JP4303821B2 - Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer - Google Patents

Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer Download PDF

Info

Publication number
JP4303821B2
JP4303821B2 JP02248999A JP2248999A JP4303821B2 JP 4303821 B2 JP4303821 B2 JP 4303821B2 JP 02248999 A JP02248999 A JP 02248999A JP 2248999 A JP2248999 A JP 2248999A JP 4303821 B2 JP4303821 B2 JP 4303821B2
Authority
JP
Japan
Prior art keywords
titanium alloy
phase
tic
alloy composite
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02248999A
Other languages
Japanese (ja)
Other versions
JP2000219924A (en
Inventor
勝 小林
國男 船見
Original Assignee
勝 小林
國男 船見
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝 小林, 國男 船見 filed Critical 勝 小林
Priority to JP02248999A priority Critical patent/JP4303821B2/en
Publication of JP2000219924A publication Critical patent/JP2000219924A/en
Application granted granted Critical
Publication of JP4303821B2 publication Critical patent/JP4303821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【産業上の利用分野】
本発明は高強度、高硬度、高弾性率、高耐摩耗性を発揮するニヤβのα,β二相マトリックス若しくはβ相マトリックスにTiC化合物を分散させたTiC分散チタン合金複合材料の形成方法及びTiC分散チタン合金複合層の形成方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来から、チタン合金の高強度化、高硬度化、高弾性率化のために、α,β二相のチタン合金マトリックスに、TiC(特開平5−5138号参照),TiN(特開平5−5138号参照),若しくはTiB(特開平8−311586号参照)を粉末治金法若しくは反応焼結法によって分散させるという技術が提案されている。
【0003】
また、チタン合金の高耐摩耗性化のために、α,β二相のチタン合金に、W2C,TiC,Cr32,NbCを粉末治金法若しくは反応焼結法によって分散させるという技術も提案されている。この場合W2CとCr32の配合が良好な耐摩耗性を示すとされている(資料、高橋浩、岡田稔、志田善明、中西睦夫:鉄と鋼、77−8(1991)、1336〜1343)。
【0004】
本発明は、β相に近い組成のα,β二相チタン合金(ニアβ相のチタン合金)若しくはβ相チタン合金に粒状のTiC化合物を微細,均一に晶出若しくは生成させ、高強度化、高硬度化、高弾性率化、高耐摩耗性化を達成させることを課題とするものである。
【0005】
【課題を解決するための手段】
本発明の要旨を説明する。
【0006】
ニヤβ相のα,β二相チタン合金粉末若しくはβ相のチタン合金粉末に金属炭化物粉末として粒径0.5〜10μmのMo2C,VC,Fe3C,Ni3Cを混合し、圧粉加熱して焼結し、粒状のTiC化合物をニヤβ相のチタン合金マトリックス若しくはβ相のチタン合金マトリックス中に晶出させることを特徴とするTiC分散チタン合金複合材料の形成方法に係るものである。
【0007】
また、請求項1記載のTiC分散チタン合金複合材料の形成方法において、前記金属炭化物粉末を1〜20vol%混合することを特徴とするTiC分散チタン合金複合材料の形成方法に係るものである。
【0008】
また、請求項1,2のいずれか1項に記載のTiC分散チタン合金複合材の形成方法において、前記ニヤβ相のα,β二相チタン合金若しくは前記β相のチタン合金粉末として、Ti−6Al−4V,Ti−6Al−6V−2Sn,Ti−6Al−2Sn−4Zr−6Mo,Ti−10V−2Fe−3Al,Ti−4.5Al−3V−2Mo−2Fe,Ti−13V−11Cr−3Al,Ti−8V−8Mo−2Fe−3Alのいずれか1種の、粒径50μm以下の大きさの粉末を採用したことを特徴とするTiC分散チタン合金複合材の形成方法に係るものである。
【0009】
また、請求項1〜3のいずれか1項に記載のTiC分散チタン合金複合材の形成方法により形成した粒状のTiC化合物を有するニヤβ相のα,β二相チタン合金複合材若しくはβ相のチタン合金複合材を、チタン合金の所望箇所の表面に拡散接合させることを特徴とするTiC分散チタン合金複合層の形成方法に係るものである。
【0010】
また、請求項1〜3のいずれか1項に記載のTiC分散チタン合金複合材の形成方法により形成した粒状のTiC化合物を有するニヤβ相のα,β二相チタン合金複合材若しくはβ相のチタン合金複合材を、水素脆化後粉砕した粉末をチタン合金の所望箇所の表面にプラズマ、電子ビーム若しくはレーザを用いて溶射することを特徴とするTiC分散チタン合金複合層の形成方法に係るものである。
【0011】
【発明の作用及び効果】
高強度化、高硬度化、高弾性率化、高耐摩耗性化のためチタン合金の分散強化材としてはTiC,TiN,TiBなどが有効であるが、特に耐摩耗性や耐疲労特性さらに靱性付与のためにはこれらの分散強化材となじみ性のよいマトリックスでなければならず、マトリックスとしてはβ相が多いα,β二相の組織(ニヤβ相)若しくはβ相の組織が好ましい。
【0012】
従来の技術で示すW2CおよびCr32は、α,β二相のチタン合金マトリックスに対してTiCを反応生成すると同時に、生成するWおよびCrはβ相域拡大に役立ち、ニヤβ相化若しくはβ相一相化に役立つが、β相域拡大に限界があり、TiCr2の有害な粗大化合物を生成する。
【0013】
本発明でいうMo2C,VCは生成するMoおよびVが固溶体となってβ相域拡大に大幅に役立ち、β相化を容易にし、微細なTiCの生成に役立つ。また、Fe3C,Ni3Cはβ相域を大幅に拡大させないが、生成するFeおよびNiはTiに対してTi2Fe,Ti2Niなどの金属間化合物を生成し、Mo2C,VC添加材より低温での焼結を可能とする。
【0014】
本発明は金属学的結晶構造が最密六方晶であるα相と体心立方晶であるβ相の二相よりなるチタン合金でβ相が相対的に多いニヤβ相若しくはβ相をマトリックスとし、その結晶粒内および粒界にチタンの化合物であるTiC化合物の粒子を反応焼結によって微細かつ均一に体積率で20%以下で含有せしめることを特徴とするものである。
【0015】
ニヤβ相チタン合金若しくはβ相チタン合金は、粒径50μm以下の大きさにし、反応焼結以前に配合する炭素若しくは金属炭化物粉末は0.5〜5μm程度にした両者を均一に混合することが両者の反応焼結による複合を均一な分布にする。
【0016】
上記反応焼結においては、溶解することなく反応生成物のTiC化合物を晶出形成させる必要があることから、900〜1200℃の範囲の適切な温度を選択する必要がある。
【0017】
この反応焼結体は、微細な焼結組織をとることから、900〜1000℃温度範囲において超塑性現象を示し、10-3〜10-4Sのひずみ速度で破壊することなく変形が可能であり、高硬性、高耐摩耗性のチタン合金歯車,ベヤリングなどの機械摺動部品の形状を可能とする。
【0018】
また上記ニヤβ相若しくはβ相のTiC分散チタン合金複合材料をチタン合金にプラズマ,電子ビームあるいはレーザを用いて溶射,溶着するためにはこれを粉砕する必要があるが、この反応焼結体は高硬度であるため、600〜800℃水素中で加熱して脆化させると打撃によって破砕することが可能となる。
【0019】
さらに、板状チタン合金板の端縁,棒状チタン合金棒端面若しくはチタン合金歯車などのような各種チタン合金製品、または、ベヤリングのような機械摺動部品の表面に上記のニヤβ相若しくはβ相のTiC分散チタン合金複合材料粉末をプラズマ、電子ビームあるいはレーザを用い、溶射あるいは溶解することによって溶着させ、さらに溶着を確実にするため熱処理を施することによって高硬度、耐摩耗のチタン合金刃物、チタン合金製品若しくは機械摺動部品を得ることが可能となる。特に耐摩耗に対してはマトリックスがβ相一相であることが望ましい。
【0020】
チタン合金のヤング率は12000kgf/mm2であり、TiC単体のヤング率は46000kgf/mm2であるから、10vol%TiC含有の複合材料のヤング率は理論的には15400kgf/mm2になるが、TiC粒状晶の分布の多少のばらつきを考えねばならない。しかし、13500kgf/mm2程度は確保できる。
【0021】
【実施例】
本発明の実施例について具体的に説明する。
【0022】
1.ニヤβ相のα,β二相チタン合金およびβ相のチタン合金とTiC化合物粒子との
複合材料の製作。
【0023】
Ti−6Al−4Vの組成の平均粒径約45μmのα,β二相のチタン合金粉若しくはTi−4.5Al−3V−2Mo−2Feの組成の平均粒径約45μmのニヤβ相のα,β二相チタン合金粉若しくはTi−3Al−8V−8Mo−2Feの組成の平均粒径約45μmのβ相チタン合金粉に平均粒径約1.5μmのMo2C,VC,Fe3C,Ni3Cのいずれかを1〜20vol%配合し、酸素ガスを全く含まないアルゴン雰囲気中遊星回転ボールミルで毎分180回転の速度のもと2時間混合する。この混合粉を5×10×50mmのくぼみを有する金型に装填し、4000kg/cmの荷重を加えて圧粉し、その圧粉体を眞空中で、Mo2C,VCの場合には1200℃、2h、Fe3C,Ni3Cの場合には900℃、2h加熱して焼結体を得る。
【0024】
この焼結過程において圧粉体内で、下記化1の反応が起こり、焼結体内に粒状のTiC化合物が微細かつ均一に分散することになる。また、反応によって生じたMo,V,Fe,Niはチタン合金母相中に溶け込み、β相のチタン合金はβ相一相に、ニヤβ相のチタン合金はβ相一相に、α,β二相のTi−6Al−4Vもニヤβ相に変化する。
【0025】
【化1】

Figure 0004303821
【0026】
反応焼結体はさらに熱間静水圧プレス機でアルゴン雰囲気中で、Mo2C,VC添加の場合は1200℃、2000気圧、2h、Fe3C,Ni3C 添加の場合は900℃、2000気圧、2h加熱されるか、または、反応焼結体を鉄板で眞空パックし、低速圧延機で空気中で、Mo2C,VC添加の場合は1050℃、Fe3C,Ni3C添加の場合は850℃、圧下量約50%熱間圧延を与える。これによって眞密度99.5%以上のバルク材が得られる。
【0027】
以上の工程をフローチャートで図1に示す。
【0028】
ここで得られた(Ti−6Al−4V)−TiC複合材料のビッカース硬さおよび引張強さを炭化物Mo2C添加量との関係で示すと、図2及び3に示すようになる。また、ピンオンディスク摩耗試験における5km摩耗量をTi−6Al−4Vのみの焼結体および耐摩耗のステライトNo.1との比較において示すと図4に示すようになり、15vol%Mo2CおよびVCを配合した反応焼結体で、熱間静水圧したものはステライトNo.1に非常に近い耐摩耗性を示す。
【0029】
この耐摩耗性の原因は15vol%Mo2C配合材では、図5および6から分かるように母相はβ相一相で内部に微細で硬い粒状のTiC化合物を生ずるからであると考えられる。
【0030】
2.反応焼結によって得たTiC化合物を含有するニヤβ相のα,β二相チタン合金若
しくはβ相のチタン合金複合材をチタン合金に拡散接合させた一体化材の製作。
【0031】
図1に示すように、反応焼結をおこなったTiC化合物を含有するニヤβ相のα,β二相チタン合金若しくはβ相のチタン合金の眞空焼結体をTi−6Al−4V板状に図7に示すように接触,加圧して、眞空中若しくは不活性ガス雰囲気中900℃、1〜2h加熱して拡散,接合させる。
【0032】
3.プラズマ溶射用のTiC化合物を含むβ相のチタン合金複合粉の製作とプラズマ溶
射。
【0033】
図1に示すように反応焼結を行ったTiC化合物を含有するニヤβ相のα,β二相チタン合金若しくはβ相のチタン合金複合組織よりなる眞空焼結体を水素炉中600〜800℃、2h加熱することによって脆化させた後、乳鉢で粉砕して粒径約45μmの粉体を得る。これをプラズマトーチに供給し、Ti−6Al−4V丸棒の端面にプラズマ溶射を行った。約400μm厚さに溶射を行った後、気孔を消滅させたり組織を均一化するため、眞空中900℃、2hの熱処理を行った。
【0034】
プラズマ溶射被膜のビッカース硬さは図8に示すとおりであり、15vol%Mo2C配合材のTiCを含有するβ相チタン合金複合粉をプラズマ溶射した場合の熱処理材はビッカース硬さ700以上を示した。
【0035】
また、ピンオンディスク摩耗試験における10km累積摩耗量は、15vol%Mo2C配合の場合はステライトNo.1に近い摩耗量で、高い耐摩耗性を示した。
【0036】
4.TiC化合物を含有するβ相チタン合金複合物をプラズマ溶射した刃物の製作。
【0037】
図1に示すように反応焼結を行ったTiC化合物を含有するニヤβ相のα,β二相チタン合金若しくはβ相のチタン合金複合組織よりなる眞空焼結体を水素炉中600〜800℃、2h加熱することによって脆化させた後、乳鉢で粉砕して粒径約45μmの粉体を得る。これをプラズマトーチに供給し、短冊状Ti−6Al−4V刃材縁にプラズマ溶射を行った。溶射を行った後、気孔を消滅させたり、組織を均一化するため眞空中900℃、2hの熱処理を行った。
【0038】
その後目的とする刃先形状に研磨を行って刃物1を仕上げた。
【0039】
5.反応焼結によって得たTiC化合物を含有するβ相チタン合金複合組織による歯車

【0040】
Ti−6Al−4Vの組織の平均粒径約45μmのα,β二相チタン合金粉に平均粒径約1.5μmのMo2C若しくはVCを15vol%配合し、酸素ガスを全く含まないアルゴン雰囲気中遊星ボールミルで毎分180回転の速度のもと2時間混合した。この混合粉を歯車粉を歯車金型に装填し、4000kg/cm2の荷重を加えて圧粉し、その圧粉体を眞空中で、Mo2C,VC添加の場合には1200℃、2h、Fe3C,Ni3C添加の場合は900℃、2h加熱して図10に示すように焼結体を得た。圧粉体内では前述の反応が起こり、焼結体内にTiC化合物が微細かつ均一に分散し、直径で3〜4%の収縮を起こす。
【0041】
この焼結体は微細な焼結組織をとることから、超塑性現象を示すので、900℃で10-3〜10-4Sのひずみ速度で破壊することなく、同一金型を用いて圧縮形成することができ、目的の歯車形状のものを得ることができた。
【0042】
また、図10に示すように歯車2形状のTi−6Al−4V歯表面に上述4に示すと同様のβ相チタン合金複合物をプラズマ溶射して図10に示す歯車3を得ることできた。
【図面の簡単な説明】
【図1】 本実施例の工程フローチャートである。
【図2】 本実施例に係る複合材料のビッカース硬さを示すグラフである。
【図3】 本実施例に係る複合材料の引張り強さを示すグラフである。
【図4】 本実施例の耐摩耗性を示すグラフである。
【図5】 本実施例の組織の説明図(顕微鏡写真のコピー)である。
【図6】 本実施例の組織のX線回折説明図である。
【図7】 本実施例の工程説明図である。
【図8】 本実施例のプラズマ溶射被膜のビッカース硬さを示す表である。
【図9】 本実施例の工程説明図である。
【図10】 本実施例を歯車に適用した場合の説明図である。[0001]
[Industrial application fields]
The present invention relates to a method for forming a TiC-dispersed titanium alloy composite material in which a TiC compound is dispersed in a near β α, β two-phase matrix or β-phase matrix exhibiting high strength, high hardness, high elastic modulus, and high wear resistance, and The present invention relates to a method for forming a TiC-dispersed titanium alloy composite layer.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, TiC (refer to Japanese Patent Laid-Open No. 5-5138), TiN (Japanese Patent Laid-Open No. 5-5138) are used as an α and β two-phase titanium alloy matrix in order to increase the strength, hardness and elasticity of titanium alloys. No. 5138) or TiB (see JP-A-8-311586) has been proposed to disperse by powder metallurgy or reaction sintering.
[0003]
In addition, in order to increase the wear resistance of titanium alloys, W 2 C, TiC, Cr 3 C 2 , and NbC are dispersed in α, β two-phase titanium alloys by a powder metallurgy method or a reactive sintering method. Technology has also been proposed. In this case, the combination of W 2 C and Cr 3 C 2 is said to show good wear resistance (document, Hiroshi Takahashi, Kei Okada, Yoshiaki Shida, Ikuo Nakanishi: Iron and Steel, 77-8 (1991), 1336-1343).
[0004]
In the present invention, an α, β two-phase titanium alloy (near β-phase titanium alloy) or β-phase titanium alloy having a composition close to the β phase is finely and uniformly crystallized or generated to increase the strength, It is an object to achieve high hardness, high elastic modulus, and high wear resistance.
[0005]
[Means for Solving the Problems]
The gist of the present invention will be described.
[0006]
Mo 2 C, VC, Fe 3 C, Ni 3 C having a particle diameter of 0.5 to 10 μm are mixed as a metal carbide powder in the α β phase titanium alloy powder or β phase titanium alloy powder of the near β phase, A method for forming a TiC-dispersed titanium alloy composite material characterized by sintering by compaction heating to crystallize a granular TiC compound in a near β-phase titanium alloy matrix or β-phase titanium alloy matrix It is.
[0007]
Further, in the method for forming TiC dispersed titanium alloy composite material according to claim 1, in which according to the method for forming TiC dispersed titanium alloy composite material characterized by 1~20Vol% mixed-said metal carbide powder.
[0008]
Further, in the method of forming a TiC-dispersed titanium alloy composite material according to any one of claims 1 and 2, as the near β-phase α, β two-phase titanium alloy or the β-phase titanium alloy powder, Ti- 6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al, Ti-4.5Al-3V-2Mo-2Fe, Ti-13V-11Cr-3Al, of any one of Ti-8V-8Mo-2Fe- 3Al, it relates to a method for forming TiC dispersed titanium alloy composite material characterized by employing the magnitude of the powder under the particle size 50μm or less.
[0009]
Further, a near β phase α, β two phase titanium alloy composite or β phase having a granular TiC compound formed by the method of forming a TiC dispersed titanium alloy composite according to any one of claims 1 to 3. The present invention relates to a method of forming a TiC-dispersed titanium alloy composite layer, characterized in that a titanium alloy composite material is diffusion bonded to the surface of a desired location of the titanium alloy.
[0010]
Further, a near β phase α, β two phase titanium alloy composite or β phase having a granular TiC compound formed by the method of forming a TiC dispersed titanium alloy composite according to any one of claims 1 to 3. A method for forming a TiC-dispersed titanium alloy composite layer, characterized in that a powder obtained by pulverizing a titanium alloy composite material after hydrogen embrittlement is sprayed onto the surface of a desired location of the titanium alloy using plasma, electron beam or laser. It is.
[0011]
[Action and effect of the invention]
TiC, TiN, TiB, etc. are effective as titanium alloy dispersion strengthening materials for higher strength, higher hardness, higher elastic modulus, and higher wear resistance, but especially wear resistance, fatigue resistance and toughness. For imparting, the matrix must be compatible with these dispersion reinforcing materials, and the matrix is preferably an α, β two-phase structure (near β phase) or a β phase structure with many β phases.
[0012]
The W 2 C and Cr 3 C 2 shown in the prior art react to produce TiC on the α, β two-phase titanium alloy matrix, and at the same time, the produced W and Cr help to expand the β phase region, and the near β phase However, there is a limit to the expansion of the β phase region, and a harmful coarse compound of TiCr 2 is generated.
[0013]
In the present invention, Mo 2 C and VC are formed into a solid solution, which is useful for expanding the β-phase region, facilitating β-phase formation, and generating fine TiC. Fe 3 C and Ni 3 C do not significantly expand the β-phase region, but the produced Fe and Ni produce intermetallic compounds such as Ti 2 Fe and Ti 2 Ni with respect to Ti, and Mo 2 C, Allows sintering at a lower temperature than the VC additive.
[0014]
The present invention is a titanium alloy composed of two phases of an α phase whose metallographic crystal structure is a close-packed hexagonal crystal and a β phase that is a body-centered cubic crystal, and a near β phase or β phase having a relatively large β phase is used as a matrix. In the crystal grains and grain boundaries, TiC compound particles, which are titanium compounds, are finely and uniformly contained by reaction sintering in a volume ratio of 20% or less.
[0015]
Niya β-phase titanium alloy or β-phase titanium alloy, the size of the following particle size 50 [mu] m, carbon or metal carbide powder blended into the reaction sintering previously mixing uniformly both you about 0.5~5μm However, the composite by the reactive sintering of both is made into uniform distribution.
[0016]
In the reaction sintering, it is necessary to crystallize and form the TiC compound of the reaction product without dissolving it, so it is necessary to select an appropriate temperature in the range of 900 to 1200 ° C.
[0017]
Since this reaction sintered body has a fine sintered structure, it exhibits a superplastic phenomenon in the temperature range of 900 to 1000 ° C. and can be deformed without breaking at a strain rate of 10 −3 to 10 −4 / S. It enables the shape of mechanical sliding parts such as titanium alloy gears and bearings with high hardness and high wear resistance.
[0018]
In addition, in order to spray and weld the near β phase or β phase TiC-dispersed titanium alloy composite material to the titanium alloy using plasma, electron beam or laser, it is necessary to pulverize it. Since it has high hardness, it can be crushed by striking when it is embrittled by heating in hydrogen at 600 to 800 ° C.
[0019]
Furthermore, the above-mentioned near β phase or β phase is formed on the surface of various titanium alloy products such as the edge of the plate-like titanium alloy plate, the end surface of the rod-like titanium alloy rod or the titanium alloy gear, or the machine sliding part such as the bearing. TiC dispersed titanium alloy composite material powder is welded by thermal spraying or melting using plasma, electron beam or laser, and further subjected to heat treatment to ensure the welding, and high hardness, wear resistant titanium alloy blade, A titanium alloy product or a machine sliding part can be obtained. In particular, it is desirable that the matrix is a β-phase single phase for wear resistance.
[0020]
Since the Young's modulus of the titanium alloy is 12000 kgf / mm 2 and the Young's modulus of the TiC alone is 46000 kgf / mm 2 , the Young's modulus of the composite material containing 10 vol% TiC is theoretically 15400 kgf / mm 2 . Some variation in the distribution of TiC granular crystals must be considered. However, about 13500 kgf / mm 2 can be secured.
[0021]
【Example】
Examples of the present invention will be specifically described.
[0022]
1. Manufacture of composite materials of near β-phase α, β two-phase titanium alloy and β-phase titanium alloy and TiC compound particles.
[0023]
Α, β two-phase titanium alloy powder having an average particle size of about 45 μm in the composition of Ti-6Al-4V or α of β-phase in the near β phase having an average particle size of about 45 μm in the composition of Ti-4.5Al-3V-2Mo-2Fe β 2 phase titanium alloy powder or Ti-3Al-8V-8Mo-2Fe composition average particle size of about 45 μm β phase titanium alloy powder with an average particle size of about 1.5 μm Mo 2 C, VC, Fe 3 C, Ni One of 3 C is blended in an amount of 1 to 20 vol% and mixed for 2 hours at a speed of 180 revolutions per minute in a planetary rotating ball mill in an argon atmosphere containing no oxygen gas. This mixed powder is loaded into a mold having a recess of 5 × 10 × 50 mm, and a load of 4000 kg / cm 2 is applied to compact the powder. In the case of Mo 2 C, VC, the green compact is in a vacuum. In the case of 1200 ° C., 2 h, Fe 3 C, Ni 3 C, the sintered body is obtained by heating at 900 ° C. for 2 h.
[0024]
In this sintering process, the reaction of the following chemical formula 1 occurs in the green compact, and the granular TiC compound is finely and uniformly dispersed in the sintered body. Also, Mo, V, Fe, and Ni generated by the reaction dissolve in the titanium alloy matrix, β-phase titanium alloy into β-phase one phase, near β-phase titanium alloy into β-phase one phase, α, β Two-phase Ti-6Al-4V also changes to a near β phase.
[0025]
[Chemical 1]
Figure 0004303821
[0026]
The reaction sintered body was further heated and isostatically pressed in an argon atmosphere. When Mo 2 C and VC were added, 1200 ° C., 2000 atm, 2 h, when Fe 3 C and Ni 3 C were added, 900 ° C. and 2000 It is heated at atmospheric pressure for 2 hours, or the reaction sintered body is air-packed with an iron plate, and in a low-speed rolling mill in the air, when Mo 2 C and VC are added, 1050 ° C., Fe 3 C and Ni 3 C added In this case, hot rolling is performed at 850 ° C. and a reduction amount of about 50%. As a result, a bulk material having a soot density of 99.5% or more can be obtained.
[0027]
The above process is shown in the flowchart in FIG.
[0028]
The Vickers hardness and tensile strength of the (Ti-6Al-4V) -TiC composite material obtained here are shown in FIGS. 2 and 3 in relation to the amount of carbide Mo 2 C added. Further, the 5 km wear amount in the pin-on-disk wear test was determined by comparing the sintered body of Ti-6Al-4V only and the wear resistant stellite No. In comparison with FIG. 1, a reaction sintered body containing 15 vol% Mo 2 C and VC, which was hot isostatically pressed, was Stellite No. 1. Wear resistance very close to 1.
[0029]
The reason for this wear resistance is considered to be that in the 15 vol% Mo 2 C compound material, as shown in FIGS. 5 and 6, the matrix phase is a single β phase and a fine and hard granular TiC compound is formed inside.
[0030]
2. Manufacture of integrated materials by diffusion bonding of near β-phase α, β two-phase titanium alloys or β-phase titanium alloy composites containing TiC compounds obtained by reactive sintering.
[0031]
As shown in FIG. 1, a hollow sintered body of a near β-phase α, β two-phase titanium alloy or β-phase titanium alloy containing a TiC compound which has been subjected to reactive sintering is illustrated in a Ti-6Al-4V plate shape. As shown in FIG. 7, contact and pressurization are performed, and diffusion and bonding are performed by heating at 900 ° C. for 1 to 2 hours in a vacuum or an inert gas atmosphere.
[0032]
3. Production and plasma spraying of β-phase titanium alloy composite powder containing TiC compound for plasma spraying.
[0033]
As shown in FIG. 1, a vacuum sintered body comprising a near β-phase α, β two-phase titanium alloy or β-phase titanium alloy composite structure containing a TiC compound that has been subjected to reactive sintering is placed in a hydrogen furnace at 600 to 800 ° C. After embrittlement by heating for 2 hours, the powder is pulverized in a mortar to obtain a powder having a particle size of about 45 μm. This was supplied to a plasma torch, and plasma spraying was performed on the end face of a Ti-6Al-4V round bar. After thermal spraying to a thickness of about 400 μm, heat treatment was performed in the air at 900 ° C. for 2 hours in order to eliminate the pores and make the structure uniform.
[0034]
The Vickers hardness of the plasma sprayed coating is as shown in FIG. 8, and the heat treatment material when the β phase titanium alloy composite powder containing TiC of 15 vol% Mo 2 C compound is plasma sprayed exhibits a Vickers hardness of 700 or more. It was.
[0035]
Further, the 10 km cumulative wear amount in the pin-on-disk wear test is Stellite No. in the case of 15 vol% Mo 2 C blending. A wear amount close to 1 showed high wear resistance.
[0036]
4). Manufacture of blades by plasma spraying β-phase titanium alloy composite containing TiC compound.
[0037]
As shown in FIG. 1, a vacuum sintered body comprising a near β-phase α, β two-phase titanium alloy or β-phase titanium alloy composite structure containing a TiC compound that has been subjected to reactive sintering is placed in a hydrogen furnace at 600 to 800 ° C. After embrittlement by heating for 2 hours, the powder is pulverized in a mortar to obtain a powder having a particle size of about 45 μm. This was supplied to a plasma torch, and plasma spraying was performed on the strip-shaped Ti-6Al-4V blade edge. After thermal spraying, heat treatment was performed in the air at 900 ° C. for 2 hours in order to eliminate the pores and make the structure uniform.
[0038]
Then, the blade 1 was finished by polishing the target blade shape.
[0039]
5. A gear made of a β-phase titanium alloy composite structure containing a TiC compound obtained by reactive sintering.
[0040]
Argon atmosphere containing 15 vol% of Mo 2 C or VC having an average particle size of about 1.5 μm in an α, β two-phase titanium alloy powder having an average particle size of about 45 μm and a structure of Ti-6Al-4V, and containing no oxygen gas It was mixed for 2 hours at a speed of 180 revolutions per minute in a medium planetary ball mill. This mixed powder is loaded with gear powder in a gear mold, and a load of 4000 kg / cm 2 is applied to compact the powder. The powder compact is in the air, and when Mo 2 C and VC are added, 1200 ° C., 2 hours. In the case of adding Fe 3 C and Ni 3 C, heating was performed at 900 ° C. for 2 hours to obtain a sintered body as shown in FIG. In the green compact, the above-mentioned reaction occurs, and the TiC compound is finely and uniformly dispersed in the sintered body, causing a shrinkage of 3 to 4% in diameter.
[0041]
Since this sintered body has a fine sintered structure, it exhibits a superplastic phenomenon. Therefore, it is compressed using the same mold without breaking at a strain rate of 10 −3 to 10 −4 / S at 900 ° C. The desired gear shape could be obtained.
[0042]
Further, as shown in FIG. 10, the same β-phase titanium alloy composite as shown in 4 above was plasma sprayed on the surface of the Ti-6Al-4V tooth having the shape of the gear 2 to obtain the gear 3 shown in FIG.
[Brief description of the drawings]
FIG. 1 is a process flowchart of the present embodiment.
FIG. 2 is a graph showing Vickers hardness of a composite material according to the present example.
FIG. 3 is a graph showing the tensile strength of a composite material according to the present example.
FIG. 4 is a graph showing the wear resistance of this example.
FIG. 5 is an explanatory diagram (copy of micrograph) of the structure of this example.
FIG. 6 is an explanatory diagram of X-ray diffraction of the tissue of this example.
FIG. 7 is a process explanatory diagram of the present example.
FIG. 8 is a table showing the Vickers hardness of the plasma sprayed coating of this example.
FIG. 9 is a process explanatory diagram of the present example.
FIG. 10 is an explanatory diagram when the present embodiment is applied to a gear.

Claims (5)

ニヤβ相のα,β二相チタン合金粉末若しくはβ相のチタン合金粉末に金属炭化物粉末として粒径0.5〜10μmのMo2C,VC,Fe3C,Ni3Cを混合し、圧粉加熱して焼結し、粒状のTiC化合物をニヤβ相のチタン合金マトリックス若しくはβ相のチタン合金マトリックス中に晶出させることを特徴とするTiC分散チタン合金複合材料の形成方法。Mo 2 C, VC, Fe 3 C, Ni 3 C having a particle diameter of 0.5 to 10 μm are mixed as a metal carbide powder in the α β phase titanium alloy powder or β phase titanium alloy powder of the near β phase, A method of forming a TiC-dispersed titanium alloy composite material, comprising sintering by compaction heating and crystallizing a granular TiC compound in a near β-phase titanium alloy matrix or a β-phase titanium alloy matrix. 請求項1記載のTiC分散チタン合金複合材料の形成方法において、前記金属炭化物粉末を1〜20vol%混合することを特徴とするTiC分散チタン合金複合材料の形成方法。In the method for forming TiC dispersed titanium alloy composite material according to claim 1, wherein, the method of forming the TiC dispersed titanium alloy composite material characterized by 1~20Vol% mixed-said metal carbide powder. 請求項1,2のいずれか1項に記載のTiC分散チタン合金複合材の形成方法において、前記ニヤβ相のα,β二相チタン合金若しくは前記β相のチタン合金粉末として、Ti−6Al−4V,Ti−6Al−6V−2Sn,Ti−6Al−2Sn−4Zr−6Mo,Ti−10V−2Fe−3Al,Ti−4.5Al−3V−2Mo−2Fe,Ti−13V−11Cr−3Al,Ti−8V−8Mo−2Fe−3Alのいずれか1種の、粒径50μm以下の大きさの粉末を採用したことを特徴とするTiC分散チタン合金複合材の形成方法。3. The method for forming a TiC-dispersed titanium alloy composite according to claim 1, wherein the near β-phase α, β two-phase titanium alloy or the β-phase titanium alloy powder is Ti-6Al—. 4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al, Ti-4.5Al-3V-2Mo-2Fe, Ti-13V-11Cr-3Al, Ti- 8V-8Mo-2Fe-3Al any one of the method for forming a TiC dispersed titanium alloy composite material characterized by employing the magnitude of the powder under the particle size 50μm or less. 請求項1〜3のいずれか1項に記載のTiC分散チタン合金複合材の形成方法により形成した粒状のTiC化合物を有するニヤβ相のα,β二相チタン合金複合材若しくはβ相のチタン合金複合材を、チタン合金の所望箇所の表面に拡散接合させることを特徴とするTiC分散チタン合金複合層の形成方法。  A near β-phase α, β two-phase titanium alloy composite or β-phase titanium alloy having a granular TiC compound formed by the method of forming a TiC-dispersed titanium alloy composite according to any one of claims 1 to 3. A method of forming a TiC-dispersed titanium alloy composite layer, characterized in that the composite material is diffusion bonded to the surface of a desired location of the titanium alloy. 請求項1〜3のいずれか1項に記載のTiC分散チタン合金複合材の形成方法により形成した粒状のTiC化合物を有するニヤβ相のα,β二相チタン合金複合材若しくはβ相のチタン合金複合材を、水素脆化後粉砕した粉末をチタン合金の所望箇所の表面にプラズマ、電子ビーム若しくはレーザを用いて溶射することを特徴とするTiC分散チタン合金複合層の形成方法。  A near β-phase α, β two-phase titanium alloy composite or β-phase titanium alloy having a granular TiC compound formed by the method of forming a TiC-dispersed titanium alloy composite according to any one of claims 1 to 3. A method of forming a TiC-dispersed titanium alloy composite layer, characterized in that a powder obtained by pulverizing a composite material after hydrogen embrittlement is sprayed onto the surface of a desired portion of the titanium alloy using plasma, electron beam or laser.
JP02248999A 1999-01-29 1999-01-29 Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer Expired - Fee Related JP4303821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02248999A JP4303821B2 (en) 1999-01-29 1999-01-29 Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02248999A JP4303821B2 (en) 1999-01-29 1999-01-29 Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer

Publications (2)

Publication Number Publication Date
JP2000219924A JP2000219924A (en) 2000-08-08
JP4303821B2 true JP4303821B2 (en) 2009-07-29

Family

ID=12084154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02248999A Expired - Fee Related JP4303821B2 (en) 1999-01-29 1999-01-29 Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer

Country Status (1)

Country Link
JP (1) JP4303821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023620A1 (en) 2010-08-20 2012-02-23 日本発條株式会社 High-strength titanium alloy member and process for production thereof
WO2012169304A1 (en) 2011-06-09 2012-12-13 日本発條株式会社 Titanium alloy member and production method therefor
US10350681B2 (en) 2011-06-07 2019-07-16 Nhk Spring Co., Ltd. Titanium alloy member and production method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958029B2 (en) * 2005-02-28 2012-06-20 一般財団法人電力中央研究所 Building materials
JP4814536B2 (en) * 2005-02-28 2011-11-16 財団法人電力中央研究所 Manufacturing method of non-ferrous metal products
JP4814534B2 (en) * 2005-02-28 2011-11-16 財団法人電力中央研究所 Manufacturing method of structural materials
JP4814535B2 (en) * 2005-02-28 2011-11-16 財団法人電力中央研究所 Manufacturing method of steel products
JP5855435B2 (en) * 2011-11-29 2016-02-09 東邦チタニウム株式会社 α + β-type or β-type titanium alloy and method for producing the same
JP6564763B2 (en) * 2016-12-27 2019-08-21 勝義 近藤 Sintered blade material and manufacturing method thereof
CN106929702B (en) * 2017-03-09 2018-09-18 盐城工学院 Double scale titanium carbide granule enhancing titanium matrix composites of micro-nano and preparation method thereof
CN114101680B (en) * 2021-11-17 2022-08-19 北京理工大学 Preparation method of hard layer on surface of titanium alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023620A1 (en) 2010-08-20 2012-02-23 日本発條株式会社 High-strength titanium alloy member and process for production thereof
US10151019B2 (en) 2010-08-20 2018-12-11 Nhk Spring Co., Ltd. High-strength titanium alloy member and production method for same
US10350681B2 (en) 2011-06-07 2019-07-16 Nhk Spring Co., Ltd. Titanium alloy member and production method therefor
WO2012169304A1 (en) 2011-06-09 2012-12-13 日本発條株式会社 Titanium alloy member and production method therefor
US9920399B2 (en) 2011-06-09 2018-03-20 Nhk Spring Co., Ltd. Titanium alloy member and production method therefor

Also Published As

Publication number Publication date
JP2000219924A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
Sharma et al. Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder
US7922841B2 (en) Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby
US3837930A (en) Method of producing iron-chromium-aluminum alloys with improved high temperature properties
Srinivasarao et al. Microstructure and mechanical properties of Al–Zr nanocomposite materials
JP4303821B2 (en) Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer
CA1068133A (en) Thermoplastic powder
Chen et al. Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy
US6231807B1 (en) Dispersion hardening alloy and method for the production of the alloy
Neikov et al. Mechanical alloying
XIAO et al. Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering
JP3367269B2 (en) Aluminum alloy and method for producing the same
Hu et al. Effect of titanium hydride powder addition on microstructure and properties of titanium powder injection molding
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JP2539712B2 (en) Nitride powder
Liu et al. Effect of ball milling time on microstructures and mechanical properties of mechanically-alloyed iron-based materials
Kim et al. In-situ fabrication of TiC-Fe3Al cermet
Zhang et al. A new titanium matrix composite reinforced with Ti-36Nb-2Ta-3Zr-0.35 O wire
Oksiuta et al. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application
US3737300A (en) Dispersion strengthened titanium alloys
JPH08311586A (en) Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product
JP3020924B1 (en) Manufacturing method of high strength and high corrosion resistant ferritic steel
JP2005281768A (en) Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor
Moon et al. Study of the microstructure of nanocrystalline Al–5 at.% Ti compacts prepared by reactive ball milling and ultra-high-pressure hot pressing
Sharma et al. Synthesis of ternary Ti-25Nb-11Sn alloy by powder metallurgy route using titanium hydride powder
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees