JP4303447B2 - Manufacturing method of biaxial cylinder - Google Patents

Manufacturing method of biaxial cylinder Download PDF

Info

Publication number
JP4303447B2
JP4303447B2 JP2002151343A JP2002151343A JP4303447B2 JP 4303447 B2 JP4303447 B2 JP 4303447B2 JP 2002151343 A JP2002151343 A JP 2002151343A JP 2002151343 A JP2002151343 A JP 2002151343A JP 4303447 B2 JP4303447 B2 JP 4303447B2
Authority
JP
Japan
Prior art keywords
cylinder
coating
thermal
hole
cylinder hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002151343A
Other languages
Japanese (ja)
Other versions
JP2003342708A (en
Inventor
勉 本上
尚 竹村
敦奈 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Kobe Steel Ltd
Original Assignee
Tocalo Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd, Kobe Steel Ltd filed Critical Tocalo Co Ltd
Priority to JP2002151343A priority Critical patent/JP4303447B2/en
Publication of JP2003342708A publication Critical patent/JP2003342708A/en
Application granted granted Critical
Publication of JP4303447B2 publication Critical patent/JP4303447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種プラスチック材料あるいは、ゴム系組成物の押出機などに使用される二軸シリンダーの製造方法に関するものである。
【0002】
【従来の技術】
上記二軸シリンダーの内面は、このなかで成形中の材料または材料に添加されたフィラーなどが処理加工されるので、摩耗履歴を受ける。これらによる摩耗を防止するために耐摩耗性が要求される。かかる要求を満たすために、シリンダー内面部を硬質化する目的で、従来から種々の提案及び実用があり、異種部材を挿入することのほか、表面に耐摩耗性を有した被覆層を設けることが実用になっている。後者では、プラズマアークにより粉体金属を肉盛溶接することで、硬質合金層を形成するプラズマ粉体肉盛溶接法(PTA)や、ガス粉末式溶射により被覆層を形成する方法などが提案されている。
【0003】
例えば、特開昭63−312902号公報には、シリンダー内に中子部材を装着し、シリンダー内径と中子外周の間隙に硬質耐摩耗性の金属粉末を充填して熱間等方圧加圧したのち、中子を除去する方法が開示されている。また、特開平5−98313号公報には、短尺薄肉管の内面に溶射ガンで溶射皮膜を形成したあと、複数個のこれらを一体構造のシリンダーの内面に焼嵌め嵌挿することが開示されている。
硬質耐摩耗性の合金材料としては、Cr,Si,およびBを含むNi基合金あるいは、Cr,W,Cを含むCo基合金が知られているが、これらを十分な耐摩耗性を発揮するための厚さで、割れ欠陥なしに銅基材などに溶着させるのは一般に困難であって、具体的用途に応じて溶着条件が試行錯誤で求められているのが現状である。
【0004】
【発明が解決しようとする課題】
プラズマ粉体肉盛溶接法や溶射法によって1mm級厚さ以上の硬質合金溶着層を形成させる場合、積層・被覆層が基材に高信頼性をもって溶着するためには、PTA法の場合、基材を高温、例えば約600℃以上の高温に予熱するのが効果的であることが経験的に知られている。例えば、直径が30〜60mm級のシリンダーでは専用の予熱装置を用いて予熱後、プラズマ粉体肉盛溶接法による硬質合金溶着が行われてきた。
【0005】
しかしながら、シリンダー直径が100から200mm級になった場合、シリンダー内面側から約600℃以上の温度域に加熱することは、入熱を与える手段上きわめて困難である。一方、シリンダーの外部からの加熱はその熱容量上、内面の温度を十分に高温域に加熱するには多大な熱量を必要とし、きわめて非効率である上、シリンダー自体が変形する危険性が大きく、生産技術上実施できないのがこれまでの状況であった。
また、ガス粉末式溶射法では基材予熱温度を例えば300℃程度にして、合金皮膜形成したあと、火炎等で加熱して再溶融処理を施して皮膜性状を改善する。この方法では、再溶融処理時の溶融特性を考慮して、例えば120〜45μm級の粒度範囲の材料粉末を用いるが、溶皮膜形成時の溶射角度によっては十分な衝突エネルギーを得ることができず、気孔欠陥が多く発生する湯合があることから、シリンダーの内面径に対しては皮膜被覆加工を良好に行うことができず、最終的に健全な溶着層が得られないことがしばしばであった。
【0006】
本発明は、このような実情に鑑み、比較的径の大きなシリンダーであっても、シリンダー内面に緻密で接合力の高い被覆層を容易に形成することが可能な二軸シリンダーの製造方法を提案するものである。
【0007】
【課題を解決するための手段】
前記目的を達成するため、本発明においては以下の技術的手段を講じた。
すなわち、本願発明は、シリンダー用基材の長手方向両端に開口を有すると共に中央が交差しめがね孔形状となっている二つの円筒状のシリンダー孔に、少なくとも一方の前記開口から加熱装置を挿入してシリンダー孔の内面を予熱する工程と、予熱されたシリンダー孔に前記開口から溶射機を挿入して合金粉末を溶射法でシリンダー孔の内面に被覆形成する工程と、溶射皮膜が形成されたシリンダー用基材を真空再溶融処理してシリンダー孔の内面に溶射皮膜を拡散接合する工程と、を含み、前記被覆形成する工程では、溶射機を挿入しない方のシリンダー孔の内面を、二つのシリンダー孔が交差する部分の近傍であって溶射による皮膜形成を重畳させ連続した皮膜積層を形成する部分を除いてマスキングした上で、二つのシリンダー孔の一方ごとに溶射皮膜を形成することを特徴とする。
【0008】
好ましくは、シリンダー孔の内面の予熱温度が100〜300℃であるとよい。
さらに好ましくは、予熱を溶射機の溶射熱源で行い、続いて、その溶射機で合金粉末の溶射被覆形成を行うとよい。
また、二つのシリンダー孔の一方ごとに溶射皮膜を形成するに当たり、一方のシリンダー孔の中心軸を回転中心として、シリンダー基材の該シリンダー孔側に質量を平衡させるための重錘を設置して回転させるとともに、溶射ガンが該シリンダー孔の中心軸に平行に移動して溶射被覆動作を行うとよい。
【0009】
シリンダー孔の両開口が上下方向となるように真空加熱炉内に配置してシリンダー用基材を真空再溶融処理してもよい。
皮膜を被覆形成する工法が、プラズマ溶射、高速ガス炎溶射のいずれかを用いた溶射法であることは非常に好ましい。
換言するならば、本発明は、基材温度を100〜300℃の比較的低温域にとどめたうえで、2mm級厚さの健全な硬質耐摩耗性に優れた被覆層を溶射法によって形成するようにしたものである。このとき、二つの円筒部分が中央で交わる二軸シリンダー型であって、二つの円筒の一方ごとに溶射皮膜を形成するに当たり、一方のシリンダー孔の中心軸を回転中心として、シリンダー基材の該シリンダー孔側に質量を平衡させるための重錘を設置して回転させるとともに、溶射ガンが該シリンダー孔の中心軸に平行に移動して溶射被覆動作を行う。
【0010】
その後,基材とともに真空フュージングを施して被覆層と基材を拡散接合するとともに、被覆層の健全密着を図るものである。溶射法は、プラズマ溶射法あるいは、高速ガス炎溶射法がよい。
【0011】
【発明の実施の形態】
本発明による皮膜形成各工程の作用機構について具体的に説明する。
本発明は基材温度100〜300℃での温間域で、30〜50MPaの密着力の得られる溶射法を用いて基本的な被覆加工を実行したのち、その皮膜の再溶融処理によって密着力70MPa以上の拡散層を得るよう、工程を分割したものである。
プラズマ溶射法あるいは高速ガス炎溶射法による合金皮膜は、被覆基材温度を100〜300℃域にすることによって30〜60MPaの密着力が安定して得られるとともに、形成皮膜内の気孔欠陥も少ない。大気中で溶射を実行するとき、基材温度の管理は重要で、100℃より低いと大気中の水分の付着で被溶射面の活性度が低下する恐れがある。
【0012】
また、高温域(例えば600℃)では基材が炭素鋼などの場合、表面に剥離性の酸化物薄膜が生成することがあり、溶射皮膜の健全な付着形成が阻害されることがしばしば起こる。直径100mmを超えるようなシリンダー孔を有する二軸シリンダー部材は基材そのものの形状寸法も大きくなり、被覆対象面であるシリンダー孔内面部分だけを大気中で均等に高温域まで予熱することは困難である。
大型基材の予熱工程からみても、300℃までの基材予熱条件で密着力および気孔率の点で健全な皮膜を形成できるプラズマ溶射法あるいは高速ガス炎溶射法の特徴が有効である。
【0013】
溶射ガンは、溶射材料を供給しないで動作させるとき、溶射火炎をそのまま、加熱手段として利用できる。
プラズマ溶射機、高速ガス炎溶射機では、それぞれ、直流プラズマジェット、酸素/炭化水素燃焼炎が加熱源となって、シリンダー内面を100〜300℃域であれば予熱することができる。これによって、基材の予熱と被覆層の形成を連続工程として実施することができる。さらにこの予熱温度域であればシリンダー基材の熱ひずみは、実用上ほとんど無視できる程度である。
【0014】
ガス粉末式で用いる例えば、30〜106μm級の粉末を用いたとき、プラズマ溶射では粉末の飛行速度が大きいのでより小さな気孔率の皮膜を形成することができる。
図1は金属製の二軸シリンダー用基材1の一例を示す。このシリンダー用基材1には、二つの円筒状のシリンダー孔2が中央部で連通するめがね孔形状の内孔が加工されている。シリンダー基材1は、S25Cなどの鋼材単体で構成されるほか、めがね孔付近が鋼材で、その周りを鋳鉄によって包みこむように構成されていてもよい。さらに必要により、冷媒等を流通させるための管を同時に鋳包むようにしてもよい。
【0015】
図2は本発明の方法にかかる工程説明図である。
S0は前処理工程であり、シリンダー基材1の脱脂、洗浄、ブラスト処理がおこなわれる。S1は予熱工程であり、シリンダー孔2の内部から溶射ガンを用いた加熱手段によりシリンダー内面の予熱が行われる。S2は溶射皮膜形成工程であり、予熱されたシリンダー孔2の内部に挿入された溶射ガン3によって、合金粉末を溶射し皮膜の形成が行われる。S3は再溶融処理による皮膜の拡散接合工程であり、シリンダーを真空炉内で加熱保持することによって、シリンダー内面に緻密で接合性に優れた皮膜を有した二軸シリンダーを製造することができる。
【0016】
図3(a)及び(b)は、予熱工程あるいは皮膜形成工程の説明図である。
図3(a)に示すように、予熱工程では、溶射ガン3をシリンダー軸線2Aにそって移動させつつ、溶射ガン3をシリンダー1の孔2内に挿入し、その溶射火炎3Aにより予熱を行うものである。溶射ガン3は必要に応じ、バーナーに代替してもよい。皮膜形成工程では、2軸のシリンダーそれぞれに対し個別に溶射被覆を行うものである。
溶射ガン3を一方のシリンダー孔2に挿入し、溶射ガン3をシリンダー孔2の軸線2Aに沿って移動させるとともに、シリンダー基材1自体をこの軸線2Aを回転中心として回転させる。このとき基材1の大きさに応じて回転の平衡を保つために、溶射対象のシリンダー孔2側には重錘を設置する。この重錘の質量は2軸シリンダーの大きさに対し、あらかじめ算出するものである。重錘はシリンダー基材1を搭載して回転運動を司る回転台上に設置してもよいし、シリンダー本体に装着してもよい。
【0017】
重錘の設置によって、振れ、振動などを抑制でき、低速、高速時とも安定した回転動作を行わせることができる。その結果、皮膜の被覆形成が安定する。
図4は一方が溶射被覆加工中のとき、他方のシリンダー孔2に被覆加工防止のためのマスキングを施す要領について示したものである。当該内孔における二つのシリンダー内孔2が連通する連通部近傍にマスキングを施さない非マスキング部Wを設ける。この部分Wの長さはシリンダー径にもよるが通常、5〜10mmである。交差部まで直接マスキング材を設けた条件で、二つのシリンダーへの皮膜被覆を独立して形成させると、交差部は皮膜の連続性が不完全で、結果的に不連続面が生じ割れ欠陥となった。
【0018】
一方のシリンダー孔2を溶射被覆するとき、他方のシリンダー孔2の交差部近傍Wを非マスキング状態にしておくと、一方のシリンダー孔2の溶射時において、他方のシリンダー孔2の非マスキング部は溶射ガンの溶射角度が垂直方向から斜めの方向に変化するため、粉末の付着効率も変化し、皮膜積層速度が垂直方向溶射に仕べて約30〜60%となる。このような皮膜積層を両シリンダー孔2で行うと、両者の溶射形成が重畳して連続した皮膜積層が可能となる。
これにより,連通部近傍における溶射被覆の未接合部あるいはわれ欠陥の発生を抑制することができる。
【0019】
図5は,フュージング処理で皮膜の拡散接合を図る工程における熱処理、雰囲気温度−時間の関係を示すグラフである。
被覆形成した合金のフュージング(再溶融)処理は公知のものである。被加熱体の均熱性を高めるため,T1まで昇温した後、その温度で所定時間保持、その後T2まで昇温した後、その温度で所定時間保持、さらにT3まで昇温したのち、均熱保持する段階的な昇温パターンとしている。
この昇温パターンはシリンダーの寸法や形成皮膜材料に応じて適宜変更することができる。T3は皮膜材料固相線温度より数℃高い温度である。被覆して皮膜化する材料は、硬質耐摩耗合金材料として供給される粉末が基本的に使用できる。すなわち、Cr,Si,およびBを含むNi基合金あるいは、Cr,SiおよびBを含むCo基合金、さらには、WC(タングステンカーバイド)を含む自溶合金が適用できる。〔表1〕には、本発明で適用できる合金化学組成のいくつかの例を示した。
【0020】
【表1】

Figure 0004303447
【0021】
【実施例】
実施例1:この実施例では,二軸押出機のシリンダーの製造を行った。シリンダー基材としてS25C(機械構造用炭素鋼鋼材)で、内径140mmの二つの孔が中央部で連通しためがね孔状のものを使用し、皮膜形成材料として、Ni−Cr−C−B合金粉末を用いた。粉末の粒度範囲は106〜30μmのものとした。
シリンダー基材の材質および皮膜形成材料は、機械的強度や耐摩雑性・耐食性の要求に応じて機械構造用炭素鋼、クロムモリブデン鋼、各種自溶合金に適宜変更可能である。
【0022】
シリンダー基材は、前処理として溶剤による脱脂・洗浄およびプラスト処理をおこなった。このシリンダー用基材を溶射用回転装置上に設置した。このとき、先行して溶射するほうのシリンダー孔軸心が回転中心となるように位置決めを行い、重錘を設置し、続いて後で溶射加工する方のシリンダーに被覆防止加工のためのマスキングを施した。マスキング範囲は、二つの円筒が交わった部分の近傍10mmを除く部分である。
次に、シリンダーを回転させながらシリンダー孔内にプラズマ溶射ガンを挿入し、ガンのプラズマジェットを用いて大気中で予熱を施した。予熱温度は200℃とした。温度管理として、シリンダー内面における複数測定点の温度を設置した熱電対で観測した。
【0023】
続いて、プラズマ溶射被覆加工を実行し、ガンの繰り返し走行動作によって、厚さ約1700μmの皮膜を形成させた。同様の手順で他方のシリンダー内孔にも被覆形成を行い、2軸シリンダー孔全体に溶射皮膜を形成させた。二つの円筒が交わった部分の近傍10mm部分は厚さ1500μmであったが、割れは認められず、健全な皮膜であった。
次に、このシリンダーを真空熱処理炉に両開口部が上下となるように設置し、真空フュージングを施した。真空フューズ後の皮膜の表面状態は健全で、割れ、剥離などの欠陥は認められなかった。
【0024】
同時に作製した試験片を切断して、皮膜断面を顕微鏡観察したところ、皮膜内気孔はほとんど認められず、また、基材と皮膜の界面には30μm程度の拡散層が観察され、接合も良好であることがわかった。なお、本実施例では予熱を溶射ガンで行ったが、バーナーで行ってもよい。
実施例2:この実施例では、実施例1で用いたプラズマ溶射機に変えて、高速ガス炎溶射機(HVOF)を用いて同様にシリンダー内面の被覆加工を行った。用いた合金粉末材料の粒度範囲は53〜15μmとした他は、プラズマ溶射法の場合と同様の工法とした。真空フューズも同様の温度条件で実施した。皮膜を調べたところ、皮膜内気孔はほとんど認められず、また、基材と皮膜の界面には30μm程度の拡散層が観察され、接合も良好であることがわかった。
【0025】
【発明の効果】
以上説明したように、本発明によれば、シリンダー孔の内部にプラズマ溶射などの溶射ガンを設置、動作させ、100〜300℃の温間温度域で予熱を行うとともに、続いて溶射操作によってシリンダー孔内に溶射皮膜を形成し、溶射皮膜が形成されたシリンダーを真空炉内で再溶融処理してシリンダー内面に溶射皮膜を拡散接合するものであるため、皮膜形成が容易であり、かつ比較的大きなシリンダーであっても、シリンダー内面に緻密で基材への接合性にすぐれた皮膜を形成することが可能である。
【図面の簡単な説明】
【図1】 (a)はシリンダー用基材の横断面図((b)のA−A線断面図)であり、(b)は同基材の側面図である。
【図2】 本発明方法の工程説明図である。
【図3】 (a)は予熱工程と皮膜形成工程を説明するためのシリンダー用基材の斜視図であり、(b)は同基材の横断面図である。
【図4】 加工防止用マスキング範囲を示すためのシリンダー孔内部の断面図である。
【図5】 再溶融処理の温度履歴を示すグラフである。
【符号の説明】
1 シリンダー用基材
2 シリンダー孔
3 溶射ガン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a biaxial cylinder used in various plastic materials or rubber composition extruders.
[0002]
[Prior art]
The inner surface of the biaxial cylinder is subjected to a wear history because a material being molded or a filler added to the material is processed therein. Wear resistance is required to prevent wear due to these. In order to satisfy this requirement, various proposals and practical applications have been made for the purpose of hardening the inner surface of the cylinder. In addition to inserting different types of members, a coating layer having wear resistance on the surface may be provided. It has become practical. In the latter, plasma powder overlay welding (PTA), which forms a hard alloy layer by overlaying powder metal by plasma arc, and a method of forming a coating layer by gas powder spraying have been proposed. ing.
[0003]
For example, in Japanese Patent Application Laid-Open No. 63-312902, a core member is mounted in a cylinder, and a hard wear-resistant metal powder is filled in a gap between the inner diameter of the cylinder and the outer periphery of the core to apply hot isostatic pressure. After that, a method for removing the core is disclosed. Japanese Patent Laid-Open No. 5-98313 discloses that after a spray coating is formed on the inner surface of a short thin tube with a spray gun, a plurality of these are shrink-fitted into the inner surface of an integral cylinder. Yes.
As hard wear-resistant alloy materials, Ni-based alloys containing Cr, Si, and B or Co-based alloys containing Cr, W, and C are known, and these exhibit sufficient wear resistance. In general, it is difficult to weld to a copper substrate or the like without crack defects, and the present condition is that the welding conditions are required by trial and error depending on the specific application.
[0004]
[Problems to be solved by the invention]
When a hard alloy weld layer having a thickness of 1 mm or more is formed by plasma powder overlay welding or thermal spraying, in order to deposit the laminated / coating layer on the substrate with high reliability, It is empirically known that it is effective to preheat the material to a high temperature, for example, about 600 ° C. or higher. For example, in a cylinder having a diameter of 30 to 60 mm, after preheating using a dedicated preheating device, hard alloy welding by plasma powder overlay welding has been performed.
[0005]
However, when the cylinder diameter is in the range of 100 to 200 mm, it is extremely difficult to heat from the inner surface of the cylinder to a temperature range of about 600 ° C. or higher because of means for applying heat. On the other hand, heating from the outside of the cylinder requires a great amount of heat to heat the inner surface to a sufficiently high temperature range due to its heat capacity, is extremely inefficient, and has a high risk of deformation of the cylinder itself. Until now, it was impossible to implement in production technology.
In the gas powder spraying method, the base material preheating temperature is set to about 300 ° C., for example, and an alloy film is formed. Then, the film is heated by a flame or the like and remelted to improve the film properties. In this method, considering the melting characteristics at the time of remelting, for example, a material powder having a particle size range of 120 to 45 μm is used. However, depending on the spray angle at the time of forming the coating, sufficient impact energy cannot be obtained. However, because there are hot spots in which many pore defects occur, it is often impossible to perform coating coating on the inner diameter of the cylinder well, and ultimately a sound welded layer cannot be obtained. It was.
[0006]
In view of such circumstances, the present invention proposes a method of manufacturing a biaxial cylinder that can easily form a dense and highly adhesive coating layer on the inner surface of a cylinder even with a relatively large diameter cylinder. To do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention takes the following technical means.
That is, in the present invention, a heating device is inserted from at least one of the openings into two cylindrical cylinder holes having openings at both ends in the longitudinal direction of the cylinder base material and the center intersecting with each other to form an eyeglass hole shape. A step of preheating the inner surface of the cylinder hole, a step of inserting a thermal spraying machine into the preheated cylinder hole from the opening and coating the inner surface of the cylinder hole with an alloy powder by a spraying method, and a cylinder formed with a spray coating And a step of diffusion-bonding the spray coating to the inner surface of the cylinder hole by subjecting the substrate for vacuum to remelting. In the step of forming the coating, the inner surface of the cylinder hole on which the thermal sprayer is not inserted is connected to two cylinders. on which holes are masked except for the portion forming the laminated film which is superimposed to the continuous film forming a near by spraying the intersection of two cylinders hole And forming a thermal spray coating per square.
[0008]
Preferably, the preheating temperature of the inner surface of the cylinder hole is 100 to 300 ° C.
More preferably, the preheating is performed with a thermal spraying heat source of a thermal spraying machine, and then the thermal spray coating of the alloy powder is performed with the thermal spraying machine.
In addition, when forming a sprayed coating on each of the two cylinder holes, a weight for balancing the mass is installed on the cylinder hole side of the cylinder base material with the central axis of one cylinder hole as the center of rotation. While spraying, the spray gun may be moved parallel to the center axis of the cylinder hole to perform the spray coating operation.
[0009]
The cylinder base material may be subjected to a vacuum remelting treatment by placing it in a vacuum heating furnace so that both openings of the cylinder hole are in the vertical direction.
It is very preferable that the method of coating the coating is a thermal spraying method using either plasma spraying or high-speed gas flame spraying.
In other words, the present invention forms a coating layer excellent in sound hard wear resistance having a thickness of 2 mm with a substrate temperature kept in a relatively low temperature range of 100 to 300 ° C. by a thermal spraying method. It is what I did. At this time, it is a biaxial cylinder type in which two cylindrical portions intersect at the center, and when forming a sprayed coating for each of the two cylinders, the center axis of one cylinder hole is used as the rotation center, and the cylinder base A weight for balancing the mass is installed on the cylinder hole side and rotated, and the spray gun moves parallel to the central axis of the cylinder hole to perform the spray coating operation.
[0010]
After that, vacuum fusing is performed together with the base material so that the coating layer and the base material are diffusion bonded, and the coating layer is soundly adhered. As the thermal spraying method, a plasma spraying method or a high-speed gas flame spraying method is preferable.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The action mechanism of each step of film formation according to the present invention will be specifically described.
In the present invention, a basic coating process is performed using a thermal spraying method in which an adhesive force of 30 to 50 MPa is obtained in a warm region at a substrate temperature of 100 to 300 ° C., and then the adhesive force is obtained by remelting the coating. The process is divided so as to obtain a diffusion layer of 70 MPa or more.
The alloy coating by the plasma spraying method or the high-speed gas flame spraying method can stably obtain an adhesion of 30 to 60 MPa by setting the coating substrate temperature in the range of 100 to 300 ° C., and there are few pore defects in the formed coating. . When performing thermal spraying in the atmosphere, it is important to control the temperature of the substrate. If the temperature is lower than 100 ° C., the activity of the sprayed surface may be reduced due to the adhesion of moisture in the air.
[0012]
Further, when the base material is carbon steel or the like in a high temperature range (for example, 600 ° C.), a peelable oxide thin film may be formed on the surface, and the sound adhesion formation of the sprayed coating is often inhibited. A biaxial cylinder member having a cylinder hole with a diameter exceeding 100 mm also increases the shape of the base material itself, and it is difficult to preheat only the inner surface of the cylinder hole, which is the surface to be coated, to a high temperature range evenly in the atmosphere. is there.
From the viewpoint of preheating the large-sized substrate, the characteristics of the plasma spraying method or the high-speed gas flame spraying method that can form a sound coating in terms of adhesion and porosity under substrate preheating conditions up to 300 ° C. are effective.
[0013]
When the thermal spray gun is operated without supplying the thermal spray material, the thermal spray flame can be used as a heating means as it is.
In the plasma spraying machine and the high-speed gas flame spraying machine, a DC plasma jet and an oxygen / hydrocarbon combustion flame can be used as heating sources, respectively, and the cylinder inner surface can be preheated in the range of 100 to 300 ° C. Thereby, preheating of a base material and formation of a coating layer can be implemented as a continuous process. Furthermore, in this preheating temperature range, the thermal strain of the cylinder base material is practically negligible.
[0014]
For example, when a powder of 30 to 106 μm class used in the gas powder type is used, plasma spraying can form a coating film with a smaller porosity because the flying speed of the powder is high.
FIG. 1 shows an example of a metal biaxial cylinder substrate 1. The cylinder base 1 is processed with an inner hole in the shape of a spectacle hole in which two cylindrical cylinder holes 2 communicate with each other at the center. The cylinder base 1 may be configured by a steel material alone such as S25C, or may be configured so that the vicinity of the eyeglass hole is a steel material and the periphery thereof is wrapped with cast iron. Further, if necessary, a pipe for circulating a refrigerant or the like may be cast at the same time.
[0015]
FIG. 2 is an explanatory diagram of processes according to the method of the present invention.
S0 is a pretreatment process, in which the cylinder base material 1 is degreased, washed, and blasted. S1 is a preheating step, in which the inner surface of the cylinder is preheated from the inside of the cylinder hole 2 by heating means using a spray gun. S2 is a thermal spray coating forming process, in which a coating is formed by spraying the alloy powder by the thermal spray gun 3 inserted into the preheated cylinder hole 2. S3 is a film diffusion bonding process by remelting treatment, and by heating and holding the cylinder in a vacuum furnace, a biaxial cylinder having a dense and excellent bondability film on the inner surface of the cylinder can be produced.
[0016]
FIGS. 3A and 3B are explanatory diagrams of the preheating process or the film forming process.
As shown in FIG. 3A, in the preheating step, the spray gun 3 is inserted into the hole 2 of the cylinder 1 while moving the spray gun 3 along the cylinder axis 2A, and preheating is performed by the spray flame 3A. Is. The spray gun 3 may be replaced with a burner as necessary. In the film forming step, thermal spray coating is performed on each of the biaxial cylinders.
The thermal spray gun 3 is inserted into one cylinder hole 2, and the thermal spray gun 3 is moved along the axis 2A of the cylinder hole 2 and the cylinder base 1 itself is rotated about the axis 2A. At this time, a weight is placed on the side of the cylinder hole 2 to be sprayed in order to keep the rotation balance in accordance with the size of the substrate 1. The mass of the weight is calculated in advance with respect to the size of the biaxial cylinder. The weight may be installed on a turntable that mounts the cylinder base 1 and controls the rotation, or may be mounted on the cylinder body.
[0017]
By installing the weight, it is possible to suppress vibrations, vibrations, etc., and to perform stable rotating operation at both low speed and high speed. As a result, the coating formation of the film is stabilized.
FIG. 4 shows how to mask the other cylinder hole 2 to prevent the coating process when one is being sprayed. The non-masking part W which does not mask is provided in the vicinity of the communicating part where the two cylinder inner holes 2 communicate with each other in the inner hole. The length of this portion W is usually 5 to 10 mm although it depends on the cylinder diameter. If the coating on the two cylinders is formed independently under the condition that the masking material is provided directly to the intersection, the continuity of the coating is incomplete at the intersection, resulting in a discontinuous surface and crack defects. became.
[0018]
When one cylinder hole 2 is spray coated, the vicinity W of the intersection of the other cylinder hole 2 is set in an unmasked state. When one cylinder hole 2 is sprayed, the non-masking part of the other cylinder hole 2 is Since the spray angle of the spray gun changes from the vertical direction to the oblique direction, the deposition efficiency of the powder also changes, and the film deposition rate becomes about 30 to 60% in preparation for the vertical spray. When such film lamination is performed at both cylinder holes 2, it is possible to form a continuous film lamination by overlapping the thermal spray formation of both.
Thereby, generation | occurrence | production of the unjoined part or crack defect of a thermal spray coating in the communication part vicinity can be suppressed.
[0019]
FIG. 5 is a graph showing the relationship between the heat treatment and the ambient temperature-time in the process of diffusion bonding of the film by fusing treatment.
The fusing (remelting) treatment of the coated alloy is well known. In order to increase the temperature uniformity of the object to be heated, the temperature is raised to T1, then held at that temperature for a predetermined time, then heated to T2, then held at that temperature for a predetermined time, and further heated to T3, and then kept at the temperature. It has a stepwise temperature rise pattern.
This temperature rising pattern can be appropriately changed according to the dimensions of the cylinder and the formed coating material. T3 is a temperature higher by several degrees Celsius than the coating material solidus temperature. As a material to be coated and formed into a film, powder supplied as a hard wear-resistant alloy material can be basically used. That is, a Ni-based alloy containing Cr, Si, and B, a Co-based alloy containing Cr, Si, and B, or a self-fluxing alloy containing WC (tungsten carbide) can be applied. [Table 1] shows some examples of alloy chemical compositions applicable in the present invention.
[0020]
[Table 1]
Figure 0004303447
[0021]
【Example】
Example 1 In this example, a cylinder of a twin screw extruder was produced. S25C (carbon steel for machine structural use) is used as the cylinder base material, and two holes with an inner diameter of 140 mm are connected to each other at the center, and the shape of the hole is Ni-Cr-C-B alloy powder. Was used. The particle size range of the powder was 106-30 μm.
The material of the cylinder base material and the film forming material can be appropriately changed to carbon steel for machine structure, chrome molybdenum steel, and various self-fluxing alloys according to demands for mechanical strength, abrasion resistance and corrosion resistance.
[0022]
The cylinder base material was degreased / washed with a solvent and plasted as pretreatment. The cylinder substrate was placed on a thermal spraying rotating device. At this time, positioning is performed so that the axis of the cylinder hole to be sprayed first is the center of rotation, the weight is installed, and then the cylinder to be sprayed later is masked to prevent coating. gave. The masking range is a portion excluding 10 mm in the vicinity of the portion where the two cylinders intersect.
Next, a plasma spray gun was inserted into the cylinder hole while rotating the cylinder, and preheating was performed in the atmosphere using the plasma jet of the gun. The preheating temperature was 200 ° C. For temperature control, the temperature at multiple measurement points on the cylinder inner surface was observed with a thermocouple.
[0023]
Subsequently, plasma spray coating was performed, and a coating having a thickness of about 1700 μm was formed by repeated running of the gun. A coating was also formed on the other cylinder bore by the same procedure, and a sprayed coating was formed on the entire biaxial cylinder bore. The 10 mm portion in the vicinity of the portion where the two cylinders intersected had a thickness of 1500 μm, but no cracks were observed and the film was sound.
Next, this cylinder was installed in a vacuum heat treatment furnace so that both openings were up and down, and vacuum fusing was performed. The surface condition of the film after the vacuum fuse was sound, and no defects such as cracking and peeling were observed.
[0024]
When the test piece prepared at the same time was cut and the cross section of the film was observed with a microscope, there were almost no pores in the film, and a diffusion layer of about 30 μm was observed at the interface between the substrate and the film, and the bonding was good. I found out. In this embodiment, the preheating is performed with a spray gun, but it may be performed with a burner.
Example 2 In this example, the inner surface of the cylinder was similarly coated using a high-speed gas flame sprayer (HVOF) instead of the plasma sprayer used in Example 1. Except for the particle size range of the alloy powder material used was 53 to 15 μm, the construction method was the same as in the plasma spraying method. The vacuum fuse was also carried out under similar temperature conditions. When the film was examined, almost no pores were observed in the film, and a diffusion layer of about 30 μm was observed at the interface between the substrate and the film, and it was found that the bonding was good.
[0025]
【The invention's effect】
As described above, according to the present invention, a spray gun such as plasma spray is installed and operated inside the cylinder hole, and preheating is performed in a warm temperature range of 100 to 300 ° C. Since the sprayed coating is formed in the hole, the sprayed coating is remelted in a vacuum furnace, and the sprayed coating is diffusion bonded to the inner surface of the cylinder. Even with a large cylinder, it is possible to form a dense film on the inner surface of the cylinder and excellent in bondability to a substrate.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of a cylinder base material (a cross-sectional view along line AA in FIG. 1B), and FIG. 1B is a side view of the base material.
FIG. 2 is a process explanatory diagram of the method of the present invention.
FIG. 3A is a perspective view of a cylinder base material for explaining a preheating step and a film forming step, and FIG. 3B is a cross-sectional view of the base material.
FIG. 4 is a cross-sectional view of the inside of a cylinder hole for showing a masking range for processing prevention.
FIG. 5 is a graph showing a temperature history of a remelting process.
[Explanation of symbols]
1 Cylinder base material 2 Cylinder hole 3 Thermal spray gun

Claims (6)

シリンダー用基材の長手方向両端に開口を有すると共に中央が交差しめがね孔形状となっている二つの円筒状のシリンダー孔に、少なくとも一方の前記開口から加熱装置を挿入してシリンダー孔の内面を予熱する工程と、
予熱されたシリンダー孔に前記開口から溶射機を挿入して合金粉末を溶射法でシリンダー孔の内面に被覆形成する工程と、
溶射皮膜が形成されたシリンダー用基材を真空再溶融処理してシリンダー孔の内面に溶射皮膜を拡散接合する工程と、を含み、
前記被覆形成する工程では、溶射機を挿入しない方のシリンダー孔の内面を、二つのシリンダー孔が交差する部分の近傍であって溶射による皮膜形成を重畳させ連続した皮膜積層を形成する部分を除いてマスキングした上で、二つのシリンダー孔の一方ごとに溶射皮膜を形成することを特徴とする二軸シリンダーの製造方法。
Insert a heating device into at least one of the openings into two cylindrical cylinder holes that have openings at both ends in the longitudinal direction of the cylinder base material and the center intersects to form a spectacle hole. A preheating step;
Inserting a thermal sprayer into the preheated cylinder hole from the opening and coating the alloy powder on the inner surface of the cylinder hole by a thermal spraying method;
Including vacuum remelting the cylinder substrate on which the thermal spray coating is formed, and diffusion-bonding the thermal spray coating to the inner surface of the cylinder hole,
In the step of forming the coating, the inner surface of the cylinder hole on which the thermal spraying machine is not inserted is in the vicinity of the portion where the two cylinder holes intersect, and the portion where the continuous coating layer is formed by overlapping the coating formation by thermal spraying is excluded. A method of manufacturing a biaxial cylinder, wherein a thermal spray coating is formed on each of two cylinder holes after masking.
シリンダー孔の内面の予熱温度が100〜300℃であることを特徴とする請求項1に記載の二軸シリンダーの製造方法。  The method for manufacturing a biaxial cylinder according to claim 1, wherein the preheating temperature of the inner surface of the cylinder hole is 100 to 300 ° C. 予熱を溶射機の溶射熱源で行い、続いて、その溶射機で合金粉末の溶射被覆形成を行うことを特徴とする請求項1または2に記載の二軸シリンダーの製造方法。  The method for producing a twin-screw cylinder according to claim 1 or 2, wherein preheating is performed by a thermal spraying heat source of a thermal spraying machine, and subsequently, a thermal spray coating formation of the alloy powder is performed by the thermal spraying machine. 二つのシリンダー孔の一方ごとに溶射皮膜を形成するに当たり、一方のシリンダー孔の中心軸を回転中心として、シリンダー基材の該シリンダー孔側に質量を平衡させるための重錘を設置して回転させるとともに、溶射ガンが該シリンダー孔の中心軸に平行に移動して溶射被覆動作を行うことを特徴とする請求項1〜3のいずれかに記載の二軸シリンダーの製造方法。  When forming a thermal spray coating on each of the two cylinder holes, a weight for balancing the mass is installed on the cylinder hole side of the cylinder base and rotated with the central axis of one cylinder hole as the center of rotation. The method for manufacturing a biaxial cylinder according to any one of claims 1 to 3, wherein the thermal spray gun moves in parallel with the central axis of the cylinder hole to perform a thermal spray coating operation. シリンダー孔の両開口が上下方向となるように真空加熱炉内に配置してシリンダー用基材を真空再溶融処理することを特徴とする請求項1〜4のいずれかに記載の二軸シリンダーの製造方法。  The biaxial cylinder according to any one of claims 1 to 4, wherein the cylinder base is subjected to a vacuum remelting treatment by disposing the cylinder base in a vacuum heating furnace so that both openings of the cylinder hole are in the vertical direction. Production method. 皮膜を被覆形成する工法が、プラズマ溶射、高速ガス炎溶射のいずれかを用いた溶射法であることを特徴とする請求項1〜5のいずれかに記載の二軸シリンダーの製造方法。  The method for manufacturing a biaxial cylinder according to any one of claims 1 to 5, wherein the coating method is a thermal spraying method using either plasma spraying or high-speed gas flame spraying.
JP2002151343A 2002-05-24 2002-05-24 Manufacturing method of biaxial cylinder Expired - Fee Related JP4303447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151343A JP4303447B2 (en) 2002-05-24 2002-05-24 Manufacturing method of biaxial cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151343A JP4303447B2 (en) 2002-05-24 2002-05-24 Manufacturing method of biaxial cylinder

Publications (2)

Publication Number Publication Date
JP2003342708A JP2003342708A (en) 2003-12-03
JP4303447B2 true JP4303447B2 (en) 2009-07-29

Family

ID=29768967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151343A Expired - Fee Related JP4303447B2 (en) 2002-05-24 2002-05-24 Manufacturing method of biaxial cylinder

Country Status (1)

Country Link
JP (1) JP4303447B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961827B1 (en) * 2010-06-25 2013-08-16 Peugeot Citroen Automobiles Sa PROCESS FOR THE APPLICATION OF A COATING ON AN ALUMINUM ALLOY CYLINDER CASING
CN111549312B (en) * 2020-05-19 2022-02-22 江苏科环新材料有限公司 Method for preparing double-heat-source synergistic remelting through boiler water wall coating

Also Published As

Publication number Publication date
JP2003342708A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4731101B2 (en) Method for forming a channel on a surface of a metal substrate
KR100671577B1 (en) A method of providing wear-resistant coatings, and related articles
US20170191536A1 (en) Brake Disk and Method for Producing a Brake Disk
US20070116890A1 (en) Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
JP6180427B2 (en) Metal powder for HVOF spraying and method for coating the surface thereby
CN111235511B (en) Preparation method of multi-element ceramic composite coating
JP2005133715A (en) Method for coating substrate
CN1325760C (en) Method for providing turbulence structure on internal surface of middle hole of workpiece and relative workpiece
US20070215677A1 (en) Cold gas-dynamic spraying method for joining ceramic and metallic articles
CN107502889A (en) A kind of method at precision laser deposited nickel-base alloy powder end
JP5254959B2 (en) Wear prevention device and method for manufacturing wear prevention device
JPH10204601A (en) Method for coating carbon base material of carbon-containing nonmetallic base material
US20080102291A1 (en) Method for coating a substrate
JP4731150B2 (en) Film forming apparatus and method for forming low oxide coating
US20100064515A1 (en) Method for repairing and/or replacing individual elements of a gas turbine component
WO1999039020A1 (en) Method of production of self-fusing alloy spray coating member
US20010051226A1 (en) Method of internally coating a weapon barrel by a plasma flame
JP4303447B2 (en) Manufacturing method of biaxial cylinder
JP5244481B2 (en) Joining method of Ni-base alloy and steel
JPS62177183A (en) Method for forming metallic lining on inside surface of metallic pipe or the like
CN112226723B (en) Preparation method of aluminum-containing alloy coating in atmospheric atmosphere
CN107904547A (en) A kind of preparation method of titanium alloy Wear-resistant, high-temperature resistant coating
JPS6284976A (en) Manufacture of rotary type truing or dressing tool for grinding wheel
US20080299306A1 (en) Multi-layer substrate and method of fabrication
JPS627876A (en) Manufacture of two-layer pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4303447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees