JP4296648B2 - Electrode displacement control method and apparatus for resistance welding - Google Patents
Electrode displacement control method and apparatus for resistance welding Download PDFInfo
- Publication number
- JP4296648B2 JP4296648B2 JP25557099A JP25557099A JP4296648B2 JP 4296648 B2 JP4296648 B2 JP 4296648B2 JP 25557099 A JP25557099 A JP 25557099A JP 25557099 A JP25557099 A JP 25557099A JP 4296648 B2 JP4296648 B2 JP 4296648B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- displacement amount
- hits
- welding
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Resistance Welding (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、溶接割れ不良を防止するとともに信頼性の高い溶接品質を備えたワークを得るための抵抗溶接の電極変位量制御方法及びその装置に関する。
【0002】
【従来の技術】
現状における抵抗溶接方法は、抵抗溶接の三大要素である加圧力、溶接電流、及び通電時間を固定して溶接する方法である。この現状の方法では、割れが発生しやすい被溶接材を抵抗溶接する場合、溶接電極の表面状態の変化及びワークの性状の変化等により、安定した健全な溶接品質を備えたワークが得られない。そこで、最近の抵抗溶接方法においては、電極の加圧力によるワークのつぶれ量(電極変位量)を安定させて、それによって健全な溶接品質を備えたワークを得るために、予め設定した電極変位量に到達した時点で直ちに通電を停止する電極変位量制御方法が行われるようになった。上記従来の抵抗溶接の制御方法は、図7に示すイナーシャによる電極変位停止時間の遅延があることから、一電極打点中に電極変位量のパターンに依存してつぶれ量を抑制することができず、したがってワークに溶接割れ等の欠陥を発生をもたらしていた。
【0003】
【発明が解決しようとする課題】
抵抗溶接においては、多くの溶接作業因子及びワーク性状が溶接品質に影響を与える。ワーク(被溶接材)が燐青銅等の溶接割れを特に発生しやすい材料である場合、それらの溶接作業因子のうちで電極の表面状態(経時変化)及びワーク性状のばらつき等が、ワークに溶接割れを発生させる。特に電極の表面状態が経時変化することによって、大量生産工程においては、ワークの溶接割れ等の溶接不良が連続的に発生し、多くの溶接不良部品を製造する恐れがある。
【0004】
したがって、本発明は、溶接割れによる製品不良を防止し、且つ信頼性の高い溶接品質を備えた溶接部品を供給する抵抗溶接の電極変位量制御方法及びその装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明においては、抵抗溶接の制御方法は、電極変位量(ワークのつぶれ量)と溶接電流とのあいだには強い相関があることに注目して、一電極打点毎に電極変位量を計測し、予め設定した上限と下限の電極変位量と比較することによって、実測電極変位量と設定電極変位量とのあいだに偏差が生じたときに、この偏差にしたがって次の電極打点時において電極に流す溶接電流を増減して電極変位量を制御することによって上記問題を解決する。
【0006】
電極に流す溶接電流を調整することにより電極変位量が制御できるのは、以下の理由による。抵抗溶接の際に電極変位量が増加するということは、被溶接材(ワーク)に対して投入される熱量が増加することを意味する。従来の溶接電源は一定電流に設定されているために、電極打点回数の増加とともに電極表面状態が変化をする。したがって、電極表面と被溶接材との接触面積の変化にともない接触抵抗が変化し、その結果電極表面と被溶接材との熱量が変化する。ここで熱量は、Q=0.24×I2 ×R×tで表され、Iは溶接電流(A)、Rは接触抵抗(Ω)、tは時間(sec)である。この接触抵抗の増減分に対応して電極に流す溶接電流を増減させて被溶接材に投入される熱量を一定にする。それによって、電極変位量を制御することが可能となる。なお、加圧力を変動させても接触抵抗を制御することが可能であるが、加圧力を減少させるとスパッタ等が発生する恐れがある。したがって、本発明においては、加圧力を一定にして、所定の電極打点時において電極に流す溶接電流を増減して電極変位量を制御した。
【0007】
【発明の実施の形態】
上記課題は、以下に示す本発明の抵抗溶接の制御方法及び抵抗溶接装置によって達成する。
本発明の抵抗溶接の電極変位量制御装置は、図1に示すように第1の手段21、第2の手段22、第3の手段23、第4の手段24及び第5の手段25を有する溶接電源フィードバック制御装置9を備える。
【0008】
本発明の第1の手段21が、電極変位計測回路B、電極変位量上下限設定回路C、演算回路J、比較回路K及び演算回路Lを有することによって、本発明の方法は、電極変位計測回路Bの出力と電極変位量上下限設定回路Cの設定値とを、演算回路J、比較回路K及び演算回路Lを用いて比較及び演算を行うことができる。本発明の第2の手段22が、連続NG回数設定回路D、演算回路Oと比較回路Pとを備える電極打点回数計測回路E、及び連続NG回数修正回路Gを備えることによって、本発明の方法は、電極打点回数と連続NG回数設定値とを連続NG回数修正回路Gに入力することが可能となる。本発明の第3の手段23が、第1の手段21と第2の手段22の出力を比較する比較回路Mと電流制御回路Hを備えることによって、本発明の方法は、連続して外れた電極打点回数が予め設定した連続電極打点回数に達したときに、次の電極打点時に過不足を調整した溶接電流を電流制御回路Hを介して電極に通電することが可能となる。
【0009】
また、本発明の装置においては、図1に示すように溶接電源フィードバック制御装置9が第4の手段24すなわち電極打点回数設定回路Fを備える。それによって、本発明は、電極打点回数の増加に伴って予め設定した電極打点回数を修正する方法を可能にする。さらに、本発明の装置においては、図1に示すように溶接電源フィードバック制御装置9が第5の手段25すなわちNG率設定回路Iを備える。それによって、本発明は、予め設定した電極打点以後は、ある期間内の設定外電極打点回数に依存させて溶接電流を調整して電極変位量の制御は安定化する方法を可能にする。
【0010】
本発明が対象にする溶接割れを発生しやすい燐青銅の継手の抵抗溶接例を従来例と比較して、本発明の方法及び装置をさらに具体的に説明する。
燐青銅のコイルターミナルと燐青銅のコネクターターミナルの継手の抵抗溶接の例を示す。1.5mm直径の燐青銅線コイルターミナル10と、0.64mm厚みの燐青銅板コネクターターミナル11とを抵抗溶接で接合した継手を図2のa及び図2のbに示す。従来の燐青銅の抵抗溶接においては、図2のbに示すように、溶接強度不足とともに、特にコイルターミナル10の溶接部13付近には溶接割れ12が発生しやすい。このコイルターミナル溶接部付近の溶接割れ12は、図3に示すごとく、電極変位量Lが大きくなると、すなわちコイルターミナルのつぶれ量が大きくなると溶接割れが発生してくる。この電極変位量は電極の表面状態の変化及びワーク性状の変化にともなって変化するので、電極変位量を安定領域内に維持するためには種々の制御を必要とする。特に電極の表面状態は電極打点回数の増加にしたがって変化するので、電極の表面状態の変化にしたがいコイルターミナルのつぶれ量も増大し、その結果、コイルターミナルの溶接部付近に溶接割れが発生する。この電極変位量の変化を防止する対策としては、予め設定した電極変位量に到達した時点で、電極に流す電流を停止させる電極変位量制御法が考えられている。しかしながら、この場合は通電を停止させる設定電極変位量に到達してから実際に通電が停止するまでの遅延時間が約4ms程度あるために、コイルターミナルのつぶれ量はあまり抑制されず安定した電極変位量を確保することは困難である。
【0011】
そこで、本発明は図4のa及び図4のbに示すごとく抵抗溶接する際に各電極打点毎に実際の電極変位量を計測し、予め設定した電極変位量の上限設定変位量14及び下限設定変位量15と比較して、これらの双方の設定変位量14、15から外れた実際の電極変位量16、17、18の電極打点回数を計測する。そして、これらの設定変位量から連続して外れた電極打点回数を算出する。この連続して外れた電極打点回数が予め設定した電極打点回数になった時、次の電極打点時に電極に流す溶接電流を所定率だけ増減させて電極変位量を安定化させる制御方法である。例えば、計測した電極変位量(図4のbに参照符号16で示すように)が上限設定変位量側で連続して予め設定した電極打点回数まで外れた場合、次の電極打点時には、溶接電流を所定率だけ減少させて抵抗溶接を行い、電極変位量を制御してワークのつぶれ量を改善する。
【0012】
以下に、本発明の溶接電流を調整して電極変位量の制御は安定化する方法及び装置を、図1の抵抗溶接における電極変位量と電極打点回数の測定方法及び装置の概要図、及び図6の本発明の制御内容を示すフローチャートを参照してさらに具体的に説明する。
本発明においては、抵抗溶接のスタート(スタート)後に全ての電極打点回数を、電極打点回数Nは、被溶接材1及び2を挟持した固定電極3と可動電極4との双方のあいだの電位差を電極間電圧検出線8を介して電極打点回数計測回路Eに入力して計測(図6の電極打点回数計測26)をする。また、電極変位量Lは、可動電極3の保持部にリニアゲージ等の変位センサー7を取り付けて検出して電極変位量計測回路Bで計測(図6の電極変位量計測27)する。なお、本発明においては電極に付加される加圧力は加圧シリンダー5によって付加され、その加圧力は一定で制御する。さらに、電極打点回数計測と電極変位量計測との双方の計測は、いずれが先であってもまた同時に計測してもよい。
【0013】
次に、計測した電極変位量から上限下限設定値から外れた電極打点回数を演算するために、先ず、電極変位量計測回路Bから演算回路Jを経た出力が、電極変位量上下限設定回路Cからの出力と比較回路Kで比較されて演算回路Lで演算される(図6の電極変位量30)。一方、電極打点回数を計測する電極打点回数計測回路Eの出力は、演算回路O及び比較回路Pを介して連続NG回数修正回路Gに入力される。このとき、電極打点回数設定回路Fの設定値が比較回路Pに入力され(図6の設定電極打点回数28)、その結果が、連続NG回数修正回路G及びNG率設定回路I(図6の電極変位量NG率演算29)に入力される。また、連続NG回数設定回路Dの設定値も連続NG回数修正回路Gに入力される(連続NG回数n演算34)。この連続NG回数修正回路Gの出力は、上記演算回路Lからの出力とともに比較回路Mで比較されて(図6の連続NG回数31)、電流制御回路Hに入力され(図6の電流値演算32)、その結果、過不足を調整した溶接電流(図6の制御電流値出力33)を溶接電源6を介して電極に通電することができる。
【0014】
電極打点回数の増加したとき、すなわち電極が経時変化をおこしたとき、或いは電極打点回数が多くなり電極表面が荒れてきたときは、少ない連続NG電極打点回数で溶接電流を調整するよりもある程度多い電極打点回数で溶接電流を調整するほうが電極変位量の制御は安定化する。このため、図1に示すように本発明の方法においては、電極打点回数と連続NG回数との関係を連続NG回数設定回路Dに予め設定して、例えば、図5に示す関係(但し直線関係でなくともよい)を設定し(図6の電極変位量NG率演算及び連続NG回数n演算)、電極打点回数の増加に伴って予め設定した連続NG電極打点回数を修正することができる。
【0015】
さらに、予め設定した電極打点回数に到達した以降は、所定の期間内でNGとなった設定外電極打点回数に依存させて、溶接電流を調整すると電極変位量の制御は安定化することができる。すなわち次式にしめすNG率に依存させて電極に流す電流を調整(図6の電流値演算)して電極変位量を制御する。
NG率=設定外電極打点回数(NOU)/設定期間内の全電極打点回数(NIN)
但し、上式において設定期間内の全電極打点回数NINは、電極表面状態によって適宜に設定する。
【0016】
このため、本発明の方法においては図1に示すように、設定外電極打点回数と設定期間内の全電極打点回数との関係を予めNG率設定回路Iに設定する。演算回路0と比較回路Pを通った電極打点計測回路Eの出力を上記NG率設定回路Iに入力し(図6の電極変位量NG率演算29)、その後比較回路Mを介して電流制御回路Hで、所定の期間内の設定外電極打点回数に依存させて溶接電流を調整する(図6の電流値演算32、制御電流値出力33)。本発明においてはNG率は一定とするのが好ましい。
【図面の簡単な説明】
【図1】本願発明の抵抗溶接における電極変位量と電極打点回数の測定方法及び装置の概要図を示す。
【図2】燐青銅線コイルターミナルと燐青銅板コネクターターミナルとを抵抗溶接で接合した継手を示し、図2のaは継手の部分斜視図であり、図2のbは継手の部分断面図である。
【図3】図2に示すコイルターミナルとコネクターターミナルとの継手の電極変位量Lと溶接電流の関係を示す。
【図4】図4のaは電極打点回数と溶接電流との関係を示し、図4のbは電極打点回数と電極変位量との関係を示す。
【図5】電極打点回数に対する連続NG回数の関係を示す。
【図6】本発明の制御内容を示すフローチャートをしめす
【図7】従来技術の電極変位量と通電時間との関係を示す。
【符号の説明】
1…被溶接材
2…被溶接材
3…可動電極
4…固定電極
5…加圧シリンダー
6…溶接電源
7…変位センサー
8…電極間電圧検出線
9…溶接電源フィードバック制御装置
10…コイルターミナル
11…コネクターターミナル
12…溶接割れ
13…溶接部
14…電極変位量の上限設定変位量
15…電極変位量の下限設定変位量
16…設定変位量から外れた実際の電極変位量
17…設定変位量から外れた実際の電極変位量
18…設定変位量から外れた実際の電極変位量
21…第1の手段
22…第2の手段
23…第3の手段
24…第4の手段
25…第5の手段
26…電極打点回数計測
27…電極変位量計測
28…設定電極打点回数
29…電極変位量NG率演算
30…電極変位量
31…連続NG回数
32…電流値演算
33…制御電流値出力
34…連続NG回数n演算[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a resistance welding electrode displacement control method and apparatus for obtaining a workpiece having high welding quality while preventing weld crack failure.
[0002]
[Prior art]
The current resistance welding method is a method of welding by fixing the pressurizing force, welding current, and energization time, which are the three major elements of resistance welding. In this current method, when a material to be welded that is likely to crack is resistance-welded, a workpiece with stable and sound welding quality cannot be obtained due to changes in the surface state of the welding electrode and changes in the properties of the workpiece. . Therefore, in the recent resistance welding method, in order to stabilize the work crushing amount (electrode displacement amount) due to the applied pressure of the electrode and thereby obtain a work with sound welding quality, a preset electrode displacement amount is obtained. immediately electrode displacement amount control method for stopping the energization when it reaches the came to be performed. In the conventional resistance welding control method, since the electrode displacement stop time is delayed due to the inertia shown in FIG. 7, the amount of collapse cannot be suppressed depending on the pattern of the electrode displacement amount at one electrode hit point. Therefore, defects such as weld cracks are generated in the workpiece.
[0003]
[Problems to be solved by the invention]
In resistance welding, many welding work factors and workpiece properties affect welding quality. When the workpiece (material to be welded) is a material that is particularly susceptible to weld cracking, such as phosphor bronze, among the welding work factors, the electrode surface condition (change over time) and the variation in workpiece properties are welded to the workpiece. Generate cracks. In particular, when the surface state of the electrode changes with time, in a mass production process, welding defects such as weld cracks of workpieces continuously occur, and there is a risk that many poorly welded parts are manufactured.
[0004]
Accordingly, it is an object of the present invention to provide a resistance welding electrode displacement control method and apparatus for supplying a welded part which prevents a product defect due to weld cracking and has a reliable welding quality.
[0005]
[Means for Solving the Problems]
In the present invention, in the resistance welding control method, paying attention to the fact that there is a strong correlation between the amount of electrode displacement (the amount of workpiece crushing) and the welding current, the amount of electrode displacement is measured at each electrode hit point. When a deviation occurs between the measured electrode displacement amount and the set electrode displacement amount by comparing with the preset upper limit and lower limit electrode displacement amounts, the deviation is caused to flow to the electrode at the next electrode hitting point according to this deviation. The above problem is solved by controlling the electrode displacement by increasing or decreasing the welding current.
[0006]
The reason why the electrode displacement can be controlled by adjusting the welding current flowing through the electrode is as follows. An increase in the amount of electrode displacement during resistance welding means an increase in the amount of heat input to the workpiece (workpiece). Since the conventional welding power source is set to a constant current, the electrode surface state changes as the number of electrode hits increases. Therefore, the contact resistance changes as the contact area between the electrode surface and the material to be welded changes, and as a result, the amount of heat between the electrode surface and the material to be welded changes. Here, the amount of heat is represented by Q = 0.24 × I 2 × R × t, where I is the welding current (A), R is the contact resistance (Ω), and t is the time (sec). Corresponding to the increase / decrease of the contact resistance, the welding current flowing through the electrode is increased / decreased to make the amount of heat supplied to the material to be welded constant. As a result, the amount of electrode displacement can be controlled. Note that the contact resistance can be controlled even if the applied pressure is changed, but if the applied pressure is reduced, there is a possibility that sputtering or the like may occur. Therefore, in the present invention, the amount of electrode displacement is controlled by increasing or decreasing the welding current flowing through the electrode at a predetermined electrode hitting point while keeping the applied pressure constant.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The object is achieved by the resistance welding control method and resistance welding apparatus of the present invention described below.
As shown in FIG. 1, the resistance displacement electrode displacement control device of the present invention has first means 21,
[0008]
Since the
[0009]
In the apparatus of the present invention, as shown in FIG. 1, the welding power source
[0010]
The resistance welding example of a phosphor bronze joint that is likely to cause weld cracking, which is the subject of the present invention, will be described more specifically by comparing it with a conventional example.
An example of resistance welding of a joint of a phosphor bronze coil terminal and a phosphor bronze connector terminal is shown. A joint obtained by joining a 1.5 mm diameter phosphor bronze
[0011]
Therefore, in the present invention, when resistance welding is performed as shown in FIGS. 4A and 4B, the actual electrode displacement amount is measured for each electrode hitting point, and the upper limit set
[0012]
In the following, a method and apparatus for adjusting the welding current of the present invention to stabilize the control of the electrode displacement amount, a schematic diagram of the method and apparatus for measuring the electrode displacement amount and the number of electrode hit points in the resistance welding of FIG. 6 will be described in more detail with reference to a flowchart showing the control contents of the present invention.
In the present invention, all electrode hit points after resistance welding start (start), electrode hit point number N is the potential difference between the fixed
[0013]
Next, in order to calculate the number of electrode hit points deviating from the upper limit / lower limit setting value from the measured electrode displacement amount, first, the output from the electrode displacement amount measurement circuit B via the arithmetic circuit J is the electrode displacement amount upper / lower limit setting circuit C. Is compared with the output from the comparator circuit K and calculated by the arithmetic circuit L (
[0014]
When the number of electrode hits increases, that is, when the electrode changes over time, or when the number of electrode hits increases and the electrode surface becomes rough, it is somewhat higher than adjusting the welding current with a small number of continuous NG electrode hits. The control of the electrode displacement is more stabilized by adjusting the welding current according to the number of electrode hits. Therefore, as shown in FIG. 1, in the method of the present invention, the relationship between the number of electrode hits and the number of consecutive NGs is set in advance in the continuous NG number setting circuit D, for example, the relationship shown in FIG. (The electrode displacement amount NG rate calculation and the continuous NG count n calculation in FIG. 6) can be set, and the preset continuous NG electrode hit count can be corrected as the electrode hit count increases.
[0015]
Further, after reaching the preset number of electrode hits, the control of the electrode displacement can be stabilized by adjusting the welding current depending on the number of non-set electrode hits that are NG within a predetermined period. . That is, the amount of electrode displacement is controlled by adjusting the current flowing through the electrode depending on the NG rate expressed by the following equation (current value calculation in FIG. 6).
NG rate = Number of non-set electrode hits (N OU ) / Number of all electrode hits within the set period (N IN )
However, in the above equation, the total number of electrode hits NIN within the set period is appropriately set according to the electrode surface state.
[0016]
Therefore, as shown in FIG. 1 in the process of the present invention, Ru set Teisu in advance NG rate setting circuit I the relationship between the total electrode RBI number within a set period and set out electrode RBI count. The output of the electrode hitting point measurement circuit E that has passed through the
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of a method and apparatus for measuring the amount of electrode displacement and the number of electrode hit points in resistance welding according to the present invention.
2 shows a joint in which a phosphor bronze wire coil terminal and a phosphor bronze plate connector terminal are joined by resistance welding. FIG. 2a is a partial perspective view of the joint, and FIG. 2b is a partial cross-sectional view of the joint. is there.
3 shows a relationship between an electrode displacement amount L and a welding current of a joint between a coil terminal and a connector terminal shown in FIG.
FIG. 4a shows the relationship between the number of electrode hits and the welding current, and FIG. 4b shows the relationship between the number of electrode hits and the amount of electrode displacement.
FIG. 5 shows the relationship of the number of consecutive NG times to the number of electrode hit points.
FIG. 6 shows a flowchart showing the control contents of the present invention. FIG. 7 shows the relationship between the amount of electrode displacement and the energization time in the prior art.
[Explanation of symbols]
DESCRIPTION OF
Claims (8)
予め電極変位量の上限設定変位量及び下限設定変位量を設定し、
抵抗溶接する際の電極打点回数(N)を計測し、電極打点回数毎に加圧方向の電極変位量を計測し、
前記上限設定変位量と前記下限設定変位量から電極変位量が連続して外れた電極打点回数を演算し、且つ
前記連続して外れた電極打点回数が予め設定した連続電極打点回数に達したときは、次の電極打点時に過不足を調整した溶接電流を電極に通電すること、及び
予め設置した電極変位量に到達した時点で、電極に流す電流を停止させることによって、
前記電極の電極変位量を制御することを特徴とする抵抗溶接の電極変位量制御方法。In the electrode displacement control method for resistance welding,
Set the upper limit setting displacement amount and lower limit setting displacement amount of the electrode displacement amount in advance,
Measure the number of electrode hits (N) when resistance welding, measure the amount of electrode displacement in the pressurization direction for each number of electrode hits,
When the number of electrode hit points where the electrode displacement amount has continuously deviated from the upper limit set displacement amount and the lower limit set displacement amount is calculated, and the continuously deviated electrode hit number reaches the preset continuous electrode hit number By passing the welding current adjusted to the excess or deficiency at the next electrode hit point to the electrode, and stopping the current flowing to the electrode when the pre-installed electrode displacement amount is reached,
An electrode displacement amount control method for resistance welding, wherein the electrode displacement amount of the electrode is controlled.
NG率=設定外電極打点回数(NOU)
/設定期間内の全電極打点回数(NIN)
で示すNG率にしたがって、過不足を調整した溶接電流を電極に通電して電極の電極変位量を制御することを特徴とする請求項1記載の電極変位量制御方法。After the preset number of electrode hits,
NG rate = Number of non-set electrode hits (N OU )
/ Number of all electrode hits within the set period (N IN )
The electrode displacement amount control method according to claim 1, wherein the electrode displacement amount of the electrode is controlled by applying a welding current adjusted for excess or deficiency to the electrode in accordance with the NG rate indicated by the following.
加圧方向において個々の電極変位量を計測し、予め設定した上下限電極変位量と比較する第1の手段(21)、
電極打点回数(N)を計測し、予め設定した上下限電極変位量から連続して外れた電極打点回数を演算する第2の手段(22)、及び
前記連続して外れた電極打点回数が予め設定した連続電極打点回数に達したときは、次の電極打点時に過不足を調整した溶接電流を電極に流す第3の手段(23)、
を備えた溶接電源フィードバック制御装置(9)を特徴とする抵抗溶接の電極変位量制御装置。In an electrode displacement control device for resistance welding,
First means (21) for measuring individual electrode displacement amounts in the pressurizing direction and comparing them with preset upper and lower limit electrode displacement amounts;
A second means (22) for measuring the number of electrode hit points (N) and calculating the number of electrode hit points continuously deviating from a preset upper and lower limit electrode displacement amount; and When the set number of continuous electrode hits has been reached, the third means (23) for causing the welding current adjusted to be excessive or insufficient at the next electrode hit to flow to the electrode,
An electrode displacement amount control device for resistance welding, characterized by a welding power source feedback control device (9) comprising:
NG率=設定外電極打点回数(NOU)
/設定期間内の全電極打点回数(NIN)
で示すNG率にしたがって、過不足を調整した溶接電流を電極に通電する第5の手段(25)を備えることを特徴とする請求項6記載の電極変位量制御装置。After the preset number of electrode hits,
NG rate = Number of non-set electrode hits (N OU )
/ Number of all electrode hits within the set period (N IN )
The electrode displacement amount control device according to claim 6, further comprising fifth means (25) for supplying the electrode with a welding current adjusted for excess or deficiency in accordance with an NG rate indicated by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25557099A JP4296648B2 (en) | 1999-09-09 | 1999-09-09 | Electrode displacement control method and apparatus for resistance welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25557099A JP4296648B2 (en) | 1999-09-09 | 1999-09-09 | Electrode displacement control method and apparatus for resistance welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001071152A JP2001071152A (en) | 2001-03-21 |
JP4296648B2 true JP4296648B2 (en) | 2009-07-15 |
Family
ID=17280562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25557099A Expired - Lifetime JP4296648B2 (en) | 1999-09-09 | 1999-09-09 | Electrode displacement control method and apparatus for resistance welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4296648B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5789483B2 (en) * | 2011-11-08 | 2015-10-07 | 本田技研工業株式会社 | Resistance welding method and apparatus |
-
1999
- 1999-09-09 JP JP25557099A patent/JP4296648B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001071152A (en) | 2001-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4329561A (en) | Method of ensuring the maintenance of constant quality of spot welds | |
EP0350013B1 (en) | Resistance welding control method | |
WO2016174842A1 (en) | Resistance spot welding method | |
US20020053555A1 (en) | Spot welding system and method for sensing welding conditions in real time | |
US9266187B2 (en) | Method of monitoring thermal response, force and current during resistance welding | |
JPS59206163A (en) | Controller for arc length of arc welder | |
JP3221296B2 (en) | Control device and control method for resistance welding | |
US4343980A (en) | Control of welding energy flux density | |
JP4296648B2 (en) | Electrode displacement control method and apparatus for resistance welding | |
US5889262A (en) | System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine | |
JP3709807B2 (en) | Welding state determination method and apparatus | |
JPH0259179A (en) | Arc welding method | |
JP3651276B2 (en) | Method for estimating nugget diameter in resistance welding and control method for resistance welding | |
JP3221305B2 (en) | Control device of resistance welding machine | |
JP2019118921A (en) | Welding device | |
JP2002239743A (en) | Resistance welding machine control device and quality monitoring device | |
KR101739941B1 (en) | Control method of spot welder and recording medium for storing program thereof | |
JP2000135573A (en) | Welding control device of resistance welding machine | |
KR100495618B1 (en) | Apparatus and method for controlling the electric power in the mash seam wealding | |
KR19990055364A (en) | Welding speed control method and device of resistance welding machine | |
JP2024081624A (en) | Resistance spot welding method and method for manufacturing welded member | |
JP2001062570A (en) | Device and method for seam welding | |
JP4642221B2 (en) | Pass / fail judgment device and judgment method of initial butt state in upset butt welding | |
JPH0215878A (en) | Device for stabilizing quality of tig welding | |
JPH0929450A (en) | Joining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081021 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090406 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4296648 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |