JP4306500B2 - InP substrate and manufacturing method thereof - Google Patents

InP substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4306500B2
JP4306500B2 JP2004071392A JP2004071392A JP4306500B2 JP 4306500 B2 JP4306500 B2 JP 4306500B2 JP 2004071392 A JP2004071392 A JP 2004071392A JP 2004071392 A JP2004071392 A JP 2004071392A JP 4306500 B2 JP4306500 B2 JP 4306500B2
Authority
JP
Japan
Prior art keywords
inp
substrate
ingot
manufacturing
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004071392A
Other languages
Japanese (ja)
Other versions
JP2004292308A (en
Inventor
浩章 吉田
智博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004071392A priority Critical patent/JP4306500B2/en
Publication of JP2004292308A publication Critical patent/JP2004292308A/en
Application granted granted Critical
Publication of JP4306500B2 publication Critical patent/JP4306500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、FeドープされたInP基板及びその製造方法に関するものである。   The present invention relates to an Fe-doped InP substrate and a method for manufacturing the same.

従来より、InP基板にFeをドープすると、基板が高抵抗化することが知られている。例を示すと、InP基板にFeをドープして、Fe濃度を1E16atoms/cm3以上にした場合には、そのInP基板は1E7Ωcm以上もの高い比抵抗を有することとなる。 Conventionally, it has been known that when an InP substrate is doped with Fe, the substrate has a high resistance. As an example, when the InP substrate is doped with Fe so that the Fe concentration is 1E16 atoms / cm 3 or more, the InP substrate has a high specific resistance of 1E7 Ωcm or more.

なお、InP基板等のIII−V族半導体結晶を作製するVB法、LEC法及びVCZ法においては、封止剤として一般に酸化ホウ素(B23)が利用されており、この封止剤を利用した化合物半導体結晶の製造方法については、例えば下記特許文献1及び特許文献2に記載されている。 Note that boron oxide (B 2 O 3 ) is generally used as a sealing agent in the VB method, the LEC method, and the VCZ method for producing a group III-V semiconductor crystal such as an InP substrate. About the manufacturing method of the compound semiconductor crystal utilized, it describes in the following patent document 1 and patent document 2, for example.

特開平10−36197号公報Japanese Patent Laid-Open No. 10-36197 特開昭57−7896号公報JP-A-57-7896

FeドープInP基板は、InP原料融液にFeをドーピングし単結晶を成長させることで得られる。この際、InP単結晶中のFe濃度(C)は次式のようになる。
C=kCo(1−g)k-1
ここで、kは偏析係数、CoはInP原料融液中のFeの初期濃度、gは固化率であり、gは成長開始時においては0で、成長終了時に1となる。
The Fe-doped InP substrate is obtained by doping a InP raw material melt with Fe and growing a single crystal. At this time, the Fe concentration (C) in the InP single crystal is expressed by the following equation.
C = kCo (1-g) k-1
Here, k is the segregation coefficient, Co is the initial concentration of Fe in the InP raw material melt, g is the solidification rate, and g is 0 at the start of growth and 1 at the end of growth.

Feの偏析係数は約0.001と極めて小さいため、単結晶中のFe濃度は、先に成長した結晶部分から後に成長した結晶部分になるに従って、次第に高濃度になってしまう。そのため、先に成長する結晶部分の比抵抗が1E7Ωcm以上になるようにFeをドーピングすると、後に成長する結晶部分ではFe濃度が固溶限界を超えて析出してしまい、基板の特性が著しく劣化してしまう。また、基板中のFeが、このInP基板上に積層されるエピタキシャル層に拡散してしまい、このエピタキシャル層が積層されたInP基板により作製されるデバイスの特性が劣化するという問題もあった。   Since the segregation coefficient of Fe is as extremely small as about 0.001, the Fe concentration in the single crystal gradually becomes higher as the crystal portion grows from the crystal portion grown earlier. For this reason, if Fe is doped so that the specific resistance of the crystal part that grows first becomes 1E7 Ωcm or more, the Fe concentration exceeds the solid solution limit in the crystal part that grows later, and the characteristics of the substrate deteriorate significantly. End up. Further, Fe in the substrate diffuses into the epitaxial layer laminated on the InP substrate, and there is a problem that the characteristics of a device manufactured by the InP substrate on which the epitaxial layer is laminated are deteriorated.

そこで、本発明は、上述の課題を解決するためになされたもので、ドープしたFeの析出が抑制されたInP基板及びその製造方法を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and an object thereof is to provide an InP substrate in which precipitation of doped Fe is suppressed and a method for manufacturing the same.

InP結晶中においてFeは、In原子位置にIn原子が存在しない原子空孔(以下、In空孔)を占有したときに電気的に活性に機能する。発明者らは、鋭意研究の末、封止剤に含まれる水を起源とするH原子が、このIn空孔を占有した場合にFeの活性化が阻害されることを見出した。このような状況では、高抵抗化に必要な濃度以上のFeをドーピングしなければならず、Feの析出が生じてしまう状況に陥りやすい。   In the InP crystal, Fe functions electrically when occupying atomic vacancies (hereinafter referred to as In vacancies) in which no In atom exists at the In atom position. As a result of diligent research, the inventors have found that the activation of Fe is inhibited when H atoms originating from water contained in the sealant occupy the In vacancies. In such a situation, Fe having a concentration higher than that necessary for increasing the resistance must be doped, and it is easy to fall into a situation where precipitation of Fe occurs.

そこで、本発明に係るInP基板の製造方法は、FeドープしたInP融液を封止剤で封止しつつInPインゴットを作製して、InP基板を作製するInP基板の製造方法であって、封止剤として、含有水分が200重量ppm以下の酸化ホウ素を用いることを特徴とする。   Therefore, the manufacturing method of the InP substrate according to the present invention is an InP substrate manufacturing method for manufacturing an InP substrate by manufacturing an InP ingot while sealing an Fe-doped InP melt with a sealing agent. Boron oxide having a moisture content of 200 ppm by weight or less is used as the stopper.

このInP基板の製造方法においては、含有水分量を200重量ppm以下にして、In空孔を占有するH原子の数を低減している。そのため、InP基板にドープされたFeの原子が、In原子に置換されやすくなるため、析出に至らないFe濃度のドーピングで高抵抗化を図ることができる。   In this InP substrate manufacturing method, the water content is set to 200 ppm by weight or less to reduce the number of H atoms occupying In vacancies. Therefore, since Fe atoms doped in the InP substrate are easily replaced with In atoms, high resistance can be achieved by doping with Fe concentration that does not lead to precipitation.

また、酸化ホウ素の含有水分が100重量ppm以下であることが好ましい。この場合、In空孔を占有するH原子の数がより低減されるため、Feの析出がさらに抑制される。   Moreover, it is preferable that the moisture content of a boron oxide is 100 weight ppm or less. In this case, since the number of H atoms occupying the In vacancies is further reduced, the precipitation of Fe is further suppressed.

また、InPインゴットをLEC(Liquid Encapusulated Czocharalski)法又はVCZ(Vapor pressure controlled Czocharalski)法により作製することが好ましい。   Moreover, it is preferable to produce an InP ingot by the LEC (Liquid Encapsulated Czocharalski) method or the VCZ (Vapor pressure controlled Czocharalski) method.

また、InPインゴットをVB法(縦型ボート法)により作製することが好ましい。VB法によってInPインゴットを作製する場合、封止剤の大部分がInP融液の上面を覆うことになるが、このInP融液の上面は高温となるため、封止剤中の水分は非常に蒸発しやすい状態となる。そのため、In空孔を占有するH原子の数が有意に減少するので、VB法によるInPインゴットの作製は、Fe析出の抑制に非常に有効であると考えられる。なお、本明細書中におけるVB法には、垂直ブリッジマン法と垂直温度勾配凝固法(VGF法)とが含まれる。   InP ingots are preferably produced by the VB method (vertical boat method). When an InP ingot is manufactured by the VB method, most of the sealant covers the upper surface of the InP melt, but the upper surface of the InP melt is at a high temperature, so the moisture in the sealant is very Evaporation is likely. Therefore, since the number of H atoms occupying In vacancies is significantly reduced, it is considered that the production of InP ingots by the VB method is very effective in suppressing Fe precipitation. Note that the VB method in this specification includes a vertical Bridgman method and a vertical temperature gradient solidification method (VGF method).

また、熱分解窒化ホウ素製の容器を用い、この容器にInPインゴットとなるべきInP融液及び封止剤を収容して、InPインゴットを作製することが好ましい。熱分解窒化ホウ素(pBN)は封止剤に溶け込まず、封止剤の含有水分が雰囲気へ蒸発するのを妨げないため、In空孔を占有するH原子の数が少なくなると考えられる。従って、Feの析出が有意に抑制される。一方、容器としては石英を用いることもできるが、石英が封止剤に容易に溶け込み、封止剤の含有水分が雰囲気中へ蒸発するのを妨げる。   In addition, it is preferable to use a pyrolytic boron nitride container, and to prepare an InP ingot by containing an InP melt and a sealant to be an InP ingot in this container. Pyrolytic boron nitride (pBN) does not dissolve in the sealant and does not prevent the moisture contained in the sealant from evaporating into the atmosphere, so the number of H atoms occupying In vacancies is considered to be small. Therefore, the precipitation of Fe is significantly suppressed. On the other hand, quartz can also be used as the container, but quartz is easily dissolved in the sealant and prevents moisture contained in the sealant from evaporating into the atmosphere.

また、InPインゴットのFe濃度が、InPインゴットの肩部において1E16atoms/cm未満であることが好ましい。 Further, the Fe concentration of the InP ingot is preferably less than 1E16 atoms / cm 3 at the shoulder of the InP ingot.

本発明に係るInP基板は、上記InP基板の製造方法によって作製されたことを特徴とする。   The InP substrate according to the present invention is manufactured by the above-described InP substrate manufacturing method.

このInP基板においては、上記の方法によって、基板中におけるFeの析出が抑制されている。従って、ドープしたFeが効率よく基板の高抵抗化に寄与するため、Feドープに対する歩留まりが向上している。   In this InP substrate, precipitation of Fe in the substrate is suppressed by the above method. Therefore, the doped Fe efficiently contributes to increasing the resistance of the substrate, and the yield with respect to Fe doping is improved.

また、波数が2316cm-1のときの吸収ピークを吸光度で示した場合に、この吸光度が0.1未満であることが好ましい。一般に、例えば、フーリエ変換赤外分光法により、波数が2316cm-1のときのピークは、H原子4個がIn空孔を占有した構造欠陥に係る吸収ピークであることが知られている。そして、そのピーク強度に対応する液体ヘリウム温度における吸収度が0.1未満である場合には、H原子がIn空孔を占有せず、Fe原子がIn空孔を占有しやすい状況にあるInP基板であると確認される。 Further, when the absorption peak when the wave number is 2316 cm −1 is indicated by absorbance, the absorbance is preferably less than 0.1. In general, for example, by Fourier transform infrared spectroscopy, it is known that the peak when the wave number is 2316 cm −1 is an absorption peak related to a structural defect in which four H atoms occupy In vacancies. When the absorbance at the liquid helium temperature corresponding to the peak intensity is less than 0.1, InP is in a situation where H atoms do not occupy In vacancies and Fe atoms easily occupy In vacancies. Confirmed to be a substrate.

本発明によれば、ドープしたFeの析出が抑制されたInP基板及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the InP board | substrate with which precipitation of the doped Fe was suppressed and its manufacturing method are provided.

以下、添付図面を参照して本発明に係るInP基板及びその製造方法の好適な実施の形態について詳細に説明する。なお、同一又は同等の要素については同一の符号を付し、説明が重複する場合にはその説明を省略する。   Hereinafter, preferred embodiments of an InP substrate and a manufacturing method thereof according to the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected about the same or equivalent element, and the description is abbreviate | omitted when description overlaps.

図1は、本発明の実施形態に係る基板製造装置の概略断面図である。この製造装置10は、VB法に適用される製造装置であり、縦型炉12は、高圧対応容器になっており、通常N2又はArが40〜50気圧印加される。 FIG. 1 is a schematic cross-sectional view of a substrate manufacturing apparatus according to an embodiment of the present invention. This manufacturing apparatus 10 is a manufacturing apparatus applied to the VB method, and the vertical furnace 12 is a high-pressure compatible container, and usually N 2 or Ar is applied at 40 to 50 atm.

縦型炉12中には、複数のヒータ18が設けられている。そのヒータ18の間には、pBN(熱分解窒化ホウ素)製のるつぼ20が収容されており、このるつぼ20内にはFeがドープされたInP融液22が入れられる。   A plurality of heaters 18 are provided in the vertical furnace 12. A crucible 20 made of pBN (pyrolytic boron nitride) is accommodated between the heaters 18, and an InP melt 22 doped with Fe is placed in the crucible 20.

るつぼ20内のInP融液22下部には種結晶24が設置されており、この種結晶24の露出面に整合するようにInP単結晶が成長する。また、InP融液22の液面は、溶融した封止剤26によって被覆されている。このようにInP融液22の上面を封止剤26で被覆することで、溶融状態のInPからPが蒸散するのを防止することができる。   A seed crystal 24 is provided below the InP melt 22 in the crucible 20, and an InP single crystal grows so as to match the exposed surface of the seed crystal 24. Further, the liquid surface of the InP melt 22 is covered with a molten sealant 26. Thus, by covering the upper surface of the InP melt 22 with the sealant 26, it is possible to prevent P from evaporating from the molten InP.

この封止剤26には、含有水分量が200重量ppmである酸化ホウ素(B23)が用いられている。なお、従来から多用されている封止剤は、含有水分量が250〜300重量ppm程度の酸化ホウ素である。すなわち、本実施形態においては、含まれる水分の量が低減された酸化ホウ素が用いられている。 For the sealant 26, boron oxide (B 2 O 3 ) having a moisture content of 200 ppm by weight is used. In addition, the sealing agent which has been frequently used conventionally is boron oxide having a water content of about 250 to 300 ppm by weight. That is, in the present embodiment, boron oxide in which the amount of moisture contained is reduced is used.

次に、FeがドープされたInP基板を、製造装置10を用いて作製する方法について説明する。   Next, a method for manufacturing an InP substrate doped with Fe using the manufacturing apparatus 10 will be described.

まず、種結晶24をるつぼ20底部に設置し、さらにInP多結晶体原料、Fe原料、上述の酸化ホウ素26をるつぼ20内に収容する。そして、ヒータ18でるつぼ20を加熱してInP多結晶原料、Fe原料及び酸化ホウ素を溶融した。溶融した酸化ホウ素26は、るつぼ20とInP融液22との間に厚さ1mmに満たない被膜26aとして存在し、その残りがInP融液22の液面を覆う。そして、複数のヒータ18を制御して、種結晶24に近いInP融液の温度が、種結晶24から遠いInP融液の温度より低くなるような温度勾配の状態を維持しつつ降温することで、InP単結晶インゴットを作製する。最後に、このインゴットをスライスして、FeがドープされたInP基板を得る。   First, the seed crystal 24 is placed on the bottom of the crucible 20, and the InP polycrystalline material, the Fe material, and the above-described boron oxide 26 are accommodated in the crucible 20. And the crucible 20 was heated with the heater 18, and the InP polycrystal raw material, Fe raw material, and boron oxide were fuse | melted. The molten boron oxide 26 exists as a coating 26 a having a thickness of less than 1 mm between the crucible 20 and the InP melt 22, and the remainder covers the liquid surface of the InP melt 22. Then, by controlling the plurality of heaters 18, the temperature of the InP melt near the seed crystal 24 is lowered while maintaining a temperature gradient state such that the temperature of the InP melt far from the seed crystal 24 is lower. Then, an InP single crystal ingot is prepared. Finally, this ingot is sliced to obtain an InP substrate doped with Fe.

上述のように、水分含有量が200重量ppmである場合、封止剤に含まれる水のH原子が、InPのIn空孔を占有しにくい。上述したように、発明者らは、封止剤に含まれる水のH原子がIn空孔を占有し、Feの活性化が阻害されていることを見出し、封止剤に含まれる水分の量をこのように従来に比べて低減させた。それにより、H原子によってFe原子がIn空孔を占有することを妨害するのを抑制することができ、InP基板にドープされたFeの原子が活性化されやすくなる。従って、上述の方法において作製されたInP基板は、高抵抗化に必要な濃度だけFeをドープすることで、Feの析出が有意に抑制され、従来より低濃度のFeドープによる高抵抗化が実現されている。   As described above, when the water content is 200 ppm by weight, H atoms of water contained in the sealant hardly occupy In vacancies in InP. As described above, the inventors have found that the H atoms of water contained in the sealant occupy In vacancies and the activation of Fe is inhibited, and the amount of moisture contained in the sealant Thus, compared with the past, it reduced. Accordingly, it is possible to prevent the H atom from blocking the Fe atom from occupying the In vacancy, and the Fe atom doped in the InP substrate is easily activated. Therefore, the InP substrate manufactured by the above method is doped with Fe only at the concentration required for high resistance, so that the precipitation of Fe is significantly suppressed, and high resistance is achieved by doping Fe at a lower concentration than before. Has been.

すなわち、従来は、InPインゴットの肩部のFe濃度を1E16atoms/cm以上にすることで、1E7Ωcmの抵抗値を有するInPインゴットを作製していたが、上述した方法を採用することにより、InPインゴットの肩部のFe濃度が1E16atoms/cm未満であっても、1E7Ωcm以上の抵抗値を有するInPインゴットを作製することができる。なお、本明細書におけるインゴットの肩部とは、インゴット30の直胴部30aのうち、最も種結晶24に近い部分30bを示し、この肩部30bはインゴット成長の際の比較的初期の段階に形成される部分である(図2参照)。 That is, in the past, an InP ingot having a resistance value of 1E7 Ωcm was produced by setting the Fe concentration at the shoulder of the InP ingot to 1E16 atoms / cm 3 or more. However, by adopting the above-described method, the InP ingot was produced. Even if the Fe concentration in the shoulder portion is less than 1E16 atoms / cm 3 , an InP ingot having a resistance value of 1E7 Ωcm or more can be produced. In the present specification, the shoulder portion of the ingot refers to a portion 30b closest to the seed crystal 24 in the straight body portion 30a of the ingot 30, and the shoulder portion 30b is in a relatively early stage during ingot growth. It is a part to be formed (see FIG. 2).

なお、上述した例では、VB法によるInP基板の製造方法について示したが、封止剤が用いられるLEC(Liquid Encapusulated Czocharalski)法及びVCZ(Vapor pressure controlled Czocharalski)法によるInP基板の製造方法においても、上述と同様の理由により、水分含有量の低減された酸化ホウ素を封止剤として用いることにより、作製されるInP基板におけるFeの析出が抑制されることは言うまでもない。すなわち、VB法、LEC法及びVCZ法のいずれかの方法により、FeドープしたInP融液を封止剤で封止しつつInPインゴットを作製して、InP基板を作製するInP基板の製造方法であって、封止剤として、含有水分が200重量ppm以下の酸化ホウ素を用いるInP基板の製造方法によれば、作製されるInP基板におけるFeの析出が抑制される。   In the above-described example, the method of manufacturing the InP substrate by the VB method has been described. However, the LEC (Liquid Encapsulated Czocharalski) method and the VCZ (Vapor pressure controlled Czocharalski) method using an encapsulant are also used in the method of manufacturing the InP substrate by the VZ method. For the same reason as described above, it goes without saying that the precipitation of Fe in the manufactured InP substrate is suppressed by using boron oxide having a reduced water content as a sealing agent. That is, an InP substrate manufacturing method in which an InP ingot is manufactured by sealing an Fe-doped InP melt with a sealing agent by any one of the VB method, the LEC method, and the VCZ method. And according to the manufacturing method of the InP board | substrate which uses a boron oxide whose content moisture is 200 weight ppm or less as a sealing agent, precipitation of Fe in the produced InP board | substrate is suppressed.

以下、本発明の効果をより一層明らかなものとするため、実施例を示す。   Hereinafter, examples will be shown in order to further clarify the effects of the present invention.

上述したVB法により、6E15atoms/cm3のFe濃度を有するInP単結晶を作製した。その際に、含有水分量が異なる4種類の酸化ホウ素を封止剤として用意し、それぞれを用いて上記InP基板を4つ作製した。すなわち、含有水分量が500重量ppmである封止剤A、含有水分量が300重量ppmである封止剤B、含有水分量が200重量ppmである封止剤C、含有水分量が100重量ppmである封止剤Dを用いてInP基板を作製した。そして、4つの基板それぞれからウェハを切り出して表面研磨し、それらの各ウェハからチップを切り出してファンデルポー(van del Pauw)法により比抵抗を測定した。この測定結果を以下の表1に示す。

Figure 0004306500
An InP single crystal having an Fe concentration of 6E15 atoms / cm 3 was produced by the VB method described above. At that time, four types of boron oxides having different moisture contents were prepared as sealants, and four of the above InP substrates were produced using each. That is, a sealing agent A having a moisture content of 500 ppm by weight, a sealing agent B having a moisture content of 300 ppm by weight, a sealing agent C having a moisture content of 200 ppm by weight, and a moisture content of 100 wt. An InP substrate was produced using the sealant D of ppm. Then, wafers were cut out from each of the four substrates and subjected to surface polishing, chips were cut out from the respective wafers, and the specific resistance was measured by van der Pauw method. The measurement results are shown in Table 1 below.
Figure 0004306500

表1から明らかなように、封止剤C及び封止剤Dを用いて作製されたInP基板の比抵抗値は、いずれも半絶縁性領域である1E7(Ωcm)以上であった。すなわち、含有水分量が200重量ppm以下の酸化ホウ素を封止剤として利用することにより、作製されるInP基板の比抵抗を半絶縁性領域以上に増加することができる。これは、含有水分量が200重量ppmの酸化ホウ素(封止剤C)及び含有水分量が100重量ppmの酸化ホウ素(封止剤D)を用いた場合においては、基板内においてFeが、H原子に妨害されることなくIn空孔を占有して、活性化しためであると考えられる。すなわち、Feが効率よく基板の高抵抗化に寄与しており、Feドープに対する歩留まりが向上している。   As is apparent from Table 1, the specific resistance value of the InP substrate manufactured using the sealing agent C and the sealing agent D was 1E7 (Ωcm) or more, which is a semi-insulating region. That is, by using boron oxide having a moisture content of 200 ppm by weight or less as a sealant, the specific resistance of the manufactured InP substrate can be increased to a semi-insulating region or more. In the case where boron oxide (sealing agent C) having a moisture content of 200 ppm by weight and boron oxide (sealing agent D) having a moisture content of 100 ppm by weight are used, Fe is H in the substrate. It is thought that this is because the In vacancies are occupied and activated without being interrupted by atoms. That is, Fe contributes to the high resistance of the substrate efficiently, and the yield with respect to Fe doping is improved.

なお、含有水分量が200重量ppmの酸化ホウ素(封止剤C)の比抵抗より、含有水分量が100重量ppmの酸化ホウ素(封止剤D)の比抵抗の方が高いことから、封止剤の含有水分量が低い程、比抵抗が高くなることがわかる。そのため、比抵抗の高いInP基板を作製したい場合には、なるべく含有水分量の少ない封止剤を用いることがFeの析出を回避する上で好ましい。   Since the specific resistance of boron oxide (sealing agent D) with a water content of 100 ppm by weight is higher than the specific resistance of boron oxide (sealing agent C) with a water content of 200 ppm by weight, sealing It can be seen that the lower the water content of the stopper, the higher the specific resistance. Therefore, when it is desired to produce an InP substrate having a high specific resistance, it is preferable to use a sealant with as little water content as possible in order to avoid precipitation of Fe.

さらに、上述した4つのウェハそれぞれの、比抵抗測定用チップを切り出した領域の近接領域から、厚さ3800μmのブロックを切り出し、それらの両面を鏡面研磨して、赤外分光分析の試料とした。この分析結果を以下の表2に示す。なお、この赤外分光分析は、フーリエ変換赤外分光法(FT−IR)を用い、光源にはSiCを、検出器にはMCTを、ビームスプリッタにはGe/KBrを用いた。なお、分解能は0.04cm-1、積算回数は128回とし、アポダイゼーションは三角形、測定温度は10Kとした。

Figure 0004306500
Further, a block having a thickness of 3800 μm was cut out from a region adjacent to the region where the specific resistance measurement chip was cut out of each of the four wafers described above, and both surfaces thereof were mirror-polished to obtain samples for infrared spectroscopic analysis. The analysis results are shown in Table 2 below. The infrared spectroscopic analysis used Fourier transform infrared spectroscopy (FT-IR), SiC as the light source, MCT as the detector, and Ge / KBr as the beam splitter. The resolution was 0.04 cm −1 , the number of integrations was 128, the apodization was a triangle, and the measurement temperature was 10K.
Figure 0004306500

この表2において、吸光度とは、波数2316cm-1におけるピーク強度から算出される値である。従来より、波数2316cm-1におけるピークは、H原子4個がIn空孔を占有した構造欠陥による吸光ピークであることが広く知られている。すなわち、表2の吸光度が小さい程、その構造欠陥が生じていないこととなり、H原子がIn空孔を占有していないこととなる。そして、半絶縁性領域以上の比抵抗値を有するInP基板の作製に利用可能な封止剤C及び封止剤Dはいずれも、吸光度が0.1未満となっている。このことから、波数2316cm-1におけるピーク強度から吸光度を算出して、その吸光度が0.1未満である場合には、Feの析出を起こすことなく、半絶縁性結晶になりやすい結晶であると推測される。 In Table 2, the absorbance is a value calculated from the peak intensity at a wave number of 2316 cm −1 . Conventionally, it is widely known that the peak at a wave number of 2316 cm −1 is an absorption peak due to a structural defect in which four H atoms occupy In vacancies. That is, as the absorbance in Table 2 is smaller, the structural defect is not generated, and the H atom does not occupy the In vacancy. And both the sealing agent C and sealing agent D which can be utilized for preparation of the InP board | substrate which has a specific resistance value more than a semi-insulating area | region have the light absorbency less than 0.1. From this, the absorbance is calculated from the peak intensity at a wave number of 2316 cm −1, and when the absorbance is less than 0.1, the crystal is likely to be a semi-insulating crystal without causing Fe precipitation. Guessed.

本発明の実施形態に係る製造装置の概略断面図である。It is a schematic sectional drawing of the manufacturing apparatus which concerns on embodiment of this invention. インゴットの肩部を説明するための図でる。It is a figure for demonstrating the shoulder part of an ingot.

符号の説明Explanation of symbols

10…製造装置、20…るつぼ、22…InP融液、24…種結晶、26…封止剤、30…インゴット、30b…肩部。
DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus, 20 ... Crucible, 22 ... InP melt, 24 ... Seed crystal, 26 ... Sealant, 30 ... Ingot, 30b ... Shoulder part.

Claims (6)

FeドープしたInP融液を封止剤で封止しつつInPインゴットを作製して、InP基板を作製するInP基板の製造方法であって、
前記封止剤として、含有水分が200重量ppm以下の酸化ホウ素を用い、
前記InPインゴットは、その肩部におけるFe濃度が1×1016atoms/cm未満であり、かつ前記肩部における比抵抗が1×10Ω以上である、InP基板の製造方法。
An InP substrate production method for producing an InP substrate by producing an InP ingot while sealing an Fe-doped InP melt with a sealant,
As the sealant, using boron oxide having a moisture content of 200 ppm by weight or less,
The InP ingot is a method of manufacturing an InP substrate, wherein the Fe concentration in the shoulder portion is less than 1 × 10 16 atoms / cm 3 and the specific resistance in the shoulder portion is 1 × 10 7 Ω or more.
前記酸化ホウ素の含有水分が100重量ppm以下である、請求項1に記載のInP基板の製造方法。   The manufacturing method of the InP board | substrate of Claim 1 whose moisture content of the said boron oxide is 100 weight ppm or less. 前記InPインゴットをLEC法又はVCZ法により作製する、請求項1又は2に記載のInP基板の製造方法。   The method for producing an InP substrate according to claim 1 or 2, wherein the InP ingot is produced by an LEC method or a VCZ method. 前記InPインゴットをVB法により作製する、請求項1又は2に記載のInP基板の製造方法。   The method of manufacturing an InP substrate according to claim 1, wherein the InP ingot is manufactured by a VB method. 熱分解窒化ホウ素製の容器を用い、この容器に前記InPインゴットとなるべきInP融液及び前記封止剤を収容して、前記InPインゴットを作製する、請求項1〜4のいずれか一項に記載のInP基板の製造方法。   The container according to any one of claims 1 to 4, wherein a container made of pyrolytic boron nitride is used, and the InP melt to be the InP ingot and the sealant are accommodated in the container to produce the InP ingot. The manufacturing method of the InP board | substrate of description. 請求項1〜5のいずれか一項に記載のInP基板の製造方法によって作成された前記InPインゴットをスライスして得られる、Fe濃度が1×10 16 atoms/cm 未満であり、かつ比抵抗が1×10 Ω以上である、InP基板。
An Fe concentration obtained by slicing the InP ingot produced by the method for producing an InP substrate according to claim 1, wherein the Fe concentration is less than 1 × 10 16 atoms / cm 3 and the specific resistance. Is an InP substrate having 1 × 10 7 Ω or more .
JP2004071392A 2003-03-13 2004-03-12 InP substrate and manufacturing method thereof Expired - Fee Related JP4306500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071392A JP4306500B2 (en) 2003-03-13 2004-03-12 InP substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003068367 2003-03-13
JP2004071392A JP4306500B2 (en) 2003-03-13 2004-03-12 InP substrate and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008110459A Division JP5088219B2 (en) 2003-03-13 2008-04-21 InP substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004292308A JP2004292308A (en) 2004-10-21
JP4306500B2 true JP4306500B2 (en) 2009-08-05

Family

ID=33421640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071392A Expired - Fee Related JP4306500B2 (en) 2003-03-13 2004-03-12 InP substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4306500B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327895A (en) * 2005-05-27 2006-12-07 Sumitomo Electric Ind Ltd Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel
JP4585479B2 (en) * 2006-03-30 2010-11-24 株式会社東芝 Server apparatus and video distribution method
JP2010202504A (en) * 2009-02-09 2010-09-16 Sumitomo Electric Ind Ltd Method for producing group iii-v compound semiconductor crystal, method for manufacturing group iii-v compound semiconductor substrate, and group iii-v compound semiconductor substrate

Also Published As

Publication number Publication date
JP2004292308A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP3242965B1 (en) Method for growing beta phase of gallium oxide (beta-ga2o3) single crystals from the melt contained within a metal crucible by controlling the o2 partial pressure.
US11225731B2 (en) Large aluminum nitride crystals with reduced defects and methods of making them
JP5815184B2 (en) Ingot and silicon wafer
KR102140604B1 (en) METHOD FOR GROWING β-Ga₂O₃BASED SINGLE CRYSTAL
US9732438B2 (en) Method for producing a vanadium-doped silicon carbide volume monocrystal, and vanadium-doped silicon carbide substrate
Syväjärvi et al. Liquid phase epitaxial growth of SiC
US20200115817A1 (en) Production apparatus for gallium oxide crystal, production method for gallium oxide crystal, and crucible for growing gallium oxide crystal used therefor
KR20180037204A (en) Manufacturing method of SiC single crystal
JP4306500B2 (en) InP substrate and manufacturing method thereof
US4196171A (en) Apparatus for making a single crystal of III-V compound semiconductive material
JP5088219B2 (en) InP substrate and manufacturing method thereof
JP2529934B2 (en) Single crystal manufacturing method
WO2024070239A1 (en) Method for growing single crystal, method for producing semiconductor substrate, and semiconductor substrate
RU2308784C1 (en) Substrate for growing gallium arsenide epitaxial layers
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP4691909B2 (en) Manufacturing method of semiconductor crystal
JP5429022B2 (en) GaAs crystal and method for producing GaAs crystal
JPS5934679B2 (en) Uniform impurity doping method and device using liquid capsule method
US10815586B2 (en) Gallium-arsenide-based compound semiconductor crystal and wafer group
JP2010030868A (en) Production method of semiconductor single crystal
JPS6111920B2 (en)
JPH06329492A (en) Production of gaas compound semiconductor crystal
JP2004059364A (en) Process for preparing gallium arsenide single crystal
JP2005162500A (en) MANUFACTURING METHOD OF InP SINGLE CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

R150 Certificate of patent or registration of utility model

Ref document number: 4306500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees