JP4297831B2 - Manufacturing method of micro phase separation structure membrane with controlled orientation - Google Patents

Manufacturing method of micro phase separation structure membrane with controlled orientation Download PDF

Info

Publication number
JP4297831B2
JP4297831B2 JP2004133301A JP2004133301A JP4297831B2 JP 4297831 B2 JP4297831 B2 JP 4297831B2 JP 2004133301 A JP2004133301 A JP 2004133301A JP 2004133301 A JP2004133301 A JP 2004133301A JP 4297831 B2 JP4297831 B2 JP 4297831B2
Authority
JP
Japan
Prior art keywords
polymer
block copolymer
substrate
electric field
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133301A
Other languages
Japanese (ja)
Other versions
JP2005314526A5 (en
JP2005314526A (en
Inventor
智一 彌田
香織 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004133301A priority Critical patent/JP4297831B2/en
Publication of JP2005314526A publication Critical patent/JP2005314526A/en
Publication of JP2005314526A5 publication Critical patent/JP2005314526A5/ja
Application granted granted Critical
Publication of JP4297831B2 publication Critical patent/JP4297831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

この発明は、光・電子機能高分子材料、エネルギー関連材料、表面修飾材料、パターンドメディアのような高密度記録材料、ナノフィルター等として有用な配向の制御されたブロック共重合体から成るミクロ相分離構造膜を製造する方法に関する。   The present invention relates to a microphase comprising a block copolymer with controlled orientation useful as an optical / electronic functional polymer material, an energy-related material, a surface-modifying material, a high-density recording material such as patterned media, and a nanofilter. The present invention relates to a method for manufacturing a separation structure membrane.

本発明者らは既に配向方向のそろったポリマーから成るミクロ相分離構造膜を製造するために、親水性ポリマー成分及び疎水性ポリマー成分から成るブロック共重合体を公開している(特許文献1、非特許文献1)。発明者らは、このブロック共重合体を用いて、特定の製膜方法及び熱処理方法を行うことにより、配向方向のそろったミクロ相分離構造膜が得られることも見出している。
一方、ミクロ相分離構造の基板に対する配向制御は、基板のシェアリング、電場印加、有機溶媒雰囲気下での熱処理に挙げる3例がこれまでに報告されているが(非特許文献2〜4)、いずれも膜厚に制限があり、基板表面から膜・空気界面までの完全な配向制御は達成していない。
特開2004-124088 Macromolecules 2002, 35, 3739-3747 Nature vol. 225, 538-539 (1970) Science vol. 273, 931-933, 1996 J. Am. Chem. Soc. 2003, 125, 12211-12216
The present inventors have already disclosed a block copolymer composed of a hydrophilic polymer component and a hydrophobic polymer component in order to produce a microphase-separated structure film composed of a polymer with a uniform orientation (Patent Document 1, Non-patent document 1). The inventors have also found that a microphase-separated structure film having a uniform alignment direction can be obtained by performing a specific film forming method and heat treatment method using this block copolymer.
On the other hand, three examples of orientation control for a substrate having a microphase separation structure have been reported so far, such as substrate sharing, electric field application, and heat treatment in an organic solvent atmosphere (Non-Patent Documents 2 to 4). In any case, the film thickness is limited, and complete alignment control from the substrate surface to the film / air interface is not achieved.
JP2004-124088 Macromolecules 2002, 35, 3739-3747 Nature vol. 225, 538-539 (1970) Science vol. 273, 931-933, 1996 J. Am. Chem. Soc. 2003, 125, 12211-12216

これまで親水性ポリマー成分及び疎水性ポリマー成分から成るブロック共重合体の薄膜を形成させると、このブロック共重合体は自己組織化してミクロ相分離構造を形成することは知られていたが(特許文献1、非特許文献1)、この薄膜中でブロック共重合体の配向を制御する方法については知られていなかった。   It has been known that when a block copolymer thin film composed of a hydrophilic polymer component and a hydrophobic polymer component is formed, this block copolymer self-assembles to form a microphase separation structure (patent) Document 1, Non-Patent Document 1), and a method for controlling the orientation of the block copolymer in this thin film has not been known.

発明者らは、ブロック共重合体薄膜を加熱した状態で一定強度の電界を電気化学的にかけて固化することにより、薄膜中のブロック共重合体を一定方向に配向させたミクロ相分離構造を有するブロック共重合体薄膜を形成できることを見出した。
即ち、本発明は、基板上にポリマーを塗布しこのポリマーの融点より10〜100℃低い温度でこのポリマーの膜に1×10〜3×10V/mの電界を印加して該ポリマーを電界方向に配向させるミクロ相分離構造膜の製法であって、該ポリマーが、親水性ポリマー成分(A)及び疎水性ポリマー成分(B)が共有結合によって結合した、分子量分布(Mw/Mn)が1.3以下であるブロック共重合体である配向の制御されたミクロ相分離構造膜の製法である。
The inventors have made a block having a microphase-separated structure in which the block copolymer in the thin film is oriented in a certain direction by solidifying the block copolymer thin film by applying an electric field of constant strength while heating the block copolymer thin film. It has been found that a copolymer thin film can be formed.
That is, in the present invention, a polymer is applied on a substrate, and an electric field of 1 × 10 5 to 3 × 10 7 V / m is applied to the polymer film at a temperature 10 to 100 ° C. lower than the melting point of the polymer. Molecular weight distribution (Mw / Mn) in which the polymer is bonded to the hydrophilic polymer component (A) and the hydrophobic polymer component (B) by a covalent bond. Is a process for producing a microphase-separated structure film with controlled orientation, which is a block copolymer having a value of 1.3 or less.

本発明の方法により、特に基板に垂直にブロック共重合体を配向させると親水性ポリマー成分及び疎水性ポリマー成分が基板に平行に層状を形成するため、膜厚が約30nm〜約10μmのブロック共重合体薄膜中のミクロ相分離構造の基板表面から膜・空気界面までの完全な配向制御を電気化学的に行うことが可能になり、特有の電気化学性質を有する薄膜を得ることが可能になった。本発明の方法は、相分離構造の配向制御とナノ複合材料の構築を同時に満たす新たな電気化学的加工方法としての有用性を示している。   In particular, when the block copolymer is oriented perpendicularly to the substrate by the method of the present invention, the hydrophilic polymer component and the hydrophobic polymer component form a layer parallel to the substrate. It becomes possible to perform complete orientation control from the substrate surface of the microphase separation structure in the polymer thin film to the film / air interface electrochemically, and it becomes possible to obtain a thin film having specific electrochemical properties. It was. The method of the present invention shows utility as a new electrochemical processing method that simultaneously satisfies the orientation control of the phase separation structure and the construction of the nanocomposite material.

本発明のブロック共重合体は、互いに非相溶な親水性ポリマー成分(A)及び疎水性ポリマー成分(B)とが共有結合で連結されているブロック共重合体であり、これらは相反する化学的・物理的性質をもつ。また、その分子量分布は1.3以下であり、構成高分子鎖A及びBの順序は問わない。
親水性高分子鎖Aとして、例えば、ポリ(エチレンオキシド)、ポリ(プロピレンオキシド)、ポリ(ビニルアルコール)、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリ(アクリルアミド)、オリゴ(エチレンオキシド)やクラウンエーテルやクリプタンド又は糖鎖を側鎖に有するポリ(メタクリレート)又はポリ(アクリレート)等、好ましくはポリ(エチレンオキシド)メチルエーテルが挙げられる。
疎水性高分子鎖Bとして、例えば、メソゲン側鎖、長鎖アルキル側鎖又は疎水性側鎖を有するポリ(メタクリレート)、ポリ(アクリレート)、ポリ(スチレン)、ビニルポリマー等が挙げられる。
The block copolymer of the present invention is a block copolymer in which a hydrophilic polymer component (A) and a hydrophobic polymer component (B), which are incompatible with each other, are covalently linked to each other. Has physical and physical properties. Moreover, the molecular weight distribution is 1.3 or less, and the order of the constituent polymer chains A and B does not matter.
Examples of the hydrophilic polymer chain A include poly (ethylene oxide), poly (propylene oxide), poly (vinyl alcohol), poly (acrylic acid), poly (methacrylic acid), poly (acrylamide), oligo (ethylene oxide), and crown. Poly (methacrylate) or poly (acrylate) having ether, cryptand or sugar chain in the side chain, preferably poly (ethylene oxide) methyl ether.
Examples of the hydrophobic polymer chain B include poly (methacrylate), poly (acrylate), poly (styrene), and vinyl polymer having a mesogenic side chain, a long alkyl side chain, or a hydrophobic side chain.

メソゲン側鎖とは、例えば、下記一般式
E−(Y1−F)n−Y2−G
で表される構造単位を1つ以上有するものが挙げられる。
式中、E、F及びGは、同一であっても異なっていてもよく、それぞれ、1,4−フェニレン、1,4−シクロヘキシレン、1,4−シクロヘキセニレン、ナフタレン−2,6−ジイル、デカヒドロナフタレン−2,6−ジイル、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル、1,4−ビシクロ[2.2.2]オクチレン、1,3−ジオキサン−2,5−ジイル、ピリジン−2,5−ジイル、ピラジン−2,5−ジイル、ピリダジン−3,6−ジイル、ピリミジン−2,5−ジイルであり、を表わし、Y1及びY2は、同一であっても異なっていてもよく、単結合、−CH2CH2−、−CH2O−、−OCH2−、−C(=O)O−、−OC(=O)−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2−CH=CH−、−N=N−、−CH=CH−C(=O)O−又は−OC(=O)−CH=CH−を表わし、nは0〜3の整数を表す。
長鎖アルキル側鎖とは、炭素数が好ましくは6〜22個のアルキル側鎖をいう。
疎水性側鎖としては、例えば脂肪族側鎖等が挙げられる。
このブロック共重合体の分子量は、好ましくは5000〜100000、より好ましくは10000〜50000である。
The mesogenic side chain is, for example, the following general formula E- (Y1-F) n-Y2-G
The thing which has one or more structural units represented by these is mentioned.
In the formula, E, F and G may be the same or different and are respectively 1,4-phenylene, 1,4-cyclohexylene, 1,4-cyclohexenylene, naphthalene-2,6- Diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, 1,4-bicyclo [2.2.2] octylene, 1,3-dioxane-2 , 5-diyl, pyridine-2,5-diyl, pyrazine-2,5-diyl, pyridazine-3,6-diyl, pyrimidine-2,5-diyl, and Y1 and Y2 are the same Or may be different, a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —C (═O) O—, —OC (═O) —, —C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, CH 2 CH 2 CH 2 O - , - OCH 2 CH 2 CH 2 -, - CH = CH-CH 2 CH 2 -, - CH 2 CH 2 -CH = CH -, - N = N -, - CH = CH -C (= O) O- or -OC (= O) -CH = CH- is represented, and n represents an integer of 0 to 3.
The long-chain alkyl side chain means an alkyl side chain having preferably 6 to 22 carbon atoms.
Examples of the hydrophobic side chain include an aliphatic side chain.
The molecular weight of this block copolymer is preferably 5,000 to 100,000, more preferably 10,000 to 50,000.

このブロック共重合体として下記一般式(化1)
(式中、m及びnは同一であっても異なっていてもよく、それぞれ5〜500の整数であり、aは1〜22の整数であり、Rは水素又は炭素数1〜22のアルキル基である。)で表されるものが好ましい。
This block copolymer has the following general formula (Formula 1)
(In the formula, m and n may be the same or different and each is an integer of 5 to 500, a is an integer of 1 to 22, and R is hydrogen or an alkyl group having 1 to 22 carbon atoms. Is preferred).

このようなブロック共重合体を溶媒に溶解させ膜を形成させると、異種AB鎖間の斥力的相互作用に基づいてミクロ相分離構造が形成される。
しかし、従来その配向についての制御することができなかった。例えば、後述の比較例1(図1)に示すように、このようなブロック共重合体を溶媒に溶解させ膜を形成させると、このブロック共重合体は自己集合化してミクロ相分離構造を形成するが、その配向はランダムであり、小さなブロックごとに勝手な方向に配向し、膜としての有用性を考えることはできなかった。
When such a block copolymer is dissolved in a solvent to form a film, a microphase separation structure is formed based on the repulsive interaction between different types of AB chains.
However, it has been impossible to control the orientation. For example, as shown in Comparative Example 1 (FIG. 1) to be described later, when such a block copolymer is dissolved in a solvent to form a film, the block copolymer self-assembles to form a microphase separation structure. However, the orientation was random, and each small block was oriented in an arbitrary direction, and its usefulness as a film could not be considered.

本発明においては、基板上にこのブロック共重合体を塗布し、その温度をポリマーの融点より10〜100℃低い温度、例えば50〜80℃に加熱し、それと同時にこの膜に1×10〜3×10V/mの電界を印加することにより、ブロック共重合体がその電界方向に配向する。
基板としては、疎水性物質からなる基板や表面を疎水化処理した基板が好ましく用いられる。例えばポリエステル、ポリイミド、雲母板、シリコンウエハ、石英板、ガラス板等の基板や、これらの基板表面をカーボン蒸着処理やシリル化処理等の疎水化処理を施した基板が好ましく用いられる。
基板上にこのブロック共重合体を塗布する方法として、ブロック共重合体を適当な溶媒に溶解させて基板上に塗布し溶媒を乾燥させる方法が一般的である。この溶媒としては、例えば、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、テトラヒドロフラン、ジオキサン、四塩化炭素、エチルベンゼン、プロピルベンゼン、二塩化エチレン、塩化メチル等が挙げられる。溶液中のブロック共重合体の濃度は0.1〜5質量%程度が好ましい。
In the present invention, this block copolymer is applied on a substrate, and the temperature is 10 to 100 ° C. lower than the melting point of the polymer, for example, 50 to 80 ° C., and at the same time, 1 × 10 5 to By applying an electric field of 3 × 10 7 V / m, the block copolymer is oriented in the electric field direction.
As the substrate, a substrate made of a hydrophobic substance or a substrate whose surface has been subjected to a hydrophobic treatment is preferably used. For example, substrates such as polyester, polyimide, mica plate, silicon wafer, quartz plate, and glass plate, and substrates obtained by subjecting the surface of these substrates to hydrophobic treatment such as carbon deposition treatment or silylation treatment are preferably used.
As a method for coating the block copolymer on the substrate, a method in which the block copolymer is dissolved in a suitable solvent, coated on the substrate and dried is generally used. Examples of the solvent include benzene, toluene, xylene, chloroform, dichloromethane, tetrahydrofuran, dioxane, carbon tetrachloride, ethylbenzene, propylbenzene, ethylene dichloride, and methyl chloride. The concentration of the block copolymer in the solution is preferably about 0.1 to 5% by mass.

基板上にこのブロック共重合体を塗布する方法として、スピンコート、キャスト、ディップ及びバーコート等が挙げられる。
このブロック共重合体の膜の膜厚は約30nm〜約10μmが好ましい。
一旦塗布したブロック共重合体を加熱して固化した後に、再度加熱して配向処理を行ってもよいし、基板上にこのブロック共重合体を塗布すると同時に配向処理と加熱とを同時に行ってもよい。
この加熱温度は、ブロック共重合体の融点(通常120〜140℃)より10〜100℃低い温度の範囲が好ましく、より好ましくは50〜80℃である。ブロック共重合体の融点は示差走査熱量測定の方法で測定する。
Examples of the method for applying the block copolymer on the substrate include spin coating, casting, dip and bar coating.
The thickness of the block copolymer film is preferably about 30 nm to about 10 μm.
After the block copolymer once applied is heated and solidified, the alignment treatment may be performed by heating again, or the alignment treatment and the heating may be performed simultaneously with the application of the block copolymer on the substrate. Good.
This heating temperature is preferably in the range of 10 to 100 ° C. lower than the melting point of the block copolymer (usually 120 to 140 ° C.), more preferably 50 to 80 ° C. The melting point of the block copolymer is measured by a differential scanning calorimetry method.

配向処理のために、加温状態で1×10〜3×10V/m、好ましくは1×10〜3×10V/mの電界を印加する。本発明のブロック共重合体は電界に沿って配向するため、所望の方向に電界をかければよい。例えば、微小な櫛形電極を用いたり、微小な電極を高分子被覆した電極に近づけて電圧印加して、領域選択的に相分離構造の配向制御することができる。特に、基板にほぼ垂直に分子が配向したものは基板に平行に疎水ブロックと親水ブロックの層を形成するため有用性が高い。従って、基板にほぼ垂直に電界を印加し、ブロック共重合体を基板にほぼ垂直に配向させることが好ましい。この垂直の許容範囲もその用途によって定めることが望ましい。
また、電界は1×10〜3×10V/mの間の一定の電界をかけてもよく、その電界の方向(+/-)もいずれでもよい。また、電界の最高値を1×10〜3×10V/mとして、電界をその+方向若しくは−方向又はその両方向に交互に掃引(具体的には、印加する電位を掃引)させてもよい。後述の実施例3からも明らかであるが、このように電界の方向を切り替えて印加するとより配向が明瞭になるため好ましい。
For the alignment treatment, an electric field of 1 × 10 5 to 3 × 10 7 V / m, preferably 1 × 10 5 to 3 × 10 6 V / m is applied in a heated state. Since the block copolymer of the present invention is oriented along the electric field, the electric field may be applied in a desired direction. For example, it is possible to control the orientation of the phase separation structure in a region-selective manner by using a minute comb-shaped electrode or applying a voltage by bringing a minute electrode close to a polymer-coated electrode. In particular, those in which molecules are oriented substantially perpendicular to the substrate are highly useful because they form a hydrophobic block and a hydrophilic block layer in parallel to the substrate. Accordingly, it is preferable to apply an electric field substantially perpendicularly to the substrate and to orient the block copolymer substantially perpendicularly to the substrate. It is desirable that this vertical tolerance is also determined according to the application.
The electric field may be a constant electric field between 1 × 10 5 and 3 × 10 7 V / m, and the direction of the electric field (+/−) may be any. Further, the maximum value of the electric field is set to 1 × 10 5 to 3 × 10 7 V / m, and the electric field is alternately swept in the + direction, the − direction, or both directions (specifically, the applied potential is swept). Also good. As is clear from Example 3 described later, it is preferable to switch the direction of the electric field in this way because the orientation becomes clearer.

電界の印加方法については特に制限は無い。
簡便な方法として、基板を電極として膜を形成し、その膜の上に電解液を塗布し、電極基板と電解液との間に所望の電圧を印加する方法がある。
電極基板としては、電気伝導性のある電極材料であれば良く、白金、ステンレス、金などの金属板、グラファイト、インジウムスズ酸化物を被覆したガラスやプラスティックフィルム、シリコンウエハ等を用いることができるが、ITOガラス電極基板が好ましい。
電解液としては、溶媒に水またはテトラヒドロフラン、クロロホルム、ジメチルスルホキシド、ジメチルホルムアミドなどの有機溶媒を用い、これに溶質として塩化カリウム、塩化ナトリウム、臭化カリウム、臭化ナトリウム、硫酸ナトリウム、過塩素酸ナトリウム、硝酸ナトリウムなどの電解質を溶解させたものを用いることができる。
一般的な電気化学セルだけでなく、走査型プローブ顕微鏡のチップなどの微小電極を用いた微小な領域に選択的に電界を印加できる特殊な電気化学セルを用いることができる。
There is no particular limitation on the method of applying the electric field.
As a simple method, there is a method in which a film is formed using a substrate as an electrode, an electrolytic solution is applied on the film, and a desired voltage is applied between the electrode substrate and the electrolytic solution.
The electrode substrate may be any electrode material having electrical conductivity, and may be a metal plate such as platinum, stainless steel, or gold, graphite, glass coated with indium tin oxide, a plastic film, a silicon wafer, or the like. An ITO glass electrode substrate is preferred.
As an electrolytic solution, water or an organic solvent such as tetrahydrofuran, chloroform, dimethyl sulfoxide, dimethylformamide is used as a solvent, and solutes such as potassium chloride, sodium chloride, potassium bromide, sodium bromide, sodium sulfate, sodium perchlorate A solution in which an electrolyte such as sodium nitrate is dissolved can be used.
In addition to a general electrochemical cell, a special electrochemical cell that can selectively apply an electric field to a minute region using a minute electrode such as a tip of a scanning probe microscope can be used.

また、基板上にこのブロック共重合体を塗布する際に、無機セラミックス微粒子、有機遷移金属錯体結晶、貴金属微粒子、及び金属酸化物微粒子等をブロック共重合体と共存させておき、配向処理と共に固化すると、微粒子の性質により、ブロック共重合体の層構造の親水性部分又は疎水性部分にこの微粒子を集合させることができ、特徴ある層構造を有する膜を形成することができる。
例えば、親水性表面をもつ磁性酸化鉄微粒子を共重合体の溶液に分散させ、この分散液をスライドガラスやPETフィルム等に塗布し、室温で乾燥させることにより、この共重合体の層構造の親水性部分にこの微粒子が集合した層構造を有する膜を得ることができる。
Also, when applying this block copolymer on the substrate, inorganic ceramic fine particles, organic transition metal complex crystals, noble metal fine particles, metal oxide fine particles, etc. coexist with the block copolymer and solidify together with the alignment treatment. Then, depending on the properties of the fine particles, the fine particles can be aggregated in the hydrophilic portion or the hydrophobic portion of the layer structure of the block copolymer, and a film having a characteristic layer structure can be formed.
For example, magnetic iron oxide fine particles having a hydrophilic surface are dispersed in a copolymer solution, and this dispersion is applied to a slide glass, a PET film, and the like, and dried at room temperature. A film having a layer structure in which the fine particles are aggregated in the hydrophilic portion can be obtained.

このようにして形成されたブロック共重合体のミクロ相分離構造は、六方格子型のシリンダー及び球構造、ラメラ構造である。また、その構造因子となる格子定数は構成高分子鎖A及びBの各分子量に依存する。即ち、一般式(化1)中にのm及びnが、m/(m+n)=0.1〜0.9を満たす。   The microphase separation structure of the block copolymer thus formed is a hexagonal lattice type cylinder and sphere structure, or a lamellar structure. Further, the lattice constant serving as the structural factor depends on the molecular weights of the constituent polymer chains A and B. That is, m and n in the general formula (Formula 1) satisfy m / (m + n) = 0.1 to 0.9.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
製造例1
ポリ(エチレンオキシド)メチルエーテル(分子量5000)を親水性高分子鎖A、含アゾベンゼン液晶性側鎖を有する重合度が114のポリメタクリレートを疎水性高分子鎖Bとするブロック共重合体を合成した。合成は、銅錯体を触媒とする原子移動ラジカル重合法により行った。
得られたブロック共重合体は下記一般式(化1)
(式中、aは9、Rはノルマルブチル基、mは114、nは47を表す。)で表され、数平均分子量は28100、Mw/Mn=1.08、ポリメタクリレート(MA)含量は82重量%、融点は120℃であった。
The following examples illustrate the invention but are not intended to limit the invention.
Production Example 1
A block copolymer was synthesized comprising poly (ethylene oxide) methyl ether (molecular weight 5000) as hydrophilic polymer chain A and polymethacrylate having a polymerization degree of 114 having azobenzene-containing liquid crystalline side chains and hydrophobic polymer chain B as the polymer chain. The synthesis was performed by an atom transfer radical polymerization method using a copper complex as a catalyst.
The obtained block copolymer has the following general formula (Formula 1)
(Wherein, a is 9, R is a normal butyl group, m is 114, and n is 47). The number average molecular weight is 28100, Mw / Mn = 1.08, and the polymethacrylate (MA) content is 82 wt. %, Melting point was 120 ° C.

比較例1
製造例1で得た共重合体をトルエンに3質量%となるように溶解して共重合体溶液を得、この共重合体溶液を高配向性グラファイト、透明導電性インジウムスズオキシド(ITO)ガラス電極基板、及びITO-ポリエチレンテレフタレラートフィルムに1 cm2当たり0.1 mL滴下した。その直後、30 mLのトルエンが入ったサンプル瓶が設置された内容量2 Lのデシケーターに移し、5時間静置した。次いで、得られたキャスト膜を50〜80℃の温度で5〜48時間加熱し、ブロック共重合体薄膜を得た。膜厚は1.5μmであった。
このブロック共重合体薄膜について、原子間力プローブ顕微鏡(AFM)観察を行った。その結果を図1に示す。ミクロ相分離構造は主に膜面内配向であった。
Comparative Example 1
The copolymer obtained in Production Example 1 is dissolved in toluene so as to be 3% by mass to obtain a copolymer solution. This copolymer solution is made of highly oriented graphite, transparent conductive indium tin oxide (ITO) glass. 0.1 mL of 1 cm 2 was dropped on the electrode substrate and the ITO-polyethylene terephthalate film. Immediately after that, the sample bottle containing 30 mL of toluene was transferred to a desiccator having an internal volume of 2 L and allowed to stand for 5 hours. Next, the obtained cast film was heated at a temperature of 50 to 80 ° C. for 5 to 48 hours to obtain a block copolymer thin film. The film thickness was 1.5 μm.
This block copolymer thin film was observed with an atomic force probe microscope (AFM). The result is shown in FIG. The microphase separation structure was mainly in-plane orientation.

比較例1で得たブロック共重合体薄膜の上に中央に1 cm角の穴の空いた厚さ0.5 mmのフッ素樹脂製スペーサーを設置した。その穴内部に電解質として0.1 Mの臭化カリウム水溶液を注入した。注入した電解質水溶液中に対電極として白金線、参照電極として銀/塩化銀電極を配置した。装置の概略を図2に示す。ブロック共重合体薄膜基板を作用電極とし、上記電解セル一式を50〜80℃の温度に加熱し、作用電極に+1 Vの定電位を15〜30分印加した。   On the block copolymer thin film obtained in Comparative Example 1, a 0.5 mm-thick fluororesin spacer with a 1 cm square hole was placed in the center. A 0.1 M potassium bromide aqueous solution was injected into the hole as an electrolyte. A platinum wire as a counter electrode and a silver / silver chloride electrode as a reference electrode were arranged in the injected electrolyte aqueous solution. An outline of the apparatus is shown in FIG. Using the block copolymer thin film substrate as a working electrode, the set of electrolytic cells was heated to a temperature of 50 to 80 ° C., and a constant potential of +1 V was applied to the working electrode for 15 to 30 minutes.

実施例1と同じ配置のブロック共重合体薄膜に作用電極に-1 Vの定電位を印加し実施例1と同様に実験を行った。   An experiment was conducted in the same manner as in Example 1 by applying a constant potential of -1 V to the working electrode on the block copolymer thin film having the same arrangement as in Example 1.

実施例1と同じ配置のブロック共重合体薄膜に作用電極に+1〜-1 Vの電位範囲を1 V/sの走査速度で15〜30分間掃引し、実施例1と同様に実験を行った。   A block copolymer thin film having the same arrangement as in Example 1 was swept with a working electrode at a potential range of +1 to -1 V at a scanning speed of 1 V / s for 15 to 30 minutes, and an experiment was conducted in the same manner as in Example 1. It was.

試験例1
実施例1〜3で得た電気化学的修飾が施されたブロック共重合体薄膜のうち、高配向性グラファイト及びITOガラス電極を基板とした試料については、原子間力プローブ顕微鏡観察を行った。その結果を図3及び図4に示す。いずれも比較例1で観察された面内配向型のミクロ相分離構造(図1)が消失していることが分かった。
試験例2
実施例3で得た試料について原子間力プローブ顕微鏡観察を行った。その結果を図5及び図6に示す。ミクロ相分離構造は膜厚方向に垂直配向したものであった。この面外配向は、電極反応を施した中央部で顕著に観察された。
観察の結果、直径8 nm のpEO(ポリエチレンオキシド)ドットが六方格子型に配列することがわかった。
別途に行ったSAXS 測定により、本ポリマーの最安定相分離構造は、六方格子型シリンダーであることがわかっている。このことは、観察されたドットがpEO 六方格子型シリンダーの(001)面に由来するナノパターンであることを示唆している。
試験例3
実施例1〜3で得た電気化学的修飾が施されたブロック共重合体薄膜のITO-PETフィルムを基板とした試料について、0.5〜1質量%濃度の四酸化ルテニウム水溶液にかざすことによってその親水性領域を染色した。この薄膜をフィルム基板と共に熱硬化型エポキシ樹脂で包埋し、ウルトラマイクロトームを用いて膜断面の超薄切片を作製し、膜断面透過型電子顕微鏡で観察した。得られた透過型電子顕微鏡写真を図7に示す。基板とブロック共重合体界面からブロック共重合体と空気界面に至る面外配向が観察された。
Test example 1
Among the block copolymer thin films subjected to electrochemical modification obtained in Examples 1 to 3, samples using highly oriented graphite and ITO glass electrodes as substrates were subjected to atomic force probe microscope observation. The results are shown in FIGS. In any case, it was found that the in-plane oriented microphase separation structure (FIG. 1) observed in Comparative Example 1 disappeared.
Test example 2
The sample obtained in Example 3 was observed with an atomic force probe microscope. The results are shown in FIGS. The microphase-separated structure was oriented vertically in the film thickness direction. This out-of-plane orientation was remarkably observed in the central portion where the electrode reaction was performed.
As a result of observation, it was found that 8 nm diameter pEO (polyethylene oxide) dots were arranged in a hexagonal lattice pattern.
According to the SAXS measurement performed separately, the most stable phase separation structure of this polymer is known to be a hexagonal lattice type cylinder. This suggests that the observed dots are nanopatterns derived from the (001) plane of the pEO hexagonal lattice cylinder.
Test example 3
About the sample which used the ITO-PET film of the block copolymer thin film to which the electrochemical modification was given in Examples 1 to 3 as a substrate, the hydrophilicity was obtained by holding it over an aqueous ruthenium tetroxide solution having a concentration of 0.5 to 1% by mass. Sexual areas were stained. This thin film was embedded with a thermosetting epoxy resin together with a film substrate, an ultrathin section of the film cross section was prepared using an ultramicrotome, and observed with a film cross section transmission electron microscope. The obtained transmission electron micrograph is shown in FIG. Out-of-plane orientation from the substrate / block copolymer interface to the block copolymer / air interface was observed.

本発明の製法によりブロック共重合体の配向が制御されたミクロ相分離構造膜を得ることができる。このような膜は、そのままでも表面の親水性と疎水性が制御されているので、汚れにくく洗浄しやすい繊維材料や静電気の発生しにくい表面コート剤などに使われる可能性がある。また、相分離構造の各ナノ領域の性質の違いを利用した選択的メッキによって、1平方センチメートル当たり1011ビットに達する超高密度磁気記録材料や真空薄膜形成法による金属や半導体の微小ドットの作製基板に利用できる。さらに、親水性領域のイオン電導性を利用した電池用隔膜材料に利用される。 A microphase-separated structure film in which the orientation of the block copolymer is controlled can be obtained by the production method of the present invention. Since such a film has its surface hydrophilicity and hydrophobicity controlled as it is, it may be used for a fiber material that is not easily soiled and easily cleaned, or a surface coating agent that is less likely to generate static electricity. In addition, by selective plating using the difference in the properties of each nano-region of the phase-separated structure, ultra-high density magnetic recording materials that reach 10 11 bits per square centimeter, and metal or semiconductor microdot fabrication substrates using vacuum thin film formation methods Available to: Furthermore, it is utilized for the diaphragm material for batteries using the ionic conductivity of the hydrophilic region.

比較例1で得たブロック共重合体薄膜のAFMを示す図である。電界をかけていないため、分子が基板に平行に配向していることがわかる。topo像は原子間力顕微鏡による表面の凹凸をマッピングした像を表し、phase像は原子間力測定の力学応答における位相遅れをマッピングした像を表し、表面の局所的粘弾性を評価することができる。It is a figure which shows AFM of the block copolymer thin film obtained by the comparative example 1. Since no electric field is applied, it can be seen that the molecules are oriented parallel to the substrate. The topo image represents the surface irregularities mapped by the atomic force microscope, the phase image represents the phase lag in the mechanical response of the atomic force measurement, and can evaluate the local viscoelasticity of the surface . 測定装置の概略を示す図である。ガラス電極(ITO)上にブロック共重合体薄膜が形成され、その上を電解液で浸して、ガラス電極(ITO)と電解液との間に電圧を加えてブロック共重合体薄膜に電界を印加した。It is a figure which shows the outline of a measuring apparatus. A block copolymer thin film is formed on the glass electrode (ITO), which is immersed in an electrolytic solution, and a voltage is applied between the glass electrode (ITO) and the electrolytic solution to apply an electric field to the block copolymer thin film. did. 実施例1で銀/塩化銀電極に対して+1Vの電圧をかけて(電界+1x106 V/mに相当する)固化したブロック共重合体薄膜のAFMを示す図である。図1で観察された分子が基板に平行に配向している様子が観察されない。従って、分子が基板に垂直にに配向していると考えられる。を示す図である。2 is a diagram showing an AFM of a block copolymer thin film solidified by applying a voltage of +1 V to a silver / silver chloride electrode in Example 1 (corresponding to an electric field of + 1 × 10 6 V / m). FIG. It is not observed that the molecules observed in FIG. 1 are oriented parallel to the substrate. Therefore, it is considered that the molecules are oriented perpendicular to the substrate. FIG. 実施例2で銀/塩化銀電極に対して−1Vの電圧をかけて(電界-1x106 V/mに相当する)固化したブロック共重合体薄膜のAFMを示す図である。図1で観察された分子が基板に平行に配向している様子が観察されない。従って、分子が基板に垂直にに配向していると考えられる。 6 is a diagram showing an AFM of a block copolymer thin film solidified by applying a voltage of −1 V to a silver / silver chloride electrode in Example 2 (corresponding to an electric field of −1 × 10 6 V / m). FIG. It is not observed that the molecules observed in FIG. 1 are oriented parallel to the substrate. Therefore, it is considered that the molecules are oriented perpendicular to the substrate. 実施例3で銀/塩化銀電極に対して+1V又は−1Vの電圧をかけて(電界+1x106 V/mと-1x106 V/mに相当する)その間電位を15分間掃引して固化したブロック共重合体薄膜のAFMを示す図である。分子が基板に垂直に配向しているのが明瞭に観察される。Silver / (corresponding to the field + 1x10 6 V / m and -1 × 10 6 V / m) by applying a voltage of + 1V or -1V with respect to silver chloride electrode was solidified during which the potential was swept for 15 minutes in Example 3 It is a figure which shows AFM of a block copolymer thin film. It is clearly observed that the molecules are oriented perpendicular to the substrate. 実施例3で同様に電位を30分間掃引して固化したブロック共重合体薄膜のAFMを示す図である。垂直配向がより鮮明になっている。It is a figure which shows AFM of the block copolymer thin film similarly solidified by sweeping the electric potential for 30 minutes in Example 3. FIG. The vertical alignment is clearer. 実施例1で得たブロック共重合体薄膜を四酸化ルテニウム水溶液で染色したものの透過型電子顕微鏡写真を示す図である。電界をかけない場合(左図)では分子が基板に平行に配向しているのに対し、電界をかけた場合(右図)では分子が基板に垂直に配向しているのことがわかる。It is a figure which shows the transmission electron micrograph of what dye | stained the block copolymer thin film obtained in Example 1 with the ruthenium tetroxide aqueous solution. When no electric field is applied (left figure), the molecules are oriented parallel to the substrate, whereas when an electric field is applied (right figure), the molecules are oriented perpendicular to the substrate.

Claims (5)

基板上にポリマーを塗布しこのポリマーの融点より10〜100℃低い温度でこのポリマーの膜に1×10〜3×10V/mの電界を印加して該ポリマーを電界方向に配向させるミクロ相分離構造膜の製法であって、該電界を、基板を電極として、ポリマーの膜の上に電解液を塗布し、電極基板と電解液との間に所定の電圧を加えることにより印加し、該ポリマーが、親水性ポリマー成分(A)及び疎水性ポリマー成分(B)が共有結合によって結合した、分子量分布(Mw/Mn)が1.3以下であるブロック共重合体である配向の制御されたミクロ相分離構造膜の製法。 A polymer is applied on the substrate, and an electric field of 1 × 10 5 to 3 × 10 7 V / m is applied to the polymer film at a temperature 10 to 100 ° C. lower than the melting point of the polymer to orient the polymer in the electric field direction. A method for producing a microphase-separated structure film, wherein the electric field is applied by applying a predetermined voltage between the electrode substrate and the electrolytic solution by applying an electrolytic solution on the polymer film using the substrate as an electrode. Control of orientation in which the polymer is a block copolymer having a molecular weight distribution (Mw / Mn) of 1.3 or less, in which a hydrophilic polymer component (A) and a hydrophobic polymer component (B) are bonded by a covalent bond Of a microphase-separated structure membrane. 電界の最高値を1×10〜3×10V/mとして、電界をその+方向若しくは−方向又はその両方向に交互に掃引させる請求項1に記載の製法。 The manufacturing method according to claim 1, wherein the maximum value of the electric field is set to 1 × 10 5 to 3 × 10 7 V / m, and the electric field is alternately swept in the + direction, the − direction, or both directions. 前記温度が50〜80℃である請求項1又は2に記載の製法。 The process according to claim 1 or 2, wherein the temperature is 50 to 80 ° C. 前記ブロック共重合体が下記一般式(化1)
(式中、m及びnは、それぞれ5〜500の整数であり、aは1〜22の整数であり、Rは水素又は炭素数1〜22のアルキル基である。)で表される請求項1〜3のいずれか一項に記載の製法。
The block copolymer has the following general formula (Formula 1)
(Wherein, m and n are each an integer of 5 to 500, a is an integer of 1 to 22, and R is hydrogen or an alkyl group having 1 to 22 carbon atoms). The manufacturing method as described in any one of 1-3.
基板上に前記ポリマーを塗布する際に、無機セラミックス微粒子、有機遷移金属錯体結晶、貴金属微粒子、及び金属酸化物微粒子等を該ポリマーと共存させておく請求項1〜4のいずれか一項に記載の製法。 5. The inorganic polymer fine particles, organic transition metal complex crystals, noble metal fine particles, metal oxide fine particles, and the like coexist with the polymer when the polymer is applied on the substrate. The manufacturing method.
JP2004133301A 2004-04-28 2004-04-28 Manufacturing method of micro phase separation structure membrane with controlled orientation Expired - Fee Related JP4297831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133301A JP4297831B2 (en) 2004-04-28 2004-04-28 Manufacturing method of micro phase separation structure membrane with controlled orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133301A JP4297831B2 (en) 2004-04-28 2004-04-28 Manufacturing method of micro phase separation structure membrane with controlled orientation

Publications (3)

Publication Number Publication Date
JP2005314526A JP2005314526A (en) 2005-11-10
JP2005314526A5 JP2005314526A5 (en) 2007-03-08
JP4297831B2 true JP4297831B2 (en) 2009-07-15

Family

ID=35442288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133301A Expired - Fee Related JP4297831B2 (en) 2004-04-28 2004-04-28 Manufacturing method of micro phase separation structure membrane with controlled orientation

Country Status (1)

Country Link
JP (1) JP4297831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108589048A (en) * 2018-05-02 2018-09-28 北京服装学院 Orientation capillary power drive is prepared using electrostatic spinning large area efficiently to catchment the methods of hydrophobic/hydrophilic Janus composite cellulosic membranes

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964209B2 (en) 2004-12-07 2011-06-21 Boston Scientific Scimed, Inc. Orienting polymer domains for controlled drug delivery
US7347953B2 (en) * 2006-02-02 2008-03-25 International Business Machines Corporation Methods for forming improved self-assembled patterns of block copolymers
JP4621160B2 (en) * 2006-03-30 2011-01-26 キヤノン株式会社 Manufacturing method of structure
WO2010013532A1 (en) 2008-07-28 2010-02-04 株式会社船井電機新応用技術研究所 Electrochromic display device
EP2504082A4 (en) 2009-11-25 2016-11-09 Univ Sydney Membrane and membrane separation system
JP5598970B2 (en) * 2010-06-18 2014-10-01 凸版印刷株式会社 Microstructure manufacturing method, composite
CN102691175B (en) * 2012-05-07 2014-10-29 北京航空航天大学 Composite fibre membrane with unidirectional water permeable performance and preparation method thereof
JP6524704B2 (en) * 2015-02-26 2019-06-05 住友ベークライト株式会社 Block copolymer containing transition metal complex
KR101943193B1 (en) * 2017-03-29 2019-01-28 송승원 Polymer-Ceramic Hybrid Coating Composition and Method of Making Secondary Battery Separator Employing the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187197B2 (en) * 1993-03-25 2001-07-11 出光興産株式会社 Liquid crystal optical element using ferroelectric polymer liquid crystal and gradation display method thereof
JPH08240796A (en) * 1995-03-02 1996-09-17 Idemitsu Kosan Co Ltd Liquid crystal composition, liquid crystal element using same and its production
JP2939506B2 (en) * 1998-07-03 1999-08-25 富士ゼロックス株式会社 Recording method
JP3979470B2 (en) * 2002-09-11 2007-09-19 財団法人理工学振興会 Block copolymer and method for producing micro phase separation structure membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108589048A (en) * 2018-05-02 2018-09-28 北京服装学院 Orientation capillary power drive is prepared using electrostatic spinning large area efficiently to catchment the methods of hydrophobic/hydrophilic Janus composite cellulosic membranes

Also Published As

Publication number Publication date
JP2005314526A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4403238B2 (en) Microphase separation structure membrane and manufacturing method thereof
Wang et al. Electric-field-assisted assembly of polymer-tethered gold nanorods in cylindrical nanopores
JP5598970B2 (en) Microstructure manufacturing method, composite
Zhang et al. Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition
Carswell et al. Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films
JP5082101B2 (en) Method for producing nanoporous substrate
Grande et al. Surface-grafted polymers from electropolymerized polythiophene RAFT agent
Xu et al. A templateless, surfactantless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction
Osuji et al. Alignment of self-assembled hierarchical microstructure in liquid crystalline diblock copolymers using high magnetic fields
Park et al. A simple route to highly oriented and ordered nanoporous block copolymer templates
De Moel et al. Polymeric nanofibers prepared from self-organized supramolecules
JP4297831B2 (en) Manufacturing method of micro phase separation structure membrane with controlled orientation
Rajesh et al. Electrochemical polymerization of chloride doped PEDOT hierarchical porous nanostructure on graphite as a potential electrode for high performance supercapacitor
Bagherzadeh et al. Electrospun conductive nanofibers for electronics
Mulvihill et al. Synthesis of bifunctional polymer nanotubes from silicon nanowire templates via atom transfer radical polymerization
Zhang et al. Organic− Inorganic Hybrid Materials by Self-Gelation of Block Copolymer Assembly and Nanoobjects with Controlled Shapes Thereof
JP5988258B2 (en) Method for producing fine structure, method for producing composite
Chen et al. Confined self-assembly enables stabilization and patterning of nanostructures in liquid-crystalline block copolymers
Grigorova et al. Magnetic field induced orientation in diblock copolymers with one crystallizable block
Fahmi et al. Spatially correlated metallic nanostructures on self-assembled diblock copolymer templates
Koizumi et al. Synthesis of poly (3, 4-ethylenedioxythiophene)–platinum and poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) hybrid fibers by alternating current bipolar electropolymerization
Boontongkong et al. Selective electroless copper deposition within block copolymer microdomains
Rehse et al. Surface reconstructions of lamellar ABC triblock copolymer mesostructures
Abul Kashem et al. Selective doping of block copolymer nanodomains by sputter deposition of iron
Park et al. Anisotropic Micellar Nanoobjects from Reactive Liquid Crystalline Rod− Coil Diblock Copolymers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees