JP4300134B2 - Gas pressure welding method - Google Patents
Gas pressure welding method Download PDFInfo
- Publication number
- JP4300134B2 JP4300134B2 JP2004047893A JP2004047893A JP4300134B2 JP 4300134 B2 JP4300134 B2 JP 4300134B2 JP 2004047893 A JP2004047893 A JP 2004047893A JP 2004047893 A JP2004047893 A JP 2004047893A JP 4300134 B2 JP4300134 B2 JP 4300134B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- pressure welding
- oxygen
- supply amount
- fuel gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
本発明は、鉄筋、レール、肉厚パイプなどの接合部材をガス圧接する際に適用するに好適なガス圧接方法に関するものである。 The present invention relates to a gas pressure welding method suitable for being applied when gas pressure welding of joining members such as reinforcing bars, rails, and thick pipes.
従来、この種の接合部材を接合する手法として、ガス圧接が広く用いられている。このガス圧接は、接合部材の接合端面を研削し、接合部材を突き合わせて加圧した後、酸素アセチレン炎にて突き合わせ部を加熱する接合方法である。ところが、このとき燃料ガスとしてアセチレンガスを用いるため、危険度が高く、取扱いには特に慎重さが要求される。また、酸素アセチレン炎の場合、燃焼反応に伴う炭酸ガス発生量が多く、環境に与える影響が懸念されている。 Conventionally, gas pressure welding has been widely used as a technique for joining this type of joining member. This gas pressure welding is a joining method in which the joining end face of the joining member is ground, the joining member is butted and pressed, and then the butted portion is heated with an oxygen acetylene flame. However, since acetylene gas is used as the fuel gas at this time, the degree of danger is high and handling is particularly careful. In the case of an oxyacetylene flame, the amount of carbon dioxide generated due to the combustion reaction is large, and there is concern about the impact on the environment.
そこで、こうしたアセチレンガス特有の不具合を解消すべく、アセチレンガスに代えて、取扱いが容易で環境にやさしい燃料ガス(例えば、プロパンガスなど)を用いることも考えられ、ガス圧接への適用可能性について検討された経緯がある(例えば、特許文献1参照)。ここで、ガス圧接においてアセチレンガス以外の燃料ガスを適用する場合、その供給量は理論的に定められておらず、施工後の圧接部品質から遡って実験的に設定されているのが実状である。
しかしながら、ガス圧接は一般に屋外、すなわち大気中で接合作業が実施されるので、必然的に大気中の酸素も燃焼反応に参加することになる。したがって、燃料ガスの完全燃焼(酸素ガスとの適正混合)によって所期の圧接部品質を得るためには、大気中からの酸素の巻込量を考慮しなければならない面倒がある。 However, since gas pressure welding is generally performed outdoors, that is, in the atmosphere, oxygen in the atmosphere inevitably participates in the combustion reaction. Therefore, in order to obtain the desired pressure welded part quality by complete combustion of fuel gas (appropriate mixing with oxygen gas), it is troublesome to consider the amount of oxygen involved in the atmosphere.
さらに、ガス圧接は現場に根付いた汎用技術であるが故に、作業効率や経済性についても圧接部品質と同様に取り扱うことが極めて重要となる。 Furthermore, since gas pressure welding is a general-purpose technology rooted in the field, it is extremely important to handle the work efficiency and economy as well as the quality of the pressure welding part.
本発明は、このような事情に鑑み、アセチレンガス以外の特定の燃料ガス、具体的には水素ガスや飽和炭化水素ガス(単結合のみで構成され、二重結合や三重結合を含まない炭化水素ガス)を用いて大気中でガス圧接を行う際に、そのガス供給条件を定量的に定めることにより、大気中からの酸素の巻込量も含めて燃料ガスの完全燃焼を実現するとともに、圧接部品質、作業効率、経済性のトータルバランスを高めることが可能なガス圧接方法を提供することを目的とする。 In view of such circumstances, the present invention is a specific fuel gas other than acetylene gas, specifically hydrogen gas or saturated hydrocarbon gas (a hydrocarbon composed of only a single bond and not including a double bond or a triple bond). When gas pressure welding is performed in the atmosphere using gas), the gas supply conditions are quantitatively determined, so that complete combustion of the fuel gas including the amount of oxygen entrained from the atmosphere is achieved and pressure welding is performed. An object of the present invention is to provide a gas pressure welding method capable of improving the total balance of part quality, work efficiency and economy.
まず、請求項1に係る発明は、一般式Ck-1H2k(kは自然数)で表される燃料ガスに酸素ガスを混合して接合部材同士をガス圧接する際に、前記燃料ガスの供給量と前記酸素ガスの供給量との体積比を1:(1.25k−1)としたことを特徴とする。
また、請求項2に係る発明は、前記接合部材の断面積の換算直径がr〔mm〕であるとき、前記燃料ガスの単位時間当たりの供給量を2.6r/(1.5k−1)〔l/min〕とするとともに、前記酸素ガスの単位時間当たりの供給量を2.6r(1.25k−1)/(1.5k−1)〔l/min〕としたことを特徴とする。
また、請求項3に係る発明は、前記燃料ガスは、水素ガスまたはプロパンガスであることを特徴とする。
また、請求項4に係る発明は、前記接合部材は、鉄筋またはレールであることを特徴とする。
First, in the invention according to claim 1, when the oxygen gas is mixed with the fuel gas represented by the general formula Ck-1H2k (k is a natural number) and the joining members are pressure-welded to each other, The volume ratio with respect to the supply amount of the oxygen gas is set to 1: (1.25 k−1).
Further, in the invention according to claim 2, when the converted diameter of the cross-sectional area of the joining member is r [mm], the supply amount of the fuel gas per unit time is 2.6 r / (1.5 k-1). [L / min] and the supply amount of the oxygen gas per unit time is 2.6r (1.25k-1) / (1.5k-1) [l / min]. .
The invention according to claim 3 is characterized in that the fuel gas is hydrogen gas or propane gas.
The invention according to claim 4 is characterized in that the joining member is a reinforcing bar or a rail.
本発明によれば、水素ガスや飽和炭化水素ガスを用いてガス圧接を行うので、従来のアセチレンガスと比べて、危険度が低くて取扱いも容易であるばかりか、燃焼反応に伴う炭酸ガス発生量が少なく、環境に深刻な影響を与えない。しかも、このガス圧接を大気中で行う際に、大気中からの酸素の巻込量も含めて燃料ガスの完全燃焼を実現することができる。その結果、所期の圧接部品質を得ることが可能となる。 According to the present invention, since gas pressure welding is performed using hydrogen gas or saturated hydrocarbon gas, it is less dangerous and easy to handle than conventional acetylene gas, and also generates carbon dioxide gas accompanying combustion reaction. The amount is small and does not have a serious impact on the environment. In addition, when this gas pressure welding is performed in the atmosphere, complete combustion of the fuel gas including the amount of oxygen involved from the atmosphere can be realized. As a result, it is possible to obtain the desired pressure contact part quality.
また、接合部材の断面積の換算直径がr〔mm〕であるとき、燃料ガスの単位時間当たりの供給量を2.6r/(1.5k−1)〔l/min〕とするとともに、酸素ガスの単位時間当たりの供給量を2.6r(1.25k−1)/(1.5k−1)〔l/min〕とすれば、接合部材の断面積に応じた適正な標準加熱時間が定まり、良好な圧接部を実現するために必要な投入熱量が得られる。したがって、接合部材の表面温度と中心温度との間に顕著な差が生じない加熱パターンを維持し、かつ作業効率に直接影響する圧接時間をむやみに延ばさないという条件下で、燃料ガスおよび酸素ガスの総使用量をできるだけ抑制して経済性を高めることができる。その結果、圧接部品質、作業効率、経済性のトータルバランスを高めることができる。 In addition, when the converted diameter of the cross-sectional area of the joining member is r [mm], the supply amount of fuel gas per unit time is 2.6 r / (1.5 k-1) [l / min], and oxygen If the supply amount of gas per unit time is 2.6 r (1.25 k-1) / (1.5 k-1) [l / min], an appropriate standard heating time corresponding to the cross-sectional area of the joining member is used. As a result, the amount of input heat necessary to realize a good pressure contact portion can be obtained. Therefore, the fuel gas and the oxygen gas are maintained under the condition that the heating pattern that does not cause a significant difference between the surface temperature and the center temperature of the joining member is maintained, and the pressure welding time that directly affects the work efficiency is not extended unnecessarily. It is possible to increase the economic efficiency by suppressing the total amount of use as much as possible. As a result, it is possible to increase the total balance of the welded part quality, work efficiency, and economy.
また、接合部材同士の突き合わせの隙間に応じて、燃料ガスの単位時間当たりの供給量のみを増大させれば、接合環境が還元雰囲気になるので、酸化による接合強度の低下を避けて一定の圧接部品質を得ることができる。このとき、燃料ガスの単位時間当たりの供給量の増大比率を1.5倍以下とすると、作業効率や経済性を低下させることなく一定の圧接部品質を得ることができる。 In addition, if only the supply amount of fuel gas per unit time is increased according to the gap between the joining members, the joining environment becomes a reducing atmosphere. Part quality can be obtained. At this time, if the increase rate of the supply amount of fuel gas per unit time is set to 1.5 times or less, a constant pressure contact portion quality can be obtained without deteriorating work efficiency and economy.
また、接合部材の幅焼きの程度に応じて、燃料ガスおよび酸素ガスの単位時間当たりの供給量を増大させれば、とりわけ鉄筋同士を幅焼きで加熱してガス圧接する際に、加熱時間を長くしなくても所定の投入熱量を獲得しうるので、作業効率や経済性を低下させることなく一定の圧接部品質を得ることができる。このとき、燃料ガスおよび酸素ガスの単位時間当たりの供給量の増大比率を1.3倍以下とすると、ガスの過剰消費および作業性の低下を回避することができる。 Also, if the supply amount of fuel gas and oxygen gas per unit time is increased according to the degree of width firing of the joining member, especially when the reinforcing bars are heated by width firing and gas pressure welding is performed, the heating time is reduced. Since a predetermined amount of input heat can be obtained without increasing the length, it is possible to obtain a certain pressure contact portion quality without deteriorating work efficiency and economy. At this time, if the increase rate of the supply amount of fuel gas and oxygen gas per unit time is 1.3 times or less, excessive consumption of gas and deterioration of workability can be avoided.
以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
まず、接合部材の寸法(断面積および表面積)によって、良好な圧接部を実現するために必要な投入熱量が異なり、完全燃焼を前提とした場合、燃焼反応に参加する大気中からの巻込み分も含めた酸素ガス総量と寸法との間に対応関係があることが明らかとなった。 First, depending on the dimensions (cross-sectional area and surface area) of the joining member, the amount of input heat required to achieve a good pressure weld varies, and assuming complete combustion, the amount of entrainment from the atmosphere that participates in the combustion reaction It has become clear that there is a correspondence between the total amount of oxygen gas including the gas and the dimensions.
表1は、適正混合条件の酸素アセチレン炎で各断面形状部材の中心温度をガス圧接の標準加熱温度である1300℃まで昇温した際のガス供給条件と加熱時間との関係を整理したものである。この表1より、鉄筋形状材の場合、燃焼に参加する総酸素量は直径の3乗に比例して増大することが分かる。これは加熱すべき鉄筋の体積が直径の3乗に比例して増加することに対応している。一方、JIS60kgレールの場合には、換算直径100mmの鉄筋形状材に対応し、直径25mmの鉄筋形状材を基準に考えると直径が4倍であるため、4800lの酸素が必要になると推定される。ところが、実際には、中心温度を1300℃に到達させるのに1/3程度の酸素しか必要としていない。これには、レール形状材の場合、同じ断面積であっても、鉄筋形状材に比べて、表面積が大きいため、効率的な加熱をし得ることが背景にある。なお、以上に述べた概念は、酸素プロパン炎、酸素水素炎でも成立する。
Table 1 summarizes the relationship between the gas supply conditions and the heating time when the center temperature of each cross-sectional shape member is raised to 1300 ° C, which is the standard heating temperature for gas pressure welding, with an oxyacetylene flame under proper mixing conditions. is there. From Table 1, it can be seen that in the case of a reinforcing bar-shaped material, the total amount of oxygen participating in combustion increases in proportion to the cube of the diameter. This corresponds to the volume of the reinforcing bar to be heated increasing in proportion to the cube of the diameter. On the other hand, in the case of a
このように、良好な圧接部を実現するために必要な投入熱量は、接合部材のサイズと形状に応じて増減する。しかし、水素ガスや飽和炭化水素ガスを燃料ガスとして用いる場合、その燃料ガスの供給量と酸素ガスの供給量との体積比(モル比)については、燃焼時の発熱量がピークに達する体積比1:(1.25k−1)を適正値とみなした。すなわち、水素ガスおよび飽和炭化水素ガスは一般式Ck-1H2k(kは自然数で、1、2、3、…)で表すことができ、その燃焼反応は化1に示す化学反応式に従って進行するため、燃料ガス1リットルに対する酸素ガスの理論反応量は(1.5k−1)リットルとなる。一方、発明者の検討により、燃焼反応における大気中からの酸素の巻込量は、燃料ガスおよび酸素ガスの総使用量1.5kリットルの1/6、つまり0.25kリットルであることが分かっている。よって、酸素ガスの理論反応量(1.5k−1)リットルのうち残りの(1.25k−1)リットルを酸素供給量とすれば、燃焼時の発熱量がピークに達することから、大気中からの酸素の巻込量も含めて燃料ガスの完全燃焼を実現し、所期の圧接部品質を得ることができる。 As described above, the input heat amount necessary for realizing a good pressure contact portion increases or decreases according to the size and shape of the joining member. However, when hydrogen gas or saturated hydrocarbon gas is used as the fuel gas, the volume ratio (molar ratio) between the fuel gas supply amount and the oxygen gas supply amount is the volume ratio at which the calorific value during combustion reaches a peak. 1: (1.25k-1) was regarded as an appropriate value. That is, hydrogen gas and saturated hydrocarbon gas can be represented by the general formula C k-1 H 2k (k is a natural number, 1, 2, 3,...), And the combustion reaction follows the chemical reaction formula shown in Chemical Formula 1. Since it proceeds, the theoretical reaction amount of oxygen gas with respect to 1 liter of fuel gas is (1.5k-1) liters. On the other hand, the inventors have found that the amount of oxygen involved in the combustion reaction from the atmosphere is 1/6 of the total amount of fuel gas and oxygen gas used, 1.5 kl, that is, 0.25 kl. ing. Therefore, if the remaining (1.25 k-1) liter of the theoretical reaction amount of oxygen gas (1.5 k-1) liter is used as the oxygen supply amount, the calorific value at the time of combustion reaches a peak. It is possible to achieve complete combustion of the fuel gas, including the amount of oxygen involved, and to obtain the desired pressure weld quality.
(化1)Ck-1H2k+(1.5k−1)O2 →(k−1)CO2 +kH2O
例えば、水素ガスを燃料ガスとして用いる場合、表2に示すように、水素ガス1リットルに対する酸素ガスの理論反応量は0.5リットルとなり、そのうち0.25リットルを酸素供給量とすれば、大気中からの酸素の巻込量も含めて燃料ガスの完全燃焼を実現し、所期の圧接部品質を得ることができる。また、エタンガスを燃料ガスとして用いる場合、水素ガス1リットルに対する酸素ガスの理論反応量は3.5リットルとなり、そのうち2.75リットルを酸素供給量とすれば、大気中からの酸素の巻込量も含めて燃料ガスの完全燃焼を実現し、所期の圧接部品質を得ることができる。
(Chemical formula 1) C k-1 H 2k + (1.5 k -1) O 2 → (k-1) CO 2 + kH 2 O
For example, when hydrogen gas is used as the fuel gas, as shown in Table 2, the theoretical reaction amount of oxygen gas with respect to 1 liter of hydrogen gas is 0.5 liter, of which 0.25 liter is the oxygen supply amount. It is possible to achieve complete combustion of the fuel gas including the amount of oxygen involved from the inside, and to obtain the desired pressure welded part quality. When ethane gas is used as the fuel gas, the theoretical reaction amount of oxygen gas with respect to 1 liter of hydrogen gas is 3.5 liters, and if 2.75 liters is used as the oxygen supply amount, the amount of oxygen entrained from the atmosphere In addition, the complete combustion of the fuel gas can be realized, and the desired pressure welded part quality can be obtained.
また、ガス圧接の場合、上述したように、部材への投入熱量が重要なパラメータになることはいうまでもない。しかし、投入熱量と一口に言っても単位時間当たりの供給量および加熱時間の積算値であり、一元的に定まるものではない。ただし、ガス圧接技術は、実用技術であるため、当然、経済性および作業性を考慮しなければならない。この観点から考えると、圧接時間をむやみに延ばさないという条件下で、トータルのガス使用量をできるだけ抑制するということが望まれる。すなわち、圧接作業の主目的が、加熱材中心部温度を効率よく適正値に到達させることであることを考慮すると、単位時間当たりのガス供給量をむやみに増大させても、表面が過熱されるだけで、無駄なガスが費やされることになる。つまり、表面温度と中心温度との間に顕著な差の生じない加熱パターンが望まれる。図1は、この観点に立ち、発明者が適正混合比の酸素アセチレン炎を用いた検討により、各種直径の鉄筋形状材を圧接する際の標準加熱時間を求めたものである。本発明においては、この標準圧接時間を根底に置いて検討した。 In the case of gas pressure welding, as described above, it goes without saying that the amount of heat input to the member is an important parameter. However, the input heat amount is simply an integrated value of the supply amount per unit time and the heating time, and is not determined centrally. However, since the gas pressure welding technique is a practical technique, it is a matter of course to consider economic efficiency and workability. From this point of view, it is desirable to suppress the total gas usage as much as possible under the condition that the welding time is not extended unnecessarily. That is, considering that the main purpose of the pressure welding operation is to efficiently reach the heating material center temperature to an appropriate value, the surface is overheated even if the gas supply amount per unit time is increased unnecessarily. Just useless gas will be consumed. That is, a heating pattern that does not cause a significant difference between the surface temperature and the center temperature is desired. FIG. 1 is based on this viewpoint, and the inventor obtained the standard heating time when pressing the reinforcing bar-shaped material of various diameters by the examination using the oxygen acetylene flame having an appropriate mixing ratio. In the present invention, the standard pressure welding time was considered as the basis.
その結果、接合部材の断面積の換算直径がr〔mm〕であるとき、燃料ガスCk-1H2k(kは自然数)の単位時間当たりの供給量を2.6r/(1.5k−1)〔l/min〕とするとともに、酸素ガスの単位時間当たりの供給量を2.6r(1.25k−1)/(1.5k−1)〔l/min〕とすれば、接合部材の断面積に応じた適正な標準加熱時間が定まり、良好な圧接部を実現するために必要な投入熱量が得られることが判明した。この場合、接合部材の表面温度と中心温度との間に顕著な差が生じない加熱パターンを維持し、かつ作業効率に直接影響する圧接時間をむやみに延ばさないという条件下で、燃料ガスおよび酸素ガスの総使用量をできるだけ抑制して経済性を高めることができる。その結果、圧接部品質、作業効率、経済性のトータルバランスを高めることができる。 As a result, when the converted diameter of the cross-sectional area of the joining member is r [mm], the supply amount per unit time of the fuel gas C k-1 H 2k (k is a natural number) is 2.6 r / (1.5 k− 1) When it is set to [l / min] and the supply amount of oxygen gas per unit time is 2.6 r (1.25 k-1) / (1.5 k-1) [l / min], the joining member It was found that an appropriate standard heating time according to the cross-sectional area was determined, and an input heat amount necessary for realizing a good pressure contact portion was obtained. In this case, fuel gas and oxygen are used under the condition that a heating pattern that does not cause a significant difference between the surface temperature and the center temperature of the joining member is maintained, and that the pressure welding time that directly affects the work efficiency is not extended unnecessarily. The total amount of gas used can be suppressed as much as possible to improve economy. As a result, it is possible to increase the total balance of the welded part quality, work efficiency, and economy.
また、ガス圧接の場合、大気中で接合作業が実施されるため、接合端面の酸化を防ぐことはできない。実際に、部材の突き合わせ面に存在する隙間が大きい程、酸化の度合が激しくなる。なお、接合端面上に生成する酸化物の量を抑制するには、発熱量の観点からみた適正混合比に対して、燃料ガスの比率を高め、接合環境を還元雰囲気にすることが有効である。ただし、酸素に対する適正混合量の1.5倍を越えて燃料ガスの比率L1を高めると、燃焼火炎の加熱能力が著しく低下する。よって、非常に大きな隙間が存在し、1.5を越えるL1を設定せざるを得ない場合には、突合せ部が閉口し、接合端面がそれ以上酸化を被らなくなった時点で、L1の値を下げ加熱特性を増大させる措置をとらなければならない。一方、燃料ガスの比率L1を適正混合量の1.0倍未満に設定すると、酸化雰囲気になるため、隙間の存在しない場合であっても、良好品質の圧接部は得られない。 Further, in the case of gas pressure welding, since the joining work is performed in the atmosphere, it is impossible to prevent oxidation of the joining end face. Actually, the greater the gap present on the abutting surface of the member, the greater the degree of oxidation. In order to suppress the amount of oxide generated on the joining end face, it is effective to increase the ratio of the fuel gas with respect to the appropriate mixing ratio from the viewpoint of the calorific value and to make the joining environment a reducing atmosphere. . However, if the ratio L1 of the fuel gas is increased to exceed 1.5 times the proper mixing amount with respect to oxygen, the heating ability of the combustion flame is significantly reduced. Therefore, when there is a very large gap and it is necessary to set L1 exceeding 1.5, the value of L1 is reached when the butt portion is closed and the joint end face is not further oxidized. Measures must be taken to reduce heating and increase heating characteristics. On the other hand, if the ratio L1 of the fuel gas is set to less than 1.0 times the appropriate mixing amount, an oxidizing atmosphere is formed, so that even when there is no gap, a good quality pressure contact portion cannot be obtained.
さらに、レールの場合には、加熱作業直後にふくらみを押抜くため、ふくらみ形状自体が問題となることはない。したがって、レールの圧接作業では「集中加熱」により突合せ部近傍を加熱するのが一般的である。なお、L2=1.0がレール形状材を圧接する際の集中加熱を意味する。一方、鉄筋の場合には、一般にふくらみの押抜きは実施されないこともあり、なだらかなふくらみ形状が実現されることを意図してふくらみ長さが鉄筋径の1.1倍以上でなければならないことなどが規定されている(例えば、(社)日本圧接協会「鉄筋のガス圧接工事標準仕様書」1999年改訂など)。すなわち、突合せ部を中心に広範囲にわたって熱を投入する必要があるため、バーナを揺動させる「幅焼き」という加熱の仕方が採用される。同じガス供給条件で、幅焼きを実施した場合には、同レベルの圧接品質を得るための加熱時間が集中加熱の場合に比べ長時間側にシフトするので、加熱時間の増大を抑制する観点から、ガス供給量を増加させる必要がある。つまり、幅焼きの程度に応じて、L2を増加させなければならない。しかし、L2が1.3を越えた場合には、通常の幅焼きを実施しても加熱材料表面が過熱されるため、バーナ揺動幅を過度に広げる必要があり、ガスの過剰消費および作業性の低下などが引き起こされる。 Further, in the case of a rail, the bulge shape is not a problem because the bulge is pushed out immediately after the heating operation. Therefore, in the pressure welding operation of the rail, it is common to heat the vicinity of the butt portion by “concentrated heating”. Note that L2 = 1.0 means concentrated heating when the rail-shaped material is pressed. On the other hand, in the case of a reinforcing bar, generally, the bulging of the bulge may not be carried out, and the bulging length must be 1.1 times the reinforcing bar diameter with the intention of realizing a gentle bulging shape. (For example, the Japan Pressure Welding Association “Standard Specification for Steel Gas Pressure Welding Work” revised in 1999). That is, since it is necessary to input heat over a wide range centering on the butting portion, a heating method called “width baking” that swings the burner is employed. When bread baking is performed under the same gas supply conditions, the heating time to obtain the same level of pressure welding quality shifts to a longer time than in the case of intensive heating, so from the viewpoint of suppressing an increase in heating time It is necessary to increase the gas supply amount. That is, L2 must be increased in accordance with the degree of bread baking. However, when L2 exceeds 1.3, the surface of the heating material is overheated even if normal width baking is performed. Therefore, it is necessary to excessively widen the burner swinging width. Sexual decline is caused.
以下、本発明を鉄筋に適用した実施例について説明する。 Hereinafter, an embodiment in which the present invention is applied to a reinforcing bar will be described.
水素ガスおよびプロパンガスを燃料ガスとして、直径32mmの鉄筋形状材同士のガス圧接試験を実施した。そして、圧接部品質などを調査すべく、得られた継手のふくらみ部を圧接部の直径が鉄筋径の1.1倍になるように機械加工で削り出し、日本工業規格(JIS Z 2248)の規定に準拠して曲げ試験を行った。その結果をまとめて表3に示す。ここで、水素ガスを燃料ガスとする場合、燃料ガス(水素ガス)の単位時間当たりの供給量は、2.6r/(1.5k−1)に、r=32mm、k=1を代入して得た値、つまり166l/minが基本供給量となり、酸素ガスの単位時間当たりの供給量は、2.6r(1.25k−1)/(1.5k−1)に、r=32mm、k=1を代入して得た値、つまり42l/minが基本供給量となる。一方、プロパンガスを燃料ガスとする場合、燃料ガス(プロパンガス)の単位時間当たりの供給量は、2.6r/(1.5k−1)に、r=32mm、k=4を代入して得た値、つまり16l/minが基本供給量となり、酸素ガスの単位時間当たりの供給量は、2.6r(1.25k−1)/(1.5k−1)に、r=32mm、k=4を代入して得た値、つまり67l/minが基本供給量となる。 A gas pressure test between 32 mm diameter rebar-shaped members was performed using hydrogen gas and propane gas as fuel gas. Then, in order to investigate the quality of the welded part, etc., the bulge part of the obtained joint is machined so that the diameter of the welded part is 1.1 times the diameter of the reinforcing bar, and is in accordance with Japanese Industrial Standard (JIS Z 2248). A bending test was performed in accordance with the regulations. The results are summarized in Table 3. Here, when hydrogen gas is used as the fuel gas, the supply amount per unit time of the fuel gas (hydrogen gas) is set to 2.6 r / (1.5 k−1) by substituting r = 32 mm and k = 1. The value obtained in this manner, that is, 166 l / min is the basic supply amount, and the supply amount of oxygen gas per unit time is 2.6 r (1.25 k−1) / (1.5 k−1), r = 32 mm, The value obtained by substituting k = 1, that is, 42 l / min, is the basic supply amount. On the other hand, when propane gas is used as the fuel gas, the supply amount of fuel gas (propane gas) per unit time is set to 2.6 r / (1.5 k−1) by substituting r = 32 mm and k = 4. The obtained value, that is, 16 l / min is the basic supply amount, and the supply amount of oxygen gas per unit time is 2.6 r (1.25 k−1) / (1.5 k−1), r = 32 mm, k The value obtained by substituting = 4, that is, 67 l / min, is the basic supply amount.
表3から明らかなように、本発明で決定されるガス供給量を適用した場合、いずれの燃料ガスにおいても、適正な加熱時間で良好な品質が実現されることを確認した。ただし、燃料ガスとしてプロパンガスを採用した例で、部材の突き合わせ部に2mmの隙間が存在する場合、標準圧接時間で良好な品質の圧接部を実現するためには、酸素に対する適正混合量の1.4倍にプロパンガスの比率を高める必要があった。しかし、酸素に対する適正混合量の1.6倍にプロパンガスの比率を高めた条件においては、突き合わせ部に隙間が存在しない場合でも、良好な品質の圧接部を実現するために加熱時間を20秒延ばす必要があった。すなわち、L1≦1.5はガス圧接の品質を確保するための必須条件ではなく、効率、経済性を考慮した適正範囲である。一方、酸素に対する適正混合比率の0.9倍にプロパンガスの比率を低下させたものは、加熱時間を20秒延ばしても良好な圧接部は得られなかった。さらに、加熱方法として幅焼きを適用する場合には、プロパンガスと酸素ガスの両者を標準供給量の1.2倍程度とすることで、標準的な圧接時間で良好な圧接部が得られることが分かった。 As is clear from Table 3, it was confirmed that when the gas supply amount determined in the present invention was applied, good quality was realized in an appropriate heating time for any fuel gas. However, in the case where propane gas is used as the fuel gas and there is a gap of 2 mm in the butt portion of the member, in order to achieve a good quality pressure contact portion in the standard pressure contact time, the appropriate mixing amount of oxygen is 1 It was necessary to increase the ratio of propane gas by 4 times. However, under the condition where the ratio of propane gas is increased to 1.6 times the proper mixing amount with respect to oxygen, even when there is no gap in the butt portion, the heating time is 20 seconds in order to realize a good quality pressure contact portion. It was necessary to extend it. That is, L1 ≦ 1.5 is not an essential condition for ensuring the quality of gas pressure welding, but is an appropriate range in consideration of efficiency and economy. On the other hand, when the ratio of propane gas was reduced to 0.9 times the appropriate mixing ratio with respect to oxygen, a good pressure contact portion could not be obtained even when the heating time was extended by 20 seconds. Furthermore, when width baking is applied as a heating method, a good pressure contact portion can be obtained in a standard pressure contact time by setting both propane gas and oxygen gas to about 1.2 times the standard supply amount. I understood.
以下、本発明をレールに適用した実施例について説明する。 Hereinafter, an embodiment in which the present invention is applied to a rail will be described.
水素ガスを燃料ガスとして、JIS60kg普通レール同士のガス圧接試験を実施し、圧接部の曲げ試験を行った。その結果を表4に示す。ここで、燃料ガス(水素ガス)の単位時間当たりの供給量は、2.6r/(1.5k−1)に、r=100mm、k=1を代入して得た値、つまり520l/minが基本供給量となり、酸素ガスの単位時間当たりの供給量は、2.6r(1.25k−1)/(1.5k−1)に、r=100mm、k=1を代入して得た値、つまり130l/minが基本供給量となる。
Using hydrogen gas as the fuel gas, a gas pressure welding test between
表4から明らかなように、従来の酸素アセチレン炎を用いた圧接法と同程度の圧接時間で、良好な圧接部を実現できることが分かった。ただし、部材の突き合わせ部に2mmの隙間が存在する場合、標準圧接時間で良好な品質の圧接部を実現するためには、酸素に対する適正混合量の1.2倍(好ましくは1.3倍)に水素ガスの比率を高める必要があった。 As is apparent from Table 4, it was found that a good pressure contact portion can be realized with a pressure welding time comparable to that of the pressure welding method using a conventional oxygen acetylene flame. However, when a gap of 2 mm exists at the butt portion of the member, 1.2 times (preferably 1.3 times) the appropriate mixing amount with respect to oxygen in order to realize a good quality pressure contact portion in the standard pressure contact time. In addition, it was necessary to increase the ratio of hydrogen gas.
Claims (4)
前記燃料ガスの供給量と前記酸素ガスの供給量との体積比を1:(1.25k−1)としたことを特徴とするガス圧接方法。 When the oxygen gas is mixed with the fuel gas represented by the general formula Ck-1H2k (k is a natural number) and the joining members are subjected to gas pressure welding,
A gas pressure welding method, wherein a volume ratio of the supply amount of the fuel gas and the supply amount of the oxygen gas is 1: (1.25 k−1).
前記燃料ガスの単位時間当たりの供給量を2.6r/(1.5k−1)〔l/min〕とするとともに、
前記酸素ガスの単位時間当たりの供給量を2.6r(1.25k−1)/(1.5k−1)〔l/min〕としたことを特徴とする請求項1に記載のガス圧接方法。 When the converted diameter of the cross-sectional area of the joining member is r [mm]
The fuel gas supply amount per unit time is 2.6 r / (1.5 k-1) [l / min],
2. The gas pressure welding method according to claim 1, wherein the supply amount of oxygen gas per unit time is 2.6 r (1.25 k−1) / (1.5 k−1) [l / min]. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047893A JP4300134B2 (en) | 2004-02-24 | 2004-02-24 | Gas pressure welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047893A JP4300134B2 (en) | 2004-02-24 | 2004-02-24 | Gas pressure welding method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009015150A Division JP4871365B2 (en) | 2009-01-27 | 2009-01-27 | Gas pressure welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005238250A JP2005238250A (en) | 2005-09-08 |
JP4300134B2 true JP4300134B2 (en) | 2009-07-22 |
Family
ID=35020534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004047893A Expired - Fee Related JP4300134B2 (en) | 2004-02-24 | 2004-02-24 | Gas pressure welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4300134B2 (en) |
-
2004
- 2004-02-24 JP JP2004047893A patent/JP4300134B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005238250A (en) | 2005-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9457416B2 (en) | Fillet weld joint and method for gas shielded arc welding | |
MY137853A (en) | Shielding gases for mag-welding of galvanized steel sheets and welding method using the same | |
EP1920872A4 (en) | Shielding gas for hybrid welding and welding method using such gas | |
MX2022012761A (en) | Arc welded joint and arc welding method. | |
JP3892782B2 (en) | Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance and gas shielded arc welding method using the same | |
JP4300134B2 (en) | Gas pressure welding method | |
CN103801859B (en) | Bonded flux used for submerged arc welding | |
JP2003220481A (en) | Method and welding wire for arc-laser composite welding | |
JP4871365B2 (en) | Gas pressure welding method | |
EP3162489B1 (en) | Method of butt welding steel plates and butt weld joint of steel plates | |
CN109249152B (en) | Special hard surfacing welding wire for mandrel for rolling seamless steel tube and preparation method | |
JPH08257789A (en) | Submerged arc welding | |
JPH08155635A (en) | Boxing joint of steel for structural use excellent in fatigue resistant characteristic and welding method thereof | |
JP4171433B2 (en) | Manufacturing method of ERW steel pipe with excellent weld quality | |
JP2002137086A (en) | Mig welding wire and mig welding method of stainless steel | |
JP2004136329A (en) | Ferrous filler metal for laser beam welding | |
CN102851089A (en) | Methane gas catalytic combustion agent | |
JP2005272900A (en) | High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal | |
JP2010228000A (en) | Laser-arc hybrid welding method which attains long fatigue life | |
CN112276416A (en) | Flux-cored wire powder flux-cored wire, preparation method and application thereof, and ultrahigh-strength steel welding process | |
KR102308327B1 (en) | Flux cored welding wire with superior impact toughness at ultra low temperature | |
JP4369763B2 (en) | Gas pressure welding method using saturated hydrocarbon fuel gas and heating burner used therein | |
JP2005279683A (en) | Flux cored wire for gas shielded arc welding | |
JP2010046708A (en) | Shield gas for mig welding and mig welding method for invar | |
JP2013052398A (en) | Gas pressure welding method for steel stock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090420 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |