JP4303210B2 - Soil modifier, its production method, and its application method - Google Patents
Soil modifier, its production method, and its application method Download PDFInfo
- Publication number
- JP4303210B2 JP4303210B2 JP2005031994A JP2005031994A JP4303210B2 JP 4303210 B2 JP4303210 B2 JP 4303210B2 JP 2005031994 A JP2005031994 A JP 2005031994A JP 2005031994 A JP2005031994 A JP 2005031994A JP 4303210 B2 JP4303210 B2 JP 4303210B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- phosphoric acid
- water purification
- cake
- phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Cultivation Of Plants (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、過剰な可給態リン酸を軽減するために土壌に対して施用される土壌改質材と、その製造方法、および、その施用方法に関する。
The present invention relates to a soil modifier applied to soil to reduce excess available phosphoric acid, a method for producing the same, and a method for applying the same.
浄水ケーキは、浄水場での水処理過程で発生する沈澱物を加圧・脱水、あるいは天日乾燥したもので、一般的には、産業廃棄物として処分されている。産業廃棄物として排出される浄水ケーキは年々増加の一途をたどり、埋め立て処分地等の確保も困難となっている現状にある。そのため、その資源化、利用法が望まれている。 A water purification cake is a product obtained by pressurizing, dewatering, or sun-drying a precipitate generated during a water treatment process at a water purification plant, and is generally disposed of as industrial waste. The water purification cake discharged as industrial waste is increasing year by year, and it is difficult to secure landfill sites. Therefore, the resource utilization and utilization method are desired.
本来、浄水ケーキは、粘土やシルトなどの鉱物を主要構成成分とし、原水中の菌体や藻体などの有機物を含むものであり、それらはリン酸イオンを固定する機能を有する。また、浄水ケーキには水処理過程で添加されたポリ塩化アルミニウム(PAC)や硫酸アルミニウムもごく少量混在しており、それらも高いリン酸固定能を有する。 Originally, a water purification cake is mainly composed of minerals such as clay and silt, and contains organic substances such as fungal bodies and algal bodies in raw water, and they have a function of fixing phosphate ions. The water purification cake also contains a very small amount of polyaluminum chloride (PAC) and aluminum sulfate added during the water treatment process, and these also have a high phosphate fixing ability.
そこで、このような浄水ケーキのリン酸固定能を利用して、リン酸除去用の水質浄化資材を製造することが既に提案されている(例えば、下記特許文献1参照。)。
ところで、多量の施肥を繰り返した農耕地、特に施設栽培地や茶園には、施用された化学肥料や土壌改良材に含まれていた高濃度の肥料養分が過剰に蓄積しており、特に可給態リン酸が過剰蓄積している。わが国の農耕地ではリン酸肥沃度の低いところは少なく、むしろ過去に施用されたリン酸肥料やリンを含む土壌改良材の多量施用により、作物生産にとって必要とする以上にリン酸が過剰に蓄積しているところが多い。特に、その傾向は多肥条件下で繰り返して栽培することが多い果葉菜や花卉を栽培する施設栽培地においてみられる。他の植物必須養分と異なり、リン酸過剰では植物体に外観的異状症状を呈する可視障害が現れにくいとされているが、生育停滞や抑制、植物体のわい化、葉の肥厚化、および熟期の異常促進による減収などが生じる。さらに、そのような農耕地ではリン酸過剰に伴う鉄、亜鉛、および銅などの植物微量必須元素の欠乏が起こったり、アブラナ科野菜の根こぶ病やダイコンの葉枯れ病などの病害や生理障害が発生しやすいことが知られている。 By the way, farmlands that have been subjected to a large amount of fertilization, especially facility cultivation areas and tea gardens, have accumulated a high concentration of fertilizer nutrients contained in applied chemical fertilizers and soil amendments, and are particularly available. State phosphoric acid is excessively accumulated. There are few places with low phosphoric acid fertility in Japanese arable land. Rather, phosphoric acid accumulates more than necessary for crop production due to large-scale application of phosphate fertilizers and soil amendments containing phosphorus. There are many places. In particular, this tendency is seen in institutional cultivation areas where leafy vegetables and flower buds are often cultivated repeatedly under high fertilization conditions. Unlike other plant essential nutrients, excess phosphate is considered to be less likely to cause visible disturbances that cause appearance abnormalities in the plant, but growth stagnation and suppression, plant dwarf, leaf thickening, and ripening Decrease in sales due to promotion of abnormalities in the season. In addition, in such cultivated land, deficiencies of plant trace essential elements such as iron, zinc, and copper occur due to excess phosphate, and diseases and physiological disorders such as clubroot of Brassicaceae vegetables and leaf blight of radish Is known to occur easily.
過剰に蓄積した肥料成分を低減、除去するための方策としては、従来、湛水やかけ流し処理などの除塩処理、あるいは吸肥力の強い牧草などの植物を栽培して農耕地から肥料成分を取り除く植栽除去処理などが、一般的に行われてきた。また、塩類集積が進行した施設栽培地では、土壌養分のアンバランスに起因する微量要素欠乏や病害が多発することから、最終的には耕地の入れ替えを行わなければならない場合も多々あった。 In order to reduce and remove the excessively accumulated fertilizer components, conventionally, salt removal treatment such as flooding and pouring treatment, or plants such as grass with strong fertilizer absorption have been cultivated to remove the fertilizer components from the farmland. Plant removal treatment to be removed has been generally performed. Moreover, in facility cultivation areas where salt accumulation has progressed, there are many cases where trace elements are deficient and diseases occur due to the imbalance of soil nutrients, so it is often necessary to finally replace the arable land.
しかし、上述の除塩処理は、肥料三成分のうち、水溶性の高い窒素やカリウムなどには有効であるが、水溶解度の低いリン酸に対してはあまり有効ではなく、肥料分を含む流出水による水系の二次的水質汚染の危惧もあった。また、高吸肥植物によるリン酸低減法は環境保全的であるが、施設地への換金作物の導入回数が減じるために経営上有益とは言えなかった。さらに、耕地の入れ替えを行うためには、多大な労力と経費が必要であるという問題があり、しかも、土とり場となる山林の環境破壊にもつながるという問題もあった。 However, the above-mentioned salt removal treatment is effective for nitrogen and potassium with high water solubility among the three components of fertilizer, but is not very effective for phosphoric acid with low water solubility, and it contains runoff containing fertilizer. There was also a concern of secondary water pollution of the water system by water. In addition, although the phosphate reduction method using high-fertilizer plants is environmentally conservative, it has not been beneficial for management because the number of cash crops introduced to the facility area is reduced. Furthermore, in order to replace the cultivated land, there is a problem that a great deal of labor and cost are required, and there is also a problem that it leads to the destruction of the environment of the mountain forest that is used as a yard.
以上のような諸情勢に鑑み、本件発明者は、農耕地に過剰に蓄積している可給態リン酸を軽減、除去するための新しい方策について鋭意検討した。その結果、浄水ケーキのリン酸固定能を利用して、土壌中の可給態リン酸を軽減、除去できることを見いだした。 In view of the circumstances as described above, the present inventor has intensively studied a new measure for reducing and removing the available phosphoric acid accumulated excessively in the agricultural land. As a result, it was found that the available phosphoric acid in the soil can be reduced and removed by using the phosphate fixing ability of the water purification cake.
本発明は、上記知見に基づいて完成されたものであり、その目的は、土壌中に過剰に蓄積している可給態リン酸を軽減、除去可能な土壌改質材と、その製造方法、および、その施用方法を提供することにある。
The present invention has been completed based on the above findings, and its object is reduce soluble paper Phosphate in that excessively accumulated in the soil, and soil modifiers removable, a method of manufacturing the same, And it is providing the application method.
以下、本発明において採用した特徴的構成について説明する。
本発明の土壌改質材は、土壌中に含まれる過剰な可給態リン酸を軽減するために、前記土壌に対して施用される土壌改質材であって、浄水場での水処理過程で発生する沈澱物を加圧・脱水、あるいは天日乾燥してなる塊状または板状の浄水ケーキを、乾燥、粉砕することによって得られる粒子径2mm以下の浄水ケーキ粉砕物を主成分としており、そのリン酸吸収係数が、2000〜2687の範囲内にあることを特徴とする。
The characteristic configuration employed in the present invention will be described below.
The soil modifying material of the present invention is a soil modifying material applied to the soil in order to reduce excess available phosphoric acid contained in the soil , and a water treatment process in a water purification plant in precipitate generated pressure and dehydration, or sun drying and formed by bulk or plate-shaped water purification cake, dried and mainly composed of the particle diameter 2mm or less of the purified water cake pulverized product obtained by pulverizing The phosphoric acid absorption coefficient is in the range of 2000-2687 .
この土壌改質材は、浄水場から排出される塊状または板状の浄水ケーキを乾燥、粉砕することにより、粉状ないし小粒状(具体的には、粒子径2mm以下程度)の浄水ケーキ粉砕物としたものである。このような土壌改質材であれば、土壌への混合が容易になる上に、リン酸固定反応についての反応性が高くなるので好ましい。浄水ケーキ粉砕物の粒子径が2mmを上回る場合は、リン酸固定反応がより緩慢にしか進まなく傾向がある。このような粉状ないし小粒状の浄水ケーキ粉砕物は、塊状または板状の浄水ケーキを目的とする粒子径以下まで十分に粉砕したものであってもよいし、塊状または板状の浄水ケーキを適宜粉砕して目的とする粒子径以下の粒子のみ通過する篩にかけて、所期の粒子を篩い分けしたものであってもよい。
The soil reforming material, dry bulk or plate-shaped water purification cake is discharged from the water purification field, by grinding, (specifically, the following extent particle size 2 mm) powder or small particulate water purification cake milling It is a thing. Such a soil conditioner is preferred because it facilitates mixing with soil and increases the reactivity with respect to the phosphoric acid fixation reaction. When the particle diameter of the pulverized water cake exceeds 2 mm, the phosphoric acid fixation reaction tends to proceed only more slowly. Such a pulverized product of powder or small granular water purification cake may be a product obtained by sufficiently pulverizing a lump or plate-like water purification cake to a particle size equal to or less than the intended particle size. The desired particles may be sieved by appropriately pulverizing and passing through a sieve that passes only particles having a particle size equal to or less than the target particle diameter.
また、浄水ケーキのリン酸吸収能は、浄水場の違いその他によって、通常はいくらかばらつきがあるが、少ない施用量で高い効果を得るためには、浄水ケーキのリン酸吸収能は高いものほど望ましく、本発明においては、リン酸吸収係数が2000〜2687のものが利用される。リン酸吸収係数は、一般に、土壌等の対象物100gが固定するリン酸の質量(単位はmg)をP2O5換算で表した値であり、数値が大きいほどリン酸が固定されやすいことを示している。このリン酸吸収係数が2000を下回ると、所期の効果を得るために大量の土壌改質材を土壌に投入しなければならなくなるので、取り扱いが不便になり、土壌改質材の保管、輸送にかかるコストも増大しやすくなる。また、リン酸吸収係数は最大値が2687となるので、この値を上回ることはない。
In addition, the phosphate absorption capacity of the water purification cake usually varies somewhat depending on the difference in the water purification plant, etc., but in order to obtain a high effect with a small amount of application, it is desirable that the water absorption capacity of the water purification cake is high. In the present invention, those having a phosphate absorption coefficient of 2000 to 2687 are used . Phosphoric acid absorption coefficient is generally a value expressed in terms of P 2 O 5 in terms of the mass of phosphoric acid (unit: mg) fixed by 100 g of an object such as soil, and the larger the value, the easier it is to fix phosphoric acid. Is shown. If the phosphate absorption coefficient is below 2000, a large amount of soil modifier must be put into the soil to obtain the desired effect, which makes the handling inconvenient, and storage and transportation of the soil modifier. The cost for the cost is likely to increase. Moreover, since the maximum value of the phosphoric acid absorption coefficient is 2687, it does not exceed this value.
さらに、本発明の土壌改質材の土壌への施用量は、対象土壌の可給態リン酸含量や作付作物のリン要求性によっても変動するが、多くの場合、土壌改質材を土壌に添加、混合することにより、前記土壌の乾土100g当たりの可給態リン酸含量を、P2O5換算で10〜150mgとすると好適である。土壌の可給態リン酸含量が、10mgP2O5/100g乾土を下回るようでは、可給態リン酸の除去量が過剰気味であり、栽培作物にリン酸欠乏症を誘発する危惧がある。また、150mgP2O5/100g乾土を上回るようでは、可給態リン酸の除去量が不足気味であり、既に説明したリン酸過剰に起因する各種弊害を招くおそれがある。中でも、より好ましい土壌改良目標値としては、例えば、普通作畑土壌では5〜10mgP2O5/100g乾土、野菜畑土壌では10〜30mgP2O5/100g乾土、樹園地土壌では10〜20mgP2O5/100g乾土、水田土壌では5〜10mgP2O5/100g乾土とすると好適である。
Furthermore, the application rates of the soil a soil amendment material of the present invention will vary depending phosphorus requirement of available P acid content and cultivation crops target soil often a soil amendment material soil By adding and mixing, it is preferable that the available phosphoric acid content per 100 g of dry soil is 10 to 150 mg in terms of P 2 O 5 . Available P acid content of soil, than below a 10mgP 2 O 5 / 100g dry soil, the removal amount of available P acid is is slightly excessive, there is a fear of inducing phosphate deficiency in cultivated crops. Further, than exceed the 150mgP 2 O 5 / 100g dry soil, a removal amount of available P acid somewhat insufficient, which may lead to various adverse effects caused by already excess phosphate described. Among them, as a more preferred soil improvement target value, for example, usually in Sakuhata soil 5~10mgP 2 O 5 / 100g dry soil, the vegetable field soil 10~30mgP 2 O 5 / 100g dry soil, 10 in orchard soils 20mgP 2 O 5 / 100g dry soil, in paddy soil it is preferable that the 5~10mgP 2 O 5 / 100g dry soil.
以上説明したような土壌改質材を、可給態リン酸が過剰に蓄積している土壌に対して施用すれば、土壌改質材に含まれるアルミニウム系や鉄系の凝集剤より、土壌の団粒化を促すことを通して土壌物理性の改善に働き、作付作物の生育を促す。さらに、下記反応式(1)〜(3)の反応により、土壌中に過剰蓄積した可給態リン酸の主体を占める水溶性および可溶性のオルトリン酸と結合し、作物の利用し難い難利用性の不可給態リン酸に変換する。
If the soil modifier as described above is applied to soil in which available phosphoric acid is excessively accumulated, it will be more effective than the aluminum or iron flocculant contained in the soil modifier . It works to improve soil physical properties by promoting aggregation and promotes the growth of crop crops. Furthermore, the reaction of the following reaction formulas (1) to (3) binds to water-soluble and soluble orthophosphoric acid that occupies the main body of available phosphoric acid accumulated excessively in the soil, making it difficult to use crops. Convert to non-suppliable phosphate.
すなわち、アルミニウム塩の一つである硫酸アルミニウムの場合、下記反応式(1)により、作物にとって難利用性となる不溶性のリン酸アルミニウム(AlPO4)を形成する。 That is, in the case of aluminum sulfate, which is one of aluminum salts, insoluble aluminum phosphate (AlPO 4 ) that is difficult to use for crops is formed according to the following reaction formula (1).
また、アルミニウム塩の一つであるポリ塩化アルミニウムの場合、下記反応式(2)により、作物にとって難利用性となる不溶性のリン酸アルミニウム(AlPO4)を形成する。 In addition, in the case of polyaluminum chloride which is one of aluminum salts, insoluble aluminum phosphate (AlPO 4 ) which is difficult to use for crops is formed according to the following reaction formula (2).
さらに、鉄塩の一つである塩化鉄の場合、下記反応式(3)により、作物にとって難利用性となる不溶性のリン酸鉄(FePO4)を形成する。 Further, in the case of iron chloride, which is one of iron salts, insoluble iron phosphate (FePO 4 ) that is difficult to use for crops is formed according to the following reaction formula (3).
これらの反応を通して、土壌中の可給態リン酸が難溶性のリン酸アルミニウムないしリン酸鉄となり不可給態化する。その結果、土壌中の可給態リン酸は軽減、除去されることになり、土壌中に過剰蓄積した可給態リン酸の量を適正化することができる。 Through these reactions, the available phosphoric acid in the soil becomes a hardly soluble aluminum phosphate or iron phosphate and becomes non-available. As a result, the available phosphoric acid in the soil is reduced and removed, and the amount of the available phosphoric acid accumulated in the soil can be optimized.
なお、浄水ケーキが、農耕地の客土として利用されたことは、過去にも例がある。しかし、この従来例は、浄水ケーキが可給態リン酸を軽減するための土壌改質材として利用された事例ではない。より詳しくは、浄水ケーキを農耕地の客土として利用する場合、従来は、例えば、浄水ケーキと同時にリン酸肥料を十二分に施用したりするなど、何らかの対策を併用することで、土壌中のリン酸含量を低下させないようにするのが通例で、これにより、浄水ケーキの高いリン酸吸収固定能によって栽培作物にリン酸欠乏症を誘発するのを防止していた。こうした従来例は、本発明でいう土壌改質材相当の機能があえて発現しないようにした技術であるとも言える。これに対し、本発明は、土壌中のリン酸含量の低下を問題視する従来例とはまったく逆に、土壌中に過剰蓄積した可給態リン酸の存在を問題視し、その解決策として、浄水ケーキの可給態リン酸軽減用の土壌改質材としての有用性に初めて着目した技術である。したがって、上記のような従来例は、浄水ケーキが可給態リン酸軽減用の土壌改質材として利用された事例ではなく、本発明の特徴的構成を示唆する技術とはなり得ないのである。
In addition, there has been an example in the past that the water purification cake has been used as a land for agricultural land. However, this prior art is not the case the water purification cake was utilized as a soil amendment material to reduce the available P acid. More specifically, when using a water purification cake as a land for agricultural land, conventionally, for example, by applying some measures such as using a phosphate fertilizer more than simultaneously with a water purification cake, In general, the phosphoric acid content of the cultivated crop was prevented from being induced by the high phosphate absorption capacity of the water purification cake. It can be said that such a conventional example is a technique in which a function equivalent to the soil modifying material referred to in the present invention is not expressed. On the other hand, the present invention regards the existence of available phosphoric acid excessively accumulated in the soil as a solution, as opposed to the conventional example in which a decrease in the phosphoric acid content in the soil is a problem. This is the first technology that focuses on the usefulness of a water purification cake as a soil modifier for reducing available phosphoric acid. Therefore, the conventional example as described above is not an example in which the water purification cake is used as a soil conditioner for reducing available phosphoric acid, and cannot be a technique suggesting the characteristic configuration of the present invention. .
次に、本発明の実施形態について一例を挙げて説明する。
(1)土壌改質材の製造方法
浄水場から排出された塊状または板状の浄水ケーキを風乾、粉砕し、その粉砕物を2mm目の篩で篩い分けすることにより、粒子径2mm以下の浄水ケーキ粉砕物を得た。
Next, an embodiment of the present invention will be described with an example.
(1) Manufacturing method of soil modifying material A block or plate-shaped water purification cake discharged from a water purification plant is air-dried and pulverized, and the pulverized product is sieved with a 2 mm sieve to obtain purified water having a particle diameter of 2 mm or less. A cake pulverized product was obtained.
この浄水ケーキ粉砕物のリン酸吸収係数を、次の方法で測定した。
まず、風乾試料50gを200mlの三角フラスコにとり、2.5%リン酸アンモニウム液100mlを加え、時々振盪しながら室温で24時間放置したのち濾過する。濾液を250mlの定容フラスコにとり、水を加えて定容する。その中から10mlを50ml定容フラスコにとり、硫酸モリブデン法により、リン酸を比色定量する。用いたリン酸アンモニウム液中のリン酸量と濾液中のリン酸量との差を試料が吸収したリン酸量とし、乾物100g当たりに換算した質量(単位はmg)で表示したものを、リン酸吸収係数とする。
The phosphoric acid absorption coefficient of the pulverized water cake was measured by the following method.
First, 50 g of an air-dried sample is placed in a 200 ml Erlenmeyer flask, 100 ml of 2.5% ammonium phosphate solution is added, and the mixture is allowed to stand at room temperature for 24 hours with occasional shaking, followed by filtration. Take the filtrate into a 250 ml constant volume flask and add water to make a constant volume. 10 ml of the solution is placed in a 50 ml constant volume flask, and phosphoric acid is colorimetrically determined by the molybdenum sulfate method. The difference between the amount of phosphoric acid in the ammonium phosphate solution used and the amount of phosphoric acid in the filtrate was taken as the amount of phosphoric acid absorbed by the sample, and expressed in mass (unit: mg) converted per 100 g of dry matter. The acid absorption coefficient.
上記測定方法でいくつかの浄水ケーキ粉砕物の試料を測定した後、リン酸吸収係数が2000を上回った試料について、そのまま天日乾燥し、所期の土壌改質材を得た。
After measuring several samples of the water-purified cake pulverized product by the above measurement method, samples having a phosphoric acid absorption coefficient exceeding 2000 were dried in the sun as they were to obtain the desired soil modifier .
なお、以上説明した製造方法では、各試料を天日乾燥して、所期の土壌改質材を得たが、加熱乾燥を行ってもよいことはもちろんである。
(2)実験例
[実験例1]
リン酸肥沃度が適正域にある畑土壌(可給態リン酸含量:48.0mgP2O5/100g乾土)に対して、上記(1)で製造した土壌改質材を添加し、よく混和した。土壌改質材の配合量は、0〜100%(W/W)の間で10%単位で変化させた。その後、混和土壌の可給態リン酸含量(トルオーグリン酸:0.001mol/L硫酸可溶)を、次の方法で測定した。
In addition, in the manufacturing method demonstrated above, each sample was sun-dried and the intended soil-modifying material was obtained, but of course, heat drying may be performed.
(2) Experimental example [Experimental example 1]
Field soil phosphate fertility has an appropriate range: relative (available P acid content 48.0mgP 2 O 5 / 100g dry soil), was added soil amendment material manufactured in the above (1), may Mixed. The blending amount of the soil modifier was changed in units of 10% between 0 and 100% (W / W). Thereafter, the available phosphate content (toluoguric acid: 0.001 mol / L sulfuric acid soluble) of the mixed soil was measured by the following method.
まず、試料1gを300ml容三角フラスコに入れたのち、200mlの0.001mol/L硫酸200mlを加える。フラスコの口をゴム栓で封じたのち、90分間、室温で振盪抽出する。その後、濾過したのち濾液10mlを100ml容の定容フラスコにとり、硫酸モリブデン酸法により発色させ、比色定量する。測定結果を表1に示す。 First, after putting 1 g of a sample in a 300 ml Erlenmeyer flask, 200 ml of 0.001 mol / L sulfuric acid 200 ml is added. After sealing the mouth of the flask with a rubber stopper, it is shaken and extracted at room temperature for 90 minutes. Thereafter, after filtration, 10 ml of the filtrate is put into a 100 ml constant volume flask, and developed by the sulfuric acid molybdic acid method, and colorimetrically determined. The measurement results are shown in Table 1.
表1に示すように、土壌中の可給態リン酸含量は、土壌改質材の混和割合が高まるにつれて低下し、添加した土壌改質材によって土壌中の可給態リン酸が固定され、植物に対して不可給化することがうかがえた。しかも、その混和割合が高すぎると、作物にとってリン酸が不足ないし欠乏する程度までリン酸含量が低下することが認められた。可給態リン酸含量の適正域は植物種によって異なるが、一般に100mg〜150mg/100g土壌が上限とされている。それ以上の場合、可視的障害は生じないけれども生育停滞や抑制、および病害や生理障害が生じやすい領域があり、さらに、それを超えると微量必須養分の欠乏に伴う可視障害やリン酸自体の過剰害を誘発する領域が存在する。このような観点から、この土壌改質材は、過剰集積した土壌中のリン酸を除去する土壌改質材として利用できるものと考えられる。
As shown in Table 1, the available phosphate content in the soil decreases as the mixing ratio of the soil modifier increases, and the available phosphate in the soil is fixed by the added soil modifier , It seemed that the plant could not be paid. Moreover, when the mixing ratio was too high, it was recognized that the phosphoric acid content was lowered to the extent that phosphoric acid was insufficient or deficient for the crop. The appropriate range of the available phosphate content varies depending on the plant species, but generally 100 mg to 150 mg / 100 g soil is the upper limit. Above that, there are areas where there is no visible damage but growth stagnation and suppression, and diseases and physiological disorders are likely to occur. There are areas that cause harm. From this point of view, the soil modifiers are believed to be used as a soil amendment material to remove phosphoric acid excess accumulated in soil.
[実験例2]
適正なリン酸含量領域にある化学肥料施用土壌、牛ふん厩肥を過剰施用したために可給態リン酸が過剰に蓄積した土壌、および、食品排出汚泥コンポストを過剰施用したために可給態リン酸が過剰に蓄積した土壌、以上3種の土壌それぞれに50%(W/W)の土壌改質材(上記(1)で製造したもの)を添加、混和した土壌を作成した。その混和土壌に圃場容水量の約60%の水を加えた後、30℃、4週間、インキュベーションした。インキュベーション期間中の土壌中の可給態リン酸の推移を、図1に示す。
[Experimental example 2]
Chemical fertilizer application soil in the appropriate phosphate content area, soil with excessive accumulation of available phosphate due to excessive application of cattle manure, and excess of available phosphate due to excessive application of food discharge sludge compost 50% (W / W) of a soil conditioner (produced in (1) above) was added to each of the three soils accumulated in the above, and a mixed soil was prepared. About 60% of the water capacity in the field was added to the mixed soil, followed by incubation at 30 ° C. for 4 weeks. The transition of available phosphoric acid in the soil during the incubation period is shown in FIG.
土壌改質材の添加は、適正な可給態リン酸含量域にある土壌のみならず、リン酸が過剰蓄積した土壌においても可給態リン酸含量を低下させる働きを示し、その効果は添加直後から発現することが明らかとなった。このことから、上記土壌改質材は、リン酸が過剰に蓄積したために作物栽培しがたい圃場の土壌改質材として有効に機能することが実証された。
The addition of soil modifiers has the effect of lowering the available phosphate content not only in the soil in the proper available phosphate content range, but also in the soil where phosphoric acid is excessively accumulated. It became clear immediately after that. From this, it was demonstrated that the above-mentioned soil conditioner functions effectively as a soil conditioner in fields where crop cultivation is difficult due to excessive accumulation of phosphoric acid.
[実験例3]
リン酸過剰蓄積土壌は、厩肥やコンポストなどの有機質資材を多用した土壌だけでなく、リン酸質化学肥料を多量に長期間施した土壌でも生じる。そのような土壌にさらに過リン酸石灰を施用して作成したリン酸過剰蓄積土壌をポット(500ml容)に詰め、オクラを3週間栽培したときの生育状況を表2に示す。
[Experiment 3]
Phosphoric acid excessive accumulation soil is generated not only in soil that uses a large amount of organic materials such as manure and compost, but also in soil that has been subjected to a long period of application of phosphate chemical fertilizer. Table 2 shows the growth situation when soil containing excessive phosphate accumulated by further applying lime superphosphate to such soil was packed in a pot (500 ml volume) and okra was cultivated for 3 weeks.
植物体の生育はリン酸施用量の増加に伴って低下傾向を示し、リン酸の過剰害が見られた。しかし、過剰に施用した処理区(No.6)における植物体の葉緑部の黄化と草丈のわい化以外、いずれの植物体ともリン酸過剰の可視害は認められなかった。また、栽培後の跡地土壌の可給態リン酸含量はリン酸施用量に対応して高くなり、いずれも適正域以上の値を示していた。これらの結果から、上記のオクラで見られた生育抑制は土壌中の可給態リン酸の過剰に伴うリン酸の不可視障害であるとみなされる。 The growth of the plant showed a tendency to decrease with the increase in the phosphate application rate, and an excessive harm of phosphate was observed. However, no visible damage due to excess phosphate was observed in any of the plants except for the yellowing of the chloroplasts and the dwarfing of the plant height in the treatment area (No. 6) applied in excess. Moreover, the available phosphoric acid content of the ruins soil after cultivation became high corresponding to the phosphoric acid application amount, and all showed the value beyond the suitable range. From these results, the growth inhibition seen in the above okra is considered to be an invisible disorder of phosphate due to excess of available phosphate in the soil.
[実験例4]
上記実験例2の3種の土壌それぞれに50%(W/W)の土壌改質材(上記(1)で製造したもの)を添加、混和した混和土500mlをポリポットに充填し、ダイコン種子20粒を播種した。3週間栽培し、土壌改質材を添加しない対照区土壌の生育と比較した。結果を表3に示す。
[Experimental Example 4]
50% (W / W) soil conditioner (produced in (1) above) was added to each of the three types of soil in Experimental Example 2, 500 ml of the mixed soil was filled in a polypot, and radish seed 20 Grains were sown. It was cultivated for 3 weeks and compared with the growth of the control soil without the soil modifier . The results are shown in Table 3.
表3に示すように、土壌改質材混和土壌区におけるダイコンの生育量は、いずれの土壌とも対照区のものに比べて増加し、土壌中に過剰に蓄積する可給態リン酸による生育抑制が、土壌改質材によるリン酸固定によって回避されていた。なお、供試土壌によってダイコンの生育量に大きな差異がみられたが、その原因はリン酸以外の土壌養分肥沃度の違いに基づくものである。
As shown in Table 3, the growth of Japanese radish in the soil-modifier- mixed soil section is higher than that of the control section in all soils, and growth suppression by available phosphoric acid that accumulates excessively in the soil However, it was avoided by phosphoric acid fixation with soil modifier . In addition, there was a big difference in the growth of Japanese radish depending on the test soil, and the cause was based on the difference in fertility of soil nutrients other than phosphoric acid.
以上説明した通り、上記(1)で例示した方法で製造した土壌改質材を、可給態リン酸が過剰に蓄積している土壌に対して施用すれば、土壌中に過剰蓄積した可給態リン酸を、作物の利用し難い難利用性の不可給態リン酸に変換して、リン酸の過剰害を防止することができる。 As explained above, if the soil modifier produced by the method exemplified in the above (1) is applied to the soil in which the available phosphoric acid is excessively accumulated, the available reservoir that is excessively accumulated in the soil The phosphoric acid can be converted into difficult-to-use non-supplyable phosphoric acid that is difficult to use in crops, thereby preventing excessive damage of phosphoric acid.
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.
Claims (3)
浄水場での水処理過程で発生する沈澱物を加圧・脱水、あるいは天日乾燥してなる塊状または板状の浄水ケーキを、乾燥、粉砕することによって得られる粒子径2mm以下の浄水ケーキ粉砕物を主成分としており、そのリン酸吸収係数が、2000〜2687の範囲内にある
ことを特徴とする土壌改質材。 A soil modifier applied to the soil in order to reduce excess available phosphoric acid contained in the soil ,
Crushed water cake with a particle size of 2mm or less, obtained by drying and crushing a block or plate-shaped water purification cake obtained by pressurizing, dehydrating, or sun-drying precipitates generated during the water treatment process at a water purification plant A soil conditioner characterized by comprising a substance as a main component and having a phosphate absorption coefficient within a range of 2000 to 2687 .
ことを特徴とする土壌改質材の製造方法。 From a crushed water cake with a particle diameter of 2 mm or less by drying and pulverizing a block or plate-shaped water purification cake formed by pressurizing, dehydrating, or sun-drying precipitates generated in the water treatment process at a water purification plant comprising a method for producing a soil amendment material, as the water purification cake pulverized, soil amendment material, characterized in that water purification cake pulverized product phosphoric acid absorption coefficient is in the range of 2,000 to 2,687 is used Manufacturing method.
ことを特徴とする土壌改質材の施用方法。 Added to the soil a soil amendment material according to claim 1, by mixing, the available P acid content of dry soil per 100g of the soil, characterized in that the 10~150mg in terms of P 2 O 5 Application method of soil modifier .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005031994A JP4303210B2 (en) | 2005-02-08 | 2005-02-08 | Soil modifier, its production method, and its application method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005031994A JP4303210B2 (en) | 2005-02-08 | 2005-02-08 | Soil modifier, its production method, and its application method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006219531A JP2006219531A (en) | 2006-08-24 |
JP4303210B2 true JP4303210B2 (en) | 2009-07-29 |
Family
ID=36982058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005031994A Active JP4303210B2 (en) | 2005-02-08 | 2005-02-08 | Soil modifier, its production method, and its application method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4303210B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5947857B2 (en) * | 2014-10-20 | 2016-07-06 | 住友林業株式会社 | Purification method of oil-contaminated soil using Zoysia spp. Or water purification plant generated soil |
JP2016096735A (en) * | 2014-11-18 | 2016-05-30 | 三重県 | Method of cultivating functional vegetables |
CN107537853B (en) * | 2017-10-11 | 2020-02-07 | 中国科学院广州地球化学研究所 | Method for reducing concentration of harmful heavy metals in crops |
CN108277017B (en) * | 2018-03-20 | 2019-11-08 | 广西大学 | It is a kind of to reduce heavy metal in soil arsenic, the soil conditioner of antimony available state and its application method |
JP7011313B2 (en) * | 2018-04-03 | 2022-01-26 | 住化農業資材株式会社 | Soil covering material for raising seedlings |
-
2005
- 2005-02-08 JP JP2005031994A patent/JP4303210B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006219531A (en) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hammond et al. | Agronomic value of unacidulated and partially acidulated phosphate rocks indigenous to the tropics | |
Tahir et al. | Lignite-derived humic acid effect on growth of wheat plants in different soils | |
AU2006207886A1 (en) | Fertiliser | |
JP4303210B2 (en) | Soil modifier, its production method, and its application method | |
AU2012216532B2 (en) | Improvements in and relating to soil treatments | |
CN105175088A (en) | Biochar slow release phosphate fertilizer and preparation method thereof | |
CN105294356A (en) | Carbon-based saline-alkali soil improver as well as preparation method and application thereof | |
US20050178177A1 (en) | Organo phosphatic fertilizer | |
CN101717317A (en) | Long-acting slow-releasing diammonium phosphate and preparation method thereof | |
RU2263093C2 (en) | Methods for obtaining fertilizers based upon ammonium phosphate at controlled release of nutrients | |
Fantaye et al. | Effect of filter press mud application on nutrient availability in aquert and fluvent soils of Wonji/Shoa sugarcane plantation of Ethiopia | |
JP2005231950A (en) | Fertilizer having function for insolubilizing cadmium compound | |
RU2516468C2 (en) | Method of reclamation of agricultural lands | |
JPH1088137A (en) | Raising culture medium and its production | |
Sefidkoohi et al. | Effects of multi-period application of two types of composts on some chemical properties of soil and uptake of phosphorous by wheat | |
Udawatte et al. | Use of single superphosphate fertiliser produced using Eppawala rock phosphate as a source of phosphorous for rice cultivation. | |
AlKhader et al. | Effects of phosphorus fertilizer type and rate on plant growth and heavy metal content in lettuce (Lactuca Sativa L.) grown on calcareous soil | |
Surin et al. | Release of Various Elements from Organic Fertilizers Incubated in Organic and Non-organic Paddy Soils at Various Time Periods | |
US9139485B2 (en) | Plant treatment agent | |
US8968440B1 (en) | Fertilizer production | |
CN115466144B (en) | Method for preparing calcium-phosphorus fertilizer from kitchen garbage | |
Habashy et al. | Effects of elemental sulphur and partial substitution of N-mineral fertilizer by organic amendments on some properties of slight saline soils | |
Tangjang et al. | Influence of plant residues, farm yard manure and inorganic fertilizers on soil N and P mineralization and growth of Abelmoschus esculentus Linn. | |
Yao et al. | Effects of Calcium and Magnesium on Phosphorus Availability in Ferralsols and Rice Production in Forest Zones of Côte d’Ivoire | |
Al Balkhi | Impact of Fresh and Fermented Olive Solid Waste and Cow Manure in Wheat Content of Fertility Elements (Nitrogen, Phosphorus and Potassium) and on Its Productivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090407 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090423 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20250501 Year of fee payment: 16 |