JP4297430B2 - Non-combustion gas recovery type exhaust gas treatment device gas recovery device and gas recovery method - Google Patents

Non-combustion gas recovery type exhaust gas treatment device gas recovery device and gas recovery method Download PDF

Info

Publication number
JP4297430B2
JP4297430B2 JP2004043373A JP2004043373A JP4297430B2 JP 4297430 B2 JP4297430 B2 JP 4297430B2 JP 2004043373 A JP2004043373 A JP 2004043373A JP 2004043373 A JP2004043373 A JP 2004043373A JP 4297430 B2 JP4297430 B2 JP 4297430B2
Authority
JP
Japan
Prior art keywords
gas
pressure
recovery
converter
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004043373A
Other languages
Japanese (ja)
Other versions
JP2005232540A (en
Inventor
芳宜 奥山
信幸 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JP Steel Plantech Co
Original Assignee
JP Steel Plantech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JP Steel Plantech Co filed Critical JP Steel Plantech Co
Priority to JP2004043373A priority Critical patent/JP4297430B2/en
Publication of JP2005232540A publication Critical patent/JP2005232540A/en
Application granted granted Critical
Publication of JP4297430B2 publication Critical patent/JP4297430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

この発明は、非燃焼型転炉排ガス処理装置の排ガスの回収/放散時に過大なガス圧力の変動を抑制して、炉口からのガスの噴き出し、または空気の吸込みを最少にするとともに、吹錬中のガス回収時間を延長してガス回収量の増加を可能にした、乾式電気集塵器を用いた転炉の非燃焼式ガス回収型排ガス処理装置のガス回収装置及びガス回収方法に関するものである。 The present invention, by suppressing the variation of excessive gas pressure during the recovery / dissipation of the non-combustion-type converter exhaust gas treatment system gas, ejection of the gas from the furnace opening, or with the suction air to minimize the blow Gas recovery device and gas recovery method for non-combustion type gas recovery type exhaust gas treatment equipment for converters using a dry electrostatic precipitator, which can increase the gas recovery amount by extending the gas recovery time inside is there.

転炉の操業では一酸化炭素(CO)を主成分とするガスが多量に発生する。このガスは高温・高含塵であるから、これを冷却・除塵した後、回収して燃料等に利用されるが、除塵装置には湿式集塵器を用いたシステムと乾式電気集塵器を用いたシステムがある。
乾式電気集塵器を用いた転炉の排ガス処理装置としては、特公昭59−18625号公報に記載されたもの、図1に示される構成機器からなるもの等がある。図1に示された乾式電気集塵器を用いた転炉の排ガス処理装置では、吹錬により転炉1から発生した約1500℃の高温・高含塵のガスは、誘引送風機9によって、スカート2を経て転炉上方に設置した冷却器3に吸引され、冷却器3で約1000℃まで冷却される。次に、冷却されたガスは高効率のダスト捕集率を得るために転炉ダストの見掛固有抵抗が最適値となるようにエバポレーションクーラ4で水を噴霧し、ガス温度を150℃〜200℃に制御して乾式電気集塵器7に導かれる。乾式電気集塵器7により除塵された清浄なガスは、含有する一酸化炭素(CO)濃度によりガス流路切替装置10を介して放散塔(煙突)11から大気放散、又はガス回収ダクト12、ガスクーラ13を経てガスホルダ14に回収される。
In the operation of the converter, a large amount of gas mainly composed of carbon monoxide (CO) is generated. Since this gas is high temperature and high in dust content, it is cooled and removed, and then recovered and used for fuel, etc., but the dust removal system has a wet dust collector system and a dry electric dust collector. There is a system used.
As an exhaust gas treatment apparatus for a converter using a dry electrostatic precipitator, there are those described in Japanese Examined Patent Publication No. 59-18625, and those composed of the components shown in FIG. In the exhaust gas treatment apparatus for a converter using a dry electrostatic precipitator shown in FIG. 1, a high temperature and high dust content gas of about 1500 ° C. generated from the converter 1 by blowing is sent to the skirt by an induction fan 9. 2 is sucked into the cooler 3 installed above the converter and cooled to about 1000 ° C. by the cooler 3. Next, in order to obtain a highly efficient dust collection rate, the cooled gas is sprayed with water with an evaporator cooler 4 so that the apparent specific resistance of the converter dust becomes an optimum value, and the gas temperature is set to 150 ° C. to The temperature is controlled at 200 ° C. and guided to the dry electrostatic precipitator 7. The clean gas removed by the dry electrostatic precipitator 7 is diffused into the atmosphere from the diffusion tower (chimney) 11 via the gas flow switching device 10 or the gas recovery duct 12, depending on the concentration of carbon monoxide (CO) contained. It is collected in the gas holder 14 through the gas cooler 13.

ガス流路切替装置10には、特公昭59−18625号公報に示されるような2枚の密閉型バタフライ弁を90度位相をずらして連結し、2つの弁が常に同時に同速度で反対方向に作動し、一方の弁が開方向に作動する時、他方の弁は閉方向に作動し、作動終了時には必ず一方の弁が全開となり、他方の弁は全閉となる所謂三方弁や、特公平3−21605号公報に開示される2個のベル形弁を用いた装置が使用されている。   The gas flow switching device 10 is connected to two sealed butterfly valves as shown in Japanese Patent Publication No. 59-18625 with a 90 ° phase shift, and the two valves are always simultaneously at the same speed in the opposite direction. When one valve operates in the opening direction, the other valve operates in the closing direction, and when the operation ends, one valve is always fully open and the other valve is fully closed. A device using two bell-type valves disclosed in Japanese Patent Laid-Open No. 3-21605 is used.

また、乾式電気集塵器を使用した転炉の排ガス処理設備では、湿式ベンチュリースクラバを用いた転炉の排ガス処理設備に比べ、圧力損失が格段に少なく送風機の昇圧能力は1/3〜1/4となる。従って、ガスホルダ圧力を300〜350mmAqとした場合、誘引送風機の入口圧力は−150〜−200mmAq、出口圧力は管路抵抗を含めて400〜450mmAqとなり、昇圧能力が550〜650mmAq程度の軸流ファンが採用される。   In addition, the converter exhaust gas treatment facility using a dry electrostatic precipitator has much less pressure loss than the converter exhaust gas treatment facility using a wet venturi scrubber, and the boosting capacity of the blower is 1/3 to 1 / 4 Therefore, when the gas holder pressure is set to 300 to 350 mmAq, the inlet pressure of the induction fan is -150 to -200 mmAq, the outlet pressure is 400 to 450 mmAq including the pipe resistance, and the axial flow fan having a boosting capacity of about 550 to 650 mmAq is used. Adopted.

吹錬が開始されると、吹込まれた酸素と溶銑中の炭素が反応し大量のガスが発生するが、吹錬の初期は一酸化炭素(CO)濃度が低いため燃焼して二酸化炭素(CO)として大気中に放散される。このときのガス圧力は誘引送風機入口で−150〜−200mmAq、出口では放散筒の圧力損失とドラフト圧力の差により0〜50mmAqとなる。吹錬が進行し、発生ガス量が増加して一酸化炭素(CO)濃度が充分に高くなったら、誘引送風機出口のガス流路はガス流路切替装置を介して大気放散側からガスホルダ側に切替えられる。このときガス流路切替装置での流路切替を単純に行うと、誘引送風機出口のガス圧力は放散時のガス圧力0〜50mmAqからガスホルダ圧力に管路抵抗を加えた400〜450mmAqに急激に変化し、逆にガス回収から大気放散に切替えた時は、誘引送風機出口圧力が400〜450mmAqから0〜50mmAqに急変することになる。 When blowing is started, the blown oxygen reacts with the carbon in the hot metal to generate a large amount of gas, but at the initial stage of blowing, the carbon monoxide (CO) concentration is low, so combustion occurs and carbon dioxide (CO 2 ) Dissipated into the atmosphere. The gas pressure at this time is -150 to -200 mmAq at the inlet of the induction fan, and 0 to 50 mmAq at the outlet due to the difference between the pressure loss of the diffusion cylinder and the draft pressure. When blowing progresses and the amount of generated gas increases and the carbon monoxide (CO) concentration becomes sufficiently high, the gas flow path at the outlet of the induction blower is changed from the atmospheric emission side to the gas holder side via the gas flow switching device. Switched. At this time, if the flow path switching is simply performed by the gas flow path switching device, the gas pressure at the outlet of the induction blower rapidly changes from 0 to 50 mmAq at the time of dissipation to 400 to 450 mmAq by adding pipe resistance to the gas holder pressure. On the contrary, when the gas recovery is switched to the atmospheric dissipation, the suction blower outlet pressure suddenly changes from 400 to 450 mmAq to 0 to 50 mmAq.

一方、転炉の吹錬においては、送酸量、副原料の投入、炉内反応の変化等により炉口発生ガス量が常に変動するので、転炉口から冷却器間のガス圧力を制御し、炉口部の吸込み空気量、噴き出しガス量を最少とする所謂炉内圧制御がおこなわれる。しかし、乾式電気集塵器を用いた転炉の排ガス処理装置では、集塵器内の通過ガス流速が遅く集塵器内容積が大きいこと、誘引送風機昇圧能力が小さいこと等から時定数が大きくなる等、一般的なダンパを用いての炉口ガス圧力または排ガス流量制御にはさまざまな問題があり、誘引送風機の回転数変更による制御方式が採用され、回転数変更に短時間で応答するGD(慣性2次モーメント)の小さい軸流ファンが使用されている。 On the other hand, in converter blowing, the amount of gas generated at the furnace port always fluctuates due to changes in the amount of acid sent, the addition of auxiliary materials, the reaction in the furnace, etc., so the gas pressure between the converter port and the cooler is controlled. In other words, so-called furnace pressure control is performed to minimize the amount of air sucked into the furnace port and the amount of gas blown out. However, in an exhaust gas treatment device for a converter using a dry electrostatic precipitator, the time constant is large because the passing gas flow rate in the precipitator is slow, the volume of the precipitator is large, the pressure boosting capacity of the induction fan is small, etc. There are various problems in controlling the gas pressure or the exhaust gas flow rate using a general damper, and the control method by changing the rotation speed of the induction fan is adopted, and the GD responds to the rotation speed change in a short time. 2 An axial fan with a small (second moment of inertia) is used.

然しながら、回転数制御方式では急激なガス圧力変動に迅速に追従することが困難で、特にガス回収/放散の切替え時のガス圧力変動が問題となる。即ち、誘引送風機が100%の回転数で運転されているガス放散時と回収時では、誘引送風機の出口圧力は0〜50mmAq←→400〜450mmAqと短時間の間に大きく変動し、その影響は転炉炉口部まで波及する。このため、回収開始時には炉口から多量の転炉ガスが噴き出し、他方、放散開始時には多量の空気が炉口に吸込まれる。
炉口部からの転炉排ガスの噴き出しは、工場内の作業環境の悪化や建屋換気集塵器の高温ガスの吸込みによる機器破損、また吹錬末期の回収終了時に大量の空気を吸込むと冷却器内で爆発性の高いCOとO(空気)の予混合ガスが発生する危険性が有り安全上から好ましくない。
However, in the rotational speed control method, it is difficult to quickly follow a rapid gas pressure fluctuation, and the gas pressure fluctuation particularly at the time of switching of gas recovery / dispersion becomes a problem. In other words, at the time of gas emission and recovery when the induction fan is operated at a rotation speed of 100%, the outlet pressure of the induction fan fluctuates greatly from 0 to 50 mmAq ← → 400 to 450 mmAq in a short time, and the influence is It spreads to the converter furnace mouth. For this reason, a large amount of converter gas is ejected from the furnace port at the start of recovery, while a large amount of air is sucked into the furnace port at the start of emission.
Ejection of the converter exhaust gas from the furnace opening portion, the suction by equipment breakage of hot gas deterioration and building ventilation precipitator working environment in the factory, also a draw a large amount of air to the recovery at the end end of the blow cooler In this case, there is a risk that a premixed gas of CO and O 2 (air) having high explosive properties is generated, which is not preferable for safety.

これらの不都合を防ぐための方法が、特公昭37−18355号公報、特公昭47−11562号公報、特公平3−21605号公報に示されているが、いずれも上記の問題を充分に解決するには至っていない。
即ち、特公昭37−18355号公報のものにおいては、回収中及び放散中は共に、「煙突ダンパ(放散圧力制御ダンパ)上流のガス圧をホルダ圧と等しくする制御」を採用しているため、回収中は煙突ダンパが全閉となり回収から放散に切替えたとき大きな圧力変動が発生するので、放散→回収時については問題はないが、回収→放散時には問題が解決されていない。
Methods for preventing these inconveniences are disclosed in Japanese Patent Publication No. 37-18355, Japanese Patent Publication No. 47-11562, and Japanese Patent Publication No. 3-21605, all of which sufficiently solve the above problems. It has not reached.
That is, in the thing of Japanese Examined Patent Publication No. 37-18355, during the recovery and the emission, both “the control to make the gas pressure upstream of the chimney damper (the emission pressure control damper) equal to the holder pressure” is adopted. During the recovery, the chimney damper is fully closed and a large pressure fluctuation occurs when switching from recovery to emission. Therefore, there is no problem in the case of emission → recovery, but the problem is not solved in the case of recovery → emission.

特公昭47−11562号公報のものは上記の問題を解決するためになされたもので、ガス放散時は放散塔(大気放散側)内のガス圧力を検知してダンパ開度を設定値になるように制御し、ガス回収中には排ガス流量を計測し、刻々の排ガス流量に応じたダンパ開度に制御するようにしたものである。しかし、この方法では以下のような不具合がある。   Japanese Patent Publication No. 47-11562 has been made to solve the above problem, and when the gas is released, the gas pressure in the diffusion tower (atmospheric emission side) is detected to set the damper opening to the set value. The exhaust gas flow rate is measured during gas recovery, and the damper opening degree is controlled according to the exhaust gas flow rate every moment. However, this method has the following problems.

(1)転炉の操業では発生ガス量が常に変動し、更にガス回収をしない間のガスホルダ圧力は回収ガス使用先への払出し量の変動等により一定しないので、「放散塔内圧を検知し設定圧力に開度制御する方式」では、放散塔内圧とガスホルダ内圧の差が大きくなり、且つこの差が一定しないため実際問題として放散塔圧力を決定することが困難である。このため、放散→回収時の圧力変動を完全に抑制することができずガス圧変動の影響を若干下げる程度の効果しかない。 (1) During converter operation, the amount of gas generated constantly fluctuates, and the gas holder pressure during gas recovery is not constant due to fluctuations in the amount of gas discharged to the recovery gas user. In the “method of controlling the opening degree to the pressure”, the difference between the diffusion tower internal pressure and the gas holder internal pressure becomes large, and this difference is not constant, so it is difficult to determine the diffusion tower pressure as an actual problem. For this reason, the pressure fluctuation at the time of emission → recovery cannot be completely suppressed, and there is only an effect of slightly reducing the influence of the gas pressure fluctuation.

(2)回収中に排ガス流量を計測し刻々の排ガス流量に応じたダンパ開度に制御することは、誘引送風機入口側に流量計を設置した場合、誘引送風機出口と圧力・温度条件が異なるため実風量を計算しなければならないが、乾式電気集塵器を用いた転炉の排ガス処理装置では、排ガス中の水蒸気量を正確に測定できないため排ガス比重量が不明となり、正しい実ガス流量を求めることができない。 (2) Measuring the exhaust gas flow rate during recovery and controlling the damper opening according to the exhaust gas flow rate every time, when the flow meter is installed on the inlet side of the induction fan, the pressure / temperature conditions are different from the induction fan outlet Although the actual air volume must be calculated, the converter exhaust gas treatment system using a dry electrostatic precipitator cannot accurately measure the amount of water vapor in the exhaust gas, so the specific weight of the exhaust gas is unknown, and the correct actual gas flow rate is obtained. I can't.

更に詳細に説明すると、集塵器に乾式電気集塵器を用いた場合、集塵効率を向上させるために、水噴霧によりガス温度を150℃〜200℃にすることは上記のとおりであるが、転炉の操業では炉内反応状況が常に変動するため、発生ガス量、炉口燃焼率、ガス温度が常に変動する。このため電気集塵器入口ガス温度を一定にするためにエバポレーションクーラでの噴霧水量が常に制御されている。エバポレーションクーラへの噴霧水量はエバポレーションクーラ出口のガス温度をフィードバックして制御されるが、排ガス量の変動やガス温度の変動に完全には追従できず、また、噴霧水の一部は水滴或はダストに捕捉されてエバポレーションクーラ下部に落下するので、排ガス中の水蒸気量を正確に把握できない。即ち、排ガス中の水蒸気は飽和状態ではないので、排ガス中の水蒸気量を求めることができず、したがって、正確な排ガス流量を計測することができない。
従って、単に排ガス流量を用いた開度調整のみでは、実際の排ガス流量に則した開度に対する誤差が大きく、回収/放散の切替え時のガス圧変動を完全に回避することが困難であるのが実情である。
More specifically, when a dry electrostatic precipitator is used as the precipitator, the gas temperature is set to 150 ° C. to 200 ° C. by water spray in order to improve the dust collecting efficiency. In the operation of the converter, the reaction state in the furnace constantly fluctuates, so that the amount of gas generated, furnace port combustion rate, and gas temperature constantly fluctuate. For this reason, the amount of sprayed water in the evaporation cooler is always controlled in order to keep the electric dust collector inlet gas temperature constant. Although the amount of water sprayed to the evaporation cooler is controlled by feeding back the gas temperature at the outlet of the evaporation cooler, it cannot completely follow the fluctuations in the exhaust gas amount and the gas temperature. Alternatively, it is trapped by dust and falls to the bottom of the evaporation cooler, so the amount of water vapor in the exhaust gas cannot be accurately grasped. That is, since the water vapor in the exhaust gas is not in a saturated state, the amount of water vapor in the exhaust gas cannot be obtained, and therefore the accurate exhaust gas flow rate cannot be measured.
Therefore, simply by adjusting the opening degree using the exhaust gas flow rate, there is a large error with respect to the opening degree in accordance with the actual exhaust gas flow rate, and it is difficult to completely avoid the gas pressure fluctuation at the time of recovery / dispersion switching. It is a fact.

特公平3−21605号公報のものは2個のベル形弁を用いて放散→回収時のガス圧力変動を抑制する方法であり、この方法には次の問題がある。
(1)回収→放散の切替え時は、回収側弁を全閉とした後放散側を開としているため、瞬間的に誘引送風機の出口管路が完全閉塞される時期があり、このため、大きなガス圧変動を生じることが避けられない。
(2)放散→回収の切替え時は2個のベル形弁の作動時間が異なり、更に個別に独立して作動するため、短時間で明細書に記載されたような滑らかな圧力変化で誘引送風機吐出側圧力を完全にガスホルダ圧力と等圧にすることが困難であり、各弁の作動時間が長くならざるを得ず、したがって、回収系への切替え時間が長くなる。
Japanese Patent Publication No. 3-21605 discloses a method of suppressing gas pressure fluctuations during emission → recovery using two bell valves, and this method has the following problems.
(1) At the time of switching from collection to diffusion, the recovery side valve is fully closed and then the diffusion side is opened, so there is a moment when the outlet pipe of the induction blower is momentarily completely closed. It is inevitable that the gas pressure fluctuates.
(2) At the time of switching from diffusion to recovery, the operation time of the two bell-shaped valves is different, and further, they operate independently independently. Therefore, the induction blower with a smooth pressure change as described in the specification in a short time It is difficult to make the discharge side pressure completely equal to the gas holder pressure, and the operation time of each valve has to be long. Therefore, the switching time to the recovery system becomes long.

(3)ガスホルダ圧力は常に変動するために、ベル形弁の作動時間を一定の時間に固定すると、圧力変動が大きくなるケースのあることが避けられない。
(4)放散→回収の切替えは、2個のベル形弁が収納されたガス流路切替装置内が所定の圧力に上昇するまで放散側弁を閉とし、所定圧力に上昇後回収側弁を開方向に作動させ放散側弁は全閉とするが、図3からも明らかなように、放散側弁開度と回収側弁開度が等しくなった後、放散側弁が全閉となるまでは放散筒側にガスが流出することになるので、安全上好ましくない。
(5)2個のベル形弁の作動方法と作動時間が異なるため、制御系が複雑となり作動時間調整に時間がかかる。
更に、これらの従来技術には吹錬の緊急停止時に対する処置が考慮されておらず、転炉操業において最も危険な吹錬最盛期の吹錬中断に対する安全性に問題がある。
(3) Since the gas holder pressure constantly fluctuates, it is inevitable that there are cases where the pressure fluctuation increases if the operating time of the bell-shaped valve is fixed at a certain time.
(4) Switching from diffusion to recovery is performed by closing the diffusion side valve until the inside of the gas flow path switching device in which the two bell-shaped valves are housed rises to a predetermined pressure, and after raising the predetermined pressure, The release side valve is fully closed by operating in the opening direction. As is apparent from FIG. 3, after the release side valve opening and the recovery side valve opening are equal, the release side valve is fully closed. Is unfavorable for safety, because gas flows out to the diffusion tube side.
(5) Since the operation method and operation time of the two bell-shaped valves are different, the control system becomes complicated and it takes time to adjust the operation time.
Further, these prior arts do not consider measures for emergency stop of blowing, and there is a problem in safety with respect to the interruption of blowing during the most dangerous blowing season in the converter operation.

特公昭37−18355号公報Japanese Patent Publication No.37-18355 特公昭47−11562号公報Japanese Patent Publication No. 47-11562 特公平3−21605号公報Japanese Patent Publication No. 3-21605

この発明は上記事情に鑑みなされたもので、その目的は、転炉排ガスの回収/放散時の過大なガス圧変動を抑制して、炉口からのガスの噴き出し及び空気の吸込みを最少にするとともに、回収/放散時の誘引送風機吐出圧制御時間を短縮し、吹錬中のガス回収時間を延長してガス回収量を増加させることができ、更に吹錬最盛期の吹錬中断に対しても安全な排ガス処理装置及び排ガス回収方法を提供するものである。 The present invention has been made in view of the above circumstances, and its purpose is to suppress excessive gas pressure fluctuations during recovery / dispersion of converter exhaust gas, thereby minimizing gas ejection from the furnace port and air suction. At the same time, the induction blower discharge pressure control time during recovery / dispersion can be shortened, the gas recovery time during blowing can be extended, and the amount of recovered gas can be increased. Provide a safe exhaust gas treatment apparatus and exhaust gas recovery method.

〔解決手段1〕(請求項1に対応)
上記課題を解決するための解決手段1は、乾式電気集塵器を用いた転炉の非燃焼式ガス回収型排ガス処理装置において、次の(イ)、(ロ)及び(ハ)によるものである。
(イ)ガス回収ダクト内圧力検出装置と、誘引送風機の吸込み側ガス圧力検出装置及び吐出側ガス圧力検出装置と、吸込み側ガス温度検出装置及び吐出側ガス温度検出装置と、前記誘引送風機の回転数検出装置と、前記誘引送風機駆動用電動機の電流値又は軸動力検出装置と、大気放散側ダクト内に設けた放散圧力制御ダンパとを備えていること。
(ロ)吹錬時の転炉発生ガスを大気中に放散している期間は、大気放散側のガス圧力をガス回収ダクト内圧力と同じ圧力になるように、前記放散圧力制御ダンパの開度を制御すること。
(ハ)ガスホルダに転炉発生ガスを回収している期間は、前記誘引送風機の吸込み側ガス圧力と、吐出側ガス圧力と、吸込み側ガス温度と、吐出側ガス温度と、前記誘引送風機の回転数と、前記誘引送風機駆動用電動機の電流値又は軸動力と、排ガス組成とにより前記誘引送風機の性能曲線を作成し、これを実操業で実測した値によって使用状態に補正し、この補正性能曲線の誘引送風機全圧曲線と、実操業で実測した誘引送風機全圧(吸い込み圧力+吐出圧)との交点から前記誘引送風機出口の実ガス量を求め、該求められた実ガス量に応じて予め定められた開度となるように前記放散圧力制御ダンパの開度を制御すること。
[Solution 1] (corresponding to claim 1)
Solution 1 for solving the above-mentioned problems is based on the following (a), (b), and (c) in a non-combustion gas recovery type exhaust gas treatment apparatus for a converter using a dry electrostatic precipitator. is there.
(A) Pressure detection device in the gas recovery duct, suction side gas pressure detection device and discharge side gas pressure detection device of the induction fan, suction side gas temperature detection device and discharge side gas temperature detection device, and rotation of the induction fan A number detection device, a current value or shaft power detection device of the induction fan driving motor, and a diffusion pressure control damper provided in the air diffusion side duct.
(B) The opening of the diffusion pressure control damper is set so that the gas pressure on the atmospheric diffusion side is the same as the pressure in the gas recovery duct during the period in which the converter gas generated during blowing is diffused into the atmosphere. To control.
(C) During the period in which the converter generated gas is collected in the gas holder, the suction side gas pressure, the discharge side gas pressure, the suction side gas temperature, the discharge side gas temperature, and the rotation of the induction fan The performance curve of the induction blower is created based on the number, the current value or shaft power of the induction blower drive motor, and the exhaust gas composition, and this is corrected to the use state by the value actually measured in actual operation. The actual gas amount at the outlet of the induced blower is obtained from the intersection of the induced blower total pressure curve and the induced blower total pressure (suction pressure + discharge pressure) measured in actual operation, and in advance according to the obtained actual gas amount. Controlling the opening degree of the diffusion pressure control damper so as to obtain a predetermined opening degree;

〔作 用〕
吹錬時の転炉発生ガスを大気中に放散している期間は、大気放散側のガス圧力がガス回収ダクト内圧力と同じ圧力になるので、前記ガスを大気中に放散している状態からガスを回収するように切替えた場合でも、誘引送風機吐出圧力の急変を防止することができる。また、ガスホルダに転炉発生ガスを回収している期間は、前記誘引送風機出口の実ガス量を求めて、該実ガス量に応じて放散圧力制御ダンパの開度を制御するので、前記ガスを回収している状態からガスを大気中に放散するように切替えた場合でも、前記誘引送風機吐出圧力の急変を防止することができる。
[Operation]
During the period in which the converter gas generated during blowing is released into the atmosphere, the gas pressure on the atmosphere release side is the same as the pressure inside the gas recovery duct, so the gas is released into the atmosphere. Even when switching is made so as to recover the gas, it is possible to prevent a sudden change in the suction blower discharge pressure. Further, during the period when the converter generated gas is collected in the gas holder, the actual gas amount at the outlet of the induction blower is obtained, and the opening of the diffusion pressure control damper is controlled according to the actual gas amount. Even when the gas is switched from the recovered state to the atmosphere, it is possible to prevent a sudden change in the suction blower discharge pressure.

〔実施態様1〕(請求項2に対応)
実施態様1は、上記解決手段1のガス回収型排ガス処理装置において、放散圧力制御ダンパの制御が、吹錬開始からガス流路切替装置のガス回収作動が完了するまでの期間と、ガス回収終了予定時間の適宜時間前からガス流路切替装置のガス放散作動が完了するまでの期間に行われることである。
〔作 用〕
放散圧力制御ダンパの制御が、ガス流路切替装置によってガス流路を切替える時の所定の時間前から、前記切替えが完了するまでの期間だけ行われる。
[Embodiment 1] (corresponding to claim 2)
Embodiment 1 is the gas recovery type exhaust gas treatment apparatus of Solution 1 described above, in which the control of the diffusion pressure control damper is performed during the period from the start of blowing to the completion of the gas recovery operation of the gas flow path switching device, and the end of gas recovery This is performed during a period from an appropriate time before the scheduled time until the gas diffusion operation of the gas flow path switching device is completed.
[Operation]
The control of the diffusion pressure control damper is performed only for a period from a predetermined time before switching the gas flow path by the gas flow path switching device until the switching is completed.

〔実施態様2〕(請求項3に対応)
実施態様2は、上記解決手段1又は実施態様1のガス回収型排ガス処理装置において、吹錬中の転炉発生ガスを大気に放散している期間、回収ガスホルダに回収している期間のいずれの期間であるかに関わらず、吹錬が正常な方法以外の方法で停止された場合、制御系−緊急停止系切替信号によってダンパ操作系を制御系から緊急停止系に切り替えて、ダンパ全開信号により前記放散圧力制御ダンパを直ちに全開にすることである。
〔作 用〕
吹錬中に異常な方法で操業が停止された場合は、放散圧力制御ダンパを直ちに全開にして、転炉排ガスを速やかに大気中へ排出することができる。
[Embodiment 2] (corresponding to claim 3)
In the gas recovery type exhaust gas treatment apparatus according to the above-described Solution 1 or Embodiment 1, any one of the period in which the converter generated gas being blown is released to the atmosphere and the period in which the converter gas is recovered in the recovery gas holder Regardless of the period, when blowing is stopped by a method other than the normal method, the damper operation system is switched from the control system to the emergency stop system by the control system-emergency stop system switching signal, and the damper full open signal is The release pressure control damper is immediately fully opened.
[Operation]
When the operation is stopped by an abnormal method during blowing, the diffusion pressure control damper can be immediately fully opened to quickly discharge the converter exhaust gas into the atmosphere.

〔解決手段2〕(請求項4に対応)
上記課題を解決するための解決手段2は、乾式電気集塵器を用いた転炉の非燃焼式ガス回収型排ガス処理装置のガス回収方法において、次の(イ)及び(ロ)によるものである。
(イ)吹錬時の排ガスを大気中に放散している期間は、大気放散側ガス圧力をガス回収ダクト内圧と同じ圧力に調整するように、大気放散側ダクトの放散圧力制御ダンパの開度を制御し、ガス放散からガス回収へのガス流路切替時に誘引送風機吐出圧力の急変を防止することにより、炉口部からのガスの噴き出しを防止すると共に、ガス流路切替時間を短縮して回収ガス量を増加させること。
(ロ)排ガスを回収している期間は、誘引送風機の吸込み側ガス圧力と、吐出側ガス圧力と、吸込み側ガス温度と、吐出側ガス温度と、前記誘引送風機の回転数と、前記誘引送風機駆動用電動機の電流値又は軸動力と、排ガス組成とから前記誘引送風機の性能曲線を作成し、これを実操業で実測した値によって使用状態に補正し、この補正性能曲線の誘引送風機全圧曲線と、実操業で実測した誘引送風機全圧(吸込み圧+吐出圧)との交点から前記誘引送風機出口の実ガス量を求め、該求められた実ガス量に応じて予め定められた開度になるように前記放散ガス圧力制御ダンパの開度を制御し、ガス回収からガス放散へのガス流路切替時に前記誘引送風機吐出圧力の急変を防止することにより、炉口部からの空気の過剰吸込みを防止し冷却器内でのCOとO(空気)の予混合ガス発生の危険を回避すること。
[Solution 2] (corresponding to claim 4)
Solution 2 for solving the above-mentioned problems is based on the following (a) and (b) in the gas recovery method of the non-combustion gas recovery type exhaust gas treatment device for a converter using a dry electrostatic precipitator. is there.
(B) During the period when the exhaust gas at the time of blowing is diffused into the atmosphere, the opening of the diffused pressure control damper of the atmospheric diffuser side duct is adjusted so that the atmospheric diffused gas pressure is adjusted to the same pressure as the gas recovery duct internal pressure. By controlling the gas flow and preventing sudden changes in the induction blower discharge pressure when switching the gas flow path from gas dissipation to gas recovery, it is possible to prevent gas blowout from the furnace port and reduce the gas flow path switching time. Increase the amount of recovered gas.
(B) The period during which the exhaust gas is collected includes the suction side gas pressure, the discharge side gas pressure, the suction side gas temperature, the discharge side gas temperature, the rotation speed of the induction fan, and the induction fan. Create a performance curve of the induction blower from the current value or shaft power of the driving motor and the exhaust gas composition , correct this to the use state by the value actually measured in the actual operation, and the induced blower total pressure curve of this correction performance curve And the actual gas amount at the outlet of the induction blower from the intersection of the induced blower total pressure (suction pressure + discharge pressure) measured in actual operation, and a predetermined opening according to the obtained actual gas amount. Excessive air intake from the furnace port by controlling the opening of the diffusion gas pressure control damper to prevent sudden change in the induction blower discharge pressure when switching the gas flow path from gas recovery to gas diffusion Prevent cooler Avoiding CO and O 2 Danger of premixed gas generation (air) at.

〔作 用〕
吹錬時の転炉発生ガスを大気中に放散している期間は、大気放散側のガス圧力がガス回収ダクト内圧力と同じ圧力になるので、前記ガスを大気中に放散している状態からガスを回収するように切替えた場合でも、誘引送風機吐出圧力の急変を防止することができ、炉口部からのガスの噴き出しを防止することができる。また、ガスホルダに転炉発生ガスを回収している期間は、前記誘引送風機出口の実ガス量を求めて、該実ガス量に応じて放散圧力制御ダンパの開度を制御するので、前記ガスを回収している状態からガスを大気中に放散するように切替えた場合でも、前記誘引送風機吐出圧力の急変を防止することができ、炉口部からの空気の過剰吸込みを防止することができる。
[Operation]
During the period in which the converter gas generated during blowing is released into the atmosphere, the gas pressure on the atmosphere release side is the same as the pressure inside the gas recovery duct, so the gas is released into the atmosphere. Even when switching to recover the gas, it is possible to prevent a sudden change in the suction blower discharge pressure, and to prevent the gas from being blown out from the furnace port. Further, during the period when the converter generated gas is collected in the gas holder, the actual gas amount at the outlet of the induction blower is obtained, and the opening of the diffusion pressure control damper is controlled according to the actual gas amount. Even when the gas is switched from the recovered state to dissipate into the atmosphere, a sudden change in the suction blower discharge pressure can be prevented, and excessive intake of air from the furnace port can be prevented.

〔実施態様3〕(請求項5に対応)
実施態様3は、上記解決手段2の排ガス回収方法において、吹錬中の排ガスを大気に放散している期間、回収ガスホルダに回収している期間のいずれの期間であるかに関わらず、吹錬が正常な方法以外の方法で停止された場合、前記放散圧力制御ダンパの開度を直ちに全開にすることである。
〔作 用〕
上記実施態様2の作用と同じである。
[Embodiment 3] (corresponding to claim 5)
Embodiment 3 is the exhaust gas recovery method of Solution 2 above, regardless of whether the exhaust gas being blown is released to the atmosphere or the recovery gas holder is recovered in the blowing gas. Is stopped by a method other than the normal method, the opening degree of the diffusion pressure control damper is immediately fully opened.
[Operation]
The operation is the same as that of the second embodiment.

本発明の効果を主な請求項毎に整理すれば、次のとおりである。
(1) 請求項1及び請求項4に係る発明の効果
大気放散側ダクトに放散圧力制御ダンパを設置し、ガス放散中はガス回収ダクト内圧と同圧に、またガス回収中は回収中の転炉ガス量に見合う開度に制御するようにしたので、ガス放散/ガス回収の切替え時にガス圧力が大幅に変動することがなく、ガス回収からガス放散への切替え時においても、転炉−スカート間(炉口部)から過剰な空気を吸込むことがなく、冷却器内で爆発する危険のある予混合ガスの発生を防止することができる。また、ガス放散からガス回収への切替え時においても、転炉−スカート間から大量の転炉排ガスが噴出することがなく、工場内の作業環境の悪化や建屋換気集塵器の高温ガスの吸込みによる機器の破損を防止することができる。
そして、ガス流路切替装置内の2個の弁(例えば、ベル形弁)を同時に作動させることが可能であるので、回収ガス量の増加と安全性が向上する。更に、前記2個の弁の作動時間を同じにすることができるので、ガス流路切替装置の作動シーケンスが簡略化され、作動時間の調整が容易となり、メンテナンスに要する時間を大幅に短縮することができる。
The effects of the present invention are summarized for each main claim as follows.
(1) Effects of the Inventions According to Claims 1 and 4 A diffusion pressure control damper is installed in the air diffusion side duct so that the pressure is the same as the internal pressure of the gas recovery duct during gas diffusion, and during recovery during gas recovery. Since the opening is controlled to match the furnace gas volume, the gas pressure does not fluctuate significantly when switching between gas emission and gas recovery, and even when switching from gas recovery to gas diffusion, the converter-skirt It is possible to prevent the generation of premixed gas that may explode in the cooler without sucking excess air from the space (furnace port). In addition, when switching from gas emission to gas recovery, a large amount of converter exhaust gas is not ejected from between the converter and the skirt, which deteriorates the working environment in the factory and sucks in high-temperature gas from the building ventilation dust collector. It is possible to prevent the equipment from being damaged by.
And since it is possible to operate two valves (for example, bell-shaped valve) in the gas flow path switching device at the same time, the amount of recovered gas is increased and the safety is improved. Furthermore, since the operation times of the two valves can be made the same, the operation sequence of the gas flow path switching device is simplified, the adjustment of the operation time is facilitated, and the time required for maintenance is greatly reduced. Can do.

(2) 請求項3及び請求項5に係る発明の効果
吹錬を中断する所謂緊急停止時においても、直ちに放散圧力制御ダンパを強制的に全開にして、排ガス処理設備内に滞留する転炉ガスを速やかに排出することにより、充分に安全を確保することができる。
(2) Effects of the Inventions According to Claims 3 and 5 Even at the time of so-called emergency stop where the blowing is interrupted, the diffusion pressure control damper is immediately forced to fully open and the converter gas stays in the exhaust gas treatment facility. By discharging the water quickly, it is possible to ensure sufficient safety.

転炉ガスの回収/放散時の過大なガス圧変動を抑制して、炉口からのガスの噴き出し及び空気の吸込みを最少にするという目的を、転炉発生ガスの大気への放散時にはガス回収ダクト内圧力に応じて、またガス回収時には排ガス流量に応じて、大気放散ダクトの放散圧力制御ダンパの開度を制御することにより実現した。 The purpose is to suppress excessive gas pressure fluctuations during converter gas recovery / dispersion to minimize gas blow-out and air suction from the furnace port, and gas recovery when converter-generated gas is released into the atmosphere. This was realized by controlling the opening of the diffusion pressure control damper of the atmospheric diffusion duct according to the pressure in the duct and according to the exhaust gas flow rate at the time of gas recovery.

次に、本発明の実施例について、図2〜図5を参照しながら説明する。
転炉1内に溶銑が投入され、ランスおよび/または転炉1の炉底から純酸素が転炉1内に吹込まれ、これが溶銑内の炭素と反応して一酸化炭素を主成分とする転炉ガスが発生する。吹錬開始時は転炉1からのガス発生量が少ないため、スカート2を上限としてして転炉1とスカート2の間から空気を吸込ませるが、ガス発生量が増加してきたら、スカート2をガス発生量に応じたレベルに下降して、転炉1とスカート2の間からの空気の吸込み及び発生ガスの吹出しを抑制し、誘引送風機9により冷却器3へ導く。冷却器3で800〜1000℃に冷却された転炉排ガスは、さらにエバポレーションクーラ4でスプレーノズル6から水を噴射し、乾式電気集塵器7の除塵性能に適した150〜200℃に冷却される。乾式電気集塵器7で除塵してクリーンなガスとした後、吹錬初期と末期の一酸化炭素濃度の低いガスは、ガス流路切替装置10を介して放散塔11に導かれ、放散塔(煙突)上部で燃焼され無害な二酸化炭素にされて大気中に放散される。
吹錬が進行して、転炉ガスの一酸化炭素濃度、及びその発生量が充分になったら、ガス流路切替装置10によってガス回収ダクト12に切替えられ、転炉ガスはガスクーラ13で60℃以下に冷却されてから、ガスホルダ14に貯留される。
Next, an embodiment of the present invention will be described with reference to FIGS.
Hot metal is introduced into the converter 1, and pure oxygen is blown into the converter 1 from the lance and / or the bottom of the converter 1, and this reacts with the carbon in the hot metal to convert carbon monoxide as a main component. Furnace gas is generated. Since the amount of gas generated from the converter 1 is small at the start of blowing, air is sucked in between the converter 1 and the skirt 2 with the skirt 2 as the upper limit. It descends to a level corresponding to the amount of gas generated, suppresses air suction and blow-off of the generated gas from between the converter 1 and the skirt 2, and guides it to the cooler 3 by the induction fan 9. The converter exhaust gas cooled to 800 to 1000 ° C. by the cooler 3 is further sprayed with water from the spray nozzle 6 by the evaporation cooler 4 and cooled to 150 to 200 ° C. suitable for the dust removal performance of the dry electrostatic precipitator 7. Is done. After the dust is removed by the dry electrostatic precipitator 7 to obtain a clean gas, the gas having a low carbon monoxide concentration at the initial stage and the final stage of the blowing is led to the diffusion tower 11 through the gas flow switching device 10, and the diffusion tower. (Chimney) Combusted at the top, turned into harmless carbon dioxide and released into the atmosphere.
When the carbon monoxide concentration in the converter gas and the generation amount thereof become sufficient as the blowing progresses, the gas flow switching device 10 switches to the gas recovery duct 12, and the converter gas is heated at 60 ° C. by the gas cooler 13. After being cooled below, it is stored in the gas holder 14.

そして、吹錬終了時期になったら上述のように、転炉ガスはガス流路切替装置10により放散塔側に切替えられて、吹錬開始時と同様に放散塔上部で燃焼して無害な二酸化炭素として大気中に放散される。
従来の方法では、このガス回収−放散時のガス流路切替装置10の作動時において大きなガス圧力変動が生じ、転炉1とスカート2の間から大量の転炉ガスの吹出しや空気の吸込みが生じるという問題があったが、本発明では、図2に示すように、放散塔に放散圧力制御ダンパ15を設置し、ガス放散時には大気側への放散圧力を調整するように、またガス回収時には回収ガス量に見合う開度に調整するようにしたことによって、これらの不都合を解決した。
At the end of the blowing, the converter gas is switched to the diffusion tower side by the gas flow switching device 10 as described above, and burns at the upper part of the diffusion tower as in the start of the blowing, and is harmless. Dissipated into the atmosphere as carbon.
In the conventional method, a large gas pressure fluctuation occurs during the operation of the gas flow path switching device 10 at the time of gas recovery and release, and a large amount of converter gas is blown out or air is sucked in between the converter 1 and the skirt 2. However, in the present invention, as shown in FIG. 2, a diffusion pressure control damper 15 is installed in the diffusion tower so that the diffusion pressure to the atmosphere side is adjusted at the time of gas diffusion, and at the time of gas recovery. These inconveniences were solved by adjusting the opening to match the amount of recovered gas.

次いで、本発明の特徴とする事項について、図3を用いて詳細に説明する。
吹錬を開始しガス回収条件が整わない時期には、転炉ガスは大気中に放散されるが、その間、放散塔11の下部に設置した放散圧力制御ダンパ15により放散ガス圧力を制御して、ガス回収ダクト12内のガス圧力(ガス回収ダクト内圧力検出装置24で検出したガス圧力)と放散ガス圧力が同圧になるようにする。これによって、回収/放散信号Bにより第1の制御系切替装置28が切替えられ、回収が開始される時にガス圧力が大きく変動することが回避される。
したがって、従来技術のようにガス流路切替装置10内の2個のベル形弁を個別に作動させる必要はなく、同時に作動させることが可能である。それゆえ、従来技術におけるベル形弁の作動シーケンスが簡略化され、また作動時間の調整も容易となり、回収開始時に放散塔側へ流出する転炉ガス量も少なくなる。
更に、2個のベル形弁を同時に作動させることができるので、切替え時間が短縮され回収ガス量が増加するという効果も得られる。
Next, the features of the present invention will be described in detail with reference to FIG.
The converter gas is released into the atmosphere when the gas recovery conditions are not established since the blowing is started. During this time, the emission gas pressure is controlled by the emission pressure control damper 15 installed at the lower part of the emission tower 11. The gas pressure in the gas recovery duct 12 (the gas pressure detected by the gas recovery duct internal pressure detection device 24) and the diffused gas pressure are set to the same pressure. Thereby, the first control system switching device 28 is switched by the recovery / dissipation signal B, and it is avoided that the gas pressure fluctuates greatly when recovery is started.
Therefore, it is not necessary to individually operate the two bell valves in the gas flow path switching device 10 as in the prior art, and it is possible to operate them simultaneously. Therefore, the operation sequence of the bell-type valve in the prior art is simplified, the adjustment of the operation time is facilitated, and the amount of converter gas flowing out to the diffusion tower side at the start of recovery is reduced.
Furthermore, since two bell-type valves can be operated simultaneously, the effect of shortening the switching time and increasing the amount of recovered gas can be obtained.

次に転炉ガス回収中は、誘引送風機9の吸込み側ガス圧力検出装置18及び吐出側ガス圧力検出装置21と、吸込み側ガス温度検出装置19及び吐出側ガス温度検出装置22と、誘引送風機9の回転数検出装置20と、誘引送風機駆動用電動機17の電流値または軸動力検出装置23により、それぞれガス圧力、ガス温度、回転数、電流値または軸動力を測定し、誘引送風機の性能曲線と比較することによって、回収中の転炉排ガス流量を排ガス流量演算器25で求め、転炉排ガス流量−放散圧力制御ダンパ開度設定器26により放散圧力制御ダンパ15の開度制御を継続し、回収/放散信号Bにより第1の制御系切替装置28が切替えられて回収から放散に切替えられても、ガス流路切替装置10内のガス圧力が変動することがないようにする。したがって、回収から放散側に切替える際に発生する炉口から空気が吸込まれるという現象を回避でき、冷却器3内で爆発する危険がある予混合ガスの発生を予防することができる。   Next, during the converter gas recovery, the suction side gas pressure detection device 18 and the discharge side gas pressure detection device 21, the suction side gas temperature detection device 19 and the discharge side gas temperature detection device 22 of the induction blower 9, and the induction blower 9. Measure the gas pressure, gas temperature, rotation speed, current value or shaft power by the current value or shaft power detection device 23 of the induction fan driving motor 17 and the induction fan driving motor 17, respectively. By comparing, the converter exhaust gas flow rate during recovery is obtained by the exhaust gas flow rate calculator 25, and the opening degree control of the diffusion pressure control damper 15 is continued by the converter exhaust gas flow rate-diffusion pressure control damper opening degree setting device 26, and recovered. / Even if the first control system switching device 28 is switched by the diffusion signal B to switch from recovery to diffusion, the gas pressure in the gas flow path switching device 10 does not fluctuate. That. Therefore, it is possible to avoid the phenomenon that air is sucked from the furnace port that is generated when switching from the recovery to the diffusion side, and it is possible to prevent the generation of the premixed gas that may explode in the cooler 3.

ところで、乾式電気集塵器を用いた転炉の排ガス処理装置において、誘引送風機の性能曲線を用いて排ガス流量を求める方法は、次に説明するとおりである。
誘引送風機の吸込み側ガス圧力、吐出側ガス圧力、吸込み側ガス温度、誘引送風機の回転数、電流値又は軸動力、及び排ガス組成を測定して、誘引送風機の性能曲線を作成し、これを実操業で実測した値によって使用状態に補正する。そして、この補正性能曲線の誘引送風機全圧曲線と、実操業で実測した誘引送風機全圧(吸込み圧+吐出圧)との交点から排ガス流量を求める。
By the way, in the exhaust gas treatment apparatus for a converter using a dry electrostatic precipitator, a method for obtaining the exhaust gas flow rate using the performance curve of the induction blower is as described below.
Measure the suction blower's suction side gas pressure, discharge side gas pressure, suction side gas temperature, induction fan's rotational speed, current value or shaft power, and exhaust gas composition to create a performance curve for the induction blower. It is corrected to the use state by the value actually measured in the operation. Then, the exhaust gas flow rate is obtained from the intersection of the induced blower total pressure curve of the correction performance curve and the induced blower total pressure (suction pressure + discharge pressure) measured in actual operation.

上記排ガス流量算出方法の具体例について、図4及び図5を参照しながら説明する。この具体例の説明に用いるのは、軸流ファン及び乾式電気集塵器を用いた転炉排ガス処理装置であり、次のような仕様を備えている。
転炉容量:250T/Heat
送酸量:60000m3N/Hr
処理ガス量:180000m3N/Hr
誘引送風機容量:180000m3N/Hr
誘引送風機昇圧能力:600mmAq
(ガス回収時吸込み圧力/吐出圧力=−200mmAq/400mmAq)
誘引送風機吸込みガス温度:200℃
誘引送風機吸込みガス比重量:1.301Kg/m3
誘引送風機回転数:1800rpm
A specific example of the exhaust gas flow rate calculation method will be described with reference to FIGS. This specific example is used in a converter exhaust gas treatment apparatus using an axial fan and a dry electrostatic precipitator, and has the following specifications.
Converter capacity: 250T / Heat
Amount of acid sent: 60000m 3 N / Hr
Processing gas amount: 180,000m 3 N / Hr
Induction fan capacity: 180000m 3 N / Hr
Induction blower boosting capacity: 600mmAq
(Suction pressure during gas recovery / discharge pressure = −200 mmAq / 400 mmAq)
Induction blower suction gas temperature: 200 ° C
Induction blower suction gas specific weight: 1.301Kg / m 3 N
Attracting fan speed: 1800rpm

ここで、実操業時の実測値が、次の値であったときについて説明する。
誘引送風機の吸込みガス温度:200℃
回転数:1600rpm
吸込み圧力:−150mmAq
吐出圧力:350mmAq
送酸量:60000 m3N/Hr
CO濃度:70%、CO濃度:16%、N濃度:14%
電流値:153A
Here, the case where the actually measured value at the time of actual operation is the following value will be described.
Suction gas temperature of the induction fan: 200 ° C
Rotation speed: 1600rpm
Suction pressure: -150 mmAq
Discharge pressure: 350mmAq
Amount of acid sent: 60000 m 3 N / Hr
CO concentration: 70%, CO 2 concentration: 16%, N 2 concentration: 14%
Current value: 153A

先ず、誘引送風機の回転数を規定回転数の約83%となる1500rpmとし、温度が20℃で相対湿度が65%の空気を圧力−200mmAqで吸込んだ場合の送風機性能曲線〔排ガス流量(m3/min.)に対する送風機全圧(mmAq)と電動機の電流値(A)の関係〕を作成し、性能曲線とした。この性能曲線は、送風機の吸込み空気量を変更し、それぞれの吸込み空気量時の吸込み圧力、吐出圧力、吸込み温度、電流値、及び回転数を測定して、各々の吸込み空気を−200mmAq、20℃の状態となるようにヘッド(水頭)換算及び回転数の補正を行なうことにより作成される。このときの空気密度は吸込み状態で1.177Kg/m3となる。図4における性能曲線は、吸込み空気条件が−200mmAq、吸込み温度20℃、回転数1500rpmの状態での性能を表すものである。 First, the rotational speed of the induction fan is 1500 rpm, which is about 83% of the specified speed, and the fan performance curve [exhaust gas flow rate (m 3) when air with a temperature of 20 ° C. and a relative humidity of 65% is sucked in at a pressure of −200 mmAq. / Min.) Relationship between the blower total pressure (mmAq) and the electric current value (A) of the electric motor] was created and used as a performance curve. This performance curve changes the suction air amount of the blower, measures the suction pressure, discharge pressure, suction temperature, current value, and rotation speed at each suction air amount, and sets each suction air to -200 mmAq, 20 It is created by converting the head (water head) and correcting the rotation speed so as to be in the state of ° C. The air density at this time is 1.177 kg / m 3 in the suction state. The performance curve in FIG. 4 represents the performance when the suction air condition is −200 mmAq, the suction temperature is 20 ° C., and the rotation speed is 1500 rpm.

次に、性能曲線を実操業時の誘引送風機入口ガス温度と誘引送風機入口ガス圧力と回転数の実測値により補正して、補正性能曲線を作成する(図4)。補正性能曲線は実操業時の測定値、誘引送風機入口ガス温度200℃、誘引送風機入口ガス圧力−150mmAq、回転数1600rpm時の性能を表すものとなる。この時、ガス密度は未知であるため性能曲線のガス密度1.301Kg/m3Nを採用する。ここで、測定した送風機の全圧500mmAqの値は、補正性能曲線の全圧曲線上でA、B、Cの3つの点で交差する。 Next, the performance curve is corrected based on the actual values of the induced blower inlet gas temperature, the induced blower inlet gas pressure, and the rotational speed during actual operation, thereby creating a corrected performance curve (FIG. 4). The corrected performance curve represents the performance at the time of actual operation, the induction blower inlet gas temperature 200 ° C., the induction blower inlet gas pressure −150 mmAq, and the rotation speed 1600 rpm. At this time, since the gas density is unknown, the gas density of 1.301 Kg / m 3 N in the performance curve is adopted. Here, the measured value of the blower total pressure 500 mmAq intersects at three points A, B, and C on the total pressure curve of the correction performance curve.

一般に送風機の特性として同一ガス圧力に対し複数のガス流量を持つが、測定されたガス圧力に対応するガス流量は、炉内吹込み酸素流量と排ガス中のCOまたはCO濃度により同定することができる。
即ち、炉内に吹込まれた純酸素は、溶銑中の炭素と反応し100%濃度のCOガスとして発生するが、その一部は炉内での燃焼、所謂炉内2次燃焼と炉口から吸込んだ空気による燃焼(炉口燃焼)により、ガス回収型の転炉排ガス処理装置ではCO濃度は吹錬初期を除き70〜85%となる。
したがって、炉内吹込み酸素流量と排ガス中のCOまたはCO濃度が判れば、転炉排ガス流量は図5に示す関係となり、炉内2次燃焼率と炉口燃焼率が不明であっても概略の排ガス流量が想定できるため、前記補正性能曲線上で排ガス流量が特定できることになる。
Generally, the air blower has a plurality of gas flow rates for the same gas pressure, but the gas flow rate corresponding to the measured gas pressure can be identified by the in-furnace oxygen flow rate and the CO or CO 2 concentration in the exhaust gas. it can.
That is, pure oxygen blown into the furnace reacts with carbon in the hot metal to generate 100% -concentration CO gas, but part of it is burned in the furnace, so-called secondary combustion in the furnace and the furnace port. In the gas recovery-type converter exhaust gas treatment apparatus, the CO concentration becomes 70 to 85% except in the initial stage of blowing due to combustion by the sucked air (furnace port combustion).
Therefore, if the in-furnace oxygen flow rate and the CO or CO 2 concentration in the exhaust gas are known, the converter exhaust gas flow rate has the relationship shown in FIG. 5, and even if the in-furnace secondary combustion rate and the furnace port combustion rate are unknown. Since an approximate exhaust gas flow rate can be assumed, the exhaust gas flow rate can be specified on the correction performance curve.

なお、炉内吹込み酸素流量と排ガス中のCOまたはCO濃度の関係は、脱炭酸素効率、転炉発生ガス組成(冷却器に吸引される排ガス組成は基本的にCO、CO、Nであるが、操業方法によりHが存在する場合がある)により若干変化するが、それぞれの条件による値を予め計算しておくことにより対応が可能である。 It should be noted that the relationship between the oxygen flow rate in the furnace and the CO or CO 2 concentration in the exhaust gas depends on the decarbonation efficiency, the converter-generated gas composition (the exhaust gas composition sucked into the cooler is basically CO, CO 2 , N 2 is but is slightly changed by there) when there is a H 2 by operating methods, it is possible to cope by previously calculating the value by the respective conditions.

図5において、曲線(a)、(b)、(c)、及び(d)は、それぞれ炉内2次燃焼率が0%、10%、20%、及び30%に対して炉口燃焼率が0〜100%に変化した場合の、炉内に吹込まれた送酸量“1”に対する排ガス流量の増加割合を示したもので、本実施例の転炉操業では炉内2次燃焼率は5〜20%程度であった。
実施例では測定値のCO濃度70%から、図5のCO濃度が70%の点に垂線Eを引き、曲線(a)と(d)の交点から水平に引いた線G,Fの排ガス量比との交点が求まり、その値は送酸量の1.9〜2.5倍の範囲となる。この係数を用いて送酸量60000 m3N/Hr時の排ガス量を求め、測定時の送風機吸込み状態(−150mmAq,200℃)に換算すると、求める排ガス流量は3340.4m3/min.〜4395.3m3/min.の範囲の中にあり、上記実操業での実測時の誘引送風機吸込み排ガス流量は、図4の補正性能曲線上における交点Cの3890m3/min.となる。
In FIG. 5, curves (a), (b), (c), and (d) indicate the furnace port combustion rate for the furnace secondary combustion rates of 0%, 10%, 20%, and 30%, respectively. Shows the rate of increase in the exhaust gas flow rate with respect to the amount of acid fed “1” injected into the furnace when the value changes from 0 to 100%. In the converter operation of this example, the secondary combustion rate in the furnace is It was about 5 to 20%.
In the embodiment, the vertical line E is drawn from the measured CO concentration of 70% to the point where the CO concentration in FIG. 5 is 70%, and the exhaust gas amount of the lines G and F drawn horizontally from the intersection of the curves (a) and (d). The intersection with the ratio is obtained, and the value is in the range of 1.9 to 2.5 times the amount of acid sent. Using this coefficient, the amount of exhaust gas when the amount of acid sent is 60000 m 3 N / Hr is calculated and converted into the blower suction state at the time of measurement (−150 mmAq, 200 ° C.), the exhaust gas flow rate to be calculated is 3340.4 m 3 / min. located in the 4395.3m 3 / min. in the range, the exhaust gas flow rate suction measured at the attraction blower in the actual operation becomes 3890m 3 / min. of intersection C on the correction performance curve of FIG.

次に、交点Cの垂線上に実測電流値153Aをプロットすると、補正性能曲線の電流値145Aと8Aの差があることが判る。この差はガス密度に起因するものであり、補正性能曲線は測定時のガス密度が未知のため性能曲線の1.301Kg/m3Nを採用しているから、(1.301(=性能曲線のガス密度))×(実操業での実測電流値)/(性能曲線の電流値)を計算すれば、実ガスの密度を求めることができ、その値は1.373Kg/m3Nとなる。
一方、ガス回収型の転炉排ガス処理装置には必ず排ガス分析計が設置されるから、排ガス組成と先に求めたガス密度から基準状態の排ガス流量と水蒸気量を求めることができる。
Next, when the measured current value 153A is plotted on the perpendicular of the intersection C, it can be seen that there is a difference between the current values 145A and 8A of the correction performance curve. This difference is due to the gas density. Since the gas density at the time of measurement is unknown, the performance curve of 1.301 Kg / m 3 N is adopted, so (1.301 (= performance curve). Gas density)) × (actual current value in actual operation) / (current value of performance curve), the actual gas density can be obtained, and the value is 1.373 Kg / m 3 N .
On the other hand, since an exhaust gas analyzer is always installed in a gas recovery type converter exhaust gas treatment device, the exhaust gas flow rate and the amount of water vapor in the standard state can be obtained from the exhaust gas composition and the previously obtained gas density.

ところで、放散圧力制御ダンパの制御時期は、吹錬の全期間を通じて実施する必要はなく、必要に応じて吹錬開始からガス流路切替装置のガス回収作動が完了するまでと、ガス回収終了予定時間の適宜時間前からガス流路切替装置のガス放散作動が完了するまでの期間とすることも可能である。   By the way, it is not necessary to carry out the control timing of the diffusion pressure control damper throughout the entire period of blowing, and if necessary, gas recovery will be completed from the start of blowing until the gas recovery operation of the gas flow path switching device is completed. It is also possible to set a period from an appropriate time before the gas flow switching device completes the gas diffusion operation.

更に、吹錬を中断する所謂緊急停止時には、排ガス処理設備内に滞留する転炉ガスを速やかに排出することが人的、設備的に最も安全な対策となる。低ガス量時に緊急停止があった場合、放散圧力制御ダンパ開度が小さいと、このことが転炉ガスの排出を阻害する原因となるが、しかし、強制的に放散圧力制御ダンパ15を全開にする回路を設け、放散圧力制御ダンパ15を全開にすることによって、低風量時においても転炉排ガスの排出を速やかに行うことができ、充分に安全を確保することができる。   Furthermore, at the time of so-called emergency stop where the blowing is interrupted, it is the safest human and facility measure to quickly discharge the converter gas staying in the exhaust gas treatment facility. If there is an emergency stop when the amount of gas is low, and the opening of the diffusion pressure control damper is small, this will cause the discharge of the converter gas to be hindered. By providing a circuit for performing this operation and fully opening the diffusion pressure control damper 15, the exhaust gas from the converter can be discharged quickly even at a low air volume, and sufficient safety can be ensured.

すなわち、吹錬の最盛期に吹錬が中断された場合は、制御系−緊急停止系切替信号Aによって第2の制御系切替装置29が切替られ、ダンパ全開信号Cによってアクチュエータ16を作動させて放散圧力制御ダンパ15を全開にし、転炉の排ガス処理装置内に滞留する高濃度のCOガスを放散塔上部で燃焼させる(図3を参照)。これによって、転炉の排ガス処理装置内に滞留する高濃度のCOガスを無害なCOガスにして速やかに大気放散できるので、安全が確保される。 That is, when the blowing is interrupted at the peak of blowing, the second control system switching device 29 is switched by the control system-emergency stop system switching signal A, and the actuator 16 is operated by the damper full open signal C. The diffusion pressure control damper 15 is fully opened, and high-concentration CO gas staying in the exhaust gas treatment device of the converter is combusted in the upper portion of the diffusion tower (see FIG. 3). As a result, the high-concentration CO gas staying in the exhaust gas treatment device of the converter can be made into harmless CO 2 gas and quickly diffused into the atmosphere, thus ensuring safety.

乾式電気集塵器を用いた従来の転炉の排ガス処理装置の模式図である。It is a schematic diagram of the exhaust gas processing apparatus of the conventional converter which used the dry electric dust collector. 乾式電気集塵器を用いた本発明の転炉の排ガス処理装置の模式図である。It is a schematic diagram of the exhaust gas treatment apparatus of the converter of the present invention using a dry electrostatic precipitator. 本発明の転炉の排ガス処理装置の主要部を詳細に示す模式図である。It is a schematic diagram which shows the principal part of the exhaust gas processing apparatus of the converter of this invention in detail. 誘引送風機の性能曲線と補正性能曲線を示すグラフである。It is a graph which shows the performance curve and correction | amendment performance curve of an induction fan. 排ガスCO濃度と排ガス量比との関係を、炉内2次燃焼率毎に示すグラフである。It is a graph which shows the relationship between waste gas CO density | concentration and waste gas amount ratio for every secondary combustion rate in a furnace.

符号の説明Explanation of symbols

1:転炉
2:スカート
3:冷却器
4:エバポレーションクーラ
5:ダストホッパ
6:スプレーノズル
7:乾式電気集塵器
8:ダストホッパ
9:誘引送風機
10:ガス流路切替装置
11:放散塔
12:ガス回収ダクト
13:ガスクーラ
14:ガスホルダ
15:放散圧力制御ダンパ
16:アクチュエータ
17:電動機
18:吸込み側ガス圧力検出装置
19:吸込み側ガス温度検出装置
20:回転数検出装置
21:吐出側ガス圧力検出装置
22:吐出側ガス温度検出装置
23:電流値又は軸動力検出装置
24:ガス回収ダクト内圧力検出装置
25:排ガス流量演算器
26:排ガス流量−放散圧力制御ダンパ開度設定器
27:ガス圧力−放散圧力制御ダンパ開度設定器
28:第1の制御系切替装置
29:第2の制御系切替装置
A:制御系−緊急停止系切替信号
B:回収/放散信号
C:ダンパ全開信号
1: Converter 2: Skirt 3: Cooler 4: Evaporation cooler 5: Dust hopper 6: Spray nozzle 7: Dry electrostatic precipitator 8: Dust hopper 9: Induction blower 10: Gas flow switching device 11: Dispersion tower 12: Gas recovery duct 13: Gas cooler 14: Gas holder 15: Dissipation pressure control damper 16: Actuator 17: Electric motor 18: Suction side gas pressure detection device 19: Suction side gas temperature detection device 20: Rotational speed detection device 21: Discharge side gas pressure detection Device 22: Discharge-side gas temperature detection device 23: Current value or shaft power detection device 24: Gas recovery duct pressure detection device 25: Exhaust gas flow rate calculator 26: Exhaust gas flow rate-dissipation pressure control damper opening degree setting device 27: Gas pressure -Dissipation pressure control damper opening setting device 28: first control system switching device 29: second control system switching device A Control system - emergency stop system switching signal B: recovered / dissipating signal C: damper full open signal

Claims (5)

乾式電気集塵器を用いた転炉の非燃焼式ガス回収型排ガス処理装置において、
ガス回収ダクト内圧力検出装置と、誘引送風機の吸込み側ガス圧力検出装置及び吐出側ガス圧力検出装置と、吸込み側ガス温度検出装置及び吐出側ガス温度検出装置と、前記誘引送風機の回転数検出装置と、前記誘引送風機駆動用電動機の電流値又は軸動力検出装置と、大気放散側ダクト内に設けた放散圧力制御ダンパとを備えて成り、
吹錬時の転炉発生ガスを大気中に放散している期間は、大気放散側のガス圧力をガス回収ダクト内圧力と同じ圧力になるように、前記放散圧力制御ダンパの開度を制御し、
ガスホルダに転炉発生ガスを回収している期間は、前記誘引送風機の吸込み側ガス圧力と、吐出側ガス圧力と、吸込み側ガス温度と、吐出側ガス温度と、前記誘引送風機の回転数と、前記誘引送風機駆動用電動機の電流値又は軸動力と、排ガス組成とにより前記誘引送風機の性能曲線を作成し、これを実操業で実測した値によって使用状態に補正し、この補正性能曲線の誘引送風機全圧曲線と、実操業で実測した誘引送風機全圧(吸込み圧+吐出圧)との交点から前記誘引送風機出口の実ガス量を求め、該求められた実ガス量に応じて予め定められた開度となるように前記放散圧力制御ダンパの開度を制御し、
転炉ガスの回収/放散時のガス圧変動を抑制することを特徴とする転炉の非燃焼式ガス回収型排ガス処理装置のガス回収装置。
In the non-combustion gas recovery type exhaust gas treatment equipment of the converter using the dry electrostatic precipitator,
Gas recovery duct internal pressure detection device, suction blower suction side gas pressure detection device and discharge side gas pressure detection device, suction side gas temperature detection device and discharge side gas temperature detection device, and rotation speed detection device of the induction blower And a current value or a shaft power detection device of the induction fan driving motor, and a diffusion pressure control damper provided in the air diffusion side duct,
During the period when the gas generated in the converter during blowing is diffused into the atmosphere, the opening of the diffusion pressure control damper is controlled so that the gas pressure on the atmosphere diffusion side is the same as the pressure in the gas recovery duct. ,
During the period in which the converter generated gas is collected in the gas holder, the suction side gas pressure of the induction fan, the discharge side gas pressure, the suction side gas temperature, the discharge side gas temperature, the rotation speed of the induction fan, A performance curve of the induction fan is created based on the current value or shaft power of the electric motor for driving the induction fan and the exhaust gas composition, and this is corrected to a use state by a value actually measured in actual operation, and the induction fan of the corrected performance curve The actual gas amount at the outlet of the induced blower is obtained from the intersection of the total pressure curve and the induced blower total pressure (suction pressure + discharge pressure) measured in actual operation, and is determined in advance according to the obtained actual gas amount. Controlling the opening of the diffusion pressure control damper so as to be the opening;
A gas recovery device for a non-combustion gas recovery type exhaust gas treatment device for a converter, characterized by suppressing gas pressure fluctuations during recovery / discharge of the converter gas.
前記放散圧力制御ダンパの制御が、吹錬開始からガス流路切替装置のガス回収作動が完了するまでの期間と、ガス回収終了予定時間の適宜時間前からガス流路切替装置のガス放散作動が完了するまでの期間に行われることを特徴とする請求項1に記載の転炉の非燃焼式ガス回収型排ガス処理装置のガス回収装置。   When the control of the diffusion pressure control damper is performed, the gas diffusion operation of the gas flow path switching device is started from the time until the gas recovery operation of the gas flow path switching device is completed from the start of blowing and the appropriate time before the gas recovery scheduled end time. The gas recovery apparatus for a non-combustion gas recovery type exhaust gas treatment apparatus for a converter according to claim 1, wherein the gas recovery apparatus is performed in a period until completion. 吹錬中の転炉発生ガスを大気に放散している期間、回収ガスホルダに回収している期間のいずれの期間であるかに関わらず、吹錬が正常な方法以外の方法で停止された場合、制御系−緊急停止系切替信号によってダンパ操作系を制御系から緊急停止系に切り替えて、ダンパ全開信号により前記放散圧力制御ダンパを直ちに全開にすることを特徴とする請求項1又は請求項2に記載の転炉の非燃焼式ガス回収型排ガス処理装置のガス回収装置。   When blowing is stopped by a method other than the normal method regardless of whether the gas generated in the converter during blowing is being released to the atmosphere or the period in which it is recovered in the recovery gas holder 3. The damper operation system is switched from the control system to the emergency stop system by a control system-emergency stop system switching signal, and the release pressure control damper is immediately fully opened by a damper full open signal. A gas recovery device for a non-combustion gas recovery type exhaust gas treatment device for a converter according to claim 1. 乾式電気集塵器を用いた転炉の非燃焼式ガス回収型排ガス処理装置のガス回収方法において、
吹錬時の排ガスを大気中に放散している期間は、大気放散側ガス圧力をガス回収ダクト内圧と同じ圧力に調整するように、大気放散側ダクトの放散圧力制御ダンパの開度を制御し、ガス放散からガス回収へのガス流路切替時に誘引送風機吐出圧力の急変を防止することにより、炉口部からのガスの噴き出しを防止すると共に、ガス流路切替時間を短縮して回収ガス量を増加させ、
他方、排ガスを回収している期間は、誘引送風機の吸込み側ガス圧力と、吐出側ガス圧力と、吸込み側ガス温度と、吐出側ガス温度と、前記誘引送風機の回転数と、前記誘引送風機駆動用電動機の電流値又は軸動力と、排ガス組成とから前記誘引送風機の性能曲線を作成し、これを実操業で実測した値によって使用状態に補正し、この補正性能曲線の誘引送風機全圧曲線と、実操業で実測した誘引送風機全圧(吸込み圧+吐出圧)との交点から前記誘引送風機出口の実ガス量を求め、該求められた実ガス量に応じて予め定められた開度になるように前記放散ガス圧力制御ダンパの開度を制御し、ガス回収からガス放散へのガス流路切替時に前記誘引送風機吐出圧力の急変を防止することにより、炉口部からの空気の過剰吸込みを防止し冷却器内でのCOとO(空気)の予混合ガス発生の危険を回避することを特徴とする非燃焼式ガス回収型排ガス処理装置のガス回収方法。
In the gas recovery method of the non-combustion gas recovery type exhaust gas treatment device of the converter using the dry electrostatic precipitator,
During the period when the exhaust gas during blowing is diffused into the atmosphere, the opening degree of the diffusion pressure control damper of the atmospheric diffusion side duct is controlled so that the atmospheric diffusion side gas pressure is adjusted to the same pressure as the gas recovery duct internal pressure. By preventing the sudden change in the induction blower discharge pressure when switching the gas flow path from gas emission to gas recovery, it is possible to prevent the gas from being blown out from the furnace port and reduce the gas flow path switching time and the amount of recovered gas Increase
On the other hand, the period during which the exhaust gas is collected includes the suction side gas pressure, the discharge side gas pressure, the suction side gas temperature, the discharge side gas temperature, the rotation speed of the induction fan, and the drive of the induction fan. Create a performance curve of the induction blower from the current value or shaft power of the motor for motor and the exhaust gas composition , correct this to the use state by the value actually measured in actual operation, and the induction fan total pressure curve of this correction performance curve Then, the actual gas amount at the outlet of the induction fan is obtained from the intersection with the total pressure (intake pressure + discharge pressure) of the induced blower actually measured in actual operation , and the opening degree is determined in advance according to the obtained actual gas amount. Thus, by controlling the opening degree of the diffused gas pressure control damper and preventing a sudden change in the discharge pressure of the induced blower when switching the gas flow path from gas recovery to gas diffusion, excessive intake of air from the furnace port is prevented. Prevent cooler CO and O 2 gas recovery method of the non-combustion gas recovery type exhaust gas treatment apparatus, characterized in that to avoid the risk of the premixed gas generation (air) at.
吹錬中の排ガスを大気に放散している期間、回収ガスホルダに回収している期間のいずれの期間であるかに関わらず、吹錬が正常な方法以外の方法で停止された場合、前記放散圧力制御ダンパの開度を直ちに全開にすることを特徴とする請求項4に記載の非燃焼式ガス回収型排ガス処理装置のガス回収方法。   Regardless of the period during which the exhaust gas being blown is released to the atmosphere or the period in which the exhaust gas is being collected in the recovery gas holder, if the blowing is stopped by a method other than the normal method, the emission 5. The gas recovery method for a non-combustion gas recovery type exhaust gas treatment device according to claim 4, wherein the opening degree of the pressure control damper is immediately fully opened.
JP2004043373A 2004-02-19 2004-02-19 Non-combustion gas recovery type exhaust gas treatment device gas recovery device and gas recovery method Expired - Fee Related JP4297430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043373A JP4297430B2 (en) 2004-02-19 2004-02-19 Non-combustion gas recovery type exhaust gas treatment device gas recovery device and gas recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043373A JP4297430B2 (en) 2004-02-19 2004-02-19 Non-combustion gas recovery type exhaust gas treatment device gas recovery device and gas recovery method

Publications (2)

Publication Number Publication Date
JP2005232540A JP2005232540A (en) 2005-09-02
JP4297430B2 true JP4297430B2 (en) 2009-07-15

Family

ID=35015795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043373A Expired - Fee Related JP4297430B2 (en) 2004-02-19 2004-02-19 Non-combustion gas recovery type exhaust gas treatment device gas recovery device and gas recovery method

Country Status (1)

Country Link
JP (1) JP4297430B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT511806B1 (en) * 2011-09-28 2013-03-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR INFLUENCING THE GENERATION OF REACTION GASES IN A METALLURGICAL VESSEL
KR102153053B1 (en) * 2018-11-13 2020-09-07 주식회사 포스코 System for reducing dust and method thereof
CN111944944A (en) * 2020-06-30 2020-11-17 西安西矿环保科技有限公司 Coal gas recycling maximization control method and system of converter coal gas fan
CN114046517B (en) * 2021-11-17 2023-04-28 光大环境科技(中国)有限公司 Air distribution system control method based on flue gas recirculation
CN115820973B (en) * 2022-10-13 2024-06-14 柳州钢铁股份有限公司 Static control and fault judgment system for dry dedusting of converter

Also Published As

Publication number Publication date
JP2005232540A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
KR101853042B1 (en) Oxy-fuel plant with flue gas compression and method
US20110011315A1 (en) Oxyfuel Boiler and Control Method for Oxyfuel Boiler
JP5900604B2 (en) Oxy-combustion boiler system
JP4297430B2 (en) Non-combustion gas recovery type exhaust gas treatment device gas recovery device and gas recovery method
CN209067263U (en) Subway tunnel ventilating system
KR101221230B1 (en) Apparatus to generate carbon dioxide for greenhouse
JP5487509B2 (en) Boiler combustion system and its operating method
JPH0211715A (en) Method and apparatus for recovering exhaust gas in converter
JP2015505929A (en) Gas turbine power plant with carbon dioxide separation
JP5460266B2 (en) Hot air heater for horticulture
JP4648152B2 (en) Gas turbine system and method of operating gas turbine system
JP5838118B2 (en) Introduction control method of combustion air in coke dry fire extinguishing equipment.
JP4237077B2 (en) Calculation method of exhaust gas flow rate of converter exhaust gas treatment equipment
JP3008614B2 (en) Water heater
JP3617202B2 (en) Heating furnace and operating method thereof
JPH102530A (en) Forced draft air preheater for combustion chamber
CN110833750A (en) Desulfurization system and boiler system
JPH09192430A (en) Waste gas dust collector for refuse incinerator and its operation
JP6102348B2 (en) Recovery method of converter exhaust gas
SU1359614A1 (en) Device for controlling pressure of blast cupola diverting channel
CN216953572U (en) Combustion device and gas water heating equipment
CN114272692B (en) Chimney type heat dissipation constant temperature air flue air quantity control algorithm with dust removal and cooling functions
CN109163350B (en) A kind of device and operating method that burning is supplied oxygen and discharged fume
JP2956265B2 (en) Boiler combustion method
JP2020148443A (en) Waste treatment facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees