
ここで、上記出射面4cのX方向を見た場合、上記凹凸形状4fは、上記入射面4aから端面4dに沿って光の進行方向に略平行な(入射面4aに略垂直に)溝として形成され、平均面粗さRaと表面精度が共にY方向に比べて小さな値を示している。その理由としては、面内輝度の均一化を目指すためには極端な導光の妨げは避けなければならないという理由による。反射面4bに設けられた凹凸形状4e(線状のプリズム溝若しくは半球状のドットパターン)には、X方向に対する出光量がどの位置においてもある程度均一となるようなグラデーションが施されており、出射面4cが極端に粗面化された場合、入射面4aに近い領域で本来は導光すべき光(図3のR2)が入射面4aの近傍で多く出光(図3のR1)してしまい、結果として、入射面から遠い端面4dの近傍での輝度が低下してしまう。また、出射面4cから出光する光R1は出射面4cに対して法線方向に出光するのが理想的であるが、出射面4cが極端に粗面化されると出光する光と法線とのなす角度が大きくなってしまい輝度が低下してしまう。よって、図5〜図7に示すように、出射面4cは不規則な凹凸形状となっているが、その表面精度のバラツキは少ない方が良く、実験的には3μmp−p以下が望ましい。
【0038】
上記出射面4cを粗面化することにより、図3に示すように、出射面を粗面化しない従来の構成では光源7から入射面4aに入光した光Rが出射面4cに対して一定の角度θ1以上で出射面4cから光R1として出射して光源7付近に輝度ムラを発生させていたのに対して、角度θ1以上であっても出射面4cから出射せずに光R2としてX−Y平面内のあらゆる方向に反射しながら端面4dに向けてより光源7から遠い位置まで導光させることができる。また、X方向に対しては光の屈折を抑え、Y方向に対しては屈折を促すので、光源近傍での輝度ムラを抑え、出射面4cの全面に亘って高輝度化及び均一化した面光源を実現できる。
【0039】
図8は、粗面化していない出射面を持つ従来の導光部材(a)と粗面化した出射面を持つ本実施形態の導光部材(b)の各面発光状態を比較して示す図であり、従来の構造(a)では入射面4aの近傍での輝度ムラが目立つのに対して、本実施形態の構造(b)では、上記輝度ムラが大幅に改善されている。また、出射面4cの平均輝度値も従来に比べて低下することなく出光効率は高くなっており、出射面4cの全面に亘って高輝度化及び均一化できていることがわかる。
【0040】
尚、図8はY方向への送り量が50μmの場合を例示しているが、送り量が100μmでは光源に近い領域の出光量が多くなり、10μmでは図8(a)のように光源から輝線が見えてしまうため、Y方向への送り量は50μm程度が最適といえる。
【0041】
本実施形態の導光部材の適用例としては、上記導光部材4を備える面光源装置(符号3,4,5,6,7の各要素を備える構成)や上記導光部材を面光源として備える液晶表示装置(符号2,3,4,5,6,7の各要素を備える構成)などで、小型携帯端末や携帯電話などの液晶画面に用いられる。
【0042】
【発明の効果】
以上説明したように、本発明によれば、導光部材の出射面の全域に亘って出光効率を損ねることなく輝度ムラを抑え、均一な輝度にできる。
【図面の簡単な説明】
【図1】本発明に係る実施形態の表示装置を示す分解斜視図(a)及び側断面図(b)である。
【図2】本発明に係る実施形態の導光部材の平面図(a)及び正面図(b)である。
【図3】本実施形態の導光部材の作用を説明するために側断面の一部を示す図である。
【図4】導光部材の出射面の加工方法を説明する図である。
【図5】Y方向への送り量を100μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の測定結果を示す図である。
【図6】Y方向への送り量を50μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の測定結果を示す図である。
【図7】Y方向への送り量を10μmとして研削加工した場合の出射面のY方向の表面精度(a)とX方向の表面精度(b)の測定結果を示す図である。
【図8】粗面化していない出射面を持つ従来の導光部材(a)と粗面化した出射面を持つ本実施形態の導光部材(b)の各面発光状態を比較して示す図である。
【図9】従来の導光部材の正面図(a)、平面図(b)及び導光部材の作用を説明するために側断面の一部を示す図(c)である。
【符号の説明】
1 表示装置
2 電気光学式パネル
3 シート部材
4 導光部材
4a 入射面
4b 反射面
4c 出射面
4d 端面
4e 規則的な凹凸形状
4f 不規則な凹凸形状
5 反射部材
6 反射枠
7 光源
11 研削ブレード
12 研削代
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides, for example, a transmissive or semi-transmissive liquid crystal display panel and a light guide member mounted on an electronic device including the same as a display screen, a surface light source device including the light guide member, and a light guide member including The present invention relates to a liquid crystal display device provided as a light source and a method for processing the light guide member.
[0002]
Further, the present invention provides, for example, a backlight type or front light type display device, a light guide member mounted on an electronic device including the display device as a display screen, a surface light source device including the light guide member, and the light guide member And a method of processing the light guide member.
[0003]
[Prior art]
2. Description of the Related Art Conventionally, a light guide member is mounted on a backlight unit such as a liquid crystal display device for the purpose of reducing luminance unevenness (for example, see Patent Document 1).
[0004]
As a conventional light guide member, a prism is formed on a reflection surface facing an emission surface (for example, see Patent Document 2), and a prism processing is performed on a reflection surface facing the emission surface to prevent sticking to the emission surface. (For example, see Patent Literature 3), in which a hairline processing is performed instead of a prism on a reflection surface facing an emission surface (for example, Patent Literature 4) Or a configuration in which a prism is formed on an emission surface and a reflection surface facing the emission surface (for example, see Patent Document 5).
[0005]
[Patent Document 1]
JP-A-9-184920 [Patent Document 2]
JP-A-11-219609 [Patent Document 3]
JP 2000-56137 A [Patent Document 4]
JP-A-51-88042 [Patent Document 5]
JP-A-10-282342.
[0006]
[Problems to be solved by the invention]
A conventional display device 31 shown in FIG. 9 includes a transmissive or transflective electro-optical (liquid crystal, LCD) panel 2 in which a plurality of pixels are formed in a matrix, and a diffusion sheet provided on the back surface of the panel 2. A light-transmitting sheet member 3 such as a prism sheet, a light-transmitting light guiding member 34 provided on the back surface of the sheet member 3, a reflecting member 5 disposed on the back surface of the light guiding member 34, A reflective frame 6 covering each surface other than the incident surface 4a of the light member 34, and a linear shape (such as a cold cathode tube) or a plurality of dot shapes (such as a white LED) for receiving light from the incident surface 4a of the light guide member 34; Light source 7.
[0007]
The light emitted from the light source 7 enters through the incident surface 4 a of the light guide member 34, is reflected by the reflection surface 4 b and the reflection member 5 of the light guide member 34, passes through the light guide member 34, and is transmitted by the sheet member 3. The panel 2 is illuminated after being corrected in the normal direction.
[0008]
In the above-described configuration, in Patent Documents 1 and 2, a triangular prism groove 4e is formed on the reflection surface 34a facing the emission surface 34b of the light guide member 34, thereby increasing the light emission efficiency from the emission surface 34b. However, when the prism groove 4e is formed on the reflection surface 4a and the light exit surface 34b is flat and is not processed, especially in the case of a point light source, the luminance distribution near the light source becomes brighter at a position straight from the light source, Luminance unevenness such as darkening occurs in an area between the point light sources.
[0009]
Further, since the prism groove 4e formed on the reflection surface 4a is formed in a linear shape over the entire width and parallel to the incident surface 4a, a linear streak is obtained when the emission surface 34b is viewed from above when the light source is turned on. Can be done.
[0010]
Further, when hairline processing is performed instead of a prism on the reflection surface facing the emission surface as in Patent Literature 4, the processing surface becomes rough, and the amount of light output near the light source increases.
[0011]
Further, as described in Patent Documents 3 and 5, when processing is performed on both the exit surface and the reflection surface facing the exit surface, the exit surface is not roughened and the exit direction of light is always constant. Therefore, the diffusion effect is reduced. Further, regular grooves in the width direction cause a moiré phenomenon with the liquid crystal pixels, which eventually requires a diffusion sheet or the like, so that there are problems such as a decrease in light amount and an increase in cost.
[0012]
The present invention has been made in view of the above-described problems, and has as its object to suppress a luminance unevenness over the entire area of an emission surface and provide a light guide member capable of achieving uniform brightness, a surface light source device including the light guide member, and the light guide. An object of the present invention is to provide a liquid crystal display device including a member as a surface light source and a method for processing the light guide member.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, according to the present invention, an incident surface on which light from a light source is incident, a reflecting surface for reflecting light incident from the incident surface, and a reflecting surface opposed to the reflecting surface. The light guide member includes a light exit surface that emits light reflected by the reflection surface. The light guide member has regular irregularities formed on the reflection surface in a direction along the light entrance surface. The average surface roughness in the direction along the end facing the incident surface is from 0.01 to 0.5 μm, and the average surface roughness in the direction along the incident surface is from 0.01 to 1.0 μm. Irregularities are formed.
[0014]
Further, a surface light source device according to the present invention includes the above light guide member.
[0015]
Further, a liquid crystal display device according to the present invention includes the light guide member as a surface light source.
[0016]
In addition, according to the present invention, an incident surface on which light from a light source is incident, a reflecting surface for reflecting light incident from the incident surface, and a light that is disposed to face the reflecting surface and emits light reflected by the reflecting surface. The processing method of the light guide member including the light exit surface is such that the rotator and the light guide member are in a state where the rotator having the surface to which the polycrystalline particles are bonded is in contact with the light exit surface of the light guide member. Is relatively moved from the incident surface in a direction along an end portion opposed to the incident surface, the output surface is ground along the thickness direction, and the output surface is subjected to grinding from the incident surface to the incident surface. An irregular surface having an average surface roughness of 0.01 to 0.5 μm in a direction toward the end portion facing the surface and an average surface roughness of 0.01 to 1.0 μm in a direction along the incident surface is formed. I do.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0018]
The embodiment described below is an example as a means for realizing the present invention, and the present invention can be applied to a modification or modification of the following embodiment without departing from the gist thereof.
[0019]
[Configuration of Display Device]
FIG. 1 is an exploded perspective view (a) and a side sectional view (b) showing a display device according to an embodiment of the present invention, and FIG. 2 is a plan view (a) and a plan view of a light guide member according to an embodiment of the present invention. It is a front view (b). In the following description, members having the same functions as those of the conventional configuration shown in FIG. 9 are denoted by the same reference numerals.
[0020]
As shown in FIGS. 1 and 2, a backlight-type display device 1 exemplified as an embodiment according to the present invention has a transmissive or semi-transmissive electro-optical (liquid crystal) in which a plurality of pixels are formed in a matrix. , LCD) panel 2, a translucent sheet member 3 such as a diffusion sheet or a prism sheet provided on the back surface of the panel 2, a translucent light guide member 4 provided on the back surface of the sheet member 3, A reflecting member 5 disposed on the back surface of the light guiding member 4, a reflecting frame 6 covering each surface of the light guiding member 4 other than the incident surface 4a, and a line for entering light from the incident surface 4a of the light guiding member 4. (Eg, a cold cathode tube) or a plurality of point-like (eg, white LEDs) light sources 7.
[0021]
The light guide member 4 includes an incident surface 4a on which the light from the light source is incident, a reflecting surface 4b for diffusing and scattering the light incident from the incident surface 4a, and a reflecting surface 4b which is disposed to face the reflecting surface 4b and has a corresponding reflection. It is composed of a rectangular plate material having an emission surface 4c for emitting the light reflected by the surface 4b, and an end surface 4d parallel to the incidence surface 4a and facing the incidence surface 4a, and having a substantially uniform thickness. ing. The thickness of the light guide member 4 is not limited to a uniform configuration, but may be a configuration in which the thickness changes linearly or discontinuously (non-linearly) from the incident surface 4a toward the end surface 4d.
[0022]
The light guide member 4 is made of, for example, a transparent material such as transparent acrylic, polycarbonate (including highly transparent), urethane, and zeonor.
[0023]
The reflecting surface 4b of the light guide member 4 has a regular (periodic) periodic triangular cross section along the X direction formed of a linear prism groove or a hemispherical dot pattern in the direction (Y direction) along the incident surface 4b. The projection / recess shape 4e is formed, and a vertical stripe pattern is formed in the Y direction when the emission surface 4c is viewed from a plane. It is desirable that the uneven shape 4e is formed by grinding.
[0024]
The concave-convex shape 4e formed on the reflection surface 4b has an effect of diffusing light incident from the incident surface 4a and a function of bending the light to the exit surface 4c. However, since the function of the surface light source is required to have uniform luminance over the entire surface, it is not preferable to emit strong light in the vicinity of the incident surface 4b. Care is taken to avoid distractions.
[0025]
The output surface 4c has an arithmetic mean surface roughness Ra of 0.01 to 0.5 μm in a direction (X direction) from the incident surface 4a to the end 4d facing the incident surface 4a by a grinding process described later. Thus, a fine irregular irregular shape 4f having an arithmetic average surface roughness Ra of 0.01 to 1.0 μm in the direction (Y direction) along the incident surface 4a is formed and roughened.
[0026]
[Processing method of light exit surface of light guide member]
Next, a method of processing the exit surface of the light guide member of the present embodiment will be described.
[0027]
FIG. 4 is a diagram for explaining a method of processing the emission surface of the light guide member.
[0028]
As shown in FIG. 4, the emission surface 4c of the light guide member 4 is ground by a disk-shaped grinding blade (grinding stone) 11 as a rotating body. A polycrystalline granular material such as diamond is adhered to the outer surface of the grinding blade 11 including the radial outer peripheral portion (grinding surface 11a) with a binder. The grinding blade 11 has a diameter of φ50 to 60 mm, a thickness (width of the grinding surface) L1 of 0.1 to 0.5 mm (0.2 mm in the present embodiment), and a high R-shape (roundness) of the grinding surface 11a. The length L2 has a substantially flat shape of about 0.09 mm in the radial direction.
[0029]
At the time of processing, the light guide member 4 is chucked to a table (not shown) that can reciprocate in the X direction and the Y direction, and the grinding blade 11 is moved at a high rotation speed of 10,000 to 30,000 rpm with the relative movement direction of the light guide member 4. The grinding blade 11 is fixed in a state where the grinding blade 11 is rotated in the same direction (right rotation in FIG. 3) and adjusted to a height at which the grinding surface 11a of the grinding blade 11 contacts the emission surface 4c of the light guide member 4 with a predetermined pressing force. The table is moved in the direction of arrow S1 while keeping the light guide member 4 moving relative to the grinding blade 11 from the incident surface 4a toward the end 4d in the X direction relative to the feed speed of about 0.5 to 10 mm / sec. Then, the emission surface 4c is ground in the thickness direction with a predetermined grinding allowance 12 (forward grinding).
[0030]
Thereafter, the table is moved in the direction of arrow S3 to move the light guide member 4 in a direction (Y direction) along the incident surface 4a at a feed amount (pitch) of about 10 to 100 μm (Y direction feed).
[0031]
Next, the grinding blade 11 is rotated in the direction opposite to the forward grinding so as to be in the same direction as the relative movement direction of the light guide member 4 (left rotation in FIG. 3), and the table is moved in the direction of arrow S2 opposite to arrow S1. By moving, the light guide member 4 is relatively moved in the X direction from the end surface 4d toward the incident surface 4a at the same feed speed to perform grinding in the X direction (return grinding).
[0032]
The entire surface of the light exit surface 4c of the light guide member 4 is ground by the above-described method, so that the light exit surface 4c has an average surface in the direction (X direction) from the incident surface 4b to the end 4d facing the incident surface 4b. Irregular irregularities 4f having a roughness Ra of 0.01 to 0.5 μm and an average surface roughness Ra of 0.01 to 1.0 μm in the direction (Y direction) along the incident surface 4b are formed.
[0033]
In the above embodiment, the light guide member 4 is moved while the grinding blade 11 is fixed, but the light guide member 4 may be fixed and the grinding blade 11 may be relatively moved. When the table is moved in the direction of arrow S3, the table is sent in the Y direction so that the processing surface ground immediately before and the processing surface to be ground next overlap each other. In addition, in the case of cutting and polishing, even in the case of polishing, the processed surface becomes a mirror surface, so that the effects of high brightness and uniformity as in the present embodiment cannot be obtained.
[0034]
[Grinding result]
FIGS. 5 to 7 show the measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the emission surface when the feed amount in the Y direction is 100 μm, 50 μm, and 10 μm, respectively. FIG.
[0035]
As shown in FIGS. 5 to 7, the average surface roughness Ra of the emission surface 4c along the Y direction is 0.5 μm or less, and the emission surface 4c has a substantially regular (periodic) uneven shape in the Y direction. I have. In addition, the surface accuracy of the emitting surface 4c along the Y direction is 10 μmp-p (peak to peak) or less. The surface accuracy in the Y direction depends on the thickness L1 of the grinding blade 11 and the feed speed.
[0036]
In addition, as shown in FIGS. 5 to 7, the average surface roughness Ra of the emission surface 4c along the X direction is 0.3 μm or less, and the emission surface 4c has an irregular uneven shape in the X direction. Further, the surface accuracy of the emission surface 4c along the X direction is 3 μmp-p or less. The surface accuracy in the X direction is irregular depending on the particle size of the polycrystalline granular material of the grinding blade 11.
[0037]
Here, when viewed in the X direction of the emission surface 4c, the irregularities 4f are formed as grooves substantially parallel to the light traveling direction (substantially perpendicular to the incidence surface 4a) from the incidence surface 4a along the end surface 4d. Both the average surface roughness Ra and the surface accuracy are smaller than those in the Y direction. The reason for this is that in order to achieve uniform in-plane luminance, extreme obstruction of light guide must be avoided. Irregularities 4e (linear prism grooves or hemispherical dot patterns) provided on the reflection surface 4b are subjected to gradation such that the amount of emitted light in the X direction becomes uniform to some extent at any position. When the surface 4c is extremely roughened, light (R2 in FIG. 3) that should be guided in a region near the incident surface 4a emits a large amount of light (R1 in FIG. 3) near the incident surface 4a. As a result, the brightness near the end face 4d far from the incident surface decreases. Ideally, the light R1 emitted from the emission surface 4c is emitted in the normal direction to the emission surface 4c. However, when the emission surface 4c is extremely roughened, the emitted light and the normal line Angle becomes large, and the luminance decreases. Therefore, as shown in FIG. 5 to FIG. 7, the emission surface 4 c has an irregular uneven shape, but it is better that the variation in the surface accuracy is small, and it is desirable to be 3 μmp-p or less experimentally.
[0038]
By roughening the emission surface 4c, as shown in FIG. 3, in the conventional configuration in which the emission surface is not roughened, the light R incident on the incidence surface 4a from the light source 7 is constant with respect to the emission surface 4c. Is emitted from the emission surface 4c as light R1 at an angle θ1 or more and luminance unevenness is generated in the vicinity of the light source 7, whereas even at an angle θ1 or more, the light R2 is emitted as light R2 without being emitted from the emission surface 4c. The light can be guided toward the end face 4d to a position farther from the light source 7 while being reflected in all directions in the −Y plane. Further, since refraction of light is suppressed in the X direction and refraction is promoted in the Y direction, unevenness in brightness near the light source is suppressed, and a surface with high brightness and uniformity over the entire emission surface 4c is provided. A light source can be realized.
[0039]
FIG. 8 shows a comparison between the surface light emission states of the conventional light guide member (a) having a roughened emission surface and the light guide member (b) of the present embodiment having a roughened emission surface. It is a diagram. In the conventional structure (a), luminance unevenness near the incident surface 4a is conspicuous, whereas in the structure (b) of the present embodiment, the luminance unevenness is greatly improved. In addition, the light emission efficiency is increased without lowering the average luminance value of the emission surface 4c as compared with the related art, and it can be seen that the luminance can be increased and uniformized over the entire surface of the emission surface 4c.
[0040]
FIG. 8 illustrates a case where the feed amount in the Y direction is 50 μm. When the feed amount is 100 μm, the amount of light output in an area close to the light source increases, and when the feed amount is 10 μm, the light amount from the light source as shown in FIG. Since the bright line becomes visible, the optimum feed amount in the Y direction is about 50 μm.
[0041]
As an application example of the light guide member of the present embodiment, a surface light source device including the light guide member 4 (a configuration including the elements denoted by reference numerals 3, 4, 5, 6, and 7) or the light guide member as a surface light source It is used for a liquid crystal display of a small portable terminal, a mobile phone, or the like, for example, in a liquid crystal display device (a configuration including the components denoted by reference numerals 2, 3, 4, 5, 6, 7).
[0042]
【The invention's effect】
As described above, according to the present invention, brightness unevenness can be suppressed and uniform brightness can be achieved without impairing the light output efficiency over the entire area of the emission surface of the light guide member.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view (a) and a side sectional view (b) showing a display device according to an embodiment of the present invention.
FIG. 2 is a plan view (a) and a front view (b) of a light guide member according to an embodiment of the present invention.
FIG. 3 is a view showing a part of a side cross section for explaining an operation of the light guide member of the embodiment.
FIG. 4 is a diagram illustrating a method of processing the light exit surface of the light guide member.
FIG. 5 is a diagram showing the measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the emission surface when grinding is performed with the feed amount in the Y direction being 100 μm.
FIG. 6 is a diagram showing measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the emission surface when grinding is performed with the feed amount in the Y direction set to 50 μm.
FIG. 7 is a diagram showing the measurement results of the surface accuracy (a) in the Y direction and the surface accuracy (b) in the X direction of the emission surface when grinding is performed with the feed amount in the Y direction being 10 μm.
FIG. 8 shows a comparison between respective light emitting states of a conventional light guide member (a) having an unroughened emission surface and a light guide member (b) of the present embodiment having a roughened emission surface. FIG.
FIG. 9 is a front view (a), a plan view (b), and a view (c) showing a part of a side cross section for explaining an operation of the light guide member of the conventional light guide member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Display apparatus 2 Electro-optical panel 3 Sheet member 4 Light guide member 4a Incident surface 4b Reflective surface 4c Outgoing surface 4d End surface 4e Regular uneven shape 4f Irregular uneven shape 5 Reflective member 6 Reflective frame 7 Light source 11 Grinding blade 12 Grinding allowance

Claims (4)

光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材であって、
前記反射面には、当該入射面に沿う方向に規則的な凹凸が形成され、
前記出射面には、前記入射面から当該入射面に対向する端部に沿う方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸が形成されていることを特徴とする導光部材。
A light guide including an incident surface for receiving light from a light source, a reflecting surface for reflecting light incident from the incident surface, and an emitting surface disposed opposite to the reflecting surface and emitting light reflected by the reflecting surface. A member,
On the reflecting surface, regular irregularities are formed in a direction along the incident surface,
The output surface has an average surface roughness of 0.01 to 0.5 μm in a direction from the incident surface to an end portion facing the incident surface, and an average surface roughness in a direction along the incident surface of 0.1 to 0.5 μm. A light guide member having irregular irregularities of 01 to 1.0 μm.
請求項1に記載の導光部材を備えることを特徴とする面光源装置。A surface light source device comprising the light guide member according to claim 1. 請求項1に記載の導光部材を面光源として備えることを特徴とする液晶表示装置。A liquid crystal display device comprising the light guide member according to claim 1 as a surface light source. 光源からの光を入射する入射面と、当該入射面から入射した光を反射する反射面と、当該反射面に対向配置されて当該反射面で反射した光を出射する出射面とを備える導光部材の加工方法であって、
多結晶粒状体が接着された表面を有する回転体を前記導光部材の出射面に接触させた状態で、前記回転体と前記導光部材とを前記入射面から当該入射面に対向する端部に沿う方向に相対的に移動させて、前記出射面を厚さ方向に沿って研削加工し、
前記出射面に、前記入射面から当該入射面に対向する端部に向けた方向の平均面粗さが0.01から0.5μmで、前記入射面に沿う方向の平均面粗さが0.01から1.0μmの不規則な凹凸を形成することを特徴とする方法。
A light guide comprising: an incident surface on which light from a light source is incident; a reflecting surface for reflecting light incident from the incident surface; and an emission surface disposed to face the reflecting surface and emitting light reflected by the reflecting surface. A method of processing a member,
In a state in which the rotating body having the surface to which the polycrystalline particles are adhered is in contact with the light emitting surface of the light guide member, the rotating body and the light guide member are separated from the light incident surface by the end facing the light incident surface. Relative to the direction along, grinding the emission surface along the thickness direction,
The output surface has an average surface roughness of 0.01 to 0.5 μm in a direction from the incident surface to an end facing the incident surface, and an average surface roughness of 0. 0 in the direction along the incident surface. A method characterized by forming irregular irregularities of 01 to 1.0 μm.
JP2003116001A 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member Expired - Fee Related JP4307137B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003116001A JP4307137B2 (en) 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member
KR1020040027043A KR100642860B1 (en) 2003-04-21 2004-04-20 Light guiding member, apparatus of plane light source with the light guiding member, liquid crystal display device with the light guiding member as a plane light source, and processing method of the light guiding member
CNB2004100422029A CN100437269C (en) 2003-04-21 2004-04-21 Light guide member and its processing method, LCD device and its face light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116001A JP4307137B2 (en) 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member

Publications (2)

Publication Number Publication Date
JP2004327077A true JP2004327077A (en) 2004-11-18
JP4307137B2 JP4307137B2 (en) 2009-08-05

Family

ID=33496388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116001A Expired - Fee Related JP4307137B2 (en) 2003-04-21 2003-04-21 Light guide member, surface light source device including the light guide member, liquid crystal display device including the light guide member as a surface light source, and method for processing the light guide member

Country Status (3)

Country Link
JP (1) JP4307137B2 (en)
KR (1) KR100642860B1 (en)
CN (1) CN100437269C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058748A1 (en) 2012-10-08 2014-04-17 Corning Incorporated Methods and apparatus for providing improved display components

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179322A (en) * 1994-12-27 1996-07-12 Fujitsu Kasei Kk Backlight unit for liquid crystal display device
JPH0943433A (en) * 1995-08-02 1997-02-14 Otari Kk Light transmission plate for liquid crystal display
JPH09101521A (en) * 1995-10-06 1997-04-15 Shin Etsu Polymer Co Ltd Light transmission body for surface light source and its production
JP3783379B2 (en) * 1997-11-21 2006-06-07 ソニー株式会社 Diffusion reflector manufacturing method and reflective display device
KR19980042692A (en) * 1997-11-24 1998-08-17 우에마쯔도미지 Light guide plate and back light device using same
KR100328106B1 (en) * 1999-01-27 2002-03-09 나카무라 하사오 lightguide
KR100380855B1 (en) 1999-02-10 2003-04-18 주식회사 엘지화학 A Backlight System for Liquid Crystal Display Devices
JP4113633B2 (en) 1999-04-20 2008-07-09 日東電工株式会社 Liquid crystal display
JP2000352607A (en) 1999-06-11 2000-12-19 Dainippon Printing Co Ltd Light diffusing film, its production, surface light source and display device
JP2001183663A (en) * 1999-12-24 2001-07-06 Kyocera Corp Reflection type liquid crystal display device
JP2001281654A (en) * 2000-03-29 2001-10-10 Mitsubishi Chemicals Corp Backlight for liquid crystal display element
JP3876631B2 (en) * 2001-03-01 2007-02-07 オムロン株式会社 Optical element provided with resin thin film having micro uneven pattern, manufacturing method and apparatus of reflector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058748A1 (en) 2012-10-08 2014-04-17 Corning Incorporated Methods and apparatus for providing improved display components

Also Published As

Publication number Publication date
CN100437269C (en) 2008-11-26
CN1540418A (en) 2004-10-27
KR100642860B1 (en) 2006-11-10
JP4307137B2 (en) 2009-08-05
KR20040091565A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP5102623B2 (en) Long curved wedges in optical films
JP4307477B2 (en) Light guide plate and backlight unit
JP4544531B2 (en) Surface light source device
EP1876388B1 (en) Light guide member and backlight unit including light guide member
JP3642381B2 (en) Light guide plate, surface light source device, and reflective liquid crystal display device
EP2218960A1 (en) Light-emitting element, illumination device, and liquid crystal display device
JP2005183030A (en) Light guide plate and lighting system
WO2011043466A1 (en) Image display device
US6971782B2 (en) Illumination device and liquid crystal display device
KR20060043378A (en) Light-guide plate, surface light emitting device using light-guide plate and method of manufacturing light-guide plate
JP2001133773A (en) Liquid crystal display device and light guide plate
JPWO2005101065A1 (en) Optical member and backlight unit using the same
JP2006054088A (en) Surface light-emitting device and liquid crystal display device
JP5424901B2 (en) Surface light source device and light guide used therefor
JP2010218693A (en) Light guide plate for point-like light source
KR100881332B1 (en) Light guide panel
JP2008218418A (en) Surface light source and light guide used for same
JPWO2004016985A1 (en) Surface light source device and light guide used therefor
JP2000305081A (en) Liquid crystal display device and light transmission plate
KR20030043257A (en) Light guide panel having lenticular lens and Back light apparatus using thereof
KR20030080764A (en) A Direct-lighting Backlight Unit
JP2004327077A (en) Light guide member, surface light source device equipped with it, liquid crystal display device equipped with light guide member as surface light source, and machining method of light guide member
JP2006108032A (en) Light guide body for surface light source, its manufacturing method as well as surface light source device
JPH10208529A (en) Sheet type light source device
JP4553596B2 (en) Light guide for surface light source device, method for manufacturing the same, and surface light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees