JP4306905B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP4306905B2
JP4306905B2 JP37327799A JP37327799A JP4306905B2 JP 4306905 B2 JP4306905 B2 JP 4306905B2 JP 37327799 A JP37327799 A JP 37327799A JP 37327799 A JP37327799 A JP 37327799A JP 4306905 B2 JP4306905 B2 JP 4306905B2
Authority
JP
Japan
Prior art keywords
wheel
inner member
bearing device
brake rotor
wheel bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37327799A
Other languages
Japanese (ja)
Other versions
JP2001180212A (en
Inventor
英児 田島
万寿夫 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP37327799A priority Critical patent/JP4306905B2/en
Priority to US09/657,094 priority patent/US6575637B1/en
Priority to DE10044509.8A priority patent/DE10044509B4/en
Priority to KR1020000053399A priority patent/KR20010050398A/en
Priority to DE10066506.3A priority patent/DE10066506B3/en
Publication of JP2001180212A publication Critical patent/JP2001180212A/en
Priority to US10/372,200 priority patent/US6959493B2/en
Application granted granted Critical
Publication of JP4306905B2 publication Critical patent/JP4306905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等において車輪を車体に対して回転自在に支持する車輪軸受装置(ハブベアリング)に関するもので、より詳しくはブレーキロータの取付けを前提とした車輪軸受装置に関するものである。
【0002】
【従来の技術】
自動車の車輪軸受装置には、駆動輪用のものと、非駆動輪用のものとがあり、それぞれの用途に応じて種々の形式のものが提案されている。図9は駆動輪用の車輪軸受装置の一例を示すもので、内周に複列の軌道面1aを有する外方部材1と、そのそれぞれの軌道面1aに対向する軌道面2a、2bを有する内方部材2と、外方部材1と内方部材2との間に介在する複列の転動体5とを主要構成要素とする。内方部材2は、ハブ輪3と、その外周に圧入した内輪4とからなり、複列の軌道面2a、2bのうちの一方2aが内輪4の外周に、他方2bがハブ輪3の外周にそれぞれ形成されている。ハブ輪3には車輪取付けフランジ3aが設けられ、この車輪取付けフランジ3aに車輪ホイール固定用のハブボルト6を用いて図示しない車輪が取付けられる。車輪取付けフランジ3aと車輪との間にはブレーキロータ7が介在しており、このブレーキロータ7はボルト7aを用いて車輪取付けフランジ3aに取付けられる。
【0003】
駆動輪用の車輪軸受装置においては、ハブ輪3が等速自在継手8の外側継手部材8aに結合される。外側継手部材8aは、椀状のマウス部8a1と中実のステム部8a2とからなり、ステム部8a2 にてハブ輪3とセレーション嵌合されている。ステム部8a2の軸端に形成したねじ部8a3にナット9を螺合させて締付けることにより、内輪4の端面が外側継手部材8aの肩部8a4端面に押付けられ、ハブ輪3および内輪4が軸方向で位置決めされると共に、転動体5に予圧が付与される。複列の転動体5はそれぞれ接触角を有しており、前述の予圧によって軸受剛性を高めると共に、モーメント荷重を受けられる構造になっている。
【0004】
【発明が解決しようとする課題】
ところで、自動車の製造工程においては、ブレーキロータ7を介して車輪を車輪取付けフランジ3aに取付ける際に、ハブボルト6の締付けによりブレーキロータ7の締結部分が変形する場合がある。この変形は、ブレーキロータ7単体に存在する加工精度・誤差と相俟って、組付け後のブレーキロータの制動面(ブレーキパッドと摺接する面)に面振れを生じる要因となる。かかる面振れは、ブレーキング時の振動(ブレーキジャダー)や、ブレーキロータの偏摩耗等の発生原因となるので、その解消が要望されている。
【0005】
この要望に応えるべく、従来では、自動車組立工場において、車輪軸受メーカから納入された車輪軸受装置の車輪取付けフランジ3aに、別部品として納入されたブレーキロータ7を組付ける際に、車輪取付けフランジ3aの面振れとブレーキロータ7の面振れとを位相合わせする等の調整作業を行っているが、この方法は甚だ面倒で作業性が悪い。
【0006】
また、近年の自動車等では、ABS(アンチロックブレーキシステム)を装備するものが多いが、車輪周辺のコンパクト化、軽量化、さらには設計自由度の向上等を図るため、ABS用の車輪回転速度検出手段を車輪軸受装置と一体にしたいという要望が強い。
【0007】
そこで本発明は、面倒な面振れ調整を不要とする一方で、ブレーキング時の振動やブレーキの偏摩耗を確実に抑制することのでき、しかもABS用の回転速度検出手段を備えつつも軽量・コンパクトな車輪軸受装置の提供を目的とする。
【0008】
【課題を解決するための手段】
上記目的の達成のため、本発明では、内周に複列の軌道面を有する外方部材と、外方部材のそれぞれの軌道面に対向する軌道面を有する内方部材と、外方部材と内方部材との間に介在する複列の転動体と、外方部材の内周と内方部材の外周との間の環状空間を閉鎖する密封手段とを備え、外方部材及び内方部材のうち、回転側の部材に、ハブボルトを圧入するためのボルト孔を有する車輪取付けフランジを設け、この車輪取付けフランジの側面をブレーキロータ取付け面とした車輪軸受装置において、密封手段は、上記回転側の部材に固定されたスリンガを備え、上記スリンガに取付けられ、多磁極を有するエンコーダと、エンコーダの回転で生じた磁束変化をセンシングするセンサ部とを備え、センサ部からの検出データに基いて上記回転側の部材の回転数を検出するABS用の回転速度検出手段を具備すると共に、ブレーキロータ取り付け面を、ボルト孔に形成した面取りを除いて表面粗さRa3μm以下の平坦面とし、内方部材を、第一内側部材と、複列の軌道面のうちの少なくとも一方の軌道面を有し、第一内側部材と軸方向で突き合わせた第二内側部材とで構成し、この内方部材と、外方部材と、転動体とで軸受装置を組み立てると共に、車輪取付けフランジのボルト孔にハブボルトを圧入し、この状態で、外方部材および内方部材のうち、固定側の部材を基準に回転駆動させた時のブレーキロータ取付け面の最大振れ幅が50μm以下であることを特徴とするものである。
【0009】
このようにブレーキロータ取付け面の面振れ幅を規格値内に規制することにより、この取付け面に取付けられるブレーキロータの振れを所望の範囲内に抑え、ブレーキロータ組付け後の面倒な振れ調整を不要とすることができる。また、回転速度検出手段を車輪軸受装置に一体に組込んだ構造であるから、これらを個別に配置する場合に比べ、車輪周辺のコンパクト化、軽量化、さらには設計自由度の向上が図られる。
【0010】
ブレーキロータ取付け面の面振れ幅は、外方部材および内方部材のうち、固定側の部材を基準に回転駆動させた状態で最大振れ幅が50μm以下となるよう規制するのが望ましい。
【0011】
内方部材には、車輪取付けフランジを一体に形成することができる。この場合、内方部材が回転側の部材に、外方部材が固定側の部材となる。
【0012】
内方部材に駆動軸を取付けるための取付け孔を形成した場合、駆動軸を取付け孔に取付けることによって駆動車輪用の車輪軸受装置が構成される。駆動軸としては、例えば等速自在継手を構成する外側継手部材のステム部が挙げられる。
【0013】
内方部材は、第一内側部材と、複列の軌道面のうちの少なくとも一方の軌道面を形成した第二内側部材とで構成することができる。この場合、第一内側部材と第二内側部材とを塑性変形で非分離に一体結合すれば、従来必要であったナットを省略でき、部品点数の削減による低コスト化、軽量化、アキシャル方向寸法の小型化等が図られる。
【0014】
内方部材の他方の軌道面は、例えば第一内側部材の外周に直接形成することができる。
【0015】
第二内側部材を等速自在継手の外側継手部材で構成することもできる。これにより、第二内側部材と外側継手部材とを別体で構成する場合に比べ、アキシャル寸法の小型化や、部品点数の削減による低コスト化および軽量化を図ることができる。
【0016】
上記外方部材には、車輪取付けフランジを一体に形成することもできる。この場合、外方部材が回転側の部材となり、内方部材が固定側の部材となる。
【0017】
上記外方部材の内周には、軌道面を直接形成することができ、この場合、別部材に軌道面を形成する場合に比べて、アキシャル寸法の小型化や、部品点数の削減による低コスト化および軽量化を図ることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図8に基づいて説明する。なお、以下の説明においては、車両に組付けた状態で車両の外側寄りとなる側をアウトボード側といい、車両の中央寄りとなる側をインボード側という。図2(B)、図3および図4を除く上記各図においては、左側がアウトボード側となり、右側がインボード側となる。
【0021】
図1は、本発明の第一の実施形態である駆動輪用の軸受装置で、外方部材10と内方部材20との間に複列の転動体50を組込んで回転側の内方部材20を回転自在に支持する構造である。複列の転動体50は保持器60(図6等参照)で円周方向等間隔に保持され、複列の外側軌道面11と内側軌道面21、22との間に介在して各軌道面上を転動する。ここでは転動体50としてボールを使用する場合を例示してあるが、円すいころを使用することもできる。
【0022】
外方部材10は、内周に複列の外側軌道面11を備え、外周に車体側の取付け部材、例えば懸架装置から延びるナックルに取付けるための車体取付けフランジ12を一体に備える。外方部材10の両端開口部に密封手段13、14が装着されており、この密封手段13、14によって外方部材10の内周と内方部材20の外周との間の環状空間Sがその軸方向両側でシールされ、環状空間Sに充填したグリースの漏洩、ならびに環状空間Sへの外部からの水や異物の侵入を防止するようになっている。
【0023】
図2(A)に示すように、環状空間Sのインボード側をシールする密封手段13は、外方部材10に取付けられるシールリング131 と、内方部材20に取付けられるスリンガ132 とを具備する。シールリング131 は、外方部材10の端部内周に圧入される円筒部133 aを外周部に備えた略円板状の芯金133 にゴム等の弾性体134 を固着し、その弾性体134 の内周部に二つのインナーリップ134a、134bを設け、かつインボード側の側面にサイドリップ134cを設けた構造である。一方、スリンガ132 は、内方部材20外周のランド部41に圧入される円筒部132aと、この円筒部132aの一端に設けられた半径方向に延びる部分132b(円板部)とで構成される。円筒部132aの外周面に上記インナーリップ134a、134bが弾性接触し、円板部132bの内側面(アウトボード側の面)に上記サイドリップ134cが弾性接触している。スリンガ132 のうち、円板部132bの外側面に後述する多磁極化されたエンコーダ81が装着される。
【0024】
なお、環状区間Sのアウトボード側をシールする密封手段14については、その詳細構造の図示を省略しているが、例えば図2(A)に示すシールリング131 と同様に3つのリップを有する弾性体シールを使用することができる。この場合、シールリング131 の円筒部133 aに相当する部分を外方部材10のアウトボード側の端部内周に圧入し、二つのインナーリップ134a、134bに相当する部分を後述するハブ輪30の外周に弾性接触させ、かつサイドリップ134cに相当する部分を後述する車輪取付けフランジ31の側面33’に弾性接触させる。
【0025】
図1においては、内方部材20は、第一内側部材30とこれに嵌合した第二内側部材40とで構成される。本実施形態は、第一内側部材としてのハブ輪30の外周に第二内側部材としてのリング状の内輪40を嵌合することにより、内方部材20とした場合を例示している。ハブ輪30のアウトボード側の外周には車輪を取付けるための車輪取付けフランジ31が一体に形成され、一方、インボード側の外周には小径円筒部32があって、この小径円筒部32に内輪40が圧入されている(図2(A)参照)。内側軌道面21、22のうち、インボード側軌道面21は内輪40の外周に形成され、アウトボード側軌道面22は、ハブ輪30の外周に直接形成されている。本実施形態においては、内輪40の外周に上記ランド部41が形成され、このランド部41にインボード側密封手段13のスリンガ132 の一部(円筒部132a)が圧入されている。内方部材20の軸芯部(本実施形態ではハブ輪30の軸芯部)には、図示しない駆動軸を取付けるための取付け孔23が貫通して形成され、取付け孔23のアウトボード側には、駆動軸とセレーション嵌合するためのセレーション部39が形成されている。
【0026】
車輪取付けフランジ31のアウトボード側の側面33は、ブレーキロータ70を取付けるための取付け面となる。ブレーキロータ70はボルト34によって車輪取付けフランジ31の取付け面33に取付けられる。さらにハブボルト35によって図示しない車輪が車輪取付けフランジ31の取付け面33にブレーキロータ70を介して締付け固定される。車輪取付けフランジ31の基端部付近からアウトボード側内側軌道面22に至る部分は、アウトボード側密封手段14のシールリップが摺接するシール面36となる。
【0027】
内輪40とハブ輪30は塑性加工、例えば内輪40から突出したハブ輪30の小径円筒部32の軸端を加締めて外径側に塑性変形させることにより、非分離に一体化される。この加締め部37により、内輪40がハブ輪30に対して軸方向で位置決めされ、かつ転動体50に所定の予圧が付与される。このように第一内側部材としてのハブ輪30と第二内側部材としての内輪40との結合を塑性変形で行うことにより、従来のナット9(図9参照)が不要となるので、軸受装置のアキシャル方向寸法の小型化、軽量化、部品点数の削減(ナットが不要)による軽量化、低コスト化が達成される。さらには、後述するようにブレーキロータ70の面振れ抑制効果をも得ることができる。
【0028】
図1の中心線より上半分では断面を表わすハッチングを省略し、代わりに焼入れ硬化層を散点模様で表わしてある。ハブ輪30は、炭素含有量が0.45〜1.10重量%、好ましくは0.45〜0.75重量%の炭素鋼等を使用して鍛造加工により成形され、そのうちの車輪取付けフランジ31の基端部付近から始まって、シール面36、アウトボード側の内側軌道面22、内輪40との突合せ面である肩面38、内輪40との嵌合部(小径円筒部32)である外周面にかけての領域には、焼入れ処理によりHv510〜900程度の硬化層(散点模様で示す。図5、図6、および図8についても同じ)が形成される。
【0029】
焼入れ硬化層の形成領域のうち、車輪取付けフランジ31の基端部分は、車輪を固定した車輪取付けフランジ31から受けるモーメント荷重に拘らず、基端部分の変形やフランジ31の面振れを防止するために硬化させる。シール面36は、上記基端部と重複する部分もあるが、アウトボード側密封手段14のシールリップが摺接する部分であるため、摩擦抵抗を少なくするとともに所期のシール効果を発揮させ、かつ、耐摩耗性を付与するために硬化させる。アウトボード側の内側軌道面22は、転動体50と接触することにより大きな面圧が発生するため、転がり疲れ寿命を確保するために硬化させる。肩面38は内輪40との突合せ面であり、しかも、内側軌道面21、22間の距離を左右する部分であることから、寸法精度の維持、フレッティング摩耗の防止のために硬化させる。小径円筒部32は、内輪40との間の圧入締め代に耐えられるよう、さらには、耐クリープ性、耐フレッティング性を付与するために硬化させる。焼入れ硬化層深さは、アウトボード側の内側軌道面22において最深部で0.7〜4mm程度とし、その他の部分、例えばシール面36においてこれよりも浅く、最深部で0.3〜3mm程度とする。特に図示していないが内輪40は、軸受鋼等の高炭素鋼を素材としており、芯部まで焼入れ硬化されている。内輪40を芯部まで焼入れ硬化させることにより、軌道面21に転がり疲れ寿命を確保することができると共に、小径円筒部32の軸端の加締め加工により、内輪40に大きな荷重が加わった場合でも内輪40の変形を防止し、所定の予圧を確保することができる。
【0030】
内方部材20のインボード側端部の加締め部37は、加締めを可能ならしめる程度の延性が必要とされるため、焼入れ処理を施さない未焼入れ部分として残してある。具体的には硬度をHv200〜300の範囲とすることにより、加締め加工が可能な延性を保持させることができる。
【0031】
焼入れ方法は、高周波焼入れ、浸炭焼入れ、レーザ焼入れ等の周知の技術から選択することができるが、上述のような焼入れパターンで熱処理を施す場合には高周波焼入れが適している。表面硬化処理としての高周波熱処理は、誘導加熱の特色を有効に生かして硬化層を自由に選定し、耐摩耗性を与えたり疲労強度を改善することができる。誘導加熱は、電磁誘導現象を利用して金属内で電気エネルギを直接熱エネルギに変えて発熱させる方法で、これを利用した高周波熱処理には多くの特徴がある。特に局部加熱ができ、硬化層深さの選定が自由であり、また、硬化層以外には著しい熱影響を与えないよう制御できるので、母材の性能を保持でき、従って、上記加締め部37のように母材中に部分的な未焼入れ部分を残す際には有利な点が多い。
【0032】
本発明における回転速度検出手段80は、ABS用に車輪の回転数を検出するもので、図2(A)に示すように、インボード側密封手段13のうち、スリンガ132 の円板部132b外側面に取付けられたエンコーダ81と、このエンコーダ81に面して外方部材10に固定されたセンサ部82とで構成される。
【0033】
エンコーダ81は、図2(B)に示すように、例えばNSの磁極を円周方向に交互に多極着磁させたリング状の弾性磁性体で構成される。この弾性磁性体は、ゴムやゴム質の合成樹脂(例えばポリアミド、ポリオレフィン、エチレン系重合体等)と磁性粉末(例えばバリウムフェライト、希土類磁性粉末等)とを均一に混練して得られる複合磁性材料を、ゴムの場合は架橋させた上で、リング状に成形し、次いでこれを多極着磁ヨーク等の一般的着磁手段で着磁することにより形成される。このようにして得られた弾性磁性体は、加硫、あるいは接着等の手段でスリンガ132 の円板部132b外側面に固着される。ゴムとして、NBR(ニトリル系)、アクリルゴム系エラストマー、フッ素ゴム系エラストマー、シリコーン系エラストマー等を使用することができ、これらのうちで特に耐熱性の高いエラストマー(アクリルゴム系、フッ素ゴム系、シリコーン系)を使用すれば、ブレーキの作動に伴う発熱の影響を最小限に抑えることができる。
【0034】
センサ部82は、エンコーダ81とアキシャル方向で対向配置され、図2(A)に示すように外周に設けられた取付け部82aを外方部材10の端面にねじ83等で締付けることによって外方部材10に固定される。センサ部82としては、例えば、ホール素子、磁気抵抗素子など、磁束の流れ方向に応じて出力を変化させる磁気検出素子と、この磁気検出素子の出力波形を整形する波形整形回路を組み込んだICとにより構成されるアクティブ型のセンサを使用することができる。このセンサ部82は、エンコーダ81の回転による磁束の変化をセンシングし、その検出信号に基づいて内方部材20の回転速度を検出し、車輪の回転数情報としてABSの制御装置に伝送する。なお、センサ部82は、外方部材10だけでなく、他の固定側の部材、例えばナックル等の車体側の取付け部材に取付けることもできる。
【0035】
このように本発明では、エンコーダ81を円周方向に多磁極を有するものとしているのでその薄肉化が可能である。従って、これを密封手段13のスリンガ132 に取付けることにより、薄型コンパクトで軽量の検出手段80を構成することができ、車輪周辺のコンパクト化、軽量化、さらには設計自由度の向上を図ることができる。
【0036】
また、本発明では、ブレーキロータ取付け面33の面振れ幅が規格値内に規制される。規格値は、固定側の部材(本実施形態では外方部材10)を基準として回転駆動させた際のブレーキロータ取付け面33の最大振れ幅で規定され、その値は50μm以下、望ましくは30μm以下とする。これにより、面倒な面振れ調整を不要にでき、ブレーキング時の振動やブレーキの偏摩耗を抑制することが可能となる。
【0037】
図3は、ブレーキロータ取付け面33の面振れ幅の測定方法を例示しており、外方部材10を測定台90に固定し、この固定された外方部材10を基準に内方部材20を一回転させ、その際のブレーキロータ取付け面33の振れ幅をダイヤルゲージ等の測定器91で測定するものである。ブレーキロータ取付け面33の面振れは、車輪取付けフランジ31の外径側ほど大きいので、面振れ幅の管理を厳しく行えるように、測定器91の当接位置は、ハブボルト35の圧入用ボルト孔31aの外接円と、車輪取付けフランジ31の外周との中間位置としている。
【0038】
上述のようにハブ輪30を加締め等で塑性変形させて内輪40と非分離に一体化した場合、ナット9(図9参照)を省略できるので、ナットを使用することにより生じる誤差(例えばハブ輪30と接触するナット端面の誤差、あるいはねじ部の誤差等)分だけアキシャル方向の累積精度を改善することができる。これより軸受装置のアキシャル振れが抑制され、ブレーキロータ70の面振れ低減が可能となる。
【0039】
その他の面振れ対策としては、以下の手段が考えられる。
【0040】
▲1▼ブレーキロータ取付け面33の二回仕上げ
ブレーキロータ取付け面33は、従来、一回切削で仕上げられていたが、これを二回切削とし、当該取付け面33を、表面粗さRa(中心線平均粗さ:JISB0601)3μm以下に仕上げることとする。この二次切削は、一次切削済みのハブ輪30に上記焼入れ等の熱処理を施した上で行う。なお、車輪取付けフランジ31の反対側の側面33’については、一回切削でRa=3〜6μm程度に仕上げる。
【0041】
▲2▼組立後の仕上げ加工
上記車輪軸受装置の組立終了後にブレーキロータ取付け面33に切削等の仕上げ加工を行う。この仕上げ加工により、組立誤差(ミスアライメント)に起因するブレーキロータ取付け面33の面振れを抑制することができる。
【0042】
さらに必要に応じてブレーキロータ70の取付け後に、ブレーキロータ70の両側面、特に図示しないブレーキパッドと摺接する制動面71、73に切削等の仕上げ加工を施すことにより、取付け誤差によるブレーキロータ70の制動面71、73の面振れを解消することもできる。
【0043】
▲3▼ボルト孔31aの熱処理省略:
車輪取付けフランジ31での焼入れ硬化処理は上記のように基端部に止め、ハブボルト35のボルト孔31a周辺は未焼入れ部分(生の部分)として残すこととする。ボルト孔31a周辺にも焼入れ硬化層を形成した場合、ハブボルト35の圧入によって車輪取付けフランジ31に歪みが加わり、この歪みによってブレーキロータ取付け面33が変形する懸念があるが、ボルト孔31a周辺を未焼入れ部分とすれば、この部分に、ボルト圧入に伴う歪みを吸収できる程度の延性が確保されるため、ブレーキロータ取付け面33の変形が防止され、ブレーキロータ70の面振れが防止される。
【0044】
▲4▼ボルト孔31aの面取り加工:
ボルト孔31aにボルト圧入による余肉の盛上りを吸収できる程度の面取り加工を施すことにより、ブレーキロータ70の取付け精度を確保することができる。
【0045】
▲5▼ハブボルト35の改良:
従来では、ハブボルト35の外周にセレーション部35aを設け、このセレーション部35aをボルト孔31aに圧入し、セレーション歯先でボルト孔31a内周面に塑性流動を生じさせてボルト抜け力とボルトスリップトルクを確保しているが、この塑性流動によってブレーキロータ取付け面33が変形し、面振れ幅の悪化につながる場合があった。これに対し、図4に示すように、ハブボルト35外周をセレーションを省略した円筒面とすれば(ボルト孔は従来と同様の円筒面である)、ハブボルト35の圧入時にもボルト孔31aの内周での塑性流動が生じず、ブレーキロータ取付け面33の変形を防止できる。この場合、スリップトルクは、ボルト頭部35bを、フランジ31に設けた被係合部31bとボルト頭部35bの円周方向で係合させることによって確保される。なお、ボルト頭部35bと被係合部31bとの間のガタ詰めのため、被係合部31bを加締め等でボルト側に塑性変形させるのが望ましい。ボルト頭部35b、および被係合部31bの形状は、図示例のものに限定されず、その他にも例えば双方を六角形としたり楕円形とすることも考えられる。
【0046】
▲6▼軸力の強化:
塑性変形による内輪40とハブ輪30との一体結合を、軸受隙間が負となり、かつ軸受の予圧量が981〜9810N(100〜1000kgf)となるように行う。これにより内輪40とハブ輪30の結合力が高まるので、自動車が旋回する際のモーメント荷重などにより、軸力と反対方向の荷重が発生しても両者の結合部にガタを生じることはなく、結果としてブレーキロータ70の面振れを抑制することができる。予圧量が981N(100kgf)より小さいと軸受剛性を高めることが困難となり、軸受隙間がブレーキロータ70の面振れとなって影響する。逆に、予圧量が9810N(1000kgf)より大きいと、軸受剛性を高めることができるが、それだけ軸受の負荷が増大するため、軸受寿命の低下を招く。
【0047】
▲7▼ブレーキロータ70単体についても、予め制動面71、73や車輪取付けフランジ31への取付け面72を切削等で高精度に仕上げ、面振れの軽減に努めておくのが望ましい。
【0048】
なお、上記に例示した手段を全て採用する必要は必ずしもなく、使用条件、用途等に応じて何れか一つを選択し、あるいはこれらを適宜組合わせて採用することができる。
【0049】
以下、本発明の他の実施形態を図面に基づいて説明する。なお、以下の説明においては、図1と共通の部材、あるいは対応する部材には同じ参照番号を付して重複説明を省略する。
【0050】
図5は、本発明の第二の実施形態である駆動輪用の軸受装置を示すものである。図5においては、図1と同様に中心線より上半分は断面を表わすハッチングを省略して焼入れ硬化層を散点模様で表わしている。
【0051】
この車輪軸受装置は、ハブ輪30の外周に二つの内輪40a、40bを嵌合したもので、インボード側の内側軌道面21およびアウトボード側の内側軌道面22の双方が内輪40a、40bの外周に設けられる点で図1と異なる。この場合、ハブ輪30およびアウトボード側の内輪40bが上記第一内側部材に相当し、インボード側の内輪40aが上記第二内側部材に相当する。ハブ輪30には車輪取付けフランジ31が形成され、このブレーキロータ取付け面33にブレーキロータ70がボルト34を介して取付けられる。これ以外の材料、焼入れ方法等は図1と同様である。
【0052】
図6は、本発明の第三の実施形態である駆動車輪用の軸受装置で、特に等速自在継手と一体にユニット化したものである。図6の中心線より下半分は断面を表わすハッチングを省略し、代わりに焼入れ硬化層を散点模様で表わしている。
【0053】
等速自在継手100 は、外側継手部材110 と、内側継手部材120 と、外側継手部材110 と内側継手部材120 との間に組込まれたトルク伝達ボール130 と、トルク伝達ボール130 を保持する保持器140 とからなる。外側継手部材110 はマウス部111 とステム部112 とからなり、駆動軸としてのステム部112 がハブ輪30の取付け孔23内周にセレーション39等を介して嵌合される。この外側継手部材110 は、ステム部112 の軸端を塑性変形(加締め)させることでハブ輪30と非分離に一体化される。マウス部111 の側端部から半径方向に立ち上がった肩面113 がハブ輪30の端面との突合せ面となる。アウトボード側の内側軌道面22は図1と同様にハブ輪30の外周に直接形成され、一方、インボード側の内側軌道面21は外側継手部材110 の外周に直接形成されている。なお、この実施形態においては、ハブ輪30が上記第一内側部材に相当し、外側継手部材110 が上記第二内側部材に相当する。
【0054】
外側継手部材110 を構成する材料としては、炭素含有量が0.45〜1.10重量%、好ましくは0.45〜0.75重量%の炭素鋼とし、少なくとも加締め部37となる端部の硬度をHv200〜300とする。これにより、インボード側の内側軌道面21やマウス部111 のトラック溝150 部分に要求される硬度(Hv510〜900)を確保し、しかも、かしめ作業を十分に行えるようになる。外側継手部材110 の外周面には焼入れ硬化層が形成される。マウス部111 については、トルク伝達ボール130 が転動する部分であるトラック溝150 は、耐寿命性を付与するため硬化させてある。シール面36はアウトボード側密封手段14のシールリップが摺動する部分であるため、摩擦抵抗を少なくするとともに所期のシール効果を発揮させ、かつ、耐摩耗性を付与するために硬化させる。アウトボード側の内側軌道面22は、転動体50が転動する軌道であるため、転動体50から受けるラジアル荷重、スラスト荷重に耐える寿命を保持させるために硬化させる。肩面113 はハブ輪30との突合せ面であり、しかも、内側軌道面21、22間の距離を左右する部分であることから、寸法精度の維持、フレッティング摩耗の防止のために硬化させる。ステム部112 の外周面のうち、はめあい部114 およびセレーション部39は、耐クリープ性、耐フレッティング性などを付与するために硬化させる。一方、加締め部37となるステム部112 の軸端は、加締めを行なう部分であるため延性が必要であり、従って焼入れ処理を施さず未焼入れ部分として残してある。焼入れ方法については、図1と同様である。
【0055】
この実施形態の場合、回転速度検出手段80が等速自在継手100 の外型継手部材110 と外方部材10との間の空間に収容されるので、よりコンパクト化することができる。
【0056】
図7は、本発明の第四の実施形態であり、外方部材10を回転させて用いる従動輪用の車輪軸受装置である。外方部材10の外周面に車輪取付けフランジ31が形成され、このフランジ31に、ボルト34を用いてブレーキロータ70が、ハブボルト35を用いて図示しない車輪がそれぞれ固定される。内方部材20は、それぞれの外周に内側軌道面21、22を有する二つの内輪40a、40bで構成されており、両内輪40a、40bは車体側に固定された図示しない軸部材の外周に突合せ状態で圧入される。この実施形態においては、二つの内輪40a、40bうちの何れか一方(図示例ではアウトボード側の内輪40b)が上記第一内側部材に相当し、他方が上記第二内側部材に相当する。インボード側密封手段13は、図2(A)と同様にシールリング131 およびスリンガ132 を具備しているが、シールリング131 が固定側となる内輪40aに、スリンガ132 が回転側となる外方部材10の内周にそれぞれ固定される点で図2とは異なる(図7ではシールリング131 およびスリンガ132 の図示を省略している)。スリンガ132 の円板部132b外側面に上記エンコーダ81を装着し、このエンコーダ81と対向させて図示しない固定側の部材にセンサ部82を装着することにより、上記と同様の機能を有する回転速度検出手段80が構成される。その他の材料、焼入れ方法等は図1に示す実施形態と同様である。
【0057】
図8は、本発明の第五の実施形態であり、ブレーキロータ70を取付けた車輪軸受装置を示すものである。この場合、ブレーキロータ70の制動面71、73の面振れ幅が規格値内に規制される。規格値は、固定側の部材(本実施形態では外方部材10)を基準として回転駆動させた際のブレーキロータ70の制動面71、73(詳しくはその外周縁部)の最大振れ幅で規定され、その値は100μm以下、望ましくは60μm以下とする。上記第一〜第四の実施形態で説明したようにブレーキロータ取付け面33の面振れ幅を規格値に規制し、さらに制動面71、73の面振れ幅を上記規格値に規制すれば、より効果的である。
【0058】
なお、上記では図1、図5、および図8に示す車輪軸受装置を駆動輪用として説明したが、これらは従動輪用として使用することもできる。
【0059】
【発明の効果】
以上のように、本発明によれば、ブレーキロータ取付け面の面振れ幅を規格値内に規制したので、ブレーキング時の振動(ブレーキジャダー)や、ブレーキロータの偏摩耗等の発生を確実に回避することができる。また、ブレーキロータを組付ける時、またはその後に面倒なブレーキロータの振れ調整を行う必要がない。さらに、車輪の回転速度検出手段を車輪軸受装置に一体に組込んでいるので、車輪周辺のコンパクト化、軽量化、さらには設計自由度の向上等を図ることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態である車輪軸受装置の縦断面図である。
【図2】(A)図は、図1に示す車輪軸受装置の要部を拡大した断面図、(B)図はこれに用いるエンコーダの斜視図である。
【図3】ブレーキロータの面振れ幅の測定装置を示す縦断面図である。
【図4】(A)図は車輪取付けフランジに圧入したハブボルトの斜視図、(B)図はボルト頭部側から見た正面図である
【図5】本発明の第二の実施形態である車輪軸受装置の縦断面図である。
【図6】本発明の第三の実施形態である車輪軸受装置の縦断面図である。
【図7】本発明の第四の実施形態である車輪軸受装置の縦断面図である。
【図8】本発明にかかるブレーキロータ付き車輪軸受装置の縦断面図である。
【図9】従来の車輪軸受装置の縦断面図である。
【符号の説明】
10 外方部材
11 外側軌道面
13 密封手段
14 密封手段
20 内方部材
21 内側軌道面
22 内側軌道面
23 取付け孔
30 ハブ輪(第一内側部材)
31 車輪取付けフランジ
33 ブレーキロータ取付け面
40 内輪(第二内側部材)
50 転動体
70 ブレーキロータ
71 制動面
73 制動面
80 回転速度検出手段
81 エンコーダ
82 センサ部
100 等速自在継手
110 外側継手部材(第二内側部材)
112 ステム部
132 スリンガ
S 環状空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wheel bearing device (hub bearing) that rotatably supports a wheel with respect to a vehicle body in an automobile or the like, and more particularly to a wheel bearing device on the premise that a brake rotor is attached.
[0002]
[Prior art]
There are two types of wheel bearing devices for automobiles, one for driving wheels and one for non-driving wheels, and various types have been proposed according to the respective applications. FIG. 9 shows an example of a wheel bearing device for driving wheels, which has an outer member 1 having a double-row raceway surface 1a on the inner periphery, and raceway surfaces 2a, 2b facing the respective raceway surfaces 1a. The inner member 2 and the double-row rolling elements 5 interposed between the outer member 1 and the inner member 2 are main components. The inner member 2 includes a hub ring 3 and an inner ring 4 press-fitted into the outer periphery thereof. One of the double-row raceway surfaces 2a and 2b is 2a on the outer periphery of the inner ring 4, and the other 2b is an outer periphery of the hub ring 3. Are formed respectively. The wheel hub 3 is provided with a wheel mounting flange 3a, and a wheel (not shown) is mounted on the wheel mounting flange 3a using a hub bolt 6 for fixing the wheel wheel. A brake rotor 7 is interposed between the wheel mounting flange 3a and the wheel, and the brake rotor 7 is mounted on the wheel mounting flange 3a using a bolt 7a.
[0003]
In the wheel bearing device for drive wheels, the hub wheel 3 is coupled to the outer joint member 8a of the constant velocity universal joint 8. The outer joint member 8a includes a bowl-shaped mouth portion 8a1 and a solid stem portion 8a2, and is serrated with the hub wheel 3 at the stem portion 8a2. The nut 9 is screwed into the threaded portion 8a3 formed at the shaft end of the stem portion 8a2 and tightened, whereby the end surface of the inner ring 4 is pressed against the end surface of the shoulder 8a4 of the outer joint member 8a, and the hub wheel 3 and the inner ring 4 are In addition to positioning in the direction, a preload is applied to the rolling element 5. Each of the double row rolling elements 5 has a contact angle, and has a structure capable of receiving a moment load while increasing the bearing rigidity by the above-described preload.
[0004]
[Problems to be solved by the invention]
By the way, in the automobile manufacturing process, when the wheel is attached to the wheel attachment flange 3a via the brake rotor 7, the fastening portion of the brake rotor 7 may be deformed by tightening the hub bolt 6. This deformation, combined with the machining accuracy and error existing in the brake rotor 7 alone, causes a surface runout on the braking surface of the brake rotor after mounting (the surface in sliding contact with the brake pad). Such surface runout causes vibrations during braking (brake judder), uneven wear of the brake rotor, and the like.
[0005]
In order to meet this demand, conventionally, at the automobile assembly factory, when the brake rotor 7 delivered as a separate part is assembled to the wheel mounting flange 3a of the wheel bearing device delivered from the wheel bearing manufacturer, the wheel mounting flange 3a. However, this method is very cumbersome and has poor workability.
[0006]
In recent years, many automobiles are equipped with ABS (anti-lock brake system), but the wheel rotation speed for ABS has been increased in order to reduce the size and weight of the wheel and improve the design flexibility. There is a strong demand for integrating the detection means with the wheel bearing device.
[0007]
Accordingly, the present invention eliminates the need for troublesome surface runout adjustment, and can reliably suppress vibration during braking and uneven wear of the brake, and also includes a rotational speed detection means for ABS and is lightweight. The object is to provide a compact wheel bearing device.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, an outer member having a double-row raceway surface on the inner periphery, an inner member having a raceway surface facing each raceway surface of the outer member, and an outer member, A double row rolling element interposed between the inner member and a sealing means for closing an annular space between the inner periphery of the outer member and the outer periphery of the inner member, the outer member and the inner member In the wheel bearing device in which a wheel mounting flange having a bolt hole for press-fitting a hub bolt is provided in a member on the rotation side, and a side surface of the wheel mounting flange is a brake rotor mounting surface, the sealing means includes the rotation side A slinger fixed to the member, and an encoder having multiple magnetic poles attached to the slinger, and a sensor unit for sensing a magnetic flux change caused by the rotation of the encoder, and based on detection data from the sensor unit. rotation Detecting the rotational speed of the member For ABS A rotation speed detecting means is provided, the brake rotor mounting surface is a flat surface with a surface roughness Ra of 3 μm or less except for chamfering formed in the bolt hole, the inner member is the first inner member, and the double-row track surface And a second inner member that is abutted in the axial direction with the first inner member, and the bearing device is assembled with the inner member, the outer member, and the rolling elements. At the same time, the hub bolt is press-fitted into the bolt hole of the wheel mounting flange, and in this state, the maximum runout width of the brake rotor mounting surface when the outer member and the inner member are rotationally driven with reference to the fixed member is determined. It is 50 μm or less.
[0009]
In this way, by regulating the runout width of the brake rotor mounting surface to within the standard value, the runout of the brake rotor mounted on this mounting surface can be kept within the desired range, and troublesome runout adjustment after mounting the brake rotor can be achieved. It can be unnecessary. In addition, since the rotation speed detecting means is integrated into the wheel bearing device, the wheel periphery can be made more compact and lighter, and the design flexibility can be improved compared to the case where these are individually arranged. .
[0010]
The surface runout width of the brake rotor mounting surface is desirably regulated so that the maximum runout width is 50 μm or less in a state in which the outer member and the inner member are rotationally driven with reference to the fixed member.
[0011]
A wheel mounting flange can be formed integrally with the inner member. In this case, the inner member is a rotating member, and the outer member is a fixed member.
[0012]
When an attachment hole for attaching the drive shaft to the inner member is formed, the wheel bearing device for the drive wheel is configured by attaching the drive shaft to the attachment hole. As a drive shaft, the stem part of the outer joint member which comprises a constant velocity universal joint is mentioned, for example.
[0013]
The inner member can be composed of a first inner member and a second inner member on which at least one of the double-row track surfaces is formed. In this case, if the first inner member and the second inner member are integrally joined by plastic deformation in a non-separable manner, the nuts that have been required in the past can be omitted, and the cost is reduced by reducing the number of parts, the weight is reduced, and the axial dimension is reduced. Downsizing and the like.
[0014]
The other raceway surface of the inner member can be directly formed on the outer periphery of the first inner member, for example.
[0015]
The second inner member can also be constituted by an outer joint member of a constant velocity universal joint. Thereby, compared with the case where a 2nd inner member and an outer joint member are comprised by a different body, cost reduction and weight reduction by size reduction of an axial dimension and reduction of a number of parts can be achieved.
[0016]
A wheel mounting flange can be formed integrally with the outer member. In this case, the outer member is a rotating member, and the inner member is a fixed member.
[0017]
A raceway surface can be directly formed on the inner periphery of the outer member. In this case, compared to the case where a raceway surface is formed on a separate member, the axial dimension is reduced and the number of parts is reduced. And weight reduction can be achieved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the following description, the side closer to the outside of the vehicle in the state assembled to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side. 2B, FIG. 3 and FIG. 4, the left side is the outboard side and the right side is the inboard side.
[0021]
FIG. 1 shows a bearing device for a drive wheel according to a first embodiment of the present invention. A double row rolling element 50 is assembled between an outer member 10 and an inner member 20 to rotate the inner side of the rotating side. The member 20 is configured to rotatably support the member 20. The double-row rolling elements 50 are held at equal intervals in the circumferential direction by a cage 60 (see FIG. 6 etc.), and are interposed between the double-row outer raceway surface 11 and the inner raceway surfaces 21, 22. Roll over. Here, a case where a ball is used as the rolling element 50 is illustrated, but a tapered roller can also be used.
[0022]
The outer member 10 is provided with a double row outer raceway surface 11 on the inner periphery, and an integrally provided vehicle body attachment flange 12 for attachment to a vehicle body side attachment member, for example, a knuckle extending from a suspension device. Sealing means 13 and 14 are attached to both end openings of the outer member 10, and the sealing means 13 and 14 form an annular space S between the inner periphery of the outer member 10 and the outer periphery of the inner member 20. Sealed on both sides in the axial direction to prevent leakage of grease filled in the annular space S and entry of water and foreign matters from the outside into the annular space S.
[0023]
As shown in FIG. 2A, the sealing means 13 for sealing the inboard side of the annular space S includes a seal ring 131 attached to the outer member 10 and a slinger 132 attached to the inner member 20. . The seal ring 131 is formed by fixing an elastic body 134 such as rubber to a substantially disc-shaped cored bar 133 having a cylindrical portion 133 a that is press-fitted into the inner periphery of the end of the outer member 10, and the elastic body 134. In this structure, two inner lips 134a and 134b are provided on the inner peripheral portion, and a side lip 134c is provided on the side surface on the inboard side. On the other hand, the slinger 132 includes a cylindrical portion 132a that is press-fitted into the land portion 41 on the outer periphery of the inner member 20, and a radially extending portion 132b (disc portion) provided at one end of the cylindrical portion 132a. . The inner lips 134a and 134b are in elastic contact with the outer peripheral surface of the cylindrical portion 132a, and the side lip 134c is in elastic contact with the inner side surface (surface on the outboard side) of the disc portion 132b. Of the slinger 132, an encoder 81 having a multi-pole configuration, which will be described later, is mounted on the outer surface of the disc portion 132b.
[0024]
Note that the detailed structure of the sealing means 14 for sealing the outboard side of the annular section S is omitted, but for example, an elastic having three lips as in the seal ring 131 shown in FIG. A body seal can be used. In this case, the portion corresponding to the cylindrical portion 133a of the seal ring 131 is press-fitted into the inner periphery of the end on the outboard side of the outer member 10, and the portions corresponding to the two inner lips 134a and 134b are formed on the hub wheel 30 described later. Elastic contact is made with the outer periphery, and a portion corresponding to the side lip 134c is made elastic contact with a side surface 33 'of the wheel mounting flange 31 described later.
[0025]
In FIG. 1, the inner member 20 includes a first inner member 30 and a second inner member 40 fitted thereto. This embodiment illustrates the case where the inner member 20 is formed by fitting a ring-shaped inner ring 40 as a second inner member to the outer periphery of a hub wheel 30 as a first inner member. A wheel mounting flange 31 for mounting a wheel is integrally formed on the outer periphery of the hub wheel 30 on the outboard side, and a small diameter cylindrical portion 32 is formed on the outer periphery on the inboard side. 40 is press-fitted (see FIG. 2A). Of the inner raceway surfaces 21 and 22, the inboard side raceway surface 21 is formed on the outer periphery of the inner ring 40, and the outboard side raceway surface 22 is formed directly on the outer periphery of the hub wheel 30. In the present embodiment, the land portion 41 is formed on the outer periphery of the inner ring 40, and a part of the slinger 132 (cylindrical portion 132a) of the inboard side sealing means 13 is press-fitted into the land portion 41. A mounting hole 23 for mounting a drive shaft (not shown) is formed through the shaft core portion of the inner member 20 (in this embodiment, the shaft core portion of the hub wheel 30). A serration portion 39 for serration fitting with the drive shaft is formed.
[0026]
A side surface 33 on the outboard side of the wheel mounting flange 31 serves as a mounting surface for mounting the brake rotor 70. The brake rotor 70 is mounted on the mounting surface 33 of the wheel mounting flange 31 by bolts 34. Further, a wheel (not shown) is fastened and fixed to the mounting surface 33 of the wheel mounting flange 31 via the brake rotor 70 by the hub bolt 35. A portion from the vicinity of the base end portion of the wheel mounting flange 31 to the outboard side inner raceway surface 22 becomes a seal surface 36 with which the seal lip of the outboard side sealing means 14 is slidably contacted.
[0027]
The inner ring 40 and the hub ring 30 are integrated without separation by plastic working, for example, by crimping the shaft end of the small-diameter cylindrical portion 32 of the hub ring 30 protruding from the inner ring 40 and plastically deforming the outer diameter side. The caulking portion 37 positions the inner ring 40 in the axial direction with respect to the hub ring 30 and applies a predetermined preload to the rolling elements 50. Since the hub wheel 30 as the first inner member and the inner ring 40 as the second inner member are joined by plastic deformation in this way, the conventional nut 9 (see FIG. 9) is not required, so that the bearing device A reduction in weight and cost is achieved by reducing the axial dimensions in size and weight, and reducing the number of parts (no need for nuts). Further, as described later, it is possible to obtain the effect of suppressing the surface shake of the brake rotor 70.
[0028]
In the upper half of the center line in FIG. 1, the hatching representing the cross section is omitted, and the hardened and hardened layer is represented by a dotted pattern instead. The hub wheel 30 is formed by forging using carbon steel having a carbon content of 0.45 to 1.10% by weight, preferably 0.45 to 0.75% by weight, of which a wheel mounting flange 31 is formed. Starting from the vicinity of the base end of the outer periphery, the sealing surface 36, the inner raceway surface 22 on the outboard side, the shoulder surface 38 that is a butting surface with the inner ring 40, and the outer periphery that is the fitting portion (small diameter cylindrical portion 32) with the inner ring 40 In the region over the surface, a hardened layer having a Hv of about 510 to 900 (shown as a dotted pattern. The same applies to FIGS. 5, 6, and 8) is formed by quenching.
[0029]
Of the hardened hardened layer formation region, the base end portion of the wheel mounting flange 31 prevents deformation of the base end portion and surface deflection of the flange 31 regardless of the moment load received from the wheel mounting flange 31 to which the wheel is fixed. Harden. The seal surface 36 has a portion that overlaps with the base end portion, but because the seal lip of the outboard side sealing means 14 is in sliding contact, it reduces frictional resistance and exhibits the desired sealing effect, and Cured to impart wear resistance. The inner raceway surface 22 on the outboard side is hardened to ensure a rolling fatigue life because a large surface pressure is generated by contacting the rolling element 50. Since the shoulder surface 38 is a butt surface with the inner ring 40, and is a part that determines the distance between the inner raceway surfaces 21 and 22, it is cured to maintain dimensional accuracy and prevent fretting wear. The small-diameter cylindrical portion 32 is hardened so as to withstand the press-fitting allowance with the inner ring 40 and further to provide creep resistance and fretting resistance. The depth of the hardened hardened layer is about 0.7 to 4 mm at the deepest portion on the inner raceway surface 22 on the outboard side, and is shallower than this at other portions, for example, the seal surface 36, and about 0.3 to 3 mm at the deepest portion. And Although not particularly illustrated, the inner ring 40 is made of high carbon steel such as bearing steel, and is hardened and hardened to the core. By hardening the inner ring 40 to the core part, it is possible to secure a rolling fatigue life on the raceway surface 21, and even when a large load is applied to the inner ring 40 by crimping the shaft end of the small diameter cylindrical part 32. Deformation of the inner ring 40 can be prevented and a predetermined preload can be ensured.
[0030]
The caulking portion 37 at the end of the inboard side of the inner member 20 is required to be ductile enough to allow caulking, and is therefore left as an unquenched portion that is not subjected to quenching. Specifically, by setting the hardness in the range of Hv 200 to 300, it is possible to maintain ductility that allows caulking.
[0031]
The quenching method can be selected from well-known techniques such as induction quenching, carburizing quenching, and laser quenching. In the case of performing heat treatment with the quenching pattern as described above, induction quenching is suitable. In the high-frequency heat treatment as the surface hardening treatment, a hardened layer can be freely selected by making effective use of the feature of induction heating to give wear resistance and improve fatigue strength. Induction heating is a method of generating heat by directly converting electric energy into heat energy in a metal by using an electromagnetic induction phenomenon, and there are many features in high-frequency heat treatment using this. In particular, local heating is possible, and the depth of the hardened layer can be freely selected. Further, since it can be controlled so as not to have a significant heat effect other than the hardened layer, the performance of the base material can be maintained. As described above, there are many advantages in leaving a partially unquenched portion in the base material.
[0032]
The rotational speed detecting means 80 in the present invention detects the rotational speed of the wheel for the ABS. As shown in FIG. 2 (A), the inboard side sealing means 13 includes a disk portion 132b outside the slinger 132. The encoder 81 is attached to the side surface, and the sensor portion 82 is fixed to the outer member 10 so as to face the encoder 81.
[0033]
As shown in FIG. 2B, the encoder 81 is formed of a ring-shaped elastic magnetic material in which, for example, NS magnetic poles are alternately magnetized in the circumferential direction. This elastic magnetic material is a composite magnetic material obtained by uniformly kneading rubber or rubber-like synthetic resin (eg, polyamide, polyolefin, ethylene polymer, etc.) and magnetic powder (eg, barium ferrite, rare earth magnetic powder, etc.). In the case of rubber, it is formed by cross-linking and molding it into a ring shape, and then magnetizing it with a general magnetizing means such as a multipolar magnetized yoke. The elastic magnetic material thus obtained is fixed to the outer surface of the disk portion 132b of the slinger 132 by means of vulcanization or adhesion. As the rubber, NBR (nitrile-based), acrylic rubber-based elastomer, fluororubber-based elastomer, silicone-based elastomer, etc. can be used. Among these, elastomers with particularly high heat resistance (acrylic rubber-based, fluororubber-based, silicone, etc.) System) can minimize the effects of heat generated by the operation of the brake.
[0034]
The sensor part 82 is arranged opposite to the encoder 81 in the axial direction, and as shown in FIG. 2 (A), an outer part is secured by tightening a mounting part 82a provided on the outer periphery to the end surface of the outer member 10 with a screw 83 or the like. Fixed to 10. As the sensor unit 82, for example, a magnetic detection element such as a Hall element or a magnetoresistive element that changes output according to the flow direction of magnetic flux, and an IC incorporating a waveform shaping circuit that shapes the output waveform of the magnetic detection element An active type sensor constituted by can be used. The sensor unit 82 senses a change in magnetic flux due to the rotation of the encoder 81, detects the rotational speed of the inner member 20 based on the detection signal, and transmits the detected rotational speed information to the ABS control device. The sensor unit 82 can be attached not only to the outer member 10 but also to other fixed-side members, for example, a vehicle-side mounting member such as a knuckle.
[0035]
As described above, according to the present invention, the encoder 81 has multiple magnetic poles in the circumferential direction, so that the thickness thereof can be reduced. Therefore, by attaching this to the slinger 132 of the sealing means 13, a thin, compact and lightweight detection means 80 can be configured, and the wheel periphery can be made compact and light, and the design flexibility can be improved. it can.
[0036]
In the present invention, the runout width of the brake rotor mounting surface 33 is regulated within the standard value. The standard value is defined by the maximum runout width of the brake rotor mounting surface 33 when it is rotationally driven with respect to the fixed member (the outer member 10 in this embodiment), and the value is 50 μm or less, preferably 30 μm or less. And Thereby, troublesome surface runout adjustment can be eliminated, and vibration during braking and uneven wear of the brake can be suppressed.
[0037]
FIG. 3 exemplifies a method of measuring the surface runout width of the brake rotor mounting surface 33. The outer member 10 is fixed to the measuring table 90, and the inner member 20 is attached to the fixed outer member 10 as a reference. The rotation width of the brake rotor mounting surface 33 at that time is measured by a measuring instrument 91 such as a dial gauge. Since the surface runout of the brake rotor mounting surface 33 is larger toward the outer diameter side of the wheel mounting flange 31, the contact position of the measuring instrument 91 is set to the press-fitting bolt hole 31a of the hub bolt 35 so that the surface runout width can be strictly managed. Between the circumscribed circle and the outer periphery of the wheel mounting flange 31.
[0038]
As described above, when the hub ring 30 is plastically deformed by caulking or the like and integrated with the inner ring 40 in a non-separable manner, the nut 9 (see FIG. 9) can be omitted, so that errors caused by using the nut (for example, the hub) Accumulated accuracies in the axial direction can be improved by an amount corresponding to an error of the nut end face contacting the wheel 30 or an error of the threaded portion. As a result, axial runout of the bearing device is suppressed, and surface runout of the brake rotor 70 can be reduced.
[0039]
The following means can be considered as other countermeasures against surface deflection.
[0040]
(1) Finishing the brake rotor mounting surface 33 twice
Conventionally, the brake rotor mounting surface 33 has been finished by one-time cutting, but this is cut twice, and the mounting surface 33 is finished to a surface roughness Ra (centerline average roughness: JISB0601) of 3 μm or less. And This secondary cutting is performed after the hub ring 30 that has been subjected to the primary cutting is subjected to the heat treatment such as quenching. The side surface 33 'on the opposite side of the wheel mounting flange 31 is finished to Ra = 3 to 6 [mu] m by a single cutting.
[0041]
(2) Finishing after assembly
After the assembly of the wheel bearing device is completed, finishing processing such as cutting is performed on the brake rotor mounting surface 33. By this finishing process, the runout of the brake rotor mounting surface 33 caused by an assembly error (misalignment) can be suppressed.
[0042]
Furthermore, after the brake rotor 70 is installed as necessary, finish processing such as cutting is performed on both side surfaces of the brake rotor 70, in particular, the braking surfaces 71 and 73 that are in sliding contact with a brake pad (not shown). It is also possible to eliminate surface deflection of the braking surfaces 71 and 73.
[0043]
(3) Omission of heat treatment for bolt hole 31a:
The hardening hardening treatment at the wheel mounting flange 31 is stopped at the base end portion as described above, and the periphery of the bolt hole 31a of the hub bolt 35 is left as an unquenched portion (raw portion). When a hardened hardened layer is also formed around the bolt hole 31a, there is a concern that the wheel mounting flange 31 is distorted by the press-fitting of the hub bolt 35, and this distortion may deform the brake rotor mounting surface 33. If the quenching portion is used, the ductility is secured at this portion so as to absorb the distortion caused by the bolt press-fitting, so that the deformation of the brake rotor mounting surface 33 is prevented and the runout of the brake rotor 70 is prevented.
[0044]
(4) Chamfering of bolt hole 31a:
By applying chamfering to the bolt hole 31a so as to absorb the build-up of surplus thickness due to the press-fitting of the bolt, the mounting accuracy of the brake rotor 70 can be ensured.
[0045]
(5) Improvement of hub bolt 35:
Conventionally, a serration portion 35a is provided on the outer periphery of the hub bolt 35, the serration portion 35a is press-fitted into the bolt hole 31a, and a plastic flow is generated on the inner peripheral surface of the bolt hole 31a by the serration tooth tip, thereby causing a bolt pulling force and a bolt slip torque. However, this plastic flow may cause the brake rotor mounting surface 33 to be deformed, leading to deterioration of the surface runout width. On the other hand, as shown in FIG. 4, if the outer periphery of the hub bolt 35 is a cylindrical surface without serrations (the bolt hole is a cylindrical surface similar to the conventional one), the inner periphery of the bolt hole 31a is also inserted when the hub bolt 35 is press-fitted. No plastic flow occurs, and deformation of the brake rotor mounting surface 33 can be prevented. In this case, the slip torque is ensured by engaging the bolt head 35b in the circumferential direction of the engaged portion 31b provided on the flange 31 and the bolt head 35b. In addition, it is desirable that the engaged portion 31b is plastically deformed to the bolt side by caulking or the like in order to eliminate backlash between the bolt head portion 35b and the engaged portion 31b. The shapes of the bolt head portion 35b and the engaged portion 31b are not limited to those shown in the drawings, and for example, both may be hexagonal or elliptical.
[0046]
(6) Strengthening of axial force:
The inner ring 40 and the hub ring 30 are integrally coupled by plastic deformation so that the bearing gap is negative and the bearing preload is 981 to 9810 N (100 to 1000 kgf). As a result, the coupling force between the inner ring 40 and the hub wheel 30 is increased, so that even if a load in the opposite direction to the axial force is generated due to a moment load when the automobile turns, there is no backlash at the coupling part between the two. As a result, the runout of the brake rotor 70 can be suppressed. If the preload amount is smaller than 981 N (100 kgf), it is difficult to increase the bearing rigidity, and the bearing gap is affected by the runout of the brake rotor 70. On the contrary, if the preload amount is larger than 9810 N (1000 kgf), the bearing rigidity can be increased, but the bearing load is increased accordingly, so that the bearing life is reduced.
[0047]
(7) For the brake rotor 70 alone, it is desirable to finish the braking surfaces 71 and 73 and the mounting surface 72 to the wheel mounting flange 31 with high precision by cutting or the like in advance to reduce the surface runout.
[0048]
Note that it is not always necessary to employ all the means exemplified above, and any one of them may be selected according to the use condition, application, or the like, or any combination thereof may be employed.
[0049]
Hereinafter, other embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are assigned to members common to or corresponding to those in FIG.
[0050]
FIG. 5 shows a drive wheel bearing device according to a second embodiment of the present invention. In FIG. 5, as in FIG. 1, the upper half of the center line omits hatching representing a cross section, and represents the hardened and hardened layer with a dotted pattern.
[0051]
In this wheel bearing device, two inner rings 40a and 40b are fitted to the outer periphery of the hub wheel 30, and both the inner raceway surface 21 on the inboard side and the inner raceway surface 22 on the outboard side are the inner races 40a and 40b. It differs from FIG. 1 in that it is provided on the outer periphery. In this case, the hub wheel 30 and the inner ring 40b on the outboard side correspond to the first inner member, and the inner ring 40a on the inboard side corresponds to the second inner member. A wheel attachment flange 31 is formed on the hub wheel 30, and a brake rotor 70 is attached to the brake rotor attachment surface 33 via a bolt 34. Other materials, quenching methods, and the like are the same as in FIG.
[0052]
FIG. 6 shows a bearing device for a drive wheel according to a third embodiment of the present invention, which is unitized especially with a constant velocity universal joint. The lower half of the center line in FIG. 6 omits the hatching representing the cross section, and instead represents the hardened and hardened layer with a dotted pattern.
[0053]
The constant velocity universal joint 100 includes an outer joint member 110, an inner joint member 120, a torque transmission ball 130 assembled between the outer joint member 110 and the inner joint member 120, and a cage that holds the torque transmission ball 130. It consists of 140. The outer joint member 110 includes a mouth portion 111 and a stem portion 112, and the stem portion 112 as a drive shaft is fitted to the inner periphery of the mounting hole 23 of the hub wheel 30 via a serration 39 or the like. The outer joint member 110 is integrated with the hub wheel 30 in a non-separable manner by plastically deforming (caulking) the shaft end of the stem portion 112. The shoulder surface 113 rising in the radial direction from the side end portion of the mouse portion 111 is a butting surface with the end surface of the hub wheel 30. The inner raceway surface 22 on the outboard side is directly formed on the outer periphery of the hub wheel 30 as in FIG. 1, while the inner raceway surface 21 on the inboard side is directly formed on the outer periphery of the outer joint member 110. In this embodiment, the hub wheel 30 corresponds to the first inner member, and the outer joint member 110 corresponds to the second inner member.
[0054]
The material constituting the outer joint member 110 is carbon steel having a carbon content of 0.45 to 1.10% by weight, preferably 0.45 to 0.75% by weight, and at least an end portion that becomes the caulking portion 37. The hardness of Hv is 200 to 300. As a result, the hardness (Hv 510 to 900) required for the inner raceway surface 21 on the inboard side and the track groove 150 portion of the mouse portion 111 is ensured, and the caulking work can be sufficiently performed. A hardened and hardened layer is formed on the outer peripheral surface of the outer joint member 110. As for the mouse part 111, the track groove 150, which is a part where the torque transmitting ball 130 rolls, is hardened to provide life resistance. Since the seal surface 36 is a portion on which the seal lip of the outboard side sealing means 14 slides, the seal surface 36 is hardened to reduce frictional resistance, exhibit the desired sealing effect, and provide wear resistance. Since the inner raceway surface 22 on the outboard side is a raceway on which the rolling element 50 rolls, the inner raceway surface 22 is hardened in order to maintain a lifetime that can withstand the radial load and thrust load received from the rolling element 50. Since the shoulder surface 113 is a butt surface with the hub wheel 30 and is a portion that determines the distance between the inner raceway surfaces 21 and 22, it is hardened to maintain dimensional accuracy and prevent fretting wear. Of the outer peripheral surface of the stem portion 112, the fitting portion 114 and the serration portion 39 are cured to impart creep resistance, fretting resistance, and the like. On the other hand, the shaft end of the stem portion 112 serving as the crimping portion 37 is a portion to be crimped, and therefore needs to be ductile. Therefore, it is left as an unquenched portion without being quenched. The quenching method is the same as in FIG.
[0055]
In the case of this embodiment, since the rotational speed detecting means 80 is accommodated in the space between the outer joint member 110 and the outer member 10 of the constant velocity universal joint 100, it can be made more compact.
[0056]
FIG. 7 shows a fourth embodiment of the present invention, which is a wheel bearing device for a driven wheel that is used by rotating the outer member 10. A wheel mounting flange 31 is formed on the outer peripheral surface of the outer member 10, and a brake rotor 70 is fixed to the flange 31 using a bolt 34, and a wheel (not shown) is fixed to the flange 31 using a hub bolt 35. The inner member 20 is composed of two inner rings 40a and 40b having inner raceways 21 and 22 on their outer circumferences. Both inner rings 40a and 40b abut against the outer circumference of a shaft member (not shown) fixed on the vehicle body side. It is press-fitted in the state. In this embodiment, one of the two inner rings 40a and 40b (in the illustrated example, the inner ring 40b on the outboard side) corresponds to the first inner member, and the other corresponds to the second inner member. The inboard side sealing means 13 includes a seal ring 131 and a slinger 132 as in FIG. 2A, but the outer ring 40a on the rotation side and the outer ring 40a on the rotation side of the seal ring 131 on the fixed side. 2 is different from FIG. 2 in that it is fixed to the inner periphery of the member 10 (the seal ring 131 and the slinger 132 are not shown in FIG. 7). The encoder 81 is mounted on the outer surface of the disk portion 132b of the slinger 132, and the rotational speed detection having the same function as described above is performed by mounting the sensor portion 82 on a fixed member (not shown) opposite to the encoder 81. Means 80 are configured. Other materials and quenching methods are the same as those in the embodiment shown in FIG.
[0057]
FIG. 8 is a fifth embodiment of the present invention and shows a wheel bearing device to which a brake rotor 70 is attached. In this case, the surface runout widths of the braking surfaces 71 and 73 of the brake rotor 70 are regulated within the standard value. The standard value is defined by the maximum runout width of the braking surfaces 71 and 73 (specifically, the outer peripheral edge portion) of the brake rotor 70 when it is rotationally driven with reference to the fixed member (the outer member 10 in this embodiment). The value is 100 μm or less, preferably 60 μm or less. As described in the first to fourth embodiments, if the surface runout width of the brake rotor mounting surface 33 is regulated to the standard value, and further the surface runout width of the braking surfaces 71 and 73 is regulated to the standard value, It is effective.
[0058]
In the above description, the wheel bearing device shown in FIGS. 1, 5, and 8 has been described for a driving wheel, but these can also be used for a driven wheel.
[0059]
【The invention's effect】
As described above, according to the present invention, since the surface runout width of the brake rotor mounting surface is regulated within the standard value, occurrence of vibration during braking (brake judder), uneven wear of the brake rotor, etc. is ensured. It can be avoided. Further, there is no need to perform troublesome adjustment of the brake rotor when the brake rotor is assembled or thereafter. Furthermore, since the wheel rotational speed detecting means is integrated in the wheel bearing device, the wheel periphery can be made compact and light, and the design flexibility can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a wheel bearing device according to a first embodiment of the present invention.
2A is an enlarged cross-sectional view of a main part of the wheel bearing device shown in FIG. 1, and FIG. 2B is a perspective view of an encoder used therefor.
FIG. 3 is a longitudinal sectional view showing a measuring device for a surface runout width of a brake rotor.
4A is a perspective view of a hub bolt press-fitted into a wheel mounting flange, and FIG. 4B is a front view seen from the bolt head side.
FIG. 5 is a longitudinal sectional view of a wheel bearing device according to a second embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a wheel bearing device according to a third embodiment of the present invention.
FIG. 7 is a longitudinal sectional view of a wheel bearing device according to a fourth embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of a wheel bearing device with a brake rotor according to the present invention.
FIG. 9 is a longitudinal sectional view of a conventional wheel bearing device.
[Explanation of symbols]
10 Outer member
11 Outer raceway surface
13 Sealing means
14 Sealing means
20 Inner member
21 Inner raceway surface
22 Inner raceway surface
23 Mounting hole
30 Hub wheel (first inner member)
31 Wheel mounting flange
33 Brake rotor mounting surface
40 Inner ring (second inner member)
50 rolling elements
70 Brake rotor
71 Braking surface
73 Braking surface
80 Rotation speed detection means
81 Encoder
82 Sensor section
100 constant velocity universal joint
110 Outer joint member (second inner member)
112 Stem
132 Slinger
S ring space

Claims (7)

内周に複列の軌道面を有する外方部材と、
外方部材のそれぞれの軌道面に対向する軌道面を有する内方部材と、
外方部材と内方部材との間に介在する複列の転動体と、
外方部材の内周と内方部材の外周との間の環状空間を閉鎖する密封手段とを備え、
外方部材及び内方部材のうち、回転側の部材に、ハブボルトを圧入するためのボルト孔を有する車輪取付けフランジを設け、
この車輪取付けフランジの側面をブレーキロータ取付け面とした車輪軸受装置において、
密封手段は、上記回転側の部材に固定されたスリンガを備え、
上記スリンガに取付けられ、多磁極を有するエンコーダと、エンコーダの回転で生じた磁束変化をセンシングするセンサ部とを備え、センサ部からの検出データに基いて上記回転側の部材の回転数を検出するABS用の回転速度検出手段を具備すると共に、
ブレーキロータ取り付け面を、ボルト孔に形成した面取りを除いて表面粗さRa3μm以下の平坦面とし、内方部材を、第一内側部材と、複列の軌道面のうちの少なくとも一方の軌道面を有し、第一内側部材と軸方向で突き合わせた第二内側部材とで構成し、
この内方部材と、外方部材と、転動体とで軸受装置を組み立てると共に、車輪取付けフランジのボルト孔にハブボルトを圧入し、この状態で、外方部材および内方部材のうち、固定側の部材を基準に回転駆動させた時のブレーキロータ取付け面の最大振れ幅が50μm以下であることを特徴とする車輪軸受装置。
An outer member having a double-row raceway surface on the inner periphery;
An inner member having a raceway surface facing each raceway surface of the outer member;
A double row rolling element interposed between the outer member and the inner member;
A sealing means for closing an annular space between the inner periphery of the outer member and the outer periphery of the inner member;
Among the outer member and the inner member, a wheel mounting flange having a bolt hole for press-fitting a hub bolt is provided on the rotation side member,
In the wheel bearing device in which the side surface of the wheel mounting flange is the brake rotor mounting surface,
The sealing means includes a slinger fixed to the rotary member.
An encoder that is attached to the slinger and has multiple magnetic poles, and a sensor unit that senses a change in magnetic flux generated by the rotation of the encoder, and detects the number of rotations of the rotation-side member based on detection data from the sensor unit. A rotational speed detection means for ABS is provided,
The brake rotor mounting surface is a flat surface with a surface roughness Ra of 3 μm or less except for chamfering formed in the bolt hole, and the inner member is the first inner member and at least one of the raceway surfaces of the double row. And comprising a first inner member and a second inner member abutted in the axial direction,
While assembling the bearing device with the inner member, the outer member, and the rolling element, a hub bolt is press-fitted into the bolt hole of the wheel mounting flange, and in this state, of the outer member and the inner member, A wheel bearing device, wherein a maximum runout width of a brake rotor mounting surface when the member is rotationally driven with reference to a member is 50 μm or less.
車輪取付けフランジを、内方部材に一体形成した請求項1記載の車輪軸受装置。  The wheel bearing device according to claim 1, wherein the wheel mounting flange is integrally formed with the inner member. 上記内方部材に、駆動軸を取り付けるための取付け孔を設けた請求項1または2記載の車輪軸受装置。  The wheel bearing device according to claim 1 or 2, wherein a mounting hole for mounting the drive shaft is provided in the inner member. 上記内方部材の他方の軌道面を、第一内側部材の外周に直接形成した請求項1または2記載の車輪軸受装置。  The wheel bearing device according to claim 1 or 2, wherein the other raceway surface of the inner member is formed directly on the outer periphery of the first inner member. 第二内側部材が等速自在継手の外側継手部材である請求項4記載の車輪軸受装置。  The wheel bearing device according to claim 4, wherein the second inner member is an outer joint member of a constant velocity universal joint. 上記外方部材に、車輪取付けフランジを一体に形成した請求項1記載の車輪軸受装置。  The wheel bearing device according to claim 1, wherein a wheel mounting flange is formed integrally with the outer member. 上記外方部材の内周に、軌道面を直接形成した請求項1〜6何れか記載の車輪軸受装置。  The wheel bearing device according to any one of claims 1 to 6, wherein a raceway surface is directly formed on an inner periphery of the outer member.
JP37327799A 1999-09-10 1999-12-28 Wheel bearing device Expired - Lifetime JP4306905B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP37327799A JP4306905B2 (en) 1999-12-28 1999-12-28 Wheel bearing device
US09/657,094 US6575637B1 (en) 1999-09-10 2000-09-07 Brake rotor and wheel bearing assembly
DE10044509.8A DE10044509B4 (en) 1999-09-10 2000-09-08 Brake disc and wheel bearing assembly
KR1020000053399A KR20010050398A (en) 1999-09-10 2000-09-08 Brake rotor and wheel bearing assembly
DE10066506.3A DE10066506B3 (en) 1999-09-10 2000-09-08 Wheel bearing arrangement
US10/372,200 US6959493B2 (en) 1999-09-10 2003-02-25 Brake rotor and wheel bearing assembly having maximum acceptable runout variation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37327799A JP4306905B2 (en) 1999-12-28 1999-12-28 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2001180212A JP2001180212A (en) 2001-07-03
JP4306905B2 true JP4306905B2 (en) 2009-08-05

Family

ID=18501893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37327799A Expired - Lifetime JP4306905B2 (en) 1999-09-10 1999-12-28 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP4306905B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6666303B2 (en) 2000-07-04 2003-12-23 Ntn Corporation Wheel bearing assembly
JP2003089302A (en) * 2001-09-18 2003-03-25 Ntn Corp Magnetic encoder and bearing for wheel having it
JP2003120703A (en) 2001-10-16 2003-04-23 Nsk Ltd Rotation support device for driving wheel with rotation detecting device
JP2006132547A (en) 2002-10-25 2006-05-25 Nsk Ltd Wheel bearing unit
JP2005067430A (en) * 2003-08-26 2005-03-17 Nsk Ltd Rolling bearing unit for supporting wheel
JP2005221003A (en) * 2004-02-05 2005-08-18 Nsk Ltd Bearing device for supporting wheel
JP2005331025A (en) * 2004-05-19 2005-12-02 Ntn Corp Bearing with sensor
JP4940727B2 (en) * 2006-03-30 2012-05-30 株式会社ジェイテクト Hub unit and hub unit manufacturing method
JP4895170B2 (en) * 2006-03-30 2012-03-14 株式会社ジェイテクト Hub unit and hub unit manufacturing method
JP2007230551A (en) * 2007-04-02 2007-09-13 Jtekt Corp Rolling bearing device
JP4627068B2 (en) * 2007-05-01 2011-02-09 Ntn株式会社 Quality control method of magnetic encoder
JP5045461B2 (en) 2008-01-30 2012-10-10 株式会社ジェイテクト Hub unit for vehicles
JP2008207803A (en) * 2008-03-24 2008-09-11 Jtekt Corp Bearing device and manufacturing method therefor
JP2012081817A (en) * 2010-10-08 2012-04-26 Ntn Corp Bearing device for wheel
JP5746905B2 (en) * 2011-04-28 2015-07-08 ミネベア株式会社 Pivot assembly bearing
JP7376439B2 (en) 2017-01-16 2023-11-08 住友重機械工業株式会社 Workpiece processing method
JP6759114B2 (en) * 2017-01-16 2020-09-23 住友重機械工業株式会社 How to process speed reducer and workpiece

Also Published As

Publication number Publication date
JP2001180212A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP4306905B2 (en) Wheel bearing device
EP1000772B1 (en) Automotive wheel bearing assembly and method for manufacturing the same
US6575637B1 (en) Brake rotor and wheel bearing assembly
US7731427B2 (en) Wheel bearing apparatus incorporated with a wheel speed detecting apparatus and method of its assembly
US20040170344A1 (en) Wheel bearing device
EP1736326B1 (en) Bearing unit for wheel and manufacturing method thereof
US8356943B2 (en) Bearing device for wheel
US7255014B2 (en) Wheel bearing apparatus incorporated with a wheel speed detecting apparatus
EP1939471A1 (en) Bearing device for wheel
JP4306903B2 (en) Wheel bearing device
EP2810789B1 (en) Bearing device for wheel
US7737682B2 (en) Wheel speed detecting apparatus and a wheel bearing apparatus incorporated with a wheel speed detecting apparatus
US20100040319A1 (en) Wheel Bearing Apparatus
JP5057553B2 (en) Wheel bearing device
JP2004090839A (en) Bearing device for driving wheel
JP4282191B2 (en) Wheel bearing device
JP2023037318A (en) Wheel bearing device
CN107107660B (en) Wheel bearing device
JP2003175702A (en) Bearing device for driving wheel
JP2017047716A (en) Bearing device for wheel
JP2008168797A (en) Bearing device for driving wheel
JP2006007910A (en) Bearing device for wheel
WO2013018868A1 (en) Wheel bearing device
JP2004068890A (en) Bearing device for driving wheel
JP2014134225A (en) Wheel bearing device with rotation speed detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070822

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Ref document number: 4306905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term