JP4303625B2 - How to remove nitrogen in wastewater - Google Patents

How to remove nitrogen in wastewater Download PDF

Info

Publication number
JP4303625B2
JP4303625B2 JP2004095400A JP2004095400A JP4303625B2 JP 4303625 B2 JP4303625 B2 JP 4303625B2 JP 2004095400 A JP2004095400 A JP 2004095400A JP 2004095400 A JP2004095400 A JP 2004095400A JP 4303625 B2 JP4303625 B2 JP 4303625B2
Authority
JP
Japan
Prior art keywords
sulfur
denitrification
wastewater
spherical
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004095400A
Other languages
Japanese (ja)
Other versions
JP2005281033A (en
Inventor
啓和 高梨
章 大木
常憲 中島
忠 羽野
誠 平田
尚則 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2004095400A priority Critical patent/JP4303625B2/en
Publication of JP2005281033A publication Critical patent/JP2005281033A/en
Application granted granted Critical
Publication of JP4303625B2 publication Critical patent/JP4303625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Glanulating (AREA)

Description

本発明は排水中の生物学的窒素除去方法における還元剤として有用な新規形状の硫黄、その製造法、及びそれを用いた排水中の生物学的窒素除去方法に関する。   The present invention relates to a novel form of sulfur useful as a reducing agent in a method for removing biological nitrogen in wastewater, a method for producing the same, and a method for removing biological nitrogen in wastewater using the sulfur.

排水中の有機物を除去する目的で実施される活性汚泥処理では、窒素、リンなどの栄養塩類の十分な除去は、排水組成、濃度によっては困難で、湖沼、内海などでは富栄養化状態を引き起こす可能性があるといわれている。このため、生物学的な窒素除去方法が研究されており、実用化されている。   In activated sludge treatment carried out for the purpose of removing organic matter in the wastewater, it is difficult to remove nutrients such as nitrogen and phosphorus depending on the composition and concentration of the wastewater and cause eutrophication in lakes and inland seas. It is said that there is a possibility. For this reason, biological nitrogen removal methods have been studied and put into practical use.

この実用化されている生物学的な窒素除去方法では排水中に還元剤となりうる物質が不足している場合、適当な水素供与体の添加が必要である。還元剤としては種々の水素供与体が提案されているが、メタノールが資化性、取り扱い易さ、経済性から優れているとされている。また、メタノールなどの適当な還元剤を用いて脱窒素を行う場合、十分に脱窒素するためには還元剤を過剰に添加する必要がある。このため過剰のメタノールなどの還元剤は、脱窒素反応後は、BOD成分として排水中に残存しており、後工程として活性汚泥による好気処理が必要である。   In this practical biological nitrogen removal method, when there is a shortage of substances that can serve as a reducing agent in the waste water, it is necessary to add an appropriate hydrogen donor. Various hydrogen donors have been proposed as reducing agents, but methanol is said to be superior in terms of utilization, ease of handling, and economy. In addition, when denitrification is performed using an appropriate reducing agent such as methanol, it is necessary to add an excessive reducing agent in order to sufficiently denitrify. For this reason, excess reducing agents such as methanol remain in the wastewater as a BOD component after the denitrogenation reaction, and aerobic treatment with activated sludge is necessary as a subsequent step.

また、排水からの脱窒素の方法として、還元型硫黄を用いた硫黄脱窒方法が提案されている。例えば、還元型硫黄として元素状硫黄(特許文献1〜3)、チオ硫酸イオン(特許文献4)及び硫化水素(特許文献5)を利用した方法が提案されている。
特開平5−138193号公報 特開平8−155491号公報 特開2003−103294号公報 特開平11−299481号公報 特開2000−189995号公報
In addition, a sulfur denitrification method using reduced sulfur has been proposed as a method for denitrification from waste water. For example, a method using elemental sulfur (Patent Documents 1 to 3), thiosulfate ion (Patent Document 4), and hydrogen sulfide (Patent Document 5) as reduced sulfur has been proposed.
Japanese Patent Laid-Open No. 5-138193 JP-A-8-155491 JP 2003-103294 A JP-A-11-299481 JP 2000-189995 A

メタノールを還元剤として使用する生物学的脱窒素法は、使用するメタノールの薬剤費、設備費が高いという点から一般に普及するには更なるコスト低減が望まれている。さらに用いたメタノールに対して外界への排出がないように管理が必要である。
また、還元型硫黄を用いた硫黄脱窒法においては、チオ硫酸イオンを用いた場合、チオ硫酸中の硫黄の電荷が+2であり、窒素還元に用いる硫黄の添加量が多くなり、また、チオ硫酸自体の価格が高いことから脱窒素処理における薬剤費の割合が大きくなる。また硫化水素は毒性、臭気の問題から、実用上使用するには、それらの対量を厳密にする必要があり、実際の使用には高度な制御方法が必要になる。
また、元素状硫黄は、安価で、取り扱い性がよいなどの利点がある。しかしながら、脱窒素速度が遅い、さらに、脱窒反応で生じた窒素ガスが硫黄表面を覆うため、長時間安定した脱窒素速度が得られないという問題があり、これらの解決が求められている。
The biological denitrification method using methanol as a reducing agent is required to further reduce costs in order to spread in general because of the high drug cost and equipment cost of the methanol used. Furthermore, management is necessary so that the methanol used does not discharge to the outside world.
In addition, in the sulfur denitrification method using reduced sulfur, when thiosulfate ion is used, the charge of sulfur in thiosulfuric acid is +2, the amount of sulfur used for nitrogen reduction increases, and thiosulfuric acid is added. Since the price of itself is high, the ratio of the chemical cost in the denitrification treatment becomes large. In addition, due to toxicity and odor problems, hydrogen sulfide needs to be strict in terms of the amount to be used in practice, and an advanced control method is required for actual use.
In addition, elemental sulfur has advantages such as being inexpensive and easy to handle. However, there is a problem that the denitrification rate is slow, and further, since nitrogen gas generated by the denitrification reaction covers the sulfur surface, there is a problem that a stable denitrification rate cannot be obtained for a long time, and these solutions are required.

従って、本発明の目的は、安価で、脱窒素速度が大きく、かつ長時間安定した脱窒素速度が得られる還元剤及びそれを用いた排水中の生物学的脱窒素法を提供することにある。   Accordingly, it is an object of the present invention to provide a reducing agent that is inexpensive, has a high denitrification rate, and can obtain a stable denitrification rate for a long time, and a biological denitrification method in waste water using the same. .

そこで本発明者は、脱窒素速度、経済性及び安全性を満足する還元剤を探索した結果、
液体硫黄を温度分布のある油中に滴下して調製した球状硫黄を用いれば、脱窒槽への充填が均一となり、排水の流れが偏流せず効率的な処理が可能であり、固定床では硫黄脱窒中に生成する窒素ガスが硫黄上で気泡となり、硫黄表面を覆うという問題も解消され安定した処理が可能となり、その結果経済的、かつ安定的に排水から窒素除去が可能になることを見出し、本発明を完成するに至った。
Therefore, the present inventors have searched for a reducing agent that satisfies the denitrification rate, economy, and safety,
Using spherical sulfur prepared by dropping liquid sulfur into oil with temperature distribution, the denitrification tank can be uniformly filled, and the wastewater flow does not drift and efficient treatment is possible. Nitrogen gas generated during denitrification becomes bubbles on sulfur and the problem of covering the surface of sulfur is solved, and stable treatment is possible. As a result, nitrogen can be removed from wastewater economically and stably. The headline and the present invention were completed.

すなわち、本発明は、粒子径が0.1〜20mmである球状硫黄を提供するものである。
また、本発明は、硫黄の融点以上から融点以下までの温度分布のある油の高温部に液体硫黄を滴下し、高温部から低温部に液体硫黄を移動させて硫黄を固化させることを特徴とする球状硫黄の製造法を提供するものである。
さらに本発明は、硝酸態窒素を含む排水を嫌気条件下に生物学的に処理する排水中の窒素除去方法において、還元剤として粒子径が0.1〜20mmである球状硫黄を使用することを特徴とする排水中の窒素除去方法を提供するものである。
That is, the present invention provides spherical sulfur having a particle size of 0.1 to 20 mm.
Further, the present invention is characterized in that liquid sulfur is dropped into a high temperature part of oil having a temperature distribution from the melting point of sulfur to the melting point of the sulfur, and liquid sulfur is moved from the high temperature part to the low temperature part to solidify the sulfur. A method for producing spherical sulfur is provided.
Furthermore, the present invention uses a spherical sulfur having a particle size of 0.1 to 20 mm as a reducing agent in a method for removing nitrogen in wastewater that biologically treats wastewater containing nitrate nitrogen under anaerobic conditions. A feature of the present invention is to provide a method for removing nitrogen from wastewater.

本発明の球状硫黄を還元剤として用いれば、従来の破砕状硫黄を用いた場合に比べて、排水中の窒素除去を安定的かつ効率的に行うことができる。すなわち、1)固定床では球状硫黄を使用することにより硫黄脱窒槽への充填が均一となり、排水の流れが偏流せず効率的な処理が可能となり、2)固定床では硫黄脱窒中に生成する窒素ガスが硫黄上で気泡となり、硫黄表面を覆う問題があるが、球状硫黄を用いることで気泡が硫黄上から抜けやすくなり安定した処理が可能になり、3)球状硫黄の直径を任意に変化可能であり、流れの速さに適した径を調整できる。   If the spherical sulfur of the present invention is used as a reducing agent, nitrogen removal from wastewater can be stably and efficiently performed as compared with the case of using conventional crushed sulfur. That is, 1) By using spherical sulfur in the fixed bed, the sulfur denitrification tank is uniformly filled, and the wastewater flow is not unevenly distributed and can be efficiently treated. 2) In the fixed bed, it is generated during sulfur denitrification. There is a problem that the nitrogen gas to be bubbled on the sulfur and cover the sulfur surface, but using spherical sulfur makes it easier for bubbles to escape from the sulfur, enabling stable treatment 3) Arbitrary spherical sulfur diameter The diameter can be changed, and the diameter suitable for the flow speed can be adjusted.

本発明の球状硫黄は粒子径が0.1〜20mmであるが、さらに1〜10mm、特に1〜5mmが好ましい。また本発明で球状とは、真球状及び略球状も含むものである。   The spherical sulfur of the present invention has a particle size of 0.1 to 20 mm, more preferably 1 to 10 mm, and particularly preferably 1 to 5 mm. In the present invention, the term “spherical” includes true spherical and substantially spherical shapes.

本発明の球状硫黄は、硫黄の融点以上から融点以下までの温度分布のある油の高温部に液体硫黄を滴下し、高温部から低温部に液体硫黄を移動させて固化させることにより製造される。この球状硫黄製造装置としては、図1に示すように、上部にヒーターが設けられた筒状の槽に油が充填された装置を用いることができる。この装置の上部のホッパーに粉末状又は破砕状硫黄を充填すれば、ヒーターで加熱された硫黄が液体となり油中に滴下される。油の上部を硫黄の融点以上である113℃以上、特に120℃以上に加熱しておけば、液体硫黄は油中に液状で滴下される。液体硫黄は下部に沈降するに従って固化し、球状硫黄が生成する。なお、下部は112℃以下、好ましくは100℃以下になっていれば良いが、80℃以下になっているのが特に好ましい。球状硫黄の粒子径は、滴下装置の口径、周辺温度により簡単に調整可能である。なお、高温部と低温部は、温度差を設けたヒーターなどで段階的に制御してもよく、低温部は冷却水などで冷却して適温に制御しても良い。また、ホッパーを加温しても良い。また、油としては、シリコーン油、フッ素油、ポリグリコール、フェニルエーテル等の合成油;鉱油;植物油;動物油等の融点30℃以下、沸点130℃以上の油が用いられる。   The spherical sulfur of the present invention is produced by dripping liquid sulfur into a high temperature part of an oil having a temperature distribution from the melting point of the sulfur to the melting point of the sulfur and moving the liquid sulfur from the high temperature part to the low temperature part to solidify. . As this spherical sulfur production apparatus, as shown in FIG. 1, an apparatus in which oil is filled in a cylindrical tank provided with a heater at the top can be used. If powdered or crushed sulfur is filled in the upper hopper of this apparatus, the sulfur heated by the heater becomes liquid and is dropped into the oil. If the upper part of oil is heated to 113 ° C. or higher, particularly 120 ° C. or higher, which is higher than the melting point of sulfur, liquid sulfur is dropped into the oil in liquid form. Liquid sulfur solidifies as it settles at the bottom, producing spherical sulfur. In addition, the lower part should just be 112 degrees C or less, Preferably it is 100 degrees C or less, However, It is especially preferable that it is 80 degrees C or less. The particle diameter of the spherical sulfur can be easily adjusted by the diameter of the dropping device and the ambient temperature. The high temperature part and the low temperature part may be controlled stepwise with a heater or the like provided with a temperature difference, and the low temperature part may be cooled with cooling water or the like to be controlled at an appropriate temperature. Further, the hopper may be heated. As the oil, synthetic oils such as silicone oil, fluorine oil, polyglycol, and phenyl ether; mineral oils; vegetable oils; animal oils and the like having an melting point of 30 ° C. or lower and a boiling point of 130 ° C. or higher are used.

次に本発明の球状硫黄を用いた排水中の窒素除去方法について説明する。本発明方法は、各種の窒素化合物含有排水の脱窒素処理に適用できる。排水中に硝酸態窒素を含む場合には本発明の方法を直接適用できる。一方、有機態窒素、アンモニア態窒素を含有する排水の場合には、あらかじめ公知の生物学的処理、化学的処理により硝酸態窒素に変換することにより、本発明方法が適用できる。ここで、硝酸態窒素には、硝酸、硝酸イオン、亜硝酸、亜硝酸イオンが含まれる。   Next, the method for removing nitrogen in waste water using the spherical sulfur of the present invention will be described. The method of the present invention can be applied to denitrification treatment of various nitrogen compound-containing wastewater. When nitrate nitrogen is contained in the waste water, the method of the present invention can be directly applied. On the other hand, in the case of wastewater containing organic nitrogen or ammonia nitrogen, the method of the present invention can be applied by converting it into nitrate nitrogen by a known biological treatment or chemical treatment in advance. Here, nitrate nitrogen includes nitric acid, nitrate ion, nitrous acid, and nitrite ion.

本発明方法は、生物学的処理による排水中の窒素除去方法であり、独立栄養細菌である硫黄脱窒菌による脱窒素作用を利用する方法である。硫黄脱窒細菌(Thiobacillus denitrificans)は、還元態硫黄を酸化することでエネルギーを獲得し、硝酸塩、亜硝酸塩等の硝酸態窒素から、無酸素条件下で脱窒素能を示す細菌である。
従って、本反応は嫌気条件で実施する必要があるが、厳密な操作は必要ではなく空気又は酸素の曝気等により溶存酸素濃度を高める操作をしない条件では、硫黄脱窒槽に流入してきた排水は速やかに溶存酸素が消費され硫黄脱窒反応を行うに十分な嫌気条件となる。
The method of the present invention is a method for removing nitrogen from wastewater by biological treatment, and is a method utilizing the denitrification action by sulfur denitrifying bacteria, which are autotrophic bacteria. Sulfur denitrifying bacteria (Thiobacillus denitrificans) is a bacterium that acquires energy by oxidizing reduced sulfur and exhibits denitrification ability under nitrate-free conditions from nitrate nitrogen such as nitrate and nitrite.
Therefore, this reaction must be carried out under anaerobic conditions, but strict operation is not necessary, and wastewater that has flowed into the sulfur denitrification tank is quickly removed under conditions that do not increase the dissolved oxygen concentration by aeration of air or oxygen. Dissolved oxygen is consumed and the anaerobic conditions are sufficient for the sulfur denitrification reaction.

当該独立栄養細菌は、既存の活性汚泥装置から採取し、嫌気性条件で還元型硫黄を用いて馴養を行うことにより使用することができる。また、実際に嫌気性条件で硫黄脱窒している槽から出る独立栄養細菌の汚泥を用いても良い。   The autotrophic bacterium can be used by collecting from an existing activated sludge apparatus and acclimatizing with reduced sulfur under anaerobic conditions. Moreover, you may use the sludge of an autotrophic bacterium which comes out of the tank which actually carries out sulfur denitrification on anaerobic conditions.

本発明においては、還元剤として球状硫黄を使用することを特徴とする。本発明方法は固定床の場合に特に有利である。すなわち、1)固定床では球状硫黄を使用することにより硫黄脱窒槽への充填が均一となり、排水の流れが偏流せず効率的な処理が可能となり、2)固定床では硫黄脱窒中に生成する窒素ガスが硫黄上で気泡となり、硫黄表面を覆う問題があるが、球状硫黄を用いることで気泡が硫黄上から抜けやすくなり安定した処理が可能になる。   In the present invention, spherical sulfur is used as a reducing agent. The process according to the invention is particularly advantageous in the case of fixed beds. That is, 1) By using spherical sulfur in the fixed bed, the sulfur denitrification tank is uniformly filled, and the wastewater flow is not unevenly distributed and can be efficiently treated. 2) In the fixed bed, it is generated during sulfur denitrification. There is a problem that the nitrogen gas to be formed becomes bubbles on the sulfur and covers the sulfur surface, but the use of spherical sulfur makes it easier for bubbles to escape from the sulfur and a stable treatment is possible.

球状硫黄は、硫黄脱窒反応槽又は硫黄脱窒反応管に充填するが、流通式装置で循環処理しない場合は、球状硫黄を空間速度(SV)として0.002〜1h-1、さらに、0.005〜0.5h-1、特に0.01〜0.1h-1になるような充填量にすることが好ましい。空間速度が低すぎると、処理量に対する処理槽が大きくなりすぎ、空間速度が高すぎると、十分な脱窒の効果が得られない。また、複数回循環処理する場合は、空間速度を巡回回数で割った値が上記範囲になるような条件とする。 Spherical sulfur is charged into a sulfur denitrification reaction tank or sulfur denitrification reaction tube, but when not circulated by a flow-type apparatus, the spherical sulfur is converted into a space velocity (SV) of 0.002 to 1 h −1 , and 0 .005~0.5h -1, particularly it is preferable that the filling amount such that 0.01~0.1h -1. If the space velocity is too low, the treatment tank for the amount of treatment becomes too large, and if the space velocity is too high, a sufficient denitrification effect cannot be obtained. Further, when the circulation process is performed a plurality of times, the condition is set such that the value obtained by dividing the space velocity by the number of circulations falls within the above range.

本発明における脱窒槽のpHは5.5〜8.5、好ましくは5.8〜8.0、特に好ましくは6.0〜8.0の範囲のとき良好な脱窒活性が得られる。また、脱窒槽の温度は20℃〜45℃、好ましくは25℃〜45℃、特に好ましくは30℃〜45℃で良好な脱窒活性が得られる。   When the pH of the denitrification tank in the present invention is in the range of 5.5 to 8.5, preferably 5.8 to 8.0, particularly preferably 6.0 to 8.0, good denitrification activity can be obtained. The denitrification tank temperature is 20 ° C. to 45 ° C., preferably 25 ° C. to 45 ° C., particularly preferably 30 ° C. to 45 ° C., and good denitrification activity is obtained.

また、本発明においては、球状硫黄に加えて、さらに他の還元型硫黄化合物を併用しても良い。他の還元型硫黄化合物としては、硫化水素、チオ硫酸ナトリウム、硫化水素ナトリウム等が挙げられる。   In the present invention, other reduced sulfur compounds may be used in combination with spherical sulfur. Examples of other reduced sulfur compounds include hydrogen sulfide, sodium thiosulfate, and sodium hydrogen sulfide.

球状硫黄に加えて他の還元型硫黄化合物を用いる場合の脱窒槽のpH及び温度は前記と同様である。   The pH and temperature of the denitrification tank when other reduced sulfur compounds are used in addition to the spherical sulfur are the same as described above.

本発明方法に用いる脱窒槽としては、連続式、回分式、交互切替式のいずれでも良い。また、汚泥の状態として、球状硫黄への固着生物型が良い。なお、硝化槽と連結しても良い。   The denitrification tank used in the method of the present invention may be any of a continuous type, a batch type, and an alternating switching type. Moreover, as a state of sludge, a fixed biotype to spherical sulfur is good. In addition, you may connect with a nitrification tank.

以下、実施例及び比較例により本発明をより詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in more detail, this invention is not limited to these Examples.

実施例1
図1の装置を用いて粉末硫黄から球状硫黄を製造した。図1においては、油としてシリコーン油を用いる。
Example 1
Spherical sulfur was produced from powdered sulfur using the apparatus of FIG. In FIG. 1, silicone oil is used as the oil.

1)液状硫黄滴下口径を2mmφとし、シリコーン油最上部温度を120℃に調整し、液状硫黄を滴下した。得られた球状硫黄の平均径は約3.0mmであった。 1) The liquid sulfur dropping diameter was 2 mmφ, the top temperature of the silicone oil was adjusted to 120 ° C., and liquid sulfur was dropped. The average diameter of the obtained spherical sulfur was about 3.0 mm.

2)液状硫黄滴下口径を2mmφとし、シリコーン油最上部温度を130℃に調整し、液状硫黄を滴下した。得られた球状硫黄の平均径は約2.2mmであった。 2) The liquid sulfur dropping diameter was set to 2 mmφ, the top temperature of the silicone oil was adjusted to 130 ° C., and liquid sulfur was dropped. The obtained spherical sulfur had an average diameter of about 2.2 mm.

3)液状硫黄滴下口径を3mmφとし、シリコーン油最上部温度を120℃に調整し、液状硫黄を滴下した。得られた球状硫黄の平均径は約4.2mmであった。 3) The liquid sulfur dropping diameter was 3 mmφ, the top temperature of the silicone oil was adjusted to 120 ° C., and liquid sulfur was dropped. The average diameter of the obtained spherical sulfur was about 4.2 mm.

実施例2
硝酸態窒素を含む排水として表1に示す組成の人工排水を用いた。
Example 2
Artificial wastewater having the composition shown in Table 1 was used as wastewater containing nitrate nitrogen.

Figure 0004303625
Figure 0004303625

また、生物学的排水処理を行うための独立栄養細菌は、既存の活性汚泥装置から活性汚泥を採取して、元素状硫黄とともに脱窒槽へ充填し人工排水で馴養を行った後、硫黄脱窒活性が安定したことを確認して処理実施に用いた。元素状硫黄としては、球状硫黄又は破砕した硫黄を用いて回分式培養槽で馴養した。   Autotrophic bacteria for biological wastewater treatment are collected from existing activated sludge equipment, filled with elemental sulfur into a denitrification tank and acclimatized with artificial drainage, then sulfur denitrification. After confirming that the activity was stable, it was used for the treatment. As elemental sulfur, spherical sulfur or crushed sulfur was used and conditioned in a batch culture tank.

反応形式は図2に示すように、カラムに微生物菌体と球状硫黄を詰めて、アップフローで排水を通水して実施した。   As shown in FIG. 2, the reaction was carried out by filling the column with microbial cells and spherical sulfur and passing the waste water through upflow.

使用した球状硫黄の平均直径は3mmであった。
検討条件としてSV(空間速度)=0.5とした。表1の人工排水を処理カラムに通水して処理を実施して、処理後の排水は原水槽に導入して循環させる構造とした。
SV(空間速度)の単位:「h-1
The average diameter of the spherical sulfur used was 3 mm.
As an examination condition, SV (space velocity) was set to 0.5. The artificial waste water shown in Table 1 was passed through the treatment column for treatment, and the treated waste water was introduced into the raw water tank and circulated.
SV (space velocity) unit: “h −1

反応条件は、次のとおりとした。
原水(模擬排水)量:1.0L
カラム:1.0L
原水中の硝酸態窒素濃度:20mg/L
pH7(pHが変化する場合は、KH2PO4、NaCO3水溶液で調整)
温度:40℃
The reaction conditions were as follows.
Raw water (simulated drainage) volume: 1.0L
Column: 1.0L
Nitrate nitrogen concentration in raw water: 20mg / L
pH 7 (If pH changes, adjust with KH 2 PO 4 or NaCO 3 aqueous solution)
Temperature: 40 ° C

一定時間ごとに水中の硝酸態窒素を測定し、硝酸態窒素が1mg/L以下になる時間を比較することにより脱窒性能を検討した。その結果、硝酸態窒素が1mg/L以下になる時間は、30時間であった。   Nitrate nitrogen in water was measured at regular intervals, and the denitrification performance was examined by comparing the time when nitrate nitrogen was 1 mg / L or less. As a result, the time for nitrate nitrogen to be 1 mg / L or less was 30 hours.

比較例1
球状硫黄を破砕状硫黄にして実施する以外は実施例2と同様に行った。また、破砕状硫黄の大きさはふるいで2〜4mmとした。
硝酸態窒素が1mg/L以下になる時間は、50時間であった。
Comparative Example 1
The same procedure as in Example 2 was performed except that the spherical sulfur was changed to crushed sulfur. The size of the crushed sulfur was 2 to 4 mm with a sieve.
The time for nitrate nitrogen to be 1 mg / L or less was 50 hours.

球状硫黄製造装置の概略図を示す。The schematic of a spherical sulfur production apparatus is shown. 排水中の窒素除去装置の概略図を示す。The schematic of the nitrogen removal apparatus in waste_water | drain is shown.

Claims (3)

硝酸態窒素を含む排水を嫌気条件下に生物学的に処理する排水中の窒素除去方法において、
還元剤として粒子径がmmである球状硫黄を使用することを特徴とする排水中の窒素除去方法。
In a method for removing nitrogen in wastewater, in which wastewater containing nitrate nitrogen is biologically treated under anaerobic conditions,
A method for removing nitrogen in wastewater, characterized by using spherical sulfur having a particle diameter of 1 to 5 mm as a reducing agent.
前記球状硫黄と微生物菌体を充填した脱窒槽に、空間速度(SV)0.002〜1h-1で排水を通水し硫黄脱窒反応を行う、請求項1記載の方法。 The method according to claim 1, wherein the denitrification tank filled with the spherical sulfur and microbial cells is subjected to sulfur denitrification by passing waste water at a space velocity (SV) of 0.002 to 1 h- 1 . 前記脱窒槽のpHが5.5〜8.5である、請求項2記載の方法。   The method according to claim 2, wherein the pH of the denitrification tank is 5.5 to 8.5.
JP2004095400A 2004-03-29 2004-03-29 How to remove nitrogen in wastewater Expired - Fee Related JP4303625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095400A JP4303625B2 (en) 2004-03-29 2004-03-29 How to remove nitrogen in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095400A JP4303625B2 (en) 2004-03-29 2004-03-29 How to remove nitrogen in wastewater

Publications (2)

Publication Number Publication Date
JP2005281033A JP2005281033A (en) 2005-10-13
JP4303625B2 true JP4303625B2 (en) 2009-07-29

Family

ID=35179821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095400A Expired - Fee Related JP4303625B2 (en) 2004-03-29 2004-03-29 How to remove nitrogen in wastewater

Country Status (1)

Country Link
JP (1) JP4303625B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523786B2 (en) * 2004-03-29 2010-08-11 コスモ石油株式会社 How to remove nitrogen from wastewater
CN105540777B (en) * 2014-10-29 2018-09-28 中国石油化工股份有限公司 A kind of circulation utilization method of sulfur transfer additive production waste water

Also Published As

Publication number Publication date
JP2005281033A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
CN1188357C (en) Deep processing method for deodorizing waste water by soll microorganism
TWI285190B (en) The closed sulfur circulation system
KR101299953B1 (en) A Method and Apparatus for treatment of livestock waste water using Bacteria Mineral Water process
CN103588296A (en) Method for treating sewage by using anaerobic membrane bioreactor to remove sulphur and nitrogen
CN101973666A (en) Method for synchronously removing heavy metal and nitrate from drinking water and device thereof
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
JP6662424B2 (en) Anaerobic digestion method and apparatus for sewage sludge
JP2017000987A (en) Biological nitrogen removal method and nitrogen-containing waste water treatment apparatus
Guerrero et al. Wastewater post-treatment for simultaneous ammonium removal and elemental sulfur recovery using a novel horizontal mixed aerobic-anoxic fixed-bed reactor configuration
JP4017657B1 (en) Treatment method of wastewater containing organic matter
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4303625B2 (en) How to remove nitrogen in wastewater
JP2004230259A (en) Method and device for biological treatment
CN111892166A (en) Active biological filter material and efficient nitrogen and phosphorus removal method for sewage by using same
KR100346910B1 (en) Autotrophic denitrification using sulfur and sea shell
JP2010029746A (en) Biological desulfurization method and apparatus
JP2007117948A (en) Method and apparatus for treating high-concentration organic waste liquid
KR101345642B1 (en) Method for removing nitrogen in waste water
JP4142138B2 (en) Microbial reaction tank and waste water treatment method
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
JP2002346592A (en) Low temperature denitrification material and denitrification method using the same
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method
WO2004031084A1 (en) Method of removing nitrate nitrogen and device used for the method
Yerushalmi et al. Removal of carbon, nitrogen and phosphorus from the separated liquid phase of hog manure by the multi-zone BioCAST technology
JP4523786B2 (en) How to remove nitrogen from wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4303625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees