JP2005281768A - Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor - Google Patents

Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor Download PDF

Info

Publication number
JP2005281768A
JP2005281768A JP2004097160A JP2004097160A JP2005281768A JP 2005281768 A JP2005281768 A JP 2005281768A JP 2004097160 A JP2004097160 A JP 2004097160A JP 2004097160 A JP2004097160 A JP 2004097160A JP 2005281768 A JP2005281768 A JP 2005281768A
Authority
JP
Japan
Prior art keywords
cast iron
white cast
nanocrystalline
hardness
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004097160A
Other languages
Japanese (ja)
Inventor
Harumatsu Miura
春松 三浦
Nobuaki Miyao
信昭 宮尾
Kazuo Oda
和生 小田
Masaru Mizutani
勝 水谷
Hidenori Ogawa
英典 小川
Munehide Katsumura
宗英 勝村
Masayuki Hirota
正行 廣田
Toshio Ito
俊夫 伊藤
Toru Kuzumi
徹 来住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO GIJUTSU KENKYUSHO KK
Original Assignee
NANO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO GIJUTSU KENKYUSHO KK filed Critical NANO GIJUTSU KENKYUSHO KK
Priority to JP2004097160A priority Critical patent/JP2005281768A/en
Priority to PCT/JP2005/006561 priority patent/WO2005092543A1/en
Publication of JP2005281768A publication Critical patent/JP2005281768A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Abstract

<P>PROBLEM TO BE SOLVED: To easily produce a tough nanocrystal white cast iron bulk material having high hardness and high strength by producing a tough nanocrystal white cast iron powder material having extremely high hardness and compacting the powders. <P>SOLUTION: The nanocrystal white cast iron powder having high hardness is composed of an aggregate of white cast iron nanocrystal particles and comprises 2.3 to 3.5 mass% carbon, and in which reinforcing substance for a ferrite phase in the nanocrystals is dispersed and precipitated. The tough nanocrystal white cast iron bulk material having high hardness and high strength is obtained by compacting the many nanocrystal white cast iron powders. A white cast iron forming component material comprising 2.2 to 3.5 mass% carbon is subjected to mechanical milling (MM) or mechanical alloying (MA) to produce a high hardness nanocrystal white cast iron powder composed of an aggregate of white cast iron nanocrystal particles, and, from the powders, a tough nanocrystal white cast iron bulk material having high hardness and high strength is produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高硬度のナノ結晶白鋳鉄粉末、特にナノ炭化物等の分散・析出強化型ナノ結晶白鋳鉄粉末とバルク材及びそれらの製造方法に関する。   The present invention relates to a high hardness nanocrystalline white cast iron powder, in particular, a dispersion / precipitation strengthened nanocrystalline white cast iron powder, a bulk material, and a manufacturing method thereof.

金属材料の強さや硬さは、ホールペッチの関係式が示すように、結晶粒径dが小さくなるほど増加し、このような関係はdが数十nm付近までは同じように成立するので、結晶粒径をナノサイズレベルまで超微細化することは、金属材料の強化する最も重要な手段の1つになっている。このことは、鉄鋼材料の強化方法として特に重要である。鉄鋼材料においては、こうして得られた微細組織の中に炭化物などの硬い物質を分散ないし析出させると、その強度特性はさらに大きく向上させることができる。
しかし、実用材料として極めて重要な白鋳鉄については、ナノ結晶化のための研究は未だなされていない。通常、白鋳鉄材料では、同材料の構成成分である炭素がミクロンサイズレベルの片状ないし針状に近い炭化物として存在しており、強度が極めて低い上、伸びがほとんどゼロに近いため、その用途は限られたものとなっている。
The strength and hardness of the metal material increase as the crystal grain size d becomes smaller, as shown by the Hall Petch relational expression, and such a relation is similarly established until d is in the vicinity of several tens of nm. Making the diameter ultrafine to the nano-size level has become one of the most important means for strengthening metal materials. This is particularly important as a method for strengthening steel materials. In steel materials, when hard materials such as carbides are dispersed or precipitated in the microstructure thus obtained, the strength characteristics can be further improved.
However, research on nanocrystallization has not yet been made on white cast iron, which is extremely important as a practical material. Normally, in white cast iron materials, carbon, which is a component of the same material, exists as carbides in the form of flakes or needles at the micron size level, and the strength is extremely low and the elongation is almost zero. Is limited.

しかし、溶解法で製造されている白鋳鉄をはじめとする多くの金属材料の結晶粒径dは、通常数ミクロン〜数百ミクロンであり、後処理によってもdをナノオーダにすることは難しく、例えば、鋼の結晶粒径微細化プロセスとして重要な制御圧延の場合でも、その到達できる粒径の下限は4〜5μm程度である。従って、このような通常の方法では、ナノサイズまでに粒径を微細化した材料は得られない。   However, the crystal grain size d of many metallic materials including white cast iron manufactured by the melting method is usually several microns to several hundred microns, and it is difficult to make d nano-order by post-processing, for example, Even in the case of controlled rolling, which is important as a process for refining the grain size of steel, the lower limit of the grain size that can be reached is about 4 to 5 μm. Therefore, such a normal method cannot obtain a material having a particle size reduced to the nano size.

本発明は、上記課題を解決するものであって、下記の発明である。
本発明は、基本的には、(1)白鋳鉄構成成分の各物質、(2)溶製した白鋳鉄材料、又は(3)(1)及び(2)の物質に他の元素又はその合金などの物質を加えた混合材料のボールミルなどを用いたメカニカルアロイング(MA)又はメカニカルミリング(MM)処理して、その結晶粒径のナノサイズレベルまでの超微細化と超高硬度のナノサイズの特殊炭化物・炭窒化物などの分散・析出によって達成できるその限界に近い強さ(高強度)ないし、硬さ(超硬質)及び靱性を有する白鋳鉄組成のナノ結晶粉末となし、次いでこのナノ結晶白鋳鉄の粉末の熱間での固化成形又は超塑性温度域での固化成形によって、同粉末の有する特性を保持したナノ結晶白鋳鉄バルク材を提供することである。
The present invention solves the above-described problems and is the following invention.
The present invention basically includes (1) each material of white cast iron constituent components, (2) molten white cast iron material, or (3) other elements or alloys thereof in (1) and (2) Nano-size of ultra-high hardness and ultra-fine hardness of the crystal grain size by mechanical alloying (MA) or mechanical milling (MM) treatment using a ball mill etc. A nanocrystalline powder of white cast iron composition with strength (high strength), hardness (ultra-hard) and toughness that is close to its limit, which can be achieved by dispersion and precipitation of special carbides and carbonitrides, etc. The object of the present invention is to provide a nanocrystalline white cast iron bulk material that retains the properties of the powder by solidification molding of the crystal white cast iron powder in the hot state or solidification molding in the superplastic temperature range.

すなわち、本発明は、下記構成の高硬度・高強度で強靱なナノ結晶白鋳鉄の粉末材料とバルク材料及び両材料の製造方法である。
〔1〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記ナノ結晶のフェライト相の強化物質として、同フェライト相内にナノメートルサイズ(1nm〜10nm)の粒状ないし球状に近い
(1)金属又は半金属の炭化物、(2)金属又は半金属の窒化物、又は(3)金属又は半金属の炭窒化物から選ばれた1又は2以上の物質を分散・析出させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
〔2〕前項〔1〕に記載の炭化物、窒化物又は炭窒化物を構成する金属又は半金属が、鉄、クロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステン、ニッケル、コバルト、アルミニウム、ケイ素又はホウ素から選ばれるいずれか1つ以上からなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。なお、これらの合金元素が1つの場合にはその濃度が白鋳鉄粉末の0.1〜40質量%を含有し、また合金元素が2つ以上の場合には、その合計濃度が白鋳鉄粉末の0.1〜45質量%を含有していてよい。
That is, the present invention is a powder material and bulk material of nanocrystalline white cast iron having high hardness, high strength and toughness having the following constitution, and a method for producing both materials.
[1] A white cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and the nanocrystals in the ferrite phase as a reinforcing substance of the ferrite phase. Selected from metric size (1-10 nm) granular or spherical (1) metal or metalloid carbide, (2) metal or metalloid nitride, or (3) metal or metalloid carbonitride A high-hardness nanocrystalline white cast iron powder obtained by dispersing and precipitating one or more substances.
[2] The metal or metalloid constituting the carbide, nitride or carbonitride described in [1] is iron, chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, tungsten, nickel, cobalt, aluminum High hardness nanocrystalline white cast iron powder characterized by comprising any one or more selected from silicon and boron. In addition, when these alloy elements are one, the density | concentration contains 0.1-40 mass% of white cast iron powder, and when there are two or more alloy elements, the total density | concentration is white cast iron powder. You may contain 0.1-45 mass%.

〔3〕前項〔1〕に記載の炭化物、窒化物又は炭窒化物が、白鋳鉄中に含有されるクロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステンのような高融点元素が、その0.5〜10質量%以上の高濃度の含有量の場合に形成され、これらが単独の状態及び/又は他の炭化物、窒化物又は炭窒化物と共存状態で存在するものであることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
すなわち例えば、クロム(Cr)、モリブデン(Mo)、バナジウム(V)、タングステン(W)の場合、各濃度で生成する炭化物はおよそ次のとおりである。
Cr… 1.5%以下:Fe3C、(Fe,Cr)3C、
1.5〜3%:(Fe,Cr)3C、
3〜7%:Cr73
Mo… 1%以下:Fe3C、(Fe,Mo)3C、
1〜3%:(Fe,Mo)3C、
3〜7%:Mo2C、M6C [M:Fe,Mo]
V… 0.5%以下:Fe3C,(Fe,V)3C、
0.5〜0.6%:(Fe,V)3C、
0.6〜3%:V43
W… 4%以下:Fe3C、(Fe,W)3C、
4〜6%:(Fe,W)3C、
6〜10%:W2C、M6C [M:Fe,W]
しかし、例えばW、Cr、Vなどが共存している場合は、(Fe、Cr、W、V)6Cのようなビッカース硬さHvが1000以上の極端に硬い特殊炭化物が生成される(セメンタイト(Fe3C)のHv値:850)
[3] The carbide, nitride or carbonitride described in [1] above is a high melting point element such as chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, or tungsten contained in white cast iron, It is formed in the case of a high concentration content of 0.5 to 10% by mass, and these are present in a single state and / or coexisting with other carbides, nitrides or carbonitrides. High hardness nanocrystalline white cast iron powder.
That is, for example, in the case of chromium (Cr), molybdenum (Mo), vanadium (V), and tungsten (W), carbides generated at each concentration are approximately as follows.
Cr: 1.5% or less: Fe 3 C, (Fe, Cr) 3 C,
1.5-3%: (Fe, Cr) 3 C,
3-7%: Cr 7 C 3 ,
Mo ... 1% or less: Fe 3 C, (Fe, Mo) 3 C,
1-3%: (Fe, Mo) 3 C,
3 to 7%: Mo 2 C, M 6 C [M: Fe, Mo]
V: 0.5% or less: Fe 3 C, (Fe, V) 3 C,
0.5 to 0.6%: (Fe, V) 3 C,
0.6 to 3 %: V 4 C 3
W: 4% or less: Fe 3 C, (Fe, W) 3 C,
4-6%: (Fe, W) 3 C,
6 to 10%: W 2 C, M 6 C [M: Fe, W]
However, for example, when W, Cr, V, etc. coexist, an extremely hard special carbide having a Vickers hardness Hv of 1000 or more such as (Fe, Cr, W, V) 6 C is generated (cementite). Hv value of (Fe 3 C): 850)

〔4〕白鋳鉄ナノ結晶粒子の集合体よりなる白鋳鉄粉末が、窒素を0.01〜5.0質量%含有するものであることを特徴とする前項〔1〕〜〔3〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
〔5〕白鋳鉄ナノ結晶粒子の集合体よりなる白鋳鉄粉末が、窒素無添加のものであることを特徴とする前項〔1〕〜〔3〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
〔6〕白鋳鉄ナノ結晶粒子の集合体よりなる白鋳鉄粉末が、分散・析出強化物質及び/又は結晶粒成長抑制物質として、(1)クロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステン、ニッケル、コバルト、アルミニウム、ケイ素又はホウ素から選ばれるいずれか1種以上、又は(2)前記各元素の炭化物、窒化物、炭窒化物のいずれか1種以上を存在させてなることを特徴とする前項〔1〕〜〔5〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
[4] Any one of [1] to [3] above, wherein the white cast iron powder comprising an aggregate of white cast iron nanocrystal particles contains 0.01 to 5.0 mass% of nitrogen. 2. High hardness nanocrystalline white cast iron powder according to item 1.
[5] The high-hardness nanostructure according to any one of [1] to [3], wherein the white cast iron powder made of an aggregate of white cast iron nanocrystal particles is free of nitrogen. Crystal white cast iron powder.
[6] White cast iron powder composed of aggregates of white cast iron nanocrystal particles is used as a dispersion / precipitation strengthening substance and / or a grain growth inhibitor (1) chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, Any one or more selected from tungsten, nickel, cobalt, aluminum, silicon, or boron, or (2) any one or more of carbides, nitrides, and carbonitrides of the respective elements are present. The high-hardness nanocrystalline white cast iron powder according to any one of [1] to [5] above.

〔7〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の炭化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
〔8〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の酸化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
〔9〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の窒化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
〔10〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の炭窒化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
[7] A white cast iron powder containing 2.2 to 3.5% by mass of carbon composed of an aggregate of white cast iron nanocrystal particles, and between and / or inside the nanocrystal particles, A high-hardness nanocrystalline white cast iron powder characterized by containing a metal or metalloid carbide as a crystal grain growth inhibitor.
[8] White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and between and / or inside the nanocrystal particles, A high-hardness nanocrystalline white cast iron powder comprising a metal or metalloid oxide as a crystal grain growth inhibitor.
[9] White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and between and / or inside the nanocrystal particles, A high-hardness nanocrystalline white cast iron powder comprising a metal or metalloid nitride as a crystal grain growth inhibitor.
[10] White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and between and / or inside the nanocrystal particles, A high-hardness nanocrystalline white cast iron powder comprising a metal or metalloid carbonitride as a crystal grain growth inhibiting substance.

〔11〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属のケイ化物(シリサイド)を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
〔12〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の硼化物(ボライド)を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
〔13〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として、(1)金属又は半金属の炭化物、(2)金属又は半金属の酸化物、(3)金属又は半金属の窒化物、(4)金属又は半金属の炭窒化物、(5)金属又は半金属のケイ化物(シリサイド)又は(6)金属又は半金属の硼化物(ボライド)の、(1)〜(6)から選ばれる2種以上を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
[11] A white cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and between and / or inside the nanocrystal particles, A high-hardness nanocrystalline white cast iron powder comprising a metal or metalloid silicide (silicide) as a crystal grain growth inhibitor.
[12] White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and between and / or inside the nanocrystal particles, A high-hardness nanocrystalline white cast iron powder comprising a boride of a metal or a semimetal as a crystal grain growth inhibitor.
[13] A white cast iron powder containing 2.2 to 3.5% by mass of carbon composed of an aggregate of white cast iron nanocrystal particles, and between and / or inside the nanocrystal particles, (1) Metal or metalloid carbide, (2) Metal or metalloid oxide, (3) Metal or metalloid nitride, (4) Metal or metalloid carbonitride And (5) a metal or metalloid silicide (silicide) or (6) a metal or metalloid boride (boride), wherein two or more selected from (1) to (6) are present. High hardness nanocrystalline white cast iron powder.

〔14〕白鋳鉄ナノ結晶粒子又はその集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末が、金属酸化物の形態で酸素を0.005〜1.0質量%含有するものであることを特徴とする前項〔1〕〜〔13〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
〔15〕白鋳鉄ナノ結晶粒子の集合体の固化成形過程での脱窒を防ぐため、ナノ結晶白鋳鉄中の鉄よりも窒素との化学的親和力が大きい金属元素を含有せしめてなることを特徴とする前項〔1〕〜〔14〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
〔16〕白鋳鉄ナノ結晶粒子が、塊状、片状、粒状又は粉状の白鋳鉄形成成分の物質をボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって得られたものであることを特徴とする前項〔1〕〜〔15〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
〔17〕白鋳鉄ナノ結晶粒子が、塊状、片状、粒状又は粉状の普通炭素鋼、合金鋼、白鋳鉄、ねずみ鋳鉄、まだら鋳鉄、球状黒鉛鋳鉄、合金鋳鉄、他の合金元素又は合金のいずれか1つ又は2つ以上の物質から選ばれた白鋳鉄の構成物質を、ボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって得られたものであることを特徴とする前項〔1〕〜〔15〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
[14] White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of white cast iron nanocrystal particles or aggregates thereof contains 0.005 to 1.0% by mass of oxygen in the form of a metal oxide The high-hardness nanocrystalline white cast iron powder according to any one of [1] to [13] above, wherein
[15] In order to prevent denitrification in the solidification process of the aggregate of white cast iron nanocrystal particles, a metal element having a higher chemical affinity with nitrogen than iron in the nanocrystal white cast iron is included. The high-hardness nanocrystalline white cast iron powder according to any one of [1] to [14] above.
[16] White cast iron nanocrystal particles were obtained by mechanically milling (MM) or mechanical alloying (MA) a material of a white cast iron forming component in the form of a lump, piece, granule or powder using a ball mill or the like. The high-hardness nanocrystalline white cast iron powder according to any one of [1] to [15] above, which is a product.
[17] White cast iron nanocrystalline particles are made of lump, flake, granular or powdery ordinary carbon steel, alloy steel, white cast iron, gray cast iron, mottle cast iron, spheroidal graphite cast iron, alloy cast iron, other alloy elements or alloys It is obtained by mechanical milling (MM) or mechanical alloying (MA) of a constituent material of white cast iron selected from any one or more materials using a ball mill or the like. The high-hardness nanocrystalline white cast iron powder according to any one of [1] to [15] above.

〔18〕メカニカルアロイング(MA)又はメカニカルミリング(MM)過程において、ボールミルなどに用いる粉砕媒体と原料粉末との質量比又は/及びボールミル等の運転エネルギーの選定などにより投入する機械的エネルギーを調整することによって、ナノ結晶粒子の集合体における(1)フェライト粒子や分散・析出物としての炭化物、窒化物又は炭窒化物の粒径、(2)これらの分散・析出物の生成、又は(3)その生成量、の(1)〜(3)から選ばれる1以上を制御してなることを特徴とする前項〔1〕〜〔17〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
〔19〕白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末が、メカニカルアロイング(MA)又はメカニカルミリング(MM)によって得られるナノ結晶粒子集合体(粉体)間の固化成形過程での原子的結合促進物質又は同固化成形体(バルク材)の遅れ破壊抑制・防止物質として、チタン又はジルコニウムを0.01〜5.0質量%含有させてなることを特徴とする前項〔1〕〜〔18〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。
〔20〕前項〔1〕〜〔19〕のいずれか1項に記載のナノ結晶白鋳鉄粉末の多数個が固結されてなることを特徴とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材。
[18] In the mechanical alloying (MA) or mechanical milling (MM) process, the mechanical energy input is adjusted by selecting the mass ratio of the grinding media used for the ball mill and the raw material powder and / or the operation energy of the ball mill, etc. (1) Particle size of carbide, nitride, or carbonitride as a ferrite particle or dispersion / precipitate in the aggregate of nanocrystal particles, (2) Formation of these dispersion / precipitate, or (3 (1) A high hardness nanocrystalline white as set forth in any one of [1] to [17] above, wherein one or more selected from (1) to (3) is controlled. Cast iron powder.
[19] Nanocrystalline particle assembly obtained by mechanical alloying (MA) or mechanical milling (MM) of white cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystalline particles As a substance for promoting atomic bonding in the solidification process between bodies (powder) or a substance for suppressing or preventing delayed fracture of the solidified body (bulk material), 0.01 to 5.0% by mass of titanium or zirconium is contained. The high-hardness nanocrystalline white cast iron powder according to any one of [1] to [18] above, wherein
[20] A high-hardness, high-strength, tough nanocrystalline white cast iron, comprising a large number of nanocrystalline white cast iron powders according to any one of [1] to [19] Bulk material.

〔21〕炭素を2.2〜3.5質量%含有する塊状、片状、粒状又は粉状の白鋳鉄形成成分材料を、ボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって白鋳鉄ナノ結晶粒子の集合体よりなる高硬度のナノ結晶白鋳鉄粉末を得ることを特徴とする高硬度のナノ結晶白鋳鉄粉末の製造方法。
〔22〕炭素を2.2〜3.5質量%含有する塊状、片状、粒状又は粉状の白鋳鉄形成成分材料が、塊状、片状、粒状又は粉状の普通炭素鋼、合金鋼、白鋳鉄、ねずみ鋳鉄、まだら鋳鉄、球状黒鉛鋳鉄、合金鋳鉄、他の合金元素又は合金のいずれか1つ又は2つ以上の物質から選ばれたものであることを特徴とする前項〔21〕記載の高硬度のナノ結晶白鋳鉄粉末の製造方法。
〔23〕メカニカルアロイング(MA)又はメカニカルミリング(MM)過程において、ボールミルなどに用いる粉砕媒体と原料粉末との質量比又は/及びボールミル等の運転エネルギーの選定などにより投入する機械的エネルギーを調整することによって、ナノ結晶粒子の集合体における(1)フェライト粒子や分散・析出物としての炭化物、窒化物又は炭窒化物の粒径、(2)これらの分散・析出物の生成、又は(3)その生成量、の(1)〜(3)から選ばれる1以上を制御することを特徴とする前項〔21〕又は〔22〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末の製造方法。
[21] Lumped, flake, granular or powdery white cast iron forming component material containing 2.2 to 3.5% by mass of carbon is mechanically milled (MM) or mechanically alloyed (MA) using a ball mill or the like. A method for producing a high hardness nanocrystalline white cast iron powder comprising obtaining a high hardness nanocrystalline white cast iron powder comprising an aggregate of white cast iron nanocrystal particles.
[22] A lump, flake, granule, or powdery white cast iron forming component material containing 2.2 to 3.5% by mass of carbon is lump, flake, granule, or powder ordinary carbon steel, alloy steel, The item [21] above, characterized in that it is selected from one or more of white cast iron, gray cast iron, mottle cast iron, spheroidal graphite cast iron, alloy cast iron, other alloy elements or alloys Of high hardness nanocrystalline white cast iron powder.
[23] In the mechanical alloying (MA) or mechanical milling (MM) process, the mechanical energy input is adjusted by selecting the mass ratio of the grinding media used for the ball mill and the raw material powder and / or the operation energy of the ball mill, etc. (1) Particle size of carbide, nitride, or carbonitride as a ferrite particle or dispersion / precipitate in the aggregate of nanocrystal particles, (2) Formation of these dispersion / precipitate, or (3 1) The production amount of the high-hardness nanocrystalline white cast iron powder according to any one of [21] or [22] above, wherein one or more selected from (1) to (3) is controlled Manufacturing method.

〔24〕炭素を2.2〜3.5質量%含有する塊状、片状、粒状又は粉状の白鋳鉄形成成分材料に、クロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステンのような高融点元素を0.5〜10質量%以上含有せしめてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって、白鋳鉄ナノ結晶粒子又はその集合体中に、これらを単独の状態及び/又は他の炭化物、窒化物又は炭窒化物と共存状態で存在させることを特徴とする前項〔21〕〜〔23〕のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末の製造方法。
〔25〕高融点元素を基本組成とする炭化物、窒化物又は炭窒化物を母相のフェライト相へ単独の状態及び/又は他の炭化物、窒化物又は炭窒化物と共存の状態で分散・析出させた状態を得るため、前記各高融点元素の濃度の調整に加え、メカニカルアロイング(MA)又はメカニカルミリング(MM)過程での機械的エネルギー及び/又はMA、MMの温度、時間を効果的に制御することを特徴とする前項〔21〕〜〔24〕のいずれか1項に記載の超高硬度ナノ結晶白鋳鉄粉末の製造方法。
〔26〕前項〔21〕〜〔25〕のいずれか1項に記載の方法によるナノ結晶白鋳鉄粉末の熱間固化成形において、(1)固化成形温度、(2)固化成形時間、(3)固化成形圧力、又は(4)固化成形後の焼なましなどの熱処理、の(1)〜(4)のうちから選ばれるいずれか1つ以上を制御することによって、炭化物、窒化物又は炭窒化物を効果的に分散・析出させることを特徴とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
[24] Lumped, flake, granular or powdery white cast iron forming component materials containing 2.2 to 3.5% by mass of carbon, such as chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, tungsten By adding 0.5 to 10% by mass or more of a high melting point element and mechanically milling (MM) or mechanical alloying (MA), the white cast iron nanocrystal particles or aggregates thereof are in a single state and The method for producing high-hardness nanocrystalline white cast iron powder according to any one of [21] to [23] above, which is / is present in a coexisting state with other carbides, nitrides or carbonitrides .
[25] Dispersion / precipitation of carbide, nitride or carbonitride containing refractory element as a basic composition in the parent ferrite phase alone and / or coexisting with other carbide, nitride or carbonitride In addition to adjusting the concentration of each refractory element, the mechanical energy in the mechanical alloying (MA) or mechanical milling (MM) process and / or the temperature and time of MA and MM are effective. The method for producing ultra-high hardness nanocrystalline white cast iron powder according to any one of [21] to [24] above, wherein
[26] In hot solidification molding of nanocrystalline white cast iron powder by the method described in any one of [21] to [25] above, (1) solidification molding temperature, (2) solidification molding time, (3) By controlling any one or more selected from (1) to (4) of solidification pressure or (4) heat treatment such as annealing after solidification, carbide, nitride or carbonitride A method for producing a nano-crystalline white cast iron bulk material having high hardness, high strength and toughness, characterized by effectively dispersing and precipitating a material.

〔27〕前項〔16〕〜〔19〕のいずれか1項に記載の白鋳鉄ナノ結晶粒子の粉末を、500℃〜900℃の温度での放電プラズマ焼結(Spark Plasma Sintering)、ホットプレス、シース圧延(Sheath Rolling)、熱間鍛造、押出し成形、熱間等方圧加圧成形(HIP)等の真空熱間固化成形又は爆発成形の固化成形処理をすることにより、ナノ炭化物、ナノ窒化物又はナノ炭窒化物のいずれか1種以上の分散・析出強化型ナノ結晶白鋳鉄バルク材となすことを特微とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
〔28〕前項〔16〕〜〔19〕のいずれか1項に記載の白鋳鉄ナノ結晶粒子の粉末を、超塑性を示す温度域にて放電プラズマ焼結、ホットプレス、シース圧延、押出し成形、熱間鍛造、熱間等方圧加圧成形(HIP)等の真空熱間固化成形(超塑性固化成形)を行うことにより、ナノ炭化物、ナノ窒化物又はナノ炭窒化物のいずれか1種以上の化合物による分散・強化型ナノ結晶白鋳鉄バルク材となすことを特微とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
〔29〕前項〔16〕〜〔19〕のいずれか1項に記載の白鋳鉄ナノ結晶粒子の粉末を、500℃〜900℃の温度での放電プラズマ焼結、ホットプレス、押出し成形、熱間鍛造、熱間等方圧加圧成形(HIP)、圧延等の真空熱間固化成形又は爆発成形などで固化成形処理してナノ結晶白鋳鉄バルク材となし、その後前記白鋳鉄バルク材を超塑性を示す温度域で成形加工することを特徴とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
[27] The powder of white cast iron nanocrystal particles according to any one of [16] to [19] above, spark plasma sintering at a temperature of 500 ° C. to 900 ° C., hot pressing, Nano carbides and nano nitrides by vacuum hot solidification molding such as sheath rolling, hot forging, extrusion molding, hot isostatic pressing (HIP) or explosive solidification Alternatively, a method for producing a nanocrystalline white cast iron bulk material having high hardness, high strength and toughness, characterized in that it becomes a dispersion / precipitation strengthened nanocrystalline white cast iron bulk material of any one or more of nano carbonitrides.
[28] The powder of white cast iron nanocrystal particles according to any one of [16] to [19] above, discharge plasma sintering, hot pressing, sheath rolling, extrusion molding in a temperature range showing superplasticity, By performing vacuum hot solidification molding (superplastic solidification molding) such as hot forging and hot isostatic pressing (HIP), any one or more of nano carbide, nano nitride or nano carbonitride A high-hardness, high-strength, tough nanocrystalline white cast iron bulk material, characterized in that it becomes a dispersion-reinforced nanocrystalline white cast iron bulk material with the above compound.
[29] The powder of white cast iron nanocrystal particles according to any one of [16] to [19] above is subjected to spark plasma sintering at a temperature of 500 ° C. to 900 ° C., hot pressing, extrusion molding, hot Solidification processing is performed by vacuum hot solidification molding such as forging, hot isostatic pressing (HIP), rolling, or explosion molding to form a nanocrystalline white cast iron bulk material, and then the white cast iron bulk material is superplastic. A method for producing a bulk material of nanocrystalline white cast iron having high hardness, high strength and toughness, characterized by being formed in a temperature range of

〔30〕メカニカルミリング又はメカニカルアロイングを施す雰囲気が、(1)アルゴンガスなどの不活性ガス、(2)N2ガス、又は(3)NH3ガスから選ばれるいずれか1種、又は(4)(1)〜(3)から選ばれる2種以上の混合ガスの雰囲気であることを特徴とする前項〔21〕〜〔29〕のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
〔31〕メカニカルミリング又はメカニカルアロイングを施す雰囲気が、若干のH2ガスなどの還元性物質を加えたガスの雰囲気であることを特徴とする前項〔21〕〜〔29〕のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
〔32〕メカニカルミリング又はメカニカルアロイングを施す雰囲気が、真空又は真空中に若干のH2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする前項〔21〕〜〔29〕のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
〔33〕ナノ結晶白鋳鉄の配合組成が、他元素を0〜40質量%含有するものであり、その固化成形の温度が鋳鉄の共析温度(約730℃)を中心として、その上下に20%以内の範囲の温度であることを特徴とする前項〔21〕〜〔32〕のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
[30] The atmosphere in which mechanical milling or mechanical alloying is performed is any one selected from (1) an inert gas such as argon gas, (2) N 2 gas, or (3) NH 3 gas, or (4 The high hardness, high strength and toughness according to any one of [21] to [29] above, which is an atmosphere of two or more mixed gases selected from (1) to (3) Manufacturing method of nanocrystalline white cast iron bulk material.
[31] Any one of [21] to [29] above, wherein the atmosphere for mechanical milling or mechanical alloying is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added. A method for producing a nanocrystalline white cast iron bulk material having high hardness, high strength and toughness as described in 1.
[32] The above items [21] to [29], wherein the atmosphere for performing mechanical milling or mechanical alloying is a vacuum or a reducing atmosphere in which a reducing substance such as a slight amount of H 2 gas is added to the vacuum. ] The manufacturing method of the nanocrystal white cast iron bulk material with high hardness, high strength, and toughness according to any one of the above.
[33] The compound composition of nanocrystalline white cast iron contains 0 to 40% by mass of other elements, and the temperature of solidification molding is 20 above and below the eutectoid temperature (about 730 ° C.) of cast iron. The method for producing a high hardness, high strength and tough nanocrystalline white cast iron bulk material according to any one of [21] to [32] above, wherein the temperature is within a range of%.

本発明によれば、白鋳鉄材料の形成成分の元素状混合物質又は溶製した白鋳鉄などの物質をメカニカルアロイング(MA)又はメカニカルミリング(MM)処理することにより、母相のフェライト粒がナノサイズまで超微細化される上、同フェライト相内にさらに微細なナノサイズの炭化物や炭窒化物などが粒状ないし球状に近い粒子として分散・析出するため、通常の溶解法では達成できないナノサイズレベルでの結晶粒微細化強化と炭化物、炭窒化物などの分散・析出による強化が実現できる。
また本発明によれば、MA又はMMの出発原料におけるクロム量の増加又は同原料へのモリブデン、バナジウム、タングステンなどの高融点元素の添加により、母相のフェライト粒内において、鉄の炭化物(セメンタイト)へのこれらの高融点元素が溶解した状態(複炭化物の生成)からクロム、バナジウムなどをベースにした超硬質の特殊炭化物、窒化物などをナノサイズの超微細粒として分散ないし析出した状態にすることによって、極めて高硬度で強靱なナノ結晶白鋳鉄粉末材料が得られ、また同粉末を固化成形することにより、このようなナノ結晶組織を保持した状態で、高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材を容易に製造することができる。
また、ナノ結晶白鋳鉄材料においては、その結晶粒の大きさ、組成などの適当な選択により、超塑性が発現され、この現象は、MA粉末の固化成形プロセスに効果的に適用できる。
According to the present invention, the ferrite particles of the parent phase can be obtained by subjecting a material such as an elemental mixed substance of the white cast iron material or a molten white cast iron to mechanical alloying (MA) or mechanical milling (MM). In addition to being ultrafine to nanosize, finer nanosized carbides and carbonitrides are dispersed and precipitated as granular or spherical particles in the same ferrite phase. Strengthening by grain refinement at the level and dispersion / precipitation of carbides, carbonitrides, etc. can be realized.
Further, according to the present invention, an increase in the amount of chromium in the starting material of MA or MM or addition of a high melting point element such as molybdenum, vanadium, or tungsten to the raw material causes iron carbide (cementite) in the ferrite grains of the parent phase. ) From the state in which these high melting point elements are dissolved (generation of double carbides) to the state where ultra-hard special carbides and nitrides based on chromium, vanadium, etc. are dispersed or precipitated as nano-sized ultrafine grains By doing so, a nanocrystalline white cast iron powder material with extremely high hardness and toughness can be obtained, and by solidifying and molding the powder, it is strong and strong with high hardness and high strength. Nanocrystalline white cast iron bulk material can be easily manufactured.
Further, in the nanocrystalline white cast iron material, superplasticity is manifested by appropriate selection of the size and composition of the crystal grains, and this phenomenon can be effectively applied to the solidification molding process of MA powder.

通常、白鋳鉄材料では、同材料の構成成分である炭素がミクロンサイズレベルの片状ないし、針状の炭化物として存在しているが、このような白鋳鉄材料にメカニカルアロイング法を用いると、ナノサイズの粒状ないし球状に近い炭化物が鉄の母相(ナノ結晶のフェライト相)に分散した極めて強靱な粉末が得られるため、これを固化成形すると、前記の特性をもつ粉末に加えフェライト相のナノサイズまでの超微細化と球状に近いナノサイズの炭化物の同フェライト相への分散による相乗効果によって、従来の溶解法では製造し得ない極めて優れた強度特性をもつ材料を作ることができる。
すなわち、白鋳鉄材料では、クロム、バナジウムなどの高融点の合金元素を添加すると、ナノサイズのフェライト相のこれらの合金元素による固溶強化とより高硬度の特殊炭化物・炭窒化物の分散・析出により、極めて高硬度、高強度で強靱なより優れたナノ結晶白鋳鉄材料を製造することが可能となる。
一方、結晶粒径をナノサイズレベルまで超微細化すると、多くの金属材料では、0.5Tm(Tm:融点(K))以上のある温度域において、超塑性という特異な現象を示すようになる。この現象を利用すると、構造的に比較的複雑な形状の白鋳鉄材料成形体でも、溶解過程を経ないで、その製造が可能となる。
Normally, in white cast iron material, carbon, which is a component of the same material, is present in the form of micron-sized flakes or needle-like carbides, but when mechanical alloying is used for such white cast iron material, A very tough powder in which nano-sized granular or spherical carbides are dispersed in the iron matrix (the nanocrystalline ferrite phase) is obtained. When this is solidified, the ferrite phase is added to the powder having the above characteristics. Due to the synergistic effect of ultra-miniaturization down to nano-size and dispersion of nano-sized carbides close to a sphere in the same ferrite phase, it is possible to produce materials with extremely excellent strength characteristics that cannot be produced by conventional melting methods.
In other words, in white cast iron materials, when alloying elements with high melting points such as chromium and vanadium are added, solid solution strengthening of these nanosized ferrite phases with these alloying elements and dispersion / precipitation of higher hardness special carbides and carbonitrides This makes it possible to produce a more excellent nanocrystalline white cast iron material having extremely high hardness, high strength and toughness.
On the other hand, when the crystal grain size is reduced to the nano-size level, many metal materials exhibit a unique phenomenon called superplasticity in a temperature range of 0.5 Tm (Tm: melting point (K)) or higher. . By utilizing this phenomenon, even a white cast iron material molded body having a relatively complicated shape can be manufactured without undergoing a melting process.

本発明は、基本的には、ナノ結晶の白鋳鉄形成成分の混合物質又は溶製した白鋳鉄粉末材料などの物質をボールミル等を用いてメカニカルアロイング(MA)又はメカニカルミリング(MM)処理することにより、超硬質で強靱なナノ結晶白鋳鉄粉末材料を提供できることである。そして、同粉末を固化成形処理、又は同成形過程での超塑性を利用した方法を採用することにより、結晶粒径をナノサイズのレベルまで微細化した場合に達成できるその限界に近い強さ(高強度)ないし硬さ(超硬質)及び耐食性をもつナノ炭化物・ナノ炭窒化物などの分散・析出強化型白鋳鉄バルク材を提供できることである。   The present invention basically performs mechanical alloying (MA) or mechanical milling (MM) treatment on a material such as a mixed material of nanocrystalline white cast iron forming material or a molten white cast iron powder material using a ball mill or the like. Thus, an ultra-hard and tough nanocrystalline white cast iron powder material can be provided. And by adopting a method using the solidification processing of the powder, or superplasticity in the molding process, the strength close to its limit that can be achieved when the crystal grain size is refined to the nano-size level ( It is possible to provide a dispersion / precipitation strengthened type white cast iron bulk material such as nano carbide / nano carbonitride having high strength) to hardness (ultra-hard) and corrosion resistance.

また、本発明では、鉄、炭素、クロム、モリブデン、バナジウムなどの単体金属の元素状粉末又はこれらの単体金属の粉末に他元素を添加した白鋳鉄形成成分の混合物質又は溶製した白鋳鉄粉末材料などにボールミル等を用いて、アルゴンガスなどの雰囲気中にて室温でのメカニカルアロイング(MA)又はメカニカルミリング(MM)処理を施すと、MM又はMA処理された粉末は、ボールミルによって付加された機械的エネルギーにより、10〜30nm前後の結晶粒径まで容易に微細化し、例えば粒径約25nmまで微細化した白鋳鉄のビッカース硬さは800〜1000程度となる。
次いで、そのようなMM、MA処理粉末を約10mm内径のステンレス鋼チューブ(シース)に真空封入し、これを700〜750℃付近の温度で圧延機を用いたシース圧延により固化成形すると、例えば白鋳鉄の場合は約1.2GPa以上の耐力を示す厚さ1.5mm程度のシートを容易に製造することができる。
Further, in the present invention, elemental powders of simple metals such as iron, carbon, chromium, molybdenum, vanadium, or a mixed material of white cast iron forming components obtained by adding other elements to these simple metal powders or melted white cast iron powders When the material is subjected to mechanical alloying (MA) or mechanical milling (MM) treatment at room temperature in an atmosphere of argon gas or the like using a ball mill or the like, the MM or MA-treated powder is added by the ball mill. By virtue of the mechanical energy, the Vickers hardness of white cast iron that is easily refined to a crystal grain size of about 10 to 30 nm, for example, to a grain size of about 25 nm, is about 800 to 1000.
Then, such MM and MA-treated powder is vacuum-sealed in a stainless steel tube (sheath) having an inner diameter of about 10 mm, and solidified by sheath rolling using a rolling mill at a temperature of around 700 to 750 ° C. In the case of cast iron, a sheet having a thickness of about 1.5 mm and having a yield strength of about 1.2 GPa or more can be easily manufactured.

また、鉄、クロム、炭素などの白鋳鉄構成分の元素状混合粉末に、モリブデン、バナジウムなど他元素等を2〜5質量%程度添加した混合粉末に、ボールミル等を用いたメカニカルアロイング(MA)処理を施すと、MA過程での微細化は一層促進され、その結晶粒径は数ナノオーダのものとなる。
また、前項に記載のメカニカルアロイング(MA)又はメカニカルミリング(MM)処理粉末に通常、MA又はMM処理過程で必然的に混入する0.5質量%程度までの酸素が金属酸化物の形態で存在して、同酸化物による結晶粒界のピン止め効果(pinning effect)により、固化成形過程での結晶粒粗大化を抑制する。このような抑制効果を高めるため、MA又はMM処理粉末にAlN、NbNなどの粒子分散剤を1〜10体積%、特に3〜5体積%添加することはより好ましい。
Also, mechanical alloying (MA) using a ball mill or the like to mixed powder obtained by adding about 2 to 5% by mass of other elements such as molybdenum and vanadium to elemental mixed powder of white cast iron components such as iron, chromium and carbon. ), The refinement in the MA process is further promoted, and the crystal grain size is on the order of several nanometers.
In addition, oxygen up to about 0.5% by mass that is inevitably mixed in the mechanical alloying (MA) or mechanical milling (MM) -treated powder described in the preceding paragraph in the course of MA or MM treatment is usually in the form of a metal oxide. It exists and suppresses grain coarsening in the solidification molding process due to the pinning effect of the grain boundary by the oxide. In order to enhance such suppression effect, it is more preferable to add 1 to 10% by volume, particularly 3 to 5% by volume, of a particle dispersant such as AlN or NbN to the MA or MM treated powder.

さらに本発明では、白鋳鉄形成成分の元素状粉末材料又は溶製した白鋳鉄などの材料のメカニカルアロイング(MA)又はメカニカルミリング(MM)処理において、同材料に添加・含有させるクロム、モリブデン、バナジウム、タングステンなどの高融点元素の濃度を高めて処理すると、ナノ結晶のフェライト相にナノサイズの超硬質複炭化物・窒化物ないし前記高融点元素をベースとした特殊炭化物・窒化物が分散・析出した極めて硬くて強靱な粉末材料を容易に製造でき、次いでこれにシース圧延、押出し加工などの固化成形を施すと、高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材料の製造を効果的に行うことができる。
その結果、Fe91.83Cr50.2(質量%)、Fe56.83Cr35Mo320.2(質量%)、Fe58.83Cr3530.2(質量%)などのナノ結晶白鋳鉄の粉末材料及びそのバルク材が得られる。
Further, in the present invention, in mechanical alloying (MA) or mechanical milling (MM) treatment of elemental powder material of white cast iron forming material or melted white cast iron, chromium, molybdenum to be added to and contained in the material, When the concentration of refractory elements such as vanadium and tungsten is increased, nanosized ultra-hard double carbides / nitrides or special carbides / nitrides based on the refractory elements are dispersed and precipitated in the ferrite phase of the nanocrystals. Can be easily manufactured, and then solidified molding such as sheath rolling and extrusion can be used to effectively produce high hardness, high strength and tough nanocrystalline white cast iron bulk material. It can be carried out.
As a result, nanostructures such as Fe 91.8 C 3 Cr 5 N 0.2 (mass%), Fe 56.8 C 3 Cr 35 Mo 3 V 2 N 0.2 (mass%), Fe 58.8 C 3 Cr 35 W 3 N 0.2 (mass%), etc. A powder material of crystalline white cast iron and its bulk material are obtained.

以下、本発明の実施例について説明する。
実施例1:
炭素の含有量が2.2〜3.5質量%の白鋳鉄組成のメカニカルアロイング(MA)処理粉末に対して、超塑性を利用した固化成形を行った。以下にその1例について説明する。
鉄、炭素及びクロムの元素状粉末と窒化鉄(含有窒素:8.51質量%)の混合粉末からメカニカルアロイング(MA)によって、Fe94.33.5Cr20.2(質量%)組成の合金粉末をつくり、同粉末を内径40mmの黒鉛製ダイスに装填して、真空中700℃にて、成形圧力60MPaの下で、15分間のホットプレスにより直径40mm、厚さ5mmの仮焼結体とした。
次いで550、600、650、700、750℃の各温度にて同焼結体の厚さ方向に歪速度10-3/sにて30分間圧縮荷重を与えて得た固化成形体の各成形温度Tにおける平均結晶粒径d、ビッカース硬さHv、引張り強さσB、伸びδ及び酸素・窒素分析値は表1のとおりである。

Figure 2005281768
表1によると、各試料の固化過程は、常温におけるその硬さ、結晶粒径の値から判断して650℃以上の温度(超塑性開始温度Tsp以上の温度)からより効果的になることが解る。 Examples of the present invention will be described below.
Example 1:
Solidification molding utilizing superplasticity was performed on a mechanically alloyed (MA) -treated powder having a carbon content of 2.2 to 3.5% by mass and having a white cast iron composition. One example will be described below.
Alloy powder of Fe 94.3 C 3.5 Cr 2 N 0.2 (mass%) composition by mechanical alloying (MA) from mixed powder of elemental powder of iron, carbon and chromium and iron nitride (containing nitrogen: 8.51 mass%) The powder was loaded into a graphite die having an inner diameter of 40 mm, and a temporary sintered body having a diameter of 40 mm and a thickness of 5 mm was obtained by hot pressing for 15 minutes at 700 ° C. in a vacuum at a molding pressure of 60 MPa. .
Next, each molding temperature of the solidified molded body obtained by applying a compressive load for 30 minutes at a strain rate of 10 −3 / s in the thickness direction of the sintered body at each temperature of 550, 600, 650, 700, and 750 ° C. Table 1 shows the average crystal grain size d, the Vickers hardness Hv, the tensile strength σ B , the elongation δ, and the oxygen / nitrogen analysis values at T.
Figure 2005281768
According to Table 1, the solidification process of each sample can be more effective from a temperature of 650 ° C. or higher (temperature of superplasticity starting temperature Tsp or higher) as judged from its hardness and crystal grain size at normal temperature. I understand.

実施例2:
鉄、炭素及びクロムの元素状粉末と窒化鉄(含有窒素:8.51質量%)の混合粉末をメカニカルアロイング(MA)(雰囲気:アルゴンガス/MA時間:200h)処理して、Fe84.9-XXCr150.1(質量%)(X=2.2〜3.5)白鋳鉄合金粉末をつくった。
次いで、これらの合金粉末を内径40mmの黒鉛製ダイスに装填して、真空において超塑性開始温度Tsp以上の温度700℃で歪速度10-3/s、保持時間5分間にて放電プラズマ焼結(SPS)した後、同温度にて更に熱間圧延加工を加え、これを水冷処理して固化成形体を得た。これらの白鋳鉄固化成形体と前記白鋳鉄粉末試料の平均結晶粒径d及びビッカース硬さHvは表2のとおりである。
表2からみて、本発明によれば、固化成形過程でかなりの結晶粒の成長はみられるが、成形後もナノ組織は保持された。そのビッカース硬さHvは高炭素鋼のマルテンサイト組織を有する焼入れ材以上の硬さを示すものとなることが解る。

Figure 2005281768
*[メカニカルアロイング(MA)処理したFe84.9-XXCr150.1(質量%)(X=2.2〜3.5)白鋳鉄粉末及び同粉末に、放電プラズマ焼結(真空700℃)+圧延(真空700℃)を施して得た固化成形体試料の平均結晶粒径d及びビッカース硬さHv] Example 2:
A mixed powder of elemental powder of iron, carbon and chromium and iron nitride (containing nitrogen: 8.51% by mass) was subjected to mechanical alloying (MA) (atmosphere: argon gas / MA time: 200 h) to obtain Fe 84.9- X C X Cr 15 N 0.1 (wt%) (X = 2.2~3.5) made a white iron alloy powder.
Next, these alloy powders were loaded into a graphite die having an inner diameter of 40 mm, and were subjected to discharge plasma sintering in vacuum at a temperature of 700 ° C. above the superplasticity start temperature Tsp at a strain rate of 10 −3 / s and a holding time of 5 minutes ( SPS), hot rolling was further applied at the same temperature, and this was water-cooled to obtain a solidified molded body. Table 2 shows the average crystal grain size d and Vickers hardness Hv of the white cast iron solidified compact and the white cast iron powder sample.
As can be seen from Table 2, according to the present invention, considerable crystal grain growth was observed during the solidification molding process, but the nanostructure was retained after molding. It can be seen that the Vickers hardness Hv indicates a hardness higher than that of a hardened material having a martensitic structure of high carbon steel.
Figure 2005281768
* [Mechanical alloying (MA) -treated Fe 84.9-X C X Cr 15 N 0.1 (mass%) (X = 2.2 to 3.5) Spark plasma sintering (vacuum 700) ° C) + rolling (vacuum 700 ° C), average crystal grain size d and Vickers hardness Hv of solidified molded body sample]

実施例3:
前記、実施例2と同様の方法により、
鉄、クロム及び炭素の元素状粉末と窒化鉄(含有窒素:8.51質量%)の混合粉末をボールミルを用いたメカニカルアロイング(MA)(雰囲気:アルゴンガス/MA時間:200h)処理することにより、Fe82-y3Cr15y(質量%)(y=0〜0.5)合金粉末を作った。
次いで、これらの合金粉末を、前記実施例2と同じ条件のもとで、内径40mmの黒鉛製ダイスに装填して、真空において700℃にて放電プラズマ焼結(SPS)した後、同温度にて更に熱間圧延加工を施し、これを水冷処理して得られた固化成形材料の平均結晶粒径d及びビッカース硬さHvは表3のとおりである。
実施例3、表3からみて、本発明によればFe82-y3Cr15y(質量%)白鋳鉄試料の固化成形体のビッカース硬さHvは、実施例2のFe84.9-XXCr150.1 (質量%)試料の場合と同様、極めて高い値が得られ、ビッカース硬さHvの値は窒素Nの含有量とともに増大することが解る。

Figure 2005281768
*[メカニカルアロイング(MA)処理後、放電プラズマ焼結(真空700℃)+圧延(真空700℃)を施したFe82-y3Cr15y(質量%)(y=0〜0.5)白鋳鉄固化成形体試料の平均結晶粒径d及びビッカース硬さHv] Example 3:
By the same method as in Example 2,
A mixed powder of elemental powder of iron, chromium and carbon and iron nitride (containing nitrogen: 8.51 mass%) is subjected to mechanical alloying (MA) using a ball mill (atmosphere: argon gas / MA time: 200 h). Thus, an Fe 82-y C 3 Cr 15 N y (mass%) (y = 0 to 0.5) alloy powder was prepared.
Next, these alloy powders were loaded into a graphite die having an inner diameter of 40 mm under the same conditions as in Example 2 and subjected to discharge plasma sintering (SPS) at 700 ° C. in vacuum, and then to the same temperature. Table 3 shows the average crystal grain size d and the Vickers hardness Hv of the solidified molding material obtained by further hot rolling and water-cooling it.
As seen from Example 3 and Table 3, according to the present invention, the Vickers hardness Hv of the solidified molded body of the Fe 82-y C 3 Cr 15 N y (mass%) white cast iron sample is Fe 84.9-X of Example 2. As in the case of the C X Cr 15 N 0.1 (mass%) sample, an extremely high value is obtained, and it can be seen that the value of the Vickers hardness Hv increases with the content of nitrogen N.
Figure 2005281768
* [Fe 82-y C 3 Cr 15 N y (mass%) (y = 0 to 0) subjected to discharge plasma sintering (vacuum 700 ° C.) + Rolling (vacuum 700 ° C.) after mechanical alloying (MA) treatment .5) Average crystal grain size d and Vickers hardness Hv of white cast iron solidified compact sample]

実施例4:
Fe823Cr15(質量%)の鋳鉄組成の材料を対象として、窒素N無添加の出発原料である、(a)同鋳鉄材料の形成成分の元素状混合物質、(b)溶製した前記組成の鋳鉄材料、及び(c)前記組成となるように調合した鋳鉄、鋼、鉄、炭素及びクロムの混合物質に対して、ボールミルを用いたメカニカルアロイング(MA)又はメカニカルミリング(MM)(雰囲気:アルゴンガス/MA又はMMの処理時間:200h)処理を施すことにより、同一組成の3種類の白鋳鉄合金粉末を取得した。
次いで、この3種類の各合金粉末を、前記、実施例3と同じ条件のもとで内径40mmの黒鉛製ダイスに装填して、真空において700℃で放電プラズマ焼結(SPS)した後、同温度にて更に熱間圧延加工を施し、これを水冷処理して得られた固化成形材料の平均結晶粒径d、ビッカース硬さHv、引張強さσB、伸びδは表4のとおりである。
表4からみて、本発明によれば、前記のような異なる出発原料から得られたこれらの白鋳鉄固化成形体の結晶粒径及び引張強さ等の機械的性質の間に有為な差は認められないことが解る。

Figure 2005281768
*[(a)Fe823Cr15(質量%)白鋳鉄の各形成成分の元素状混合物質、(b)溶製した前記組成の白鋳鉄材料、及び(c)前記組成となるように調合した白鋳鉄、鋼、鉄、炭素及びクロムの混合物質、の各出発原料からメカニカルアロイング(MA)又はメカニカルミリング(MM)処理して得た前記組成の合金粉末の放電プラズマ焼結(真空700℃)+圧延(真空700℃)による白鋳鉄固化成形体試料の平均結晶粒径d、ビッカース硬さHv、引張強さσB及び伸びδ] Example 4:
Targeting a cast iron composition material of Fe 82 C 3 Cr 15 (mass%), (a) an elemental mixed material of forming components of the cast iron material, which is a starting material without addition of nitrogen N, (b) melted Cast alloy material having the above composition, and (c) mechanical alloying (MA) or mechanical milling (MM) using a ball mill for a mixed material of cast iron, steel, iron, carbon, and chromium prepared to have the above composition (Atmosphere: Argon gas / MA or MM treatment time: 200 h) By performing the treatment, three types of white cast iron alloy powders having the same composition were obtained.
Next, these three kinds of alloy powders were loaded into a graphite die having an inner diameter of 40 mm under the same conditions as in Example 3 and subjected to discharge plasma sintering (SPS) at 700 ° C. in a vacuum. Table 4 shows the average crystal grain size d, Vickers hardness Hv, tensile strength σ B , and elongation δ of the solidified molding material obtained by further hot-rolling at a temperature and subjecting it to water cooling treatment. .
In view of Table 4, according to the present invention, there is a significant difference between the mechanical properties such as crystal grain size and tensile strength of these white cast iron solidified bodies obtained from different starting materials as described above. I understand that it is not allowed.
Figure 2005281768
* [(A) Fe 82 C 3 Cr 15 (mass%) elemental mixed material of each forming component of white cast iron, (b) molten white cast iron material of the above composition, and (c) so as to be the above composition Spark plasma sintering (vacuum) of alloy powder of the above composition obtained by mechanical alloying (MA) or mechanical milling (MM) treatment from each of the prepared white cast iron, steel, iron, carbon and chromium mixed materials 700 ° C.) + Average crystal grain size d, Vickers hardness Hv, tensile strength σ B and elongation δ of solid cast iron samples by rolling (vacuum 700 ° C.)]

実施例5:
Fe81.93Cr150.1(質量%)の鋳鉄組成の材料を対象として、出発原料である、(a)同鋳鉄材料の形成成分の元素状物質と窒化鉄(含有N:8.51質量%)との混合物質、(b)溶製した前記組成の鋳鉄材料、及び(c)前記組成となるように調合した鋳鉄、鋼、鉄、窒化鉄(含有N:8.51質量%)及びクロムの混合物質に対して、ボールミルを用いたメカニカルアロイング(MA)又はメカニカルミリング(MM)(雰囲気:アルゴンガス/MA又はMMの処理時間:200h)処理を施すことにより同一組成の3種類の白鋳鉄合金粉末を取得した。
次いで、この3種類の各合金粉末を、前記、実施例4と同じ条件のもとで放電プラズマ焼結(SPS)した後、700℃にて更に熱間圧延加工を施し、これを水冷処理して得られた固化成形材料の平均結晶粒径d、ビッカース硬さHv、引張強さσB、伸びδは表5のとおりである。
表5からみて、本発明によれば、実施例4と同様、前記のような異なる出発原料から得られたこれらの白鋳鉄固化成形体の結晶粒径及び引張り強さ等の機械的性質の間に有為な差は認められないこと及び3試料とも窒素Nを含有することによって、その強度特性が大きく向上することが解る。

Figure 2005281768
*[(a)Fe81.93Cr150.1(質量%)白鋳鉄各形成成分の元素状物質と窒化鉄(含有N:8.51質量%)との混合物質、(b)溶製した前記組成の白鋳鉄材料、及び(c)前記組成となるように調合した白鋳鉄、鋼、鉄、炭素、クロム及び窒化鉄(含有N:8.51質量%)の混合物質、の各出発原料からメカニカルアロイング(MA)又はメカニカルミリング(MM)処理して得た前記組成の合金粉末の放電プラズマ焼結(真空700℃)+圧延(真空700℃)による白鋳鉄固化成形体試料の平均結晶粒径d、ビッカース硬さHv、引張強さσB及び伸びδ] Example 5:
Fe 81.9 C 3 Cr 15 N 0.1 (mass%) for cast iron composition material, (a) Elemental substance and iron nitride (containing N: 8.51 mass) which is a starting material and is a constituent of the cast iron material %)), (B) cast iron material having the above-described composition, and (c) cast iron, steel, iron, iron nitride (containing N: 8.51% by mass) prepared to have the above-mentioned composition, and By applying mechanical alloying (MA) or mechanical milling (MM) (atmosphere: argon gas / MA or MM treatment time: 200 hours) using a ball mill to the chromium mixed material, three types of the same composition are used. White cast iron alloy powder was obtained.
Next, after each of these three types of alloy powders was subjected to spark plasma sintering (SPS) under the same conditions as in Example 4, it was further subjected to hot rolling at 700 ° C. and subjected to water cooling treatment. Table 5 shows the average crystal grain size d, Vickers hardness Hv, tensile strength σ B , and elongation δ of the solidified molding material obtained as described above.
As can be seen from Table 5, according to the present invention, as in Example 4, the mechanical properties such as crystal grain size and tensile strength of these white cast iron solidified bodies obtained from the different starting materials as described above. It can be seen that there is no significant difference between the three samples and that the strength characteristics of the three samples are greatly improved by containing nitrogen N in all three samples.
Figure 2005281768
* [(A) Fe 81.9 C 3 Cr 15 N 0.1 (mass%) White cast iron mixed material of elemental material of each forming component and iron nitride (containing N: 8.51 mass%), (b) melted Each starting material of white cast iron material having the above composition, and (c) a mixed material of white cast iron, steel, iron, carbon, chromium and iron nitride (containing N: 8.51% by mass) prepared to have the above composition Average crystal of white cast iron solidified compact sample by discharge plasma sintering (vacuum 700 ° C.) + Rolling (vacuum 700 ° C.) of alloy powder of the above composition obtained by mechanical alloying (MA) or mechanical milling (MM) treatment from Particle size d, Vickers hardness Hv, tensile strength σ B and elongation δ]

実施例6:
鉄、炭素、クロム、モリブデン、バナジウム、チタン又はタングステンの元素状粉末と窒化鉄(含有窒素:8.51質量%)との混合粉末から、ボールミルを用いたメカニカルアロイング(MA)(雰囲気:アルゴンガス/MA処理時間:200h)により、鋳鉄組成の(a)Fe91.83Cr50.2、(b)Fe81.83Cr150.2、(c)Fe61.83Cr32Ni30.2、(d)Fe56.83Cr35Mo320.2、(e)Fe60.83.5Cr35Ti0.50.2及び(f)Fe58.83Cr3530.2(質量%)の各鋳鉄合金粉末を作った。
次いで、これらの合金粉末を、前記、実施例3と同じ条件のもとで内径40mmの黒鉛ダイスに装填して、真空中で700℃にて放電プラズマ焼結(SPS)した後、同温度にて更に熱間圧延加工を施し、これを水冷処理して得られた固化成形試料の平均結晶粒径d、ビッカーズ硬さHv、引張強さσB及び伸びδは表6のとおりである。

Figure 2005281768
*[対象とする試料の各形成成分の元素状粉末と窒化鉄(含有N:8.51質量%)との混合物質から得た次の(a)〜(f)組成のメカニカルアロイング(MA)処理合金粉末の放電プラズマ焼結(真空700℃)+圧延(真空700℃)による白鋳鉄固化成形体の平均結晶粒径d、ビッカース硬さHv、引張強さσB及び伸びδ
(a)Fe91.83Cr50.2、(b)Fe81.83Cr150.2、(c)Fe61.83Cr32Ni30.2、(d)Fe56.83Cr35Mo320.2、(e)Fe60.83.5Cr35Ti0.50.2及び(f)Fe58.83Cr3530.2(質量%)]

表6より、白鋳鉄固化成形体の引張強さ等の強度特性は、クロム濃度の増加とモリブデン、タングステン、チタンなどの高融点元素の存在により著しく向上することが明らかである。
表6からみて、本発明によれば、クロム量の増加、又は前記、高融点元素の添加により、鉄の炭化物(セメンタイト)へのこれらの合金元素が溶解した状態(複炭化物の生成)からクロムなどをベースにした極めて硬い特殊炭化物・窒化物等をナノサイズの極微細粒として分散ないし析出した状態にすることによって極めて高強度で強靱なナノ結晶白鋳鉄バルク材を製造できることが解る。 Example 6:
Mechanical alloying (MA) using a ball mill (atmosphere: argon) from a mixed powder of elemental powder of iron, carbon, chromium, molybdenum, vanadium, titanium or tungsten and iron nitride (containing nitrogen: 8.51 mass%) (A) Fe 91.8 C 3 Cr 5 N 0.2 , (b) Fe 81.8 C 3 Cr 15 N 0.2 , (c) Fe 61.8 C 3 Cr 32 Ni 3 N 0.2 (D) Fe 56.8 C 3 Cr 35 Mo 3 V 2 N 0.2 , (e) Fe 60.8 C 3.5 Cr 35 Ti 0.5 N 0.2 and (f) Fe 58.8 C 3 Cr 35 W 3 N 0.2 (mass%) Cast iron alloy powder was made.
Subsequently, these alloy powders were loaded into a graphite die having an inner diameter of 40 mm under the same conditions as in Example 3 and subjected to discharge plasma sintering (SPS) at 700 ° C. in a vacuum, and then at the same temperature. Table 6 shows the average crystal grain size d, Vickers hardness Hv, tensile strength σ B and elongation δ of the solidified molded sample obtained by further hot rolling and water cooling.
Figure 2005281768
* [Mechanical alloying (MA) having the following compositions (a) to (f) obtained from a mixed material of elemental powder of each forming component of the target sample and iron nitride (containing N: 8.51% by mass) ) Average crystal grain size d, Vickers hardness Hv, tensile strength σ B and elongation δ of white cast iron solidified body by spark plasma sintering (vacuum 700 ° C.) + Rolling (vacuum 700 ° C.) of the treated alloy powder
(A) Fe 91.8 C 3 Cr 5 N 0.2 , (b) Fe 81.8 C 3 Cr 15 N 0.2 , (c) Fe 61.8 C 3 Cr 32 Ni 3 N 0.2 , (d) Fe 56.8 C 3 Cr 35 Mo 3 V 2 N 0.2 , (e) Fe 60.8 C 3.5 Cr 35 Ti 0.5 N 0.2 and (f) Fe 58.8 C 3 Cr 35 W 3 N 0.2 (mass%)]

From Table 6, it is clear that the strength characteristics such as tensile strength of the white cast iron solidified body are remarkably improved by the increase in the chromium concentration and the presence of refractory elements such as molybdenum, tungsten, and titanium.
As seen from Table 6, according to the present invention, chromium is increased from the state in which these alloy elements are dissolved in iron carbide (cementite) by the increase in the amount of chromium or the addition of the high melting point element (generation of double carbide). It is understood that a very strong and tough nanocrystalline white cast iron bulk material can be produced by dispersing or precipitating extremely hard special carbides / nitrides and the like based on the above as nano-sized ultrafine grains.

実施例7:
鉄、クロム及び炭素の元素状粉末と窒化鉄(含有窒素:8.51質量%)との混合粉末から、ボールミルを用いたメカニカルアロイング(MA)(雰囲気:アルゴンガス/MA処理時間:200h)により、鋳鉄組成のFe81.93Cr150.1(質量%)の合金粉末を作った。
次いで、この合金粉末を真空中にて750℃の温度で(a)圧延、(b)熱間等方圧加圧焼結(HIP)、(c)押出し、又は(d)鍛造による熱間固化成形加工を加え、これを水冷処理して得られた固化成形体の平均結晶粒径d、ビッカーズ硬さHv、引張強さσB及び伸びδは表7のとおりである。

Figure 2005281768
*[各成分元素の元素状粉末と窒化鉄(含有N:8.51質量%)との混合物質から得たメカニカルアロイング(MA)処理によって得られた、Fe81.93Cr150.1(質量%)合金粉末の次(a)〜(d)の熱間固化成形(真空700℃)による白鋳鉄固化成形体の平均結晶粒径d、ビッカース硬さHv、引張強さσB及び伸びδ
(a)圧延、(b)熱間等方圧加圧焼結(HIP)、(c)押出し、(d)鍛造]
表7からみて、本発明によれば、通常形状のバルク材であれば、固化成形温度などの成形条件の適切な選定により、前記合金粉末材料を鍛造などの1プロセスの固化成形処理により、極めて優れた強度特性をもつ炭化物ないし炭窒化物の分散・析出強化型のナノ結晶鋳鉄バルク材となすことができることが解る。 Example 7:
From a mixed powder of elemental powder of iron, chromium and carbon and iron nitride (containing nitrogen: 8.51 mass%), mechanical alloying (MA) using a ball mill (atmosphere: argon gas / MA treatment time: 200 h) Thus, an alloy powder of Fe 81.9 C 3 Cr 15 N 0.1 (mass%) having a cast iron composition was prepared.
The alloy powder is then heated in a vacuum at a temperature of 750 ° C. (a) rolling, (b) hot isostatic pressing (HIP), (c) extrusion, or (d) hot solidification by forging. Table 7 shows the average crystal grain size d, Vickers hardness Hv, tensile strength σ B, and elongation δ of the solidified molded body obtained by adding a molding process and water-cooling.
Figure 2005281768
* [Fe 81.9 C 3 Cr 15 N 0.1 (obtained by mechanical alloying (MA) treatment obtained from a mixed material of elemental powder of each component element and iron nitride (containing N: 8.51 mass%)) (Mass%) The average crystal grain size d, Vickers hardness Hv, tensile strength σ B, and elongation δ of the white cast iron solidified body formed by hot solidification (vacuum 700 ° C.) of the following (a) to (d) of the alloy powder.
(A) rolling, (b) hot isostatic pressing (HIP), (c) extrusion, (d) forging]
According to the present invention, according to the present invention, according to the present invention, if the bulk material has a normal shape, the alloy powder material can be obtained by one-step solidification processing such as forging by appropriately selecting molding conditions such as solidification molding temperature. It can be seen that it can be a nanocrystalline cast iron bulk material of carbide / carbonitride dispersion / precipitation strengthening type with excellent strength characteristics.

前記本発明で得られたナノ結晶白鋳鉄バルク材は、下記のような用途に好適に使用される。
(1)ベアリング(軸受)類、
本発明によるナノ結晶白鋳鉄バルク材を軸受の回転部に用いると、前記の強度特性から、その使用量を大幅に減らすことができるので、これにより、使用材料の節減になるばかりでなく、軸受転動体部の遠心力の大きな低下を通じて、軸受運転時の使用電力を大きく低減することができる。
(2)歯車類
歯車の材料に多く用いられている金属材料では、その表面部(歯面部)には耐摩耗性をもたせ、そして内部には強い靱性をもたせるという相矛盾する性質を一つの部品に与える必要があるため、この場合は、歯面部への浸炭などと焼入・焼きもどしとを組み合わせたかなり高度な技術と熟練を要する表面硬化処理が必要となるが、本発明による、例えば押し出し加工で製造した超硬質で強靱な特性を有するナノ結晶白鋳鉄バルク材をこれに用いる場合は、そのような表面硬化などの処理は不要である。
(3)熱間加工用工具、押出工具類
例えば、高温切削工具材として多く用いられているモリブデン系の高速度鋼のような焼入れ・焼きもどし材では、そのマトリックスが昇温域で不安定な焼きもどしマルテンサイト相からなるために、400℃付近の温度以上では急激に軟化する性質をもっている。しかし本発明によるナノ結晶白鋳鉄バルク材は、そのマトリックス自体が安定相からなるため、そのような温度域で急激な軟化を示すことはないので、より優れた熱間加工向けの工具材料として用いることができる。
また、本発明によるナノ結晶白鋳鉄バルク材は、上記のような熱的に比較的安定なマトリックスからなるため、使用時に熱的変化の激しい押出し工具などにも、より効果的に用いることができる。
(4)医療器具類その他
ニッケルを含有するクロム−ニッケル系オーステナイトステンレス鋼と異なり、人体に皮膚炎などの疾病をひき起こすことがなく、外科医が用いるメス、医療用低温器具類、その他一般用のナイフ、工具類の材料としても有望といえる。
The nanocrystalline white cast iron bulk material obtained in the present invention is suitably used for the following applications.
(1) Bearings,
When the nanocrystalline white cast iron bulk material according to the present invention is used for the rotating part of the bearing, the amount of use can be greatly reduced due to the above-mentioned strength characteristics. The power consumption during the bearing operation can be greatly reduced through a large decrease in the centrifugal force of the rolling element portion.
(2) Gears One of the metal materials often used for gear materials is a contradictory property that the surface part (tooth surface part) has wear resistance and the inside has strong toughness. In this case, it requires a highly advanced technique combining carburizing of the tooth surface and quenching / tempering, and requires a skilled surface hardening treatment. When a nanocrystalline white cast iron bulk material having ultra-hard and tough properties produced by processing is used for this, such treatment as surface hardening is unnecessary.
(3) Hot working tools and extrusion tools For example, in the case of quenching and tempering materials such as molybdenum-based high-speed steel, which is often used as high-temperature cutting tool materials, the matrix is unstable in the temperature rising range. Since it consists of a tempered martensite phase, it has the property of softening rapidly at temperatures above 400 ° C. However, the nanocrystalline white cast iron bulk material according to the present invention does not show rapid softening in such a temperature range because the matrix itself is composed of a stable phase, so it is used as a better tool material for hot working. be able to.
In addition, the nanocrystalline white cast iron bulk material according to the present invention is composed of a thermally relatively stable matrix as described above, so that it can be used more effectively for an extrusion tool that undergoes a large thermal change during use. .
(4) Medical instruments, etc. Unlike chromium-nickel austenitic stainless steel containing nickel, it does not cause diseases such as dermatitis in the human body, and scalpels used by surgeons, medical cryogenic instruments, and other general-purpose instruments. It is also promising as a material for knives and tools.

Claims (33)

白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記ナノ結晶のフェライト相の強化物質として、同フェライト相内にナノメートルサイズ(1nm〜10nm)の粒状ないし球状に近い
(1)金属又は半金属の炭化物、(2)金属又は半金属の窒化物、又は(3)金属又は半金属の炭窒化物から選ばれた1又は2以上の物質を分散・析出させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。
A white cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, wherein the ferrite phase of the nanocrystal has a nanometer size ( 1 or 2 selected from (1) metal or metalloid carbide, (2) metal or metalloid nitride, or (3) metal or metalloid carbonitride. A high-hardness nanocrystalline white cast iron powder obtained by dispersing and precipitating the above substances.
請求項1に記載の炭化物、窒化物又は炭窒化物を構成する金属又は半金属が、鉄、クロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステン、ニッケル、コバルト、アルミニウム、ケイ素又はホウ素から選ばれるいずれか1つ以上からなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   The metal or semimetal constituting the carbide, nitride or carbonitride according to claim 1 is iron, chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, tungsten, nickel, cobalt, aluminum, silicon or boron. A high-hardness nanocrystalline white cast iron powder characterized by comprising at least one selected from the group consisting of: 請求項1に記載の炭化物、窒化物又は炭窒化物が、白鋳鉄中に含有されるクロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステンのような高融点元素が、その0.5〜10質量%以上の高濃度の含有量の場合に形成され、これらが単独の状態及び/又は他の炭化物、窒化物又は炭窒化物と共存状態で存在するものであることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   The carbide, nitride or carbonitride according to claim 1 is a high melting point element such as chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, tungsten contained in white cast iron. Formed in the case of high concentration content of -10% by mass or more, and these are present in a single state and / or coexisting with other carbides, nitrides or carbonitrides Nanocrystalline white cast iron powder with hardness. 白鋳鉄ナノ結晶粒子の集合体よりなる白鋳鉄粉末が、窒素を0.01〜5.0質量%含有するものであることを特徴とする請求項1〜3のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   The white cast iron powder comprising an aggregate of white cast iron nanocrystal particles contains 0.01 to 5.0% by mass of nitrogen, according to any one of claims 1 to 3. Nanocrystalline white cast iron powder with hardness. 白鋳鉄ナノ結晶粒子の集合体よりなる白鋳鉄粉末が、窒素無添加のものであることを特徴とする請求項1〜3のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   The high-hardness nanocrystalline white cast iron powder according to any one of claims 1 to 3, wherein the white cast iron powder made of an aggregate of white cast iron nanocrystal particles is a non-nitrogen-added powder. 白鋳鉄ナノ結晶粒子の集合体よりなる白鋳鉄粉末が、分散・析出強化物質及び/又は結晶粒成長抑制物質として、(1)クロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステン、ニッケル、コバルト、アルミニウム、ケイ素又はホウ素から選ばれるいずれか1種以上、又は(2)前記各元素の炭化物、窒化物、炭窒化物のいずれか1種以上を存在させてなることを特徴とする請求項1〜5のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder composed of aggregates of white cast iron nanocrystal particles is used as a dispersion / precipitation strengthening substance and / or a grain growth inhibiting substance. (1) Chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, tungsten, nickel Any one or more selected from cobalt, aluminum, silicon, or boron, or (2) any one or more of carbides, nitrides, and carbonitrides of the respective elements are present. Item 6. The high hardness nanocrystalline white cast iron powder according to any one of Items 1-5. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の炭化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and crystal grain growth between and / or inside the nanocrystal particles A high-hardness nanocrystalline white cast iron powder comprising a metal or metalloid carbide as an inhibitor. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の酸化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and crystal grain growth between and / or inside the nanocrystal particles A high-hardness nanocrystalline white cast iron powder comprising a metal or metalloid oxide as an inhibitor. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の窒化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and crystal grain growth between and / or inside the nanocrystal particles A high-hardness nanocrystalline white cast iron powder characterized by containing a metal or metalloid nitride as an inhibitor. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の炭窒化物を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and crystal grain growth between and / or inside the nanocrystal particles A high-hardness nanocrystalline white cast iron powder comprising a metal or semi-metal carbonitride as an inhibitor. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属のケイ化物(シリサイド)を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and crystal grain growth between and / or inside the nanocrystal particles A high-hardness nanocrystalline white cast iron powder comprising a metal or metalloid silicide (silicide) as an inhibitor. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の硼化物(ボライド)を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and crystal grain growth between and / or inside the nanocrystal particles A high-hardness nanocrystalline white cast iron powder characterized in that a metal or metalloid boride is present as an inhibitor. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として、(1)金属又は半金属の炭化物、(2)金属又は半金属の酸化物、(3)金属又は半金属の窒化物、(4)金属又は半金属の炭窒化物、(5)金属又は半金属のケイ化物(シリサイド)又は(6)金属又は半金属の硼化物(ボライド)の、(1)〜(6)から選ばれる2種以上を存在させてなることを特徴とする高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles, and crystal grain growth between and / or inside the nanocrystal particles (1) Metal or metalloid carbide, (2) Metal or metalloid oxide, (3) Metal or metalloid nitride, (4) Metal or metalloid carbonitride, (5 (2) Two or more kinds selected from (1) to (6) of metal or metalloid silicide (silicide) or (6) metal or metalloid boride (boride) are present. High hardness nanocrystalline white cast iron powder. 白鋳鉄ナノ結晶粒子又はその集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末が、金属酸化物の形態で酸素を0.005〜1.0質量%含有するものであることを特徴とする請求項1〜13のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   White cast iron powder containing 2.2 to 3.5% by mass of carbon made of white cast iron nanocrystal particles or aggregates thereof contains 0.005 to 1.0% by mass of oxygen in the form of a metal oxide. 14. The high-hardness nanocrystalline white cast iron powder according to any one of claims 1 to 13. 白鋳鉄ナノ結晶粒子の集合体の固化成形過程での脱窒を防ぐため、ナノ結晶白鋳鉄中の鉄よりも窒素との化学的親和力が大きい金属元素を含有せしめてなることを特徴とする請求項1〜14のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   In order to prevent denitrification of the aggregate of white cast iron nanocrystal particles during the solidification molding process, a metal element having a higher chemical affinity with nitrogen than iron in the nanocrystal white cast iron is contained. Item 15. The high-hardness nanocrystalline white cast iron powder according to any one of Items 1-14. 白鋳鉄ナノ結晶粒子が、塊状、片状、粒状又は粉状の白鋳鉄形成成分の物質をボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって得られたものであることを特徴とする請求項1〜15のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   White cast iron nanocrystal particles are obtained by mechanically milling (MM) or mechanical alloying (MA) using a ball mill or the like for the material of the white cast iron forming component in the form of lump, flake, granule or powder. The high-hardness nanocrystalline white cast iron powder according to any one of claims 1 to 15. 白鋳鉄ナノ結晶粒子が、塊状、片状、粒状又は粉状の普通炭素鋼、合金鋼、白鋳鉄、ねずみ鋳鉄、まだら鋳鉄、球状黒鉛鋳鉄、合金鋳鉄、他の合金元素又は合金のいずれか1つ又は2つ以上の物質から選ばれた白鋳鉄の構成物質を、ボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって得られたものであることを特徴とする請求項1〜15のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   White cast iron nanocrystal particles are one of lump, flake, granule or powder ordinary carbon steel, alloy steel, white cast iron, gray cast iron, mottle cast iron, spheroidal graphite cast iron, alloy cast iron, other alloy elements or alloys Claims obtained by mechanically milling (MM) or mechanical alloying (MA) a constituent material of white cast iron selected from one or more materials using a ball mill or the like. Item 16. The high-hardness nanocrystalline white cast iron powder according to any one of Items 1 to 15. メカニカルアロイング(MA)又はメカニカルミリング(MM)過程において、ボールミルなどに用いる粉砕媒体と原料粉末との質量比又は/及びボールミル等の運転エネルギーの選定などにより投入する機械的エネルギーを調整することによって、ナノ結晶粒子の集合体における(1)フェライト粒子や分散・析出物としての炭化物、窒化物又は炭窒化物の粒径、(2)これらの分散・析出物の生成、又は(3)その生成量、の(1)〜(3)から選ばれる1以上を制御してなることを特徴とする請求項1〜17のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   In the mechanical alloying (MA) or mechanical milling (MM) process, by adjusting the mechanical energy input by selecting the mass ratio of the grinding media used for the ball mill and the raw material powder and / or the operation energy of the ball mill, etc. (1) Ferrite particles and particle diameters of carbides, nitrides or carbonitrides as dispersion / precipitates in aggregates of nanocrystal particles, (2) Generation of these dispersions / precipitates, or (3) Generation thereof 18. The high-hardness nanocrystalline white cast iron powder according to claim 1, wherein at least one selected from (1) to (3) is controlled. 白鋳鉄ナノ結晶粒子の集合体よりなる炭素を2.2〜3.5質量%含有する白鋳鉄粉末が、メカニカルアロイング(MA)又はメカニカルミリング(MM)によって得られるナノ結晶粒子集合体(粉体)間の固化成形過程での原子的結合促進物質又は同固化成形体(バルク材)の遅れ破壊抑制・防止物質として、チタン又はジルコニウムを0.01〜5.0質量%含有させてなることを特徴とする請求項1〜18のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末。   Nanocrystal particle aggregate (powder) obtained by mechanically alloying (MA) or mechanical milling (MM) of white cast iron powder containing 2.2 to 3.5% by mass of carbon composed of aggregates of white cast iron nanocrystal particles As an atomic bond promoting substance in the solidification molding process between the body) or a delayed fracture suppressing / preventing substance of the solidified compact (bulk material), 0.01 to 5.0% by mass of titanium or zirconium is contained. The high-hardness nanocrystalline white cast iron powder according to any one of claims 1 to 18. 請求項1〜19のいずれか1項に記載のナノ結晶白鋳鉄粉末の多数個が固結されてなることを特徴とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材。   A high-hardness, high-strength, tough nanocrystalline white cast iron bulk material, comprising a large number of nanocrystalline white cast iron powders according to any one of claims 1 to 19 consolidated. 炭素を2.2〜3.5質量%含有する塊状、片状、粒状又は粉状の白鋳鉄形成成分材料を、ボールミル等を用いてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって白鋳鉄ナノ結晶粒子の集合体よりなる高硬度のナノ結晶白鋳鉄粉末を得ることを特徴とする高硬度のナノ結晶白鋳鉄粉末の製造方法。   By mechanically milling (MM) or mechanical alloying (MA) a white cast iron forming component material containing 2.2 to 3.5% by mass of carbon using a ball mill or the like. A method for producing a high-hardness nanocrystalline white cast iron powder comprising obtaining a high-hardness nanocrystalline white cast iron powder comprising an aggregate of white cast iron nanocrystalline particles. 炭素を2.2〜3.5質量%含有する塊状、片状、粒状又は粉状の白鋳鉄形成成分材料が、塊状、片状、粒状又は粉状の普通炭素鋼、合金鋼、白鋳鉄、ねずみ鋳鉄、まだら鋳鉄、球状黒鉛鋳鉄、合金鋳鉄、他の合金元素又は合金のいずれか1つ又は2つ以上の物質から選ばれたものであることを特徴とする請求項21記載の高硬度のナノ結晶白鋳鉄粉末の製造方法。   A lump, flake, granular or powdery white cast iron forming component material containing 2.2 to 3.5% by mass of carbon is lump, flake, granular or powdery ordinary carbon steel, alloy steel, white cast iron, The high hardness according to claim 21, wherein the cast iron is selected from gray cast iron, mottled cast iron, spheroidal graphite cast iron, alloy cast iron, other alloy elements or alloys, or two or more substances. Method for producing nanocrystalline white cast iron powder. メカニカルアロイング(MA)又はメカニカルミリング(MM)過程において、ボールミルなどに用いる粉砕媒体と原料粉末との質量比又は/及びボールミル等の運転エネルギーの選定などにより投入する機械的エネルギーを調整することによって、ナノ結晶粒子の集合体における(1)フェライト粒子や分散・析出物としての炭化物、窒化物又は炭窒化物の粒径、(2)これらの分散・析出物の生成、又は(3)その生成量、の(1)〜(3)から選ばれる1以上を制御することを特徴とする請求項21又は22のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末の製造方法。   In the mechanical alloying (MA) or mechanical milling (MM) process, by adjusting the mechanical energy input by selecting the mass ratio of the grinding media used for the ball mill and the raw material powder and / or the operation energy of the ball mill, etc. (1) Ferrite particles and particle diameters of carbides, nitrides or carbonitrides as dispersion / precipitates in aggregates of nanocrystal particles, (2) Generation of these dispersions / precipitates, or (3) Generation thereof The method for producing high-hardness nanocrystalline white cast iron powder according to any one of claims 21 and 22, wherein one or more selected from (1) to (3) are controlled. 炭素を2.2〜3.5質量%含有する塊状、片状、粒状又は粉状の白鋳鉄形成成分材料に、クロム、バナジウム、チタン、ジルコニウム、モリブデン、ニオブ、タンタル、タングステンのような高融点元素を0.5〜10質量%以上含有せしめてメカニカルミリング(MM)又はメカニカルアロイング(MA)することによって、白鋳鉄ナノ結晶粒子又はその集合体中に、これらを単独の状態及び/又は他の炭化物、窒化物又は炭窒化物と共存状態で存在させることを特徴とする請求項21〜23のいずれか1項に記載の高硬度のナノ結晶白鋳鉄粉末の製造方法。 High melting point such as chromium, vanadium, titanium, zirconium, molybdenum, niobium, tantalum, tungsten, and the like in white, cast iron forming component material containing 2.2 to 3.5% by mass of carbon By adding 0.5 to 10% by mass or more of the element and mechanical milling (MM) or mechanical alloying (MA), the white cast iron nanocrystal particles or aggregates thereof are in a single state and / or others. The method for producing high-hardness nanocrystalline white cast iron powder according to any one of claims 21 to 23, wherein the carbide, nitride, or carbonitride is present in a coexisting state. 高融点元素を基本組成とする炭化物、窒化物又は炭窒化物を母相のフェライト相へ単独の状態及び/又は他の炭化物、窒化物又は炭窒化物と共存の状態で分散・析出させた状態を得るため、前記各高融点元素の濃度の調整に加え、メカニカルアロイング(MA)又はメカニカルミリング(MM)過程での機械的エネルギー及び/又はMA、MMの温度、時間を効果的に制御することを特徴とする請求項21〜24のいずれか1項に記載の超高硬度ナノ結晶白鋳鉄粉末の製造方法。   A state in which a carbide, nitride or carbonitride containing a high melting point element as a basic composition is dispersed and precipitated in the ferrite phase of the parent phase alone and / or coexisting with other carbides, nitrides or carbonitrides. In order to obtain the above, in addition to the adjustment of the concentration of each refractory element, the mechanical energy in the mechanical alloying (MA) or mechanical milling (MM) process and / or the temperature and time of MA and MM are effectively controlled. The method for producing ultra-high hardness nanocrystalline white cast iron powder according to any one of claims 21 to 24. 請求項21〜25のいずれか1項に記載の方法によるナノ結晶白鋳鉄粉末の熱間固化成形において、(1)固化成形温度、(2)固化成形時間、(3)固化成形圧力、又は(4)固化成形後の焼なましなどの熱処理、の(1)〜(4)のうちから選ばれるいずれか1つ以上を制御することによって、炭化物、窒化物又は炭窒化物を効果的に分散・析出させることを特徴とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。   In the hot solidification molding of nanocrystalline white cast iron powder by the method according to any one of claims 21 to 25, (1) solidification molding temperature, (2) solidification molding time, (3) solidification molding pressure, or ( 4) Dispersing carbide, nitride or carbonitride effectively by controlling any one or more selected from (1) to (4) of heat treatment such as annealing after solidification molding -A method for producing a tough nanocrystalline white cast iron bulk material with high hardness, high strength and toughness characterized by precipitation. 請求項16〜19のいずれか1項に記載の白鋳鉄ナノ結晶粒子の粉末を、500℃〜900℃の温度での放電プラズマ焼結(Spark Plasma Sintering)、ホットプレス、シース圧延(Sheath Rolling)、熱間鍛造、押出し成形、熱間等方圧加圧成形(HIP)等の真空熱間固化成形又は爆発成形の固化成形処理をすることにより、ナノ炭化物、ナノ窒化物又はナノ炭窒化物のいずれか1種以上の分散・析出強化型ナノ結晶白鋳鉄バルク材となすことを特微とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。   The white cast iron nanocrystal particle powder according to any one of claims 16 to 19, wherein the plasma sintering is performed at a temperature of 500 ° C to 900 ° C, hot pressing, sheath rolling (Sheath Rolling). By performing solidification molding treatment such as hot forging, extrusion molding, hot isostatic pressing (HIP), vacuum hot solidification molding or explosion molding, nano carbide, nano nitride or nano carbonitride A method for producing a high hardness, high strength and tough nanocrystalline white cast iron bulk material, characterized in that any one or more dispersion / precipitation strengthened nanocrystalline white cast iron bulk material is obtained. 請求項16〜19のいずれか1項に記載の白鋳鉄ナノ結晶粒子の粉末を、超塑性を示す温度域にて放電プラズマ焼結、ホットプレス、シース圧延、押出し成形、熱間鍛造、熱間等方圧加圧成形(HIP)等の真空熱間固化成形(超塑性固化成形)を行うことにより、ナノ炭化物、ナノ窒化物又はナノ炭窒化物のいずれか1種以上の化合物による分散・強化型ナノ結晶白鋳鉄バルク材となすことを特微とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。   The powder of white cast iron nanocrystal particles according to any one of claims 16 to 19 is subjected to discharge plasma sintering, hot pressing, sheath rolling, extrusion molding, hot forging, hot in a temperature range showing superplasticity. Dispersion and strengthening with one or more compounds of nano carbide, nano nitride or nano carbonitride by performing vacuum hot solidification molding (superplastic solidification molding) such as isotropic pressure molding (HIP) A high hardness, high strength and tough nanocrystalline white cast iron bulk material, characterized by making it into a type nanocrystalline white cast iron bulk material. 請求項16〜19のいずれか1項に記載の白鋳鉄ナノ結晶粒子の粉末を、500℃〜900℃の温度での放電プラズマ焼結、ホットプレス、押出し成形、熱間鍛造、熱間等方圧加圧成形(HIP)、圧延等の真空熱間固化成形又は爆発成形などで固化成形処理してナノ結晶白鋳鉄バルク材となし、その後前記白鋳鉄バルク材を超塑性を示す温度域で成形加工することを特徴とする高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。   The powder of white cast iron nanocrystal particles according to any one of claims 16 to 19, wherein discharge powder sintering at a temperature of 500 ° C to 900 ° C, hot pressing, extrusion molding, hot forging, hot isotropy Solidification processing is performed by pressure-press molding (HIP), vacuum hot solidification molding such as rolling, or explosion molding to form a nanocrystalline white cast iron bulk material, and then the white cast iron bulk material is molded in a temperature range showing superplasticity. A method for producing a bulk material of nanocrystalline white cast iron that is tough and has high hardness, high strength and toughness. メカニカルミリング又はメカニカルアロイングを施す雰囲気が、(1)アルゴンガスなどの不活性ガス、(2)N2ガス、又は(3)NH3ガスから選ばれるいずれか1種、又は(4)(1)〜(3)から選ばれる2種以上の混合ガスの雰囲気であることを特徴とする請求項21〜29のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。 The atmosphere in which mechanical milling or mechanical alloying is performed is any one selected from (1) an inert gas such as argon gas, (2) N 2 gas, or (3) NH 3 gas, or (4) (1 The high hardness, high strength and tough nanocrystalline white cast iron bulk material according to any one of claims 21 to 29, wherein the atmosphere is a mixed gas of two or more selected from (1) to (3). Manufacturing method. メカニカルミリング又はメカニカルアロイングを施す雰囲気が、若干のH2ガスなどの還元性物質を加えたガスの雰囲気であることを特徴とする請求項21〜29のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。 30. The atmosphere according to any one of claims 21 to 29, wherein the atmosphere for performing mechanical milling or mechanical alloying is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added. A manufacturing method of high strength and tough nanocrystalline white cast iron bulk material. メカニカルミリング又はメカニカルアロイングを施す雰囲気が、真空又は真空中に若干のH2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする請求項21〜29のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。 Atmosphere performing mechanical milling or mechanical alloying is, any one of claims 21-29, characterized in that a vacuum or a reducing atmosphere was added a reducing substance, such as some of the H 2 gas in a vacuum or vacuum A method for producing a nanocrystalline white cast iron bulk material having high hardness, high strength and toughness as described in 1. ナノ結晶白鋳鉄の配合組成が、他元素を0〜40質量%含有するものであり、その固化成形の温度が鋳鉄の共析温度(約730℃)を中心として、その上下に20%以内の範囲の温度であることを特徴とする請求項21〜32のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶白鋳鉄バルク材の製造方法。
The composition of nanocrystalline white cast iron contains 0 to 40% by mass of other elements, and the temperature of solidification molding is within 20% above and below the eutectoid temperature of cast iron (about 730 ° C.). The method for producing a bulk material of high hardness, high strength and tough nanocrystalline white cast iron according to any one of claims 21 to 32, wherein the temperature is within a range.
JP2004097160A 2004-03-29 2004-03-29 Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor Pending JP2005281768A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004097160A JP2005281768A (en) 2004-03-29 2004-03-29 Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor
PCT/JP2005/006561 WO2005092543A1 (en) 2004-03-29 2005-03-29 Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097160A JP2005281768A (en) 2004-03-29 2004-03-29 Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor

Publications (1)

Publication Number Publication Date
JP2005281768A true JP2005281768A (en) 2005-10-13

Family

ID=35056043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097160A Pending JP2005281768A (en) 2004-03-29 2004-03-29 Nanocrystal white cast iron powder having high hardness, tough nanocrystal white cast iron bulk material having high hardness and high strength and production method therefor

Country Status (2)

Country Link
JP (1) JP2005281768A (en)
WO (1) WO2005092543A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941604A (en) * 2018-08-01 2018-12-07 浙江埃普瑞纳米材料有限公司 A kind of preparation method of novel simple block nanometer iron powder
JP2019531889A (en) * 2016-10-05 2019-11-07 エクソンモービル ケミカル パテンツ インコーポレイテッド Method for producing metal nitride and metal carbide
CN111926241A (en) * 2020-08-11 2020-11-13 东营嘉洲工业科技有限公司 Method for manufacturing multi-element composite reinforced grinding ball and grinding ball gradation
CN114769602A (en) * 2022-05-06 2022-07-22 中南大学 Tungsten-rhenium solid alloy powder with nanocrystalline structure and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096843A (en) * 2014-07-21 2014-10-15 关锦池 Preparation method of iron nanopowder
CN109420763A (en) * 2017-09-04 2019-03-05 四川红宇白云新材料有限公司 3D printing increasing material manufacturing equipment
CN107737934A (en) * 2017-09-26 2018-02-27 太原理工大学 A kind of shielding neutron, the preparation method of gamma-ray laminated composite plate
CN109557276A (en) * 2019-01-09 2019-04-02 陕西柴油机重工有限公司 A kind of detection method of spheroidal graphite cast-iron carbon content

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286501A (en) * 1987-04-29 1988-11-24 フリード・クルツプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of material having nano-crystal structure, secondary powder and molded body
JPH06322470A (en) * 1993-05-10 1994-11-22 Hitachi Powdered Metals Co Ltd Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP2001158934A (en) * 1999-12-03 2001-06-12 Hitachi Powdered Metals Co Ltd Method for producing wear resistant ferrous sintered alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286501A (en) * 1987-04-29 1988-11-24 フリード・クルツプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of material having nano-crystal structure, secondary powder and molded body
JPH06322470A (en) * 1993-05-10 1994-11-22 Hitachi Powdered Metals Co Ltd Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP2001158934A (en) * 1999-12-03 2001-06-12 Hitachi Powdered Metals Co Ltd Method for producing wear resistant ferrous sintered alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019531889A (en) * 2016-10-05 2019-11-07 エクソンモービル ケミカル パテンツ インコーポレイテッド Method for producing metal nitride and metal carbide
JP7117296B2 (en) 2016-10-05 2022-08-12 エクソンモービル ケミカル パテンツ インコーポレイテッド Method for producing metal nitrides and metal carbides
CN108941604A (en) * 2018-08-01 2018-12-07 浙江埃普瑞纳米材料有限公司 A kind of preparation method of novel simple block nanometer iron powder
CN111926241A (en) * 2020-08-11 2020-11-13 东营嘉洲工业科技有限公司 Method for manufacturing multi-element composite reinforced grinding ball and grinding ball gradation
CN111926241B (en) * 2020-08-11 2022-03-01 东营嘉洲工业科技有限公司 Method for manufacturing multi-element composite reinforced grinding ball and grinding ball gradation
CN114769602A (en) * 2022-05-06 2022-07-22 中南大学 Tungsten-rhenium solid alloy powder with nanocrystalline structure and preparation method and application thereof
CN114769602B (en) * 2022-05-06 2023-05-26 中南大学 Tungsten-rhenium solid alloy powder with nanocrystalline structure, and preparation method and application thereof

Also Published As

Publication number Publication date
WO2005092543A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Moravcik et al. Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0. 5 high entropy alloy
Xie et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering
RU2324576C2 (en) Nanocristallic metal material with austenic structure possessing high firmness, durability and viscosity, and method of its production
Zhang et al. Fabrication of bulk nanocrystalline Fe–C alloy by spark plasma sintering of mechanically milled powder
Feng et al. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites
WO2004029312A1 (en) Nano-crystal austenitic steel bulk material having ultra-hardness and toughness and excellent corrosion resistance, and method for production thereof
Mula et al. Mechanical properties and electrical conductivity of Cu–Cr and Cu–Cr–4% SiC nanocomposites for thermo-electric applications
JP2002256400A (en) Highly corrosion resistant and high strength austenitic stainless steel and production method therefor
Li et al. Effect of Mo addition mode on the microstructure and mechanical properties of TiC–high Mn steel cermets
JP2008208401A (en) Martensitic nanocrystal alloy steel powder, bulk material thereof, and method for producing them
Ding et al. Phase, microstructure and properties evolution of fine-grained W–Mo–Ni–Fe alloy during spark plasma sintering
JP4652490B2 (en) Steel produced by integrated powder metallurgy and its heat treatment tool and its use in tools
Zuhailawati et al. Effects of milling time on hardness and electrical conductivity of in situ Cu–NbC composite produced by mechanical alloying
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
Alem et al. Development of metal matrix composites and nanocomposites via double-pressing double-sintering (DPDS) method
TW574379B (en) Cold work steel
Ravi et al. Microstructural evolution and wear behavior of carbon added CoCrFeMnNi multi-component alloy fabricated by mechanical alloying and spark plasma sintering
Vajpai et al. High performance Ti-6Al-4V alloy by creation of harmonic structure design
Soufiani et al. Mechanical alloying behavior of Ti6Al4V residual scraps with addition of Al2O3 to produce nanostructured powder
JP2006274323A (en) Nanocrystal alloy steel powder having high hardness and excellent corrosion resistance and nanocrystal alloy steel bulk material having high strength/toughness and excellent corrosion resistance and production method thereof
Liu et al. Microstructure and mechanical behavior of spark plasma sintered TiB2/Fe-15Cr-8Al-20Mn composites
Xiong et al. Novel multi-metal stainless steel (316L)/high-modulus steel (Fe-TiB2) composite with enhanced specific modulus and strength using high-pressure torsion
Chen et al. Effect of molybdenum addition on microstructure and mechanical properties of 90% tungsten heavy alloys
WO2005092542A1 (en) High carbon nano crystalline iron alloy powder and bulk material having high hardness, and method for production thereof
Xu et al. The effect of carbon source and molar ratio in Fe–Ti–C system on the microstructure and mechanical properties of in situ TiC/Fe composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100512