JP4302036B2 - Lighting device with solar cell and manufacturing method thereof - Google Patents

Lighting device with solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP4302036B2
JP4302036B2 JP2004305307A JP2004305307A JP4302036B2 JP 4302036 B2 JP4302036 B2 JP 4302036B2 JP 2004305307 A JP2004305307 A JP 2004305307A JP 2004305307 A JP2004305307 A JP 2004305307A JP 4302036 B2 JP4302036 B2 JP 4302036B2
Authority
JP
Japan
Prior art keywords
solar cell
resin layer
surface side
led
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004305307A
Other languages
Japanese (ja)
Other versions
JP2006120387A (en
Inventor
克史 岸本
浩匡 棚村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004305307A priority Critical patent/JP4302036B2/en
Publication of JP2006120387A publication Critical patent/JP2006120387A/en
Application granted granted Critical
Publication of JP4302036B2 publication Critical patent/JP4302036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

この発明は、太陽電池付照明装置とその製造方法に関し、詳しくは、集積型太陽電池の裏面側にLEDを実装した太陽電池付照明装置に関するものである。   The present invention relates to an illumination device with a solar cell and a method for manufacturing the same, and more particularly to an illumination device with a solar cell in which LEDs are mounted on the back side of an integrated solar cell.

従来の太陽電池付照明装置としては次のようなものが知られている。
太陽電池の周囲に発光素子を実装して外部で配線を行い、パッケージで一体化した太陽電池付照明装置(例えば、特許文献1参照)。
The following are known as conventional solar cell lighting devices.
A lighting device with a solar cell in which light-emitting elements are mounted around a solar cell, wiring is performed outside, and integrated with a package (see, for example, Patent Document 1).

裏面に電子回路群を有する基板と、基板の表面側に配設される太陽電池と、電子回路群を取り囲むように基板の裏面側に配設される発光素子とを備え、太陽電池、発光素子および電子回路群が基板に形成されたスルーホールを介して電気的に接続されてなる太陽電池付照明装置(例えば、特許文献2参照)。   A substrate having an electronic circuit group on the back surface, a solar cell disposed on the front surface side of the substrate, and a light emitting element disposed on the back surface side of the substrate so as to surround the electronic circuit group. And an illuminating device with solar cell in which an electronic circuit group is electrically connected through a through hole formed in the substrate (see, for example, Patent Document 2).

多数のスリットを有する光透過型太陽電池の裏面側に複数の発光素子を分散させて配置し、光透過型太陽電池の裏面側から発光を得る太陽電池付照明装置(例えば、非特許文献1参照)。
特開2000−215704号公報 特開2001−351418号公報 シャープ株式会社ホームページ、"2004年7月29日ニュースリリース「光る太陽電池「Lumiwall(ルミウォール)とソーラー街路灯を新発売」"、[online]、[平成16年8月23日検索]、インターネット<URL:http://www.sharp.co.jp/corporate/news/040729-a.html>
A lighting device with a solar cell that disperses and arranges a plurality of light emitting elements on the back surface side of a light transmissive solar cell having a large number of slits and obtains light emission from the back surface side of the light transmissive solar cell (for example, see Non-Patent Document 1 ).
JP 2000-215704 A JP 2001-351418 A Sharp Corporation homepage, July 29, 2004 News Release “Luminous Solar Cell“ Lumiwall and Solar Street Light Newly Released ””, [online], [Search August 23, 2004], Internet <URL: http://www.sharp.co.jp/corporate/news/040729-a.html>

太陽電池の周囲に発光素子を実装して外部で配線を行った従来の太陽電池付照明装置では、露出面の大半を占める太陽電池の受光面以外に発光素子を配設するしかなく、太陽電池の周辺部しか光らせることができない。さらに、発光素子と太陽電池の双方を固定するための筐体が必要となるため、部品点数が増えてコスト高になるばかりでなく、装置の大型化が避けられないというデメリットもある。   In the conventional solar cell-equipped lighting device in which the light emitting element is mounted around the solar cell and wired externally, the light emitting element must be disposed on the solar cell other than the light receiving surface of the solar cell that occupies most of the exposed surface. Only the peripheral part of can be lit. Furthermore, since a housing for fixing both the light emitting element and the solar cell is required, not only the number of parts is increased and the cost is increased, but also there is a demerit that an increase in size of the apparatus cannot be avoided.

一方、太陽電池、発光素子および電子回路群が基板に形成されたスルーホールを介して電気的に接続された従来の太陽電池付照明装置では、筐体が不要となり装置の大型化は避けられるが、発光素子は電子回路群を取り囲むようにしか配設されないので、太陽電池の周辺部しか光らせることができない。   On the other hand, in a conventional solar cell lighting device in which a solar cell, a light emitting element, and an electronic circuit group are electrically connected through a through hole formed in a substrate, a housing is unnecessary and an increase in size of the device can be avoided. Since the light emitting element is disposed only so as to surround the electronic circuit group, only the peripheral portion of the solar cell can be illuminated.

また、光透過型太陽電池の裏面側に発光素子を分散させて配置したものでは、裏面側から面状の発光が得られるが、太陽電池が光透過型であることからスリットの面積分だけ光電変換に寄与する面積が少なくなり、非透過型の太陽電池に対して光電変換効率の点で劣ることが避けられない。
また、スリットの形成に手間を要するため必然的に製造コストが高くなり、さらに、発光素子は、スリットを避けるようにしか配置できないので、発光素子の配置自由度に若干の制約がある。
In addition, in the case where the light emitting elements are dispersed and arranged on the back side of the light transmissive solar cell, planar light emission can be obtained from the back side. The area contributing to the conversion is reduced, and it is inevitable that the photoelectric conversion efficiency is inferior to that of the non-transmissive solar cell.
In addition, since it takes time to form the slits, the manufacturing cost is inevitably high. Furthermore, since the light emitting elements can only be arranged so as to avoid the slits, there are some restrictions on the degree of freedom in arranging the light emitting elements.

この発明は以上のような事情を考慮してなされたものであり、発光素子の配置自由度を高めつつ、簡易な構成によって低コスト化を図ることができる非透過型の太陽電池付照明装置を提供するものである。   The present invention has been made in view of the above circumstances, and provides a non-transmissive solar cell-equipped lighting device capable of reducing the cost by a simple configuration while increasing the degree of freedom in arranging light emitting elements. It is to provide.

この発明は、互いに隣接する複数の太陽電池セルからなり表面および裏面を有する非透過型の集積型太陽電池と、集積型太陽電池の裏面に実装されるLEDとを備え、各太陽電池セルは裏面電極を有し、LEDの正極と負極は光電変換を行う他の太陽電池セルから電気的に分離された隣接する一対の太陽電池セルの裏面電極にそれぞれ実装される太陽電池付照明装置を提供するものである。 The present invention includes a non-transparent integrated solar cell including a plurality of solar cells adjacent to each other and having a front surface and a back surface, and an LED mounted on the back surface of the integrated solar cell. Provided is an illuminating device with a solar battery that has electrodes, and the positive electrode and the negative electrode of the LED are respectively mounted on the back electrodes of a pair of adjacent solar cells that are electrically separated from other solar cells that perform photoelectric conversion. Is.

この発明によれば、LEDの正極と負極が隣接する一対の太陽電池セルの裏面電極にそれぞれ実装されるので、LEDを配置する自由度が大幅に高まり、かつ、作製工程の簡略化により低コスト化も図られる。
つまり、この発明による太陽電池付照明装置は、集積型太陽電池を構成する複数の太陽電池セルのうち、一部の太陽電池セルの裏面電極をLED実装用の電極として利用することにより、LEDの配置自由度を高めつつ、作製工程の簡略化を図るものである。
また、集積型太陽電池が非透過型であることから、太陽電池のほぼ全面積を光電変換に寄与させることができ、高い発電効率を得ることもできる。
According to this invention, since the positive electrode and the negative electrode of the LED are respectively mounted on the back electrodes of a pair of adjacent solar cells, the degree of freedom in disposing the LED is greatly increased, and the manufacturing process is simplified to reduce the cost. Can also be achieved.
That is, the solar cell-mounted lighting device according to the present invention uses the back electrode of some of the solar cells among the plurality of solar cells constituting the integrated solar cell as an electrode for mounting the LED. The manufacturing process is simplified while increasing the degree of freedom of arrangement.
In addition, since the integrated solar cell is non-transmissive, almost the entire area of the solar cell can contribute to photoelectric conversion, and high power generation efficiency can be obtained.

この発明による太陽電池付照明装置は、互いに隣接する複数の太陽電池セルからなり表面および裏面を有する非透過型の集積型太陽電池と、集積型太陽電池の裏面に実装されるLEDとを備え、各太陽電池セルは裏面電極を有し、LEDの正極と負極は光電変換を行う他の太陽電池セルから電気的に分離された隣接する一対の太陽電池セルの裏面電極にそれぞれ実装されることを特徴とする。 A lighting device with a solar cell according to the present invention includes a non-transmissive integrated solar cell including a plurality of solar cells adjacent to each other and having a front surface and a back surface, and an LED mounted on the back surface of the integrated solar cell, Each solar cell has a back electrode, and the positive and negative electrodes of the LED are respectively mounted on the back electrodes of a pair of adjacent solar cells that are electrically separated from other solar cells that perform photoelectric conversion. Features.

この発明による太陽電池付照明装置において、集積型太陽電池としては、複数の太陽電池セルが直列接続された非透過型のものであればよく特に限定されない。よって各太陽電池セルは、結晶系太陽電池又は薄膜系太陽電池のいずれであっても構わない。
各太陽電池セルの裏面電極は、導電材料で形成されていればよく、その材料は特に限定されないが、例えば、銀、アルミ、銀とアルミの合金など様々な材料からなるものを用いることができる。
In the illumination device with a solar cell according to the present invention, the integrated solar cell is not particularly limited as long as it is a non-transmission type in which a plurality of solar cells are connected in series. Therefore, each solar cell may be either a crystalline solar cell or a thin film solar cell.
The back electrode of each solar battery cell only needs to be formed of a conductive material, and the material is not particularly limited. For example, a material made of various materials such as silver, aluminum, and an alloy of silver and aluminum can be used. .

なお、この発明による太陽電池付照明装置において、LEDが実装される一対の太陽電池セルは、光電変換を行う他の太陽電池セルと電気的に分離され
というのは、太陽電池セルとLEDは、いずれも整流作用をもったダイオードの一種であるため、光電変換を行っている太陽電池セルと、LEDを実装した一対の太陽電池セルとが電気的に導通した状態であると、LEDへ電圧を印加した際に、太陽電池セルの有する整流作用とLEDの有する整流作用が互いに相反した状態となり、太陽電池として機能しなくなる状態が生じ得るからである。
EDを実装した一対の太陽電池セルは、光電変換を目的とせず、もっぱらLEDを実装するための電極として利用され
Incidentally, in the illumination device with solar cell according to the present invention, a pair of solar cell LED are mounted, Ru is another solar cell and the electrically isolated performs photoelectric conversion.
Because solar cells and LEDs are both types of diodes having a rectifying action, a solar cell performing photoelectric conversion and a pair of solar cells mounted with LEDs are electrically connected. This is because, when the voltage is applied to the LED, the rectifying action of the solar battery cell and the rectifying action of the LED are in conflict with each other, and a state in which the solar battery does not function can occur.
A pair of solar cells mounted with L ED is not intended to photoelectric conversion, Ru exclusively used as an electrode for mounting the LED.

この発明による太陽電池付照明装置において、LEDとしては、同一面に正極と負極を有するものであれば特に限定されず、赤外光を発するものから紫外光を発するものまで、様々なLEDを用いることができるが、照明用途に用いるのであれば、可視光を発するものが好ましい。
例えば、RGBの3原色を発するLEDを規則的に配置し、これらを同時点灯させれば白色の照明装置として利用できる。
また、別途、制御装置を備えてRGBのLEDの発光制御を行えばフルカラーの照明装置(表示体)としても利用できる。
In the illumination device with a solar cell according to the present invention, the LED is not particularly limited as long as it has a positive electrode and a negative electrode on the same surface, and various LEDs are used from those emitting infrared light to those emitting ultraviolet light. However, it is preferable to emit visible light if used for illumination.
For example, if LEDs that emit three primary colors of RGB are regularly arranged and lighted simultaneously, it can be used as a white illumination device.
Further, if a separate control device is provided to control the light emission of the RGB LEDs, it can be used as a full-color lighting device (display body).

この発明による太陽電池付照明装置において、集積型太陽電池はその表面が透光性の絶縁性基板の裏面と対向するように前記基板の裏面上に形成され、LEDが実装される一対の太陽電池セルはそれらの間に開口部が形成され、LEDはその発光が開口部を介して絶縁性基板の表面側へ出射されるように発光部が形成されていてもよい。
このような構成によれば、LEDから発せられる発光を開口部を介して集積型太陽電池の表面側へ透過させることができ、LEDの配置とその数によっては集積型太陽電池の表面側を面状に発光させることができ、LEDの配置の自由度を活かしてLEDを適宜配置すれば集積型太陽電池の表面側を任意のパターンで発光させることもできる。
開口部を形成する方法としては、例えば、マスクパターンとエッチングを組合せた方法や、レーザー加工など様々な方法が挙げられる。
In the lighting device with solar cell according to the present invention, the integrated solar cell is formed on the back surface of the substrate so that the surface thereof faces the back surface of the light-transmitting insulating substrate, and a pair of solar cells on which the LEDs are mounted The cell may have an opening formed between them, and the LED may be formed with a light emitting portion so that light emission is emitted to the surface side of the insulating substrate through the opening.
According to such a configuration, the light emitted from the LED can be transmitted to the surface side of the integrated solar cell through the opening, and depending on the arrangement and the number of the LEDs, the surface side of the integrated solar cell is faced. The surface side of the integrated solar cell can be made to emit light in an arbitrary pattern if LEDs are appropriately arranged taking advantage of the degree of freedom of LED arrangement.
Examples of the method of forming the opening include various methods such as a method combining a mask pattern and etching, and laser processing.

また、LEDからの発光が開口部を介して絶縁性基板の表面側へ出射される上記構成において、絶縁性基板はその表面側に80〜150℃の融点を有する透光性の樹脂層を備え、樹脂層は開口部と対応する位置にレンズが形成されていてもよい。
このような構成によれば、各LEDから発せられる発光の拡散や集光を効果的に行うことができる。また、後述のように、レンズは、集積型太陽電池の裏面側を封止する樹脂と同じ80〜150℃の融点を有する樹脂によって形成されるので、集積型太陽電池の裏面側を封止する工程と同時に形成でき、作製工程の簡略化によるコスト節減も図られる。
Further, in the above structure in which light emitted from the LED is emitted to the surface side of the insulating substrate through the opening, the insulating substrate includes a translucent resin layer having a melting point of 80 to 150 ° C. on the surface side. The resin layer may have a lens formed at a position corresponding to the opening.
According to such a configuration, it is possible to effectively diffuse and collect light emitted from each LED. Further, as will be described later, the lens is formed of a resin having the same melting point of 80 to 150 ° C. as the resin for sealing the back surface side of the integrated solar cell, and therefore seals the back surface side of the integrated solar cell. It can be formed at the same time as the process, and cost can be reduced by simplifying the manufacturing process.

また、絶縁性基板の表面側に樹脂層とレンズが形成される上記構成において、この発明による太陽電池付照明装置は、集積型太陽電池の裏面側を封止する透光性の樹脂層とその上に積層されるバックフィルムを更に備え、樹脂層は80〜150℃の融点を有し、バックフィルムは可視光に対して80%以上の反射率を有していてもよい。
このような構成によれば、太陽電池付照明装置の耐候性が高められると共に、バックフィルムによる反射効果によって光電変換効率のより一層の向上が図られる。
また、裏面側を封止する樹脂層は、絶縁性基板の表面側に形成される樹脂層と同じ融点を有するので、上述のとおり集積型太陽電池の表面側にレンズを形成する工程と裏面側を封止する工程を同時に行うことができ、作製工程の簡略化によるコスト節減も図られる。
Further, in the above configuration in which the resin layer and the lens are formed on the front surface side of the insulating substrate, the lighting device with solar cell according to the present invention includes a translucent resin layer that seals the back surface side of the integrated solar cell, and its A back film laminated thereon is further provided, the resin layer has a melting point of 80 to 150 ° C., and the back film may have a reflectance of 80% or more with respect to visible light.
According to such a configuration, the weather resistance of the solar cell lighting device is enhanced, and the photoelectric conversion efficiency is further improved by the reflection effect of the back film.
Further, since the resin layer for sealing the back surface side has the same melting point as the resin layer formed on the front surface side of the insulating substrate, the step of forming the lens on the front surface side of the integrated solar cell and the back surface side as described above Can be simultaneously performed, and cost can be reduced by simplifying the manufacturing process.

また、絶縁性基板の表面側に樹脂層が形成され、集積型太陽電池の裏面側が樹脂層で封止される上記構成において、絶縁性基板の表面側に備えられる樹脂層と集積型太陽電池の裏面側を封止する樹脂層はフッ素系樹脂又はEVA(エチレン−酢酸ビニル共重合体)であってもよい。
なお、ここでフッ素系樹脂とは、分子内に炭素−フッ素結合を有する熱可塑性樹脂を意味し、例えば、ポリ塩化ビニリデン(PVDC)、ポリテトラフルオロエチレン(ポリ四フッ化エチレン、PTFE)、ポリトリフルオロクロロエチレン(ポリ三フッ化塩化エチレン、PTFCE)、ポリビニリデンフルオリド(ポリフッ化ビニリデン、PVDF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフロオロエチレン・ヘキサフルオロプロピレン共重合体(PFEP)などのフッ素系樹脂などが挙げられる。
Further, in the above configuration in which the resin layer is formed on the front surface side of the insulating substrate and the back surface side of the integrated solar cell is sealed with the resin layer, the resin layer provided on the front surface side of the insulating substrate and the integrated solar cell The resin layer for sealing the back side may be a fluororesin or EVA (ethylene-vinyl acetate copolymer).
Here, the fluororesin means a thermoplastic resin having a carbon-fluorine bond in the molecule. For example, polyvinylidene chloride (PVDC), polytetrafluoroethylene (polytetrafluoroethylene, PTFE), poly Trifluorochloroethylene (polyethylene trifluoride chloride, PTFCE), polyvinylidene fluoride (polyvinylidene fluoride, PVDF), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene Examples thereof include fluorine resins such as a copolymer (PFEP).

この発明による太陽電池付照明装置において、LEDはその発光が集積型太陽電池の裏面側へ出射されるように発光部が形成されていてもよい。
このような構成によれば、集積型太陽電池の裏面側を発光させることができ、LEDの配置とその数によっては集積型太陽電池の裏面側を面状に発光させることができ、LEDの配置の自由度を活かしてLEDを適宜配置すれば集積型太陽電池の裏面側を任意のパターンで発光させることもできる。
In the illumination device with a solar cell according to the present invention, the LED may have a light emitting portion so that the light emission is emitted to the back surface side of the integrated solar cell.
According to such a configuration, the back surface side of the integrated solar cell can emit light, and depending on the arrangement and number of LEDs, the back surface side of the integrated solar cell can emit light in a planar shape, and the LED arrangement If the LEDs are appropriately arranged taking advantage of this degree of freedom, the back side of the integrated solar cell can be made to emit light in an arbitrary pattern.

また、LEDの発光が集積型太陽電池の裏面側へ出射される上記構成において、この発明による太陽電池付照明装置は、集積型太陽電池の裏面側を封止する透光性の樹脂層を更に備え、樹脂層は80〜150℃の融点を有し、LEDと対応する位置にレンズが形成されていてもよい。
このような構成によれば、LEDから発せられる発光の拡散や集光を効果的に行うことができる。また、レンズは、集積型太陽電池の裏面側を封止する樹脂によって形成されるので、集積型太陽電池の裏面側を封止する工程によって形成でき、作製工程の簡略化によるコスト節減も図られる。
Further, in the above configuration in which the light emission of the LED is emitted to the back surface side of the integrated solar cell, the lighting device with a solar cell according to the present invention further includes a translucent resin layer that seals the back surface side of the integrated solar cell. The resin layer has a melting point of 80 to 150 ° C., and a lens may be formed at a position corresponding to the LED.
According to such a configuration, it is possible to effectively diffuse and collect light emitted from the LEDs. Further, since the lens is formed of a resin that seals the back surface side of the integrated solar cell, the lens can be formed by a process of sealing the back surface side of the integrated solar cell, and cost can be reduced by simplifying the manufacturing process. .

また、集積型太陽電池の裏面側が樹脂層によって封止される上記構成において、集積型太陽電池の裏面側を封止する樹脂層はフッ素系樹脂又はEVAであってもよい。   Further, in the above configuration in which the back surface side of the integrated solar cell is sealed with the resin layer, the resin layer sealing the back surface side of the integrated solar cell may be a fluorine-based resin or EVA.

また、この発明は別の観点からみると、絶縁性基板の表面側に樹脂層およびレンズが形成され、集積型太陽電池の裏面側が樹脂層で封止されてなる上述の太陽電池付照明装置を製造するための方法であって、絶縁性基板の表面側に樹脂層を形成する工程と、集積型太陽電池の裏面側を樹脂層によって封止する工程が同時に行われ、それによって絶縁性基板の表面側の樹脂層にレンズが形成されることを特徴とする太陽電池付照明装置の製造方法を提供するものでもある。
このような製造方法によれば、集積型太陽電池の裏面側を樹脂層で封止する工程と絶縁性基板の表面側に樹脂層を形成する工程が1つの工程で行われ、それによってレンズも形成されるので製造工程の簡略化が図られ、製造コストの節減が図られる。
From another viewpoint, the present invention provides the above-described lighting device with a solar cell in which a resin layer and a lens are formed on the front surface side of the insulating substrate, and the back surface side of the integrated solar cell is sealed with the resin layer. A method for manufacturing, wherein a step of forming a resin layer on the front surface side of an insulating substrate and a step of sealing the back surface side of the integrated solar cell with a resin layer are performed at the same time. The present invention also provides a method for manufacturing a lighting device with a solar cell, wherein a lens is formed on a resin layer on the surface side.
According to such a manufacturing method, the process of sealing the back surface side of the integrated solar cell with the resin layer and the process of forming the resin layer on the front surface side of the insulating substrate are performed in one process, thereby the lens. Since it is formed, the manufacturing process can be simplified and the manufacturing cost can be reduced.

また、この発明は別の観点からみると、集積型太陽電池の裏面側が樹脂層によって封止され、この樹脂層にレンズが形成されてなる上述の太陽電池付照明装置を製造するための方法であって、集積型太陽電池の裏面側を樹脂層によって封止する工程によってレンズが形成されることを特徴とする太陽電池付照明装置の製造方法を提供するものでもある。
このような製造方法によれば、集積型太陽電池の裏面側を樹脂層で封止する工程によってレンズも形成されるので製造工程の簡略化が図られ、製造コストの節減が図られる。
From another point of view, the present invention is a method for manufacturing the above solar cell illumination device in which the back surface side of the integrated solar cell is sealed with a resin layer and a lens is formed on the resin layer. In addition, the present invention also provides a method for manufacturing a solar cell-equipped lighting device, wherein a lens is formed by a step of sealing a back surface side of an integrated solar cell with a resin layer.
According to such a manufacturing method, since the lens is also formed by the process of sealing the back surface side of the integrated solar cell with the resin layer, the manufacturing process can be simplified and the manufacturing cost can be reduced.

以下、図面に示す実施例に基づいてこの発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

実施例1
この発明の実施例1による太陽電池付照明装置について、図1〜8に基づいて説明する。図1は実施例1による太陽電池付照明装置を構成する集積型太陽電池の各段を示す斜視図、図2は図1に示される集積型太陽電池の等価回路を示す説明図、図3は実施例1による太陽電池付照明装置を構成する集積型太陽電池にLEDが実装された状態を示す斜視図、図4は実施例1における集積型太陽電池に実装されたLEDの等価回路を示す説明図、図5は実施例1による太陽電池付照明装置の回路構成を示す説明図、図6は実施例1においてLEDが実装された集積型太陽電池の封止工程を示す説明図、図7は実施例1による太陽電池付照明装置の要部拡大断面図である。
Example 1
An illumination device with a solar cell according to Example 1 of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing each stage of an integrated solar cell that constitutes a lighting device with a solar cell according to Example 1, FIG. 2 is an explanatory diagram showing an equivalent circuit of the integrated solar cell shown in FIG. 1, and FIG. FIG. 4 is a perspective view showing a state in which an LED is mounted on an integrated solar cell constituting the lighting device with solar cell according to the first embodiment, and FIG. 4 is an explanation showing an equivalent circuit of the LED mounted on the integrated solar cell in the first embodiment. FIG. 5 is an explanatory diagram showing a circuit configuration of the solar cell-mounted lighting device according to the first embodiment, FIG. 6 is an explanatory diagram showing a sealing process of the integrated solar cell on which the LED is mounted in the first embodiment, and FIG. It is a principal part expanded sectional view of the illuminating device with a solar cell by Example 1. FIG.

図3に示されるように、実施例1による太陽電池付照明装置100は、互いに隣接する複数の太陽電池セル11からなり表面および裏面を有する非透過型の集積型太陽電池と10と、集積型太陽電池10の裏面に実装される複数のLED20とを備え、各太陽電池セル11は裏面電極12を有し、各LED20の正極21と負極22(図7参照)は隣接する一対の太陽電池セル11の裏面電極12にそれぞれ実装されている。   As shown in FIG. 3, the illuminating device with a solar cell 100 according to the first embodiment includes a non-transmissive integrated solar cell 10 having a front surface and a back surface and a plurality of solar cells 11 adjacent to each other, and an integrated type. A plurality of LEDs 20 mounted on the back surface of the solar cell 10, each solar cell 11 has a back electrode 12, and a positive electrode 21 and a negative electrode 22 (see FIG. 7) of each LED 20 are a pair of adjacent solar cells. 11 are mounted on the back electrode 12 respectively.

図1は集積型太陽電池10を構成する複数段のうちの1段を示している。図1に示されるように、集積型太陽電池10の各段は透光性基板13上(絶縁性基板)に透明電極14、光電変換層15、裏面電極12が積層された構成を有している。透明電極14、光電変換層15、裏面電極12はそれぞれレーザーによって短冊状に分離され、隣接する太陽電池セル11が直列接続された構成となっている。
このような集積型太陽電池10に太陽光が照射されると図内の矢印で示す方向に電流が流れる。図2は、このような集積型太陽電池の等価回路を示している。
FIG. 1 shows one of a plurality of stages constituting the integrated solar cell 10. As shown in FIG. 1, each stage of the integrated solar cell 10 has a configuration in which a transparent electrode 14, a photoelectric conversion layer 15, and a back electrode 12 are stacked on a translucent substrate 13 (insulating substrate). Yes. The transparent electrode 14, the photoelectric conversion layer 15, and the back electrode 12 are separated into strips by a laser, and adjacent solar cells 11 are connected in series.
When such an integrated solar cell 10 is irradiated with sunlight, a current flows in the direction indicated by the arrow in the figure. FIG. 2 shows an equivalent circuit of such an integrated solar cell.

図3および図7に示されるように、LED20は集積型太陽電池10を構成している上段10a、中段10b、下段10cのうち、中段10bの隣接する太陽電池セル11をまたぐように配置されている。
LED20は同一面に正極21および負極22を有し、正極21および負極22は中段10bの隣接する一対の太陽電池セル11の裏面電極12にそれぞれ実装されている。
裏面電極12は、銀、若しくは、銀とアルミの合金で形成されるため、LED20の実装にあたっては、銀ペーストや銀半田が利用できるが、この実施例では銀半田を利用して実装する。LED20の発光部は正極21および負極22が形成された面と逆の面にあり、集積型太陽電池10の裏側(図3の上方)へ向かって発光する。図4はこのように実装されたLED20の等価回路を示している。
これにより、図5に示されるような回路構成が実現され、集積型太陽電池10の裏面上にLED20を自由に配置することが可能となる。
As shown in FIG. 3 and FIG. 7, the LED 20 is arranged so as to straddle the adjacent solar cells 11 in the middle stage 10 b among the upper stage 10 a, middle stage 10 b, and lower stage 10 c constituting the integrated solar cell 10. Yes.
LED20 has the positive electrode 21 and the negative electrode 22 on the same surface, and the positive electrode 21 and the negative electrode 22 are each mounted in the back surface electrode 12 of a pair of adjacent photovoltaic cell 11 of the middle stage 10b.
Since the back electrode 12 is formed of silver or an alloy of silver and aluminum, a silver paste or silver solder can be used for mounting the LED 20. In this embodiment, the back electrode 12 is mounted using silver solder. The light emitting part of the LED 20 is on the surface opposite to the surface on which the positive electrode 21 and the negative electrode 22 are formed, and emits light toward the back side of the integrated solar cell 10 (upward in FIG. 3). FIG. 4 shows an equivalent circuit of the LED 20 mounted in this way.
Accordingly, a circuit configuration as shown in FIG. 5 is realized, and the LEDs 20 can be freely arranged on the back surface of the integrated solar cell 10.

なお、太陽電池セル11とLED20は、いずれも整流作用をもったダイオードの一種であるため、LED20が実装される中段10bは、バッテリー(図5参照)からLED20への電圧印加時に、LED20の有する整流作用が上段10aおよび下段10cの太陽電池セル11が有する整流作用と互いに相反した状態とならないように、上段10aおよび下段10cの太陽電池セル11とは電気的に分離される。すなわち、中段の太陽電池セル11は光電変換を目的としたものではなく、LED20を実装するための電極として利用される。   Since the solar battery cell 11 and the LED 20 are both types of diodes having a rectifying action, the middle stage 10b on which the LED 20 is mounted has the LED 20 when a voltage is applied from the battery (see FIG. 5) to the LED 20. The solar cells 11 of the upper stage 10a and the lower stage 10c are electrically separated so that the rectification action does not conflict with the rectifying action of the solar cells 11 of the upper stage 10a and the lower stage 10c. In other words, the middle solar cell 11 is not intended for photoelectric conversion but is used as an electrode for mounting the LED 20.

図6に示されるように、LED20が実装された集積型太陽電池10は、経時劣化防止のため、裏面側にEVAシート31、ガラス板32、EVAシート31、レンズの型材33が順に重ねられ、その後、ラミネータで80〜150℃の加圧加熱処理を行うことにより封止され、封止工程の完了後、レンズの型材33が取り外される。レンズの型材33としては、レンズの形状が形成された150℃で変形しないフィルム状のものが用いられる。
これによって、封止工程時にEVAシート31が型材によって型押しされて変形し、図7に示されるようにLED20の発光部の上部に光拡散用の微小なレンズ34が形成され、LED20からの発光はレンズ34を介して拡散され集積型太陽電池10の裏面側へ出射される。
As shown in FIG. 6, the integrated solar cell 10 on which the LED 20 is mounted has an EVA sheet 31, a glass plate 32, an EVA sheet 31, and a lens mold material 33 sequentially stacked on the back side in order to prevent deterioration over time. Then, it seals by performing 80-150 degreeC pressurization heat processing with a laminator, and the lens type | mold material 33 is removed after completion | finish of a sealing process. As the lens mold member 33, a film-shaped member which is formed in a lens shape and does not deform at 150 ° C. is used.
As a result, the EVA sheet 31 is embossed and deformed by the mold material during the sealing process, and as shown in FIG. 7, a minute lens 34 for light diffusion is formed on the upper part of the light emitting portion of the LED 20. Is diffused through the lens 34 and emitted to the back side of the integrated solar cell 10.

実施例2
この発明の実施例2による太陽電池付照明装置について、図8〜10に基づいて説明する。図8は実施例2による太陽電池付照明装置を構成する集積型太陽電池にLEDが実装された状態を示す斜視図、図9は実施例2による太陽電池付照明装置の要部拡大断面図、図10は実施例2においてLEDが実装された集積型太陽電池の封止工程を示す説明図である。
Example 2
The solar cell-equipped lighting device according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 8 is a perspective view showing a state in which the LED is mounted on the integrated solar cell that constitutes the solar cell lighting device according to the second embodiment, and FIG. 9 is an enlarged cross-sectional view of a main part of the solar cell lighting device according to the second embodiment. FIG. 10 is an explanatory diagram showing a sealing process of the integrated solar cell on which the LED is mounted in Example 2.

図8および図9に示されるように、実施例2による太陽電池付照明装置200は、集積型太陽電池40に実装される各LED50の発光部が正極51および負極52の形成面と同一面にあり、これに伴って、各LED50の発光が透光性基板43の表面から出射されるように、LED50が実装される中段40bの太陽電池セル41は、隣接する一対の太陽電池セル41の一部に透光性基板43に達する開口部46が形成されている。
開口部46は、隣接する一対の太陽電池セル41の裏面電極42、光電変換層45、透明電極44の一部をレーザー加工によってそれぞれ切り欠くことによって形成されている。それ以外の構成は実施例1の集積型太陽電池10(図3参照)と同様である。
As shown in FIGS. 8 and 9, in the lighting device with solar cell 200 according to the second embodiment, the light emitting portion of each LED 50 mounted on the integrated solar cell 40 is on the same plane as the formation surface of the positive electrode 51 and the negative electrode 52. Along with this, the solar cell 41 in the middle stage 40b on which the LED 50 is mounted is one of a pair of adjacent solar cells 41 so that the light emission of each LED 50 is emitted from the surface of the translucent substrate 43. An opening 46 reaching the translucent substrate 43 is formed in the part.
The opening 46 is formed by cutting out a part of the back electrode 42, the photoelectric conversion layer 45, and the transparent electrode 44 of a pair of adjacent solar cells 41 by laser processing. The other configuration is the same as that of the integrated solar cell 10 of Example 1 (see FIG. 3).

図10に示されるように、LED50が実装された集積型太陽電池40は、裏面側にEVAシート31と、可視光に対して80%以上の反射率を示すバックフィルム35が順に重ねられ、表面側にはEVAシート31とレンズの型材33が順に重られ、実施例1と同様にラミネータで80〜150℃の加圧加熱処理を行うことにより封止され、封止工程の完了後、レンズの型材33が取り外される。
これにより、封止工程時に表面側のEVAシート31が型材によって型押しされて変形し、図9に示されるように各LED50の発光部の上部、すなわち開口部46の上部に光拡散用の微小なレンズ34が形成され、LED50からの発光はレンズ34を介して拡散され集積型太陽電池40の表面側へ出射される。
As shown in FIG. 10, the integrated solar cell 40 on which the LED 50 is mounted has an EVA sheet 31 and a back film 35 showing a reflectance of 80% or more with respect to visible light stacked in order on the back side. The EVA sheet 31 and the lens mold material 33 are sequentially stacked on the side, and sealed by performing heat treatment at 80 to 150 ° C. with a laminator in the same manner as in Example 1. After completing the sealing process, The mold material 33 is removed.
As a result, the EVA sheet 31 on the front surface side is pressed by the mold material and deformed during the sealing process, and as shown in FIG. 9, the light diffusion microscopic area is formed above the light emitting portion of each LED 50, that is, above the opening 46. A lens 34 is formed, and light emitted from the LED 50 is diffused through the lens 34 and emitted to the surface side of the integrated solar cell 40.

なお、上述の実施例1および実施例2では隣接する一対の太陽電池セル11,41の裏面電極12,42に1つずつLED20,50を実装したが、隣接する一対の太陽電池セル11,41の裏面電極12,42に複数のLEDを集中して実装することも可能である。複数のLEDを集中的に実装した場合、局部照明用として優れたものになる。
また、実施例1および実施例2のように、LED20,50を分散して規則的に配置した場合は、均一な面状の発光が得られ、一般の照明用として優れたものとなる。
もちろん、LEDの配置自由度を活かして任意のパターンで配置すれば、それに対応したパターンで発光させることもできる。
In the first and second embodiments described above, the LEDs 20 and 50 are mounted on the back electrodes 12 and 42 of the pair of adjacent solar cells 11 and 41 one by one. However, the pair of adjacent solar cells 11 and 41 are adjacent to each other. It is also possible to mount a plurality of LEDs in a concentrated manner on the back electrodes 12 and 42. When a plurality of LEDs are intensively mounted, it is excellent for local lighting.
Moreover, when LED20,50 is disperse | distributed and arrange | positioned regularly like Example 1 and Example 2, uniform planar light emission is obtained and it becomes the thing excellent for an object for general illumination.
Of course, if LEDs are arranged in an arbitrary pattern taking advantage of the degree of freedom of LED arrangement, light can be emitted in a pattern corresponding thereto.

実施例1による太陽電池付照明装置を構成する集積型太陽電池の各段を示す斜視図である。It is a perspective view which shows each step | level of the integrated solar cell which comprises the illuminating device with a solar cell by Example 1. FIG. 図1に示される集積型太陽電池の等価回路を示す説明図である。It is explanatory drawing which shows the equivalent circuit of the integrated solar cell shown by FIG. 実施例1による太陽電池付照明装置を構成する集積型太陽電池にLEDが実装された状態を示す斜視図である。It is a perspective view which shows the state by which LED was mounted in the integrated solar cell which comprises the illuminating device with a solar cell by Example 1. FIG. 実施例1における集積型太陽電池に実装されたLEDの等価回路を示す説明図である。3 is an explanatory diagram showing an equivalent circuit of an LED mounted on an integrated solar cell in Example 1. FIG. 実施例1による太陽電池付照明装置の回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the illuminating device with a solar cell by Example 1. FIG. 実施例1においてLEDが実装された集積型太陽電池の封止工程を示す説明図である。It is explanatory drawing which shows the sealing process of the integrated solar cell by which LED was mounted in Example 1. FIG. 実施例1による太陽電池付照明装置の要部拡大断面図である。It is a principal part expanded sectional view of the illuminating device with a solar cell by Example 1. FIG. 実施例2による太陽電池付照明装置を構成する集積型太陽電池にLEDが実装された状態を示す斜視図である。It is a perspective view which shows the state by which LED was mounted in the integrated solar cell which comprises the illuminating device with a solar cell by Example 2. FIG. 実施例2のよる太陽電池付照明装置の要部拡大断面図である。It is a principal part expanded sectional view of the illuminating device with a solar cell by Example 2. FIG. 実施例2においてLEDが実装された集積型太陽電池の封止工程を示す説明図である。It is explanatory drawing which shows the sealing process of the integrated solar cell by which LED was mounted in Example 2. FIG.

符号の説明Explanation of symbols

10,40・・・集積型太陽電池
10a・・・上段
10b,40b・・・中段
10c・・・下段
11,41・・・太陽電池セル
12,42・・・裏面電極
13,43・・・透光性基板
14,44・・・透明電極
15,45・・・光電変換層
20,50・・・LED
21,51・・・正極
22,52・・・負極
31・・・EVAシート
32・・・ガラス板
33・・・レンズの型
34・・・レンズ
35・・・バックフィルム
46・・・開口部
100,200・・・太陽電池付照明装置
DESCRIPTION OF SYMBOLS 10,40 ... Integrated solar cell 10a ... Upper stage 10b, 40b ... Middle stage 10c ... Lower stage 11, 41 ... Solar cell 12, 42 ... Back electrode 13, 43 ... Translucent substrate 14, 44 ... Transparent electrode 15, 45 ... Photoelectric conversion layer 20, 50 ... LED
21, 51 ... Positive electrode 22, 52 ... Negative electrode 31 ... EVA sheet 32 ... Glass plate 33 ... Lens type 34 ... Lens 35 ... Back film 46 ... Opening 100, 200 ... Lighting device with solar battery

Claims (10)

互いに隣接する複数の太陽電池セルからなり表面および裏面を有する非透過型の集積型太陽電池と、集積型太陽電池の裏面に実装されるLEDとを備え、各太陽電池セルは裏面電極を有し、LEDの正極と負極は光電変換を行う他の太陽電池セルから電気的に分離された隣接する一対の太陽電池セルの裏面電極にそれぞれ実装される太陽電池付照明装置。 A non-transmissive integrated solar cell comprising a plurality of solar cells adjacent to each other and having a front surface and a back surface, and an LED mounted on the back surface of the integrated solar cell, each solar cell having a back electrode The positive electrode and the negative electrode of the LED are respectively mounted on the back electrodes of a pair of adjacent solar cells electrically separated from other solar cells that perform photoelectric conversion . 集積型太陽電池はその表面が透光性の絶縁性基板の裏面と対向するように前記基板の裏面上に形成され、LEDが実装される一対の太陽電池セルはそれらの間に開口部が形成され、LEDはその発光が開口部を介して絶縁性基板の表面側へ出射されるように発光部が形成されてなる請求項1に記載の太陽電池付照明装置。   The integrated solar cell is formed on the back surface of the substrate so that the surface faces the back surface of the translucent insulating substrate, and the pair of solar cells on which the LEDs are mounted has an opening between them. The lighting device with a solar cell according to claim 1, wherein the LED is formed with a light emitting portion so that the emitted light is emitted to the surface side of the insulating substrate through the opening. 絶縁性基板はその表面側に80〜150℃の融点を有する透光性の樹脂層を備え、樹脂層は開口部と対応する位置にレンズが形成されてなる請求項2に記載の太陽電池付照明装置。   The solar cell according to claim 2, wherein the insulating substrate includes a translucent resin layer having a melting point of 80 to 150 ° C. on the surface side, and the resin layer has a lens formed at a position corresponding to the opening. Lighting device. 集積型太陽電池の裏面側を封止する透光性の樹脂層とその上に積層されるバックフィルムを更に備え、樹脂層は80〜150℃の融点を有し、バックフィルムは可視光に対して80%以上の反射率を有する請求項3に記載の太陽電池付照明装置。   It further comprises a translucent resin layer for sealing the back side of the integrated solar cell and a back film laminated thereon, the resin layer has a melting point of 80 to 150 ° C., and the back film is visible light The solar cell-equipped lighting device according to claim 3, having a reflectance of 80% or more. 絶縁性基板の表面側に備えられる樹脂層と集積型太陽電池の裏面側を封止する樹脂層がフッ素系樹脂又はEVAである請求項4に記載の太陽電池付照明装置。   The lighting device with a solar cell according to claim 4, wherein the resin layer provided on the front surface side of the insulating substrate and the resin layer sealing the back surface side of the integrated solar cell are fluororesin or EVA. LEDはその発光が集積型太陽電池の裏面側へ出射されるように発光部が形成されてなる請求項1に記載の太陽電池付照明装置。   The lighting device with a solar cell according to claim 1, wherein the LED is formed with a light emitting portion so that the emitted light is emitted to the back side of the integrated solar cell. 集積型太陽電池の裏面側を封止する透光性の樹脂層を更に備え、樹脂層は80〜150℃の融点を有し、LEDと対応する位置にレンズが形成されてなる請求項6に記載の太陽電池付照明装置。   7. The light-transmitting resin layer for sealing the back side of the integrated solar cell is further provided, the resin layer has a melting point of 80 to 150 ° C., and a lens is formed at a position corresponding to the LED. The illuminating device with a solar cell of description. 集積型太陽電池の裏面側を封止する樹脂層がフッ素系樹脂又はEVAである請求項7に記載の太陽電池付照明装置。   The lighting device with a solar cell according to claim 7, wherein the resin layer that seals the back surface side of the integrated solar cell is a fluororesin or EVA. 請求項4に記載の太陽電池付照明装置を製造するための方法であって、絶縁性基板の表面側に樹脂層を形成する工程と、集積型太陽電池の裏面側を樹脂層によって封止する工程が同時に行われ、それによって絶縁性基板の表面側の樹脂層にレンズが形成されることを特徴とする太陽電池付照明装置の製造方法。   It is a method for manufacturing the illuminating device with solar cell of Claim 4, Comprising: The process of forming a resin layer in the surface side of an insulating board | substrate, and sealing the back surface side of an integrated solar cell with a resin layer A method of manufacturing a lighting device with a solar cell, wherein the steps are performed simultaneously, whereby a lens is formed on the resin layer on the surface side of the insulating substrate. 請求項7に記載の太陽電池付照明装置を製造するための方法であって、集積型太陽電池の裏面側を樹脂層によって封止する工程によってレンズが形成されることを特徴とする太陽電池付照明装置の製造方法。   It is a method for manufacturing the illuminating device with a solar cell of Claim 7, Comprising: A lens is formed by the process of sealing the back surface side of an integrated solar cell with a resin layer, With a solar cell Manufacturing method of lighting device.
JP2004305307A 2004-10-20 2004-10-20 Lighting device with solar cell and manufacturing method thereof Expired - Fee Related JP4302036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305307A JP4302036B2 (en) 2004-10-20 2004-10-20 Lighting device with solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305307A JP4302036B2 (en) 2004-10-20 2004-10-20 Lighting device with solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006120387A JP2006120387A (en) 2006-05-11
JP4302036B2 true JP4302036B2 (en) 2009-07-22

Family

ID=36538097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305307A Expired - Fee Related JP4302036B2 (en) 2004-10-20 2004-10-20 Lighting device with solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4302036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291420B2 (en) 2006-09-14 2012-10-16 Electronics And Telecommunications Research Institute System and method of task assignment distributed processing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4382788B2 (en) * 2006-09-11 2009-12-16 シャープ株式会社 Light emitting module
JP5228690B2 (en) * 2008-08-12 2013-07-03 日東紡績株式会社 Method for producing high-purity cationic polymer
TWM461876U (en) * 2013-05-17 2013-09-11 Genesis Photonics Inc Flip chip type LED unit
KR101973945B1 (en) * 2017-10-17 2019-05-02 한국과학기술연구원 Flexible module system and connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291420B2 (en) 2006-09-14 2012-10-16 Electronics And Telecommunications Research Institute System and method of task assignment distributed processing system

Also Published As

Publication number Publication date
JP2006120387A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
KR100619618B1 (en) Light-receiving or light-emitting device and its production method
US9948232B2 (en) Method for fabricating flexible solar panel module
US8901581B2 (en) Semiconductor light emitting device having multi-cell array and manufacturing method thereof, light emitting module, and illumination apparatus
JP2021099517A (en) Display device
KR100652916B1 (en) Light-receiving panel or light-emitting panel, and manufacturing method thereof
US11466827B2 (en) Linear LED module
AU2006337843B2 (en) Light receiving or emitting semiconductor module
US9732938B2 (en) Illumination panel
JPWO2004064167A1 (en) Translucent thin film solar cell module and manufacturing method thereof
JP2005019901A (en) Solar cell module
US20100059098A1 (en) Monolithic photovoltaic module
JP4302036B2 (en) Lighting device with solar cell and manufacturing method thereof
JP4444937B2 (en) Light emitting or receiving semiconductor module
JP5147754B2 (en) Solar cell module
TWI597858B (en) Voltage source generator and voltage source module
US20170040300A1 (en) Lighting device and method for producing a lighting device
JP2004140122A (en) Structure of light emitting diode with solar battery cell
TW200701502A (en) Matrix light emitting diode and fabricating method thereof
JP2005340365A (en) Light emitting module and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees