JP4295401B2 - Resin molded product and molding method thereof - Google Patents

Resin molded product and molding method thereof Download PDF

Info

Publication number
JP4295401B2
JP4295401B2 JP27811299A JP27811299A JP4295401B2 JP 4295401 B2 JP4295401 B2 JP 4295401B2 JP 27811299 A JP27811299 A JP 27811299A JP 27811299 A JP27811299 A JP 27811299A JP 4295401 B2 JP4295401 B2 JP 4295401B2
Authority
JP
Japan
Prior art keywords
resin
resin molded
molded product
pipe
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27811299A
Other languages
Japanese (ja)
Other versions
JP2000225629A (en
Inventor
雅樹 渡辺
哲生 伊勢谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP27811299A priority Critical patent/JP4295401B2/en
Publication of JP2000225629A publication Critical patent/JP2000225629A/en
Application granted granted Critical
Publication of JP4295401B2 publication Critical patent/JP4295401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14598Coating tubular articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂を射出成形してなる肉厚な樹脂成形品とその成形方法に関する。
【0002】
【従来の技術】
従来、熱可塑性樹脂を射出成形してなる樹脂成形品は比較的厚みが薄く、溶融樹脂の金型キャビティ内への充填工程において、金型表面と樹脂の流動により剪断力を受けて、該樹脂が流動方向に配向した配向層を形成することによって強度及び剛性を得ており、成形品の厚みが薄いことから、樹脂が固化するまでの冷却時間も比較的短かった。
【0003】
【発明が解決しようとする課題】
しかしながら、近年、金属代替に代表される樹脂化の流れは、樹脂の高性能化と従来一般的に成形されていた1〜8mmという肉厚から、10mm以上の肉厚が要求されるようになってきた。ところが、肉厚の樹脂成形品を射出成形すると、金型表面から離れた成形品中央部の樹脂は剪断力を受けないために配向層を形成することができず、そのため、厚みを増した程に強度及び剛性が向上しないという問題が発生した。また、肉厚のため樹脂が徐冷されることにより、溶融状態から固化する時に起こる体積変化によって、発生するボイド等の成形品の内部欠陥による強度不良が発生した。さらに、厚みを増した分、樹脂が固化するまでの冷却時間が長くなるため、従来の薄肉の成形品と比較して製造効率が悪い。
【0004】
本発明の目的は、このような肉厚の樹脂成形品において、十分な強度及び剛性を付与し、且つ、該成形品の成形時における冷却時間を短縮して製造効率を向上することにある。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために、鋭意検討を行った結果、射出成形時にキャビティ内にパイプを配置することにより、冷却時間を短縮することが可能となり、さらに、上記パイプに冷却媒体を通し、樹脂成形品を内側から冷却することにより、さらに冷却時間を短縮し、同時に、上記パイプの周囲に新たな配向層を形成させることによって樹脂成形品の強度及び剛性を向上し得ることを見出し、本発明を達成した。
【0006】
即ち、本発明の樹脂成形品は、熱可塑性樹脂からなる樹脂成形部と、該樹脂成形部を貫通する金属パイプと、を有し、該金属パイプが射出成形時に冷却媒体を通した冷却用パイプであることを特徴とする。
【0007】
また本発明の樹脂成形品の成形方法は、金型キャビティ内に該キャビティを貫通する金属パイプを配置し、該金属パイプ内に冷却媒体を通しながら、上記キャビティ内に溶融した熱可塑性樹脂を射出して上記金属パイプの周囲に樹脂成形部を成形することを特徴とする。
【0009】
【発明の実施の形態】
本発明の樹脂成形品は、ネジまたはボルト、アジャスター及び取っ手、手摺り等に使用される厚肉成形品であり、例えば、土木建築用または機械要素用のネジまたはボルトや、重量のある機械装置類や床材を下部から支えて所定の高さで安定性を維持することができる高さ調節用アジャスターに使用可能である。また、輸送機関や建設物等に設置される窓、玄関、または室内扉の開閉用の取っ手または手摺りや廊下、階段、または通路の補助用及び浴室、トイレ等水周り周辺の補助用の取っ手または手摺り、さらには浴室、トイレ等水周り周辺において水等の流体を開放するための握り用の取っ手等に使用される
図1、図3、図5に、発明の樹脂成形品の実施形態を示す。図中、1は樹脂成形品、2は樹脂成形部、3はパイプをそれぞれ示す。
【0010】
図1の実施形態は本発明の樹脂成形品で土木建築用樹脂ボルトを構成した例であり、図3の実施形態は、本発明の樹脂成形品を3本使用し、壁取り付け用ジョイントと嵌合させて、一般住宅トイレ用の手摺りを組み立てたものである。また、図5の実施形態は、本発明の樹脂成形品とドア取り付け用の上下アーム付フタとを嵌合させて、一般住宅玄関用取っ手を組み立てたものである。
【0011】
さらに、図8に本発明の樹脂成形品の他の実施形態を示す。図8は機械装置の高さ調節用アジャスターの分解断面図であり、21の調節部材に螺合部材22a、22bをキー機構により嵌合固定し、該螺合部材22aを支持部材23に、22bを受け部材24に螺合し、調節部材21を回転させることにより全体の高さを変化させて上部に設置した機械装置の高さを調整することができる。ここで、調節部材21が本発明の樹脂成形品に相当する。
【0012】
本発明は、このような長尺で肉厚の成形品に特に好ましく適用される。特に本発明は、厚さ6mm以上の肉厚部分を有する樹脂成形品、好ましくは厚さが8mm以上の肉厚部分が10mm以上連続して存在するような樹脂成形品において好ましく適用され、該肉厚部分にパイプを通すように構成することが望ましい。
【0013】
本発明において用いられるパイプ3としては、その材質及び形状は限定されず、材質についてはゴム、プラスチック、セラミック、金属等が用いられるが、特に冷却媒体に水を用いる場合には、腐食に比較的強い、真鍮やアルミニウム、ステンレス系の材質を用いることが好ましい。また、形状については、樹脂成形部の形状に合わせ、丸、楕円、長方形等の多角形のパイプを使用することができる。好ましくは、樹脂成形品の断面と同一のものが樹脂成形品の冷却スピードの均一化を図る上で好ましい。
【0014】
また、本発明において樹脂成形部2に用いられる熱可塑性樹脂としては、一般に射出成形に使用されているものが使用可能であり、例えば、ポリカーボネート、ポリアセタール、ポリアミド、PBT(ポリブチレンテレフタレート)樹脂、PET(ポリエチレンテレフタレート)樹脂、変性PPO(ポリフェニレンオキシド)樹脂、変性PPE(ポリフェニレンエーテル)樹脂、AS(アクリロニトリル・スチレン)樹脂、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、ポリスチレン、ポリプロピレン、ポリエチレン、熱可塑性エラストマー及びこれらを一構成成分とするアロイ材料等が挙げられるが、中でも、ポリカーボネート、ポリアミド、PET樹脂が好ましく、特に、ポリアミドが好ましく用いられる。さらに、成形品の強度その他の要求を考慮し、繊維強化材、充填材、各種添加剤を加えることができ、例えば、ポリアミドにガラス繊維を添加した組成物が好適に用いられる。
【0015】
次に、図2に図1の樹脂成形品を射出成形する際の金型の断面模式図を示す。図中、3はパイプ、4a及び4bはスライドコアブロック、5a及び5bは金型、6は冷却媒体の導入管、7は冷却媒体の排出管、8はOリング、9は金型キャビティである。
【0016】
図2の実施形態においては、金型キャビティ9を貫通するパイプ3を該キャビティ9内に配置し、該パイプ3の両端をスライドコアブロック4a,4bにて固定し、導入管6より冷却媒体を導入し、パイプ3内を通して排出管7より排出する。
【0017】
同様に、図4に図3の樹脂成形品を射出成形する際の金型の断面模式図を示す。図中、11はシールパッキン、12a及び12bは油圧シリンダ、10a及び10bは油圧シリンダ12a、12bにネジ止めする金型入れ子であり、図2と同じ部材には同じ符号を付した。
【0018】
図4の実施形態においては、金型キャビティ9を貫通するパイプ3を該キャビティ9内に配置し、該パイプ3の両端を油圧シリンダ12a,12bを使用して金型入れ子10a,10bを金型5a,5bにて固定し、導入管6より冷却媒体を導入し、パイプ3内を通して排出管7より排出する。
【0019】
さらに、図6に図5の樹脂成形品を射出成形する際の金型の断面模式図を示す。図中、図2、図4と同じ部材には同じ符号を付した。
【0020】
図6の実施形態においては、金型キャビティ9を貫通するパイプ3を該キャビティ9内に配置し、該パイプ3の両端の内側にスライドコアブロック4a,4bを嵌合し、固定して、導入管6より冷却媒体を導入し、パイプ3内を通して排出管7より排出する。本実施形態においては、パイプ3の内側にスライドコアブロック4a及び4bが嵌合することにより、樹脂成形品の両端からパイプ3が突起しない樹脂成形品を得ることができる。
【0021】
本発明において用いる冷却媒体としては、取り扱い易く安価という点から空気或いは水が好ましく、特に、肉厚の場合には、熱交換能力の点から水を用いることが望ましい。これら冷却媒体の温度としては、熱可塑性樹脂を溶融して射出充填する温度よりも低ければ良く、通常の射出成形の熱可塑性樹脂の溶融温度から鑑みて、室温程度で十分冷却効果を得ることができる。使用し得る温度としては0℃〜150℃の範囲であり、望ましくは15℃〜90℃で用いる。
【0022】
このようにして、好ましくはパイプ3内に冷却媒体を通して冷却しながら、金型キャビティ9内に溶融した熱可塑性樹脂を射出し、パイプ3の周囲に樹脂成形部2を成形する。この時、金型5a及び5b表面に接した樹脂は従来通りに剪断力を受けて配向するが、冷却媒体を通した場合にはパイプ3が中を通る冷却媒体によって常に冷却されていることから、該パイプ3に接した樹脂も同様に剪断力を受けて配向し、該パイプ3の周囲に新たな配向層が形成される。
【0023】
図7は後述する実施例及び比較例の樹脂成形品の断面を図式化した図であり、図7(a)が本発明の樹脂成形品、(b)が従来の中実体である。図7に示されるように、従来の中実体の樹脂成形品(b)では、その外側表面にしか配向層14は形成されないが、成形時に冷却媒体を用いた場合の本発明の樹脂成形品(a)においては、上記したように、樹脂成形部2の外側表面に加えて、パイプ3に接する面にも新たに配向層14が形成されるため、従来の樹脂成形品よりも強度及び剛性が向上する。
【0024】
尚、配向層とは、樹脂にガラス繊維等補強材を添加して樹脂成形品を成形した際に、該補強材が流動方向に並ぶ角度を0°とし、流動方向と垂直に並ぶ角度を90°とした場合に、角度が45°以下の補強材が50%以上並ぶ層をいう。尚、この角度は、流動方向に垂直な断面を観察し、該補強材断面の長軸、短軸の比より求めることができる。
【0025】
また、樹脂充填後もパイプ3内に冷却媒体を通すことによって、樹脂成形部2が内側からも効率良く冷却され、短時間で樹脂成形部2を固化することができる。
【0026】
上記実施形態においては、長尺の樹脂成形品の中央にパイプを配置させた構造を例示したが、本発明の樹脂成形品はこの構造に限定されるものではなく、複数のパイプを平行して配置しても構わない。また、一本のパイプを折り曲げ、金型の樹脂成形部に配置してもかまわない。
【0027】
【実施例】
(実施例1、2、比較例1)
図1に示した形状の大型樹脂ボルトを射出成形した。該ボルトの外径はφ24mm、ネジ谷径はφ19mmである。熱可塑性樹脂としては、芳香族系ポリアミド樹脂50重量%にガラス繊維を50重量%添加したもの(旭化成工業(株)製「レオナ 90G50」)を、パイプとしては、直径φ10mmのアルミニウム製パイプを使用した。
【0028】
図2に示した金型で、強度測定用に型締め力150tの射出成形機を使用して、樹脂温度が296℃、金型表面温度が52℃、スクリュー前進スピードが200mm/s、保圧力が400kgf/cm2、射出時間が20秒の成形条件で、冷却媒体として工業用水(18℃)を流しながら射出成形を行ない、パイプが貫通した大型樹脂ボルトを得た。
【0029】
さらに、実施例2として、冷却媒体を用いずに同様の成形品を成形した。
【0030】
また、比較例1として、パイプを用いず、上記パイプ及び該パイプの内部の容積に相当する樹脂を余分に充填する以外は同じ射出条件で、中実体の大型樹脂ボルトを成形した。
【0031】
上記実施例1及び比較例1のそれぞれの大型樹脂ボルトについて、引張スピードが20mm/min、フルスケールが10tの条件で、23℃で50%R.H.の環境下において引張破壊強度を測定した。測定にはそれぞれ5本のボルトを用意し、その平均値を求めた。その結果、実施例1が2600kgfであるのに対し、比較例1は2160kgfであった。
【0032】
さらに、金型表面温度を93℃、射出時間を10秒とする以外は、上記と同様の条件で、実施例1、2及び比較例1それぞれ大型樹脂ボルトを成形し、成形サイクルを測定した。その結果、実施例1においては、トータルサイクル(樹脂の充填開始から取り出しまでの時間)が成形作動限界サイクルの40秒でも、成形品からの樹脂の吹き出し等異常は認められず、実施例2の成形品はトータルサイクルが45秒でも成形品からの樹脂の吹き出し等異常は認められなかった。また、比較例1の成形品は、トータルサイクルが59秒でも金型から離型放置後、ボルト頭部から溶融樹脂が吹き出し、内部まで十分に冷却・固化されていないことがわかった。
【0033】
(実施例3〜5、比較例2、3)
熱可塑性樹脂として、実施例1で用いた「レオナ 90G50」及びポリアミド66樹脂(旭化成工業(株)製「レオナ 1300S」)を用い、実施例1と同じパイプと金型を用いて、実施例1と同じ形状の大型樹脂ボルトを成形した。「レオナ 90G50」の成形条件は、スクリュー前進スピードを20mm/minとした以外は実施例1と同じ条件とし、また、「レオナ 1300S」の成形条件は、樹脂温度が288℃、金型表面温度が51℃、スクリュー前進スピードが20mm/min、保圧力が400kgf/cm2、射出時間を30秒とした。また、パイプを用いるものの冷却媒体を通さない(実施例3)、冷却媒体として室温の空気(実施例4)或いは工業用水(実施例5)を用いる、パイプを用いずに中実体とする(比較例2)、ものをそれぞれ成形した。
【0034】
得られた大型樹脂ボルトについて、引張スピードが50mm/min、フルスケールが10tの条件で、23℃で50%R.H.の環境下で引張破壊強度を測定した。その結果を表1に示す。尚、測定値はそれぞれ5個のボルトの平均値である。
【0035】
【表1】

Figure 0004295401
【0036】
さらに得られたこれらの大型樹脂ボルトと使用したアルミパイプ(比較例3)について、曲げスピードが5mm/min、フルスケールが10tの条件で、23℃で50%R.H.の環境下で最大曲げ荷重、曲げ応力と曲げ弾性率を測定した。尚、測定値はそれぞれ5回の平均値である。
【表2】
Figure 0004295401
【0037】
【表3】
Figure 0004295401
【0038】
【表4】
Figure 0004295401
【0039】
表2〜表4より、最大曲げ荷重、曲げ応力、曲げ弾性率のいずれにおいても、実施例4、5は高い値を示しており、冷却媒体を用いることが有効であることがわかった。
【0040】
(実施例6)
図3に示した形状の一般住宅トイレ用の手摺りのストレート部分の樹脂成形品を図4に示す金型を使用して射出成形した。該樹脂成形品の外径はφ30mmである。熱可塑性樹脂としては、ポリアミド66樹脂(旭化成工業(株)製「レオナ 1402S」)100重量部に黒着色用マスターバッチを5重量部添加したものを、パイプとしては、直径φ25mm、肉厚1mm、厚さ600mmのアルミニウム製パイプを使用した。
【0041】
図4に示した金型で、型締め力220tの射出成形機を使用して、樹脂温度が284℃、金型表面温度が53℃、スクリュー前進スピードが20mm/s、保圧力が400kgf/cm2、射出時間が30秒の成形条件で、冷却媒体として工業用水(21℃)を流しながら射出成形を行い、パイプが貫通した一般住宅トイレ用の手摺りのストレート部分を得た。
【0042】
(実施例7、比較例4)
図5に示した形状の一般住宅玄関用取っ手のストレート部分の樹脂成形品を射出成形した。該樹脂成形品の外径はφ35mmである。熱可塑性樹脂としては、芳香族系ポリアミド樹脂40重量%にガラス繊維を60重量%添加したもの(旭化成工業(株)製「レオナ 90G60」)を、パイプとしては、直径φ25mm、肉厚1.5mm、長さ400mmのステンレス製パイプを使用した。
【0043】
図6に示した金型で、型締め力220tの射出成形機を使用して、樹脂温度が297℃、金型表面温度が93℃、スクリュー前進スピードが20mm/s、保圧力が400kgf/cm2、射出時間が20秒の成形条件で、冷却媒体として工業用水(22℃)を流しながら射出成形を行い、パイプが貫通した一般住宅玄関用取っ手のストレート部分を得た。
【0044】
また、比較例4として、パイプを用いず、上記パイプ及び該パイプの内部の容積に相当する樹脂を余分に充填する以外は同じ射出条件で、一般住宅玄関用取っ手のストレート部分の樹脂成形品を成形した。
【0045】
実施例7と比較例4について、流動方向に対し直角に切断し、表面研磨した後の断面を図式化したものを図7に示す。図7(a)、(b)は、成形品を切削後、共にエポキシ樹脂中で固定し、表面研磨後、実体顕微鏡で観察した配向層の範囲を図式化したものである。図7(b)は比較例4の断面を図式化したものであり、金型表面付近約2mmしか配向層14が形成されていない。一方、図7(a)に示す本発明の実施例7は、金型表面付近は比較例4と同様に約2mmしか配向していないが、パイプの周りに約2mmの配向層14が新たに形成されている。
【0046】
【発明の効果】
以上説明したように、本発明によれば、肉厚の成形品を短時間で効率良く成形することができる。また、本発明において、成形時に冷却媒体をパイプに通すことにより、強度及び剛性が高い樹脂成形品をより短時間で効率よく成形することができるため、従来、強度及び剛性上の観点から代替が困難であった金属部材でも樹脂成形品に代替することが可能となる。また、従来の中実体の樹脂成形品に比較して、本発明の樹脂成形品は、パイプを貫通させた分、より軽量であり、取り扱い易く、輸送の点からも望ましいものである。
【図面の簡単な説明】
【図1】本発明の樹脂成形品の一実施形態である大型樹脂ボルトの外形図である。
【図2】図1の樹脂成形品の成形に用いる金型の断面模式図である。
【図3】本発明の樹脂成形品の一実施形態を用いた一般住宅トイレ用手摺りの外形図である。
【図4】図3の樹脂成形品の成形に用いる金型の断面模式図である。
【図5】本発明の樹脂成形品の一実施形態を用いた一般住宅玄関用取っ手の外形図である。
【図6】図5の樹脂成形品の成形に用いる金型の断面模式図である。
【図7】本発明の実施例7及び比較例4の樹脂成形品の断面模式図である。
【図8】本発明の樹脂成形品の一実施形態を用いた機械装置の高さ調節用アジャスターの分解断面模式図である。
【符号の説明】
1 樹脂成形品
2 樹脂成形部
3 パイプ
4a,4b スライドコアブロック
5a,5b 金型
6 冷却媒体導入管
7 冷却媒体排出管
8 Oリング
9 キャビティ
10a,10b 金型入れ子
11 シールパッキン
12a,12b 油圧シリンダ
14 配向層
21 調節部材
22a,22b 螺合部材
23 支持部材
24 受け部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thick resin molded product formed by injection molding of a thermoplastic resin and a molding method thereof.
[0002]
[Prior art]
Conventionally, a resin molded product formed by injection molding of a thermoplastic resin has a relatively small thickness, and in the process of filling a molten resin into a mold cavity, the resin is subjected to shearing force due to the flow of the mold surface and the resin, and the resin Since the strength and rigidity were obtained by forming an alignment layer oriented in the flow direction, and the thickness of the molded product was thin, the cooling time until the resin solidified was also relatively short.
[0003]
[Problems to be solved by the invention]
However, in recent years, the trend of resinization as represented by metal replacement has been demanded for a thickness of 10 mm or more from a high performance of the resin and a thickness of 1 to 8 mm that has been generally formed conventionally. I came. However, when a thick resin molded product is injection-molded, the resin at the center of the molded product away from the mold surface is not subjected to a shearing force, so an alignment layer cannot be formed. However, there was a problem that the strength and rigidity were not improved. Further, due to the slow cooling of the resin due to the wall thickness, the strength change due to the internal defects of the molded product such as voids generated due to the volume change that occurs when solidifying from the molten state occurred. Furthermore, since the cooling time until the resin is solidified becomes longer due to the increase in thickness, the production efficiency is lower than that of a conventional thin molded product.
[0004]
An object of the present invention is to impart sufficient strength and rigidity to such a thick resin molded product, and to shorten the cooling time at the time of molding the molded product to improve the production efficiency.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors can reduce the cooling time by arranging the pipe in the cavity at the time of injection molding, and further cooling the pipe. The cooling time can be further shortened by cooling the resin molded product from the inside through the medium, and at the same time, the strength and rigidity of the resin molded product can be improved by forming a new orientation layer around the pipe. The present invention has been achieved.
[0006]
That is, the resin molded article of the present invention, possess a resin molded portion comprising a thermoplastic resin, a metal pipe which penetrates the molded resin portion, a cooling pipe in which the metal pipe has passed through the cooling medium at the time of injection molding It is characterized by being.
[0007]
In the molding method of the resin molded product of the present invention, a metal pipe penetrating the cavity is placed in the mold cavity, and a molten thermoplastic resin is injected into the cavity while passing a cooling medium through the metal pipe. Then, a resin molded part is formed around the metal pipe.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The resin molded product of the present invention is a thick molded product used for screws or bolts, adjusters and handles, handrails, etc., for example, screws or bolts for civil engineering or machine elements or heavy mechanical devices It can be used for a height adjustment adjuster that can maintain stability at a predetermined height by supporting a floor or flooring from below. Also, handles for opening and closing windows, entrances, or indoor doors installed in transportation facilities and constructions, or for assisting handrails, corridors, stairs, or passages, and auxiliary handles around water such as bathrooms and toilets, or Embodiments of the resin molded product of the invention are shown in FIGS. 1, 3, and 5 used for grips for releasing fluids such as water in the vicinity of water such as handrails and bathrooms and toilets. Show. In the figure, 1 is a resin molded product, 2 is a resin molded part, and 3 is a pipe.
[0010]
The embodiment of FIG. 1 is an example in which a resin bolt for civil engineering and construction is constituted by the resin molded product of the present invention, and the embodiment of FIG. 3 uses three resin molded products of the present invention and is fitted with a wall mounting joint. Combined, it is a handrail for a general residential toilet. Further, in the embodiment of FIG. 5, a handle for a general house entrance is assembled by fitting the resin molded product of the present invention and a lid with upper and lower arms for door attachment.
[0011]
Further, FIG. 8 shows another embodiment of the resin molded product of the present invention. FIG. 8 is an exploded cross-sectional view of the height adjustment adjuster of the mechanical device. The screwing members 22a and 22b are fitted and fixed to the adjustment member 21 by a key mechanism, and the screwing member 22a is attached to the support member 23 and 22b. The height of the mechanical device installed on the upper part can be adjusted by changing the overall height by screwing the receiving member 24 and rotating the adjusting member 21. Here, the adjustment member 21 corresponds to the resin molded product of the present invention.
[0012]
The present invention is particularly preferably applied to such a long and thick molded product. In particular, the present invention is preferably applied to a resin molded product having a thick portion having a thickness of 6 mm or more, preferably a resin molded product having a thickness portion having a thickness of 8 mm or more continuously present of 10 mm or more. It is desirable that the pipe is passed through the thick part.
[0013]
The material and shape of the pipe 3 used in the present invention are not limited, and rubber, plastic, ceramic, metal, etc. are used as the material. However, when water is used as a cooling medium, it is relatively resistant to corrosion. It is preferable to use a strong brass, aluminum, or stainless steel material. Moreover, about a shape, polygonal pipes, such as a circle, an ellipse, and a rectangle, can be used according to the shape of a resin molding part. Preferably, the same cross section as that of the resin molded product is preferable for achieving uniform cooling speed of the resin molded product.
[0014]
Moreover, as the thermoplastic resin used for the resin molding part 2 in the present invention, those generally used for injection molding can be used, for example, polycarbonate, polyacetal, polyamide, PBT (polybutylene terephthalate) resin, PET (Polyethylene terephthalate) resin, modified PPO (polyphenylene oxide) resin, modified PPE (polyphenylene ether) resin, AS (acrylonitrile styrene) resin, ABS (acrylonitrile butadiene styrene) resin, polystyrene, polypropylene, polyethylene, thermoplastic elastomer and Examples thereof include alloy materials containing these as one constituent component, among which polycarbonate, polyamide, and PET resin are preferable, and polyamide is particularly preferably used. Furthermore, considering the strength and other requirements of the molded product, a fiber reinforcing material, a filler, and various additives can be added. For example, a composition in which glass fiber is added to polyamide is preferably used.
[0015]
Next, FIG. 2 shows a schematic cross-sectional view of a mold when the resin molded product of FIG. 1 is injection-molded. In the figure, 3 is a pipe, 4a and 4b are slide core blocks, 5a and 5b are molds, 6 is a cooling medium introduction pipe, 7 is a cooling medium discharge pipe, 8 is an O-ring, and 9 is a mold cavity. .
[0016]
In the embodiment of FIG. 2, the pipe 3 penetrating the mold cavity 9 is disposed in the cavity 9, both ends of the pipe 3 are fixed by the slide core blocks 4 a and 4 b, and the cooling medium is supplied from the introduction pipe 6. It is introduced and discharged from the discharge pipe 7 through the pipe 3.
[0017]
Similarly, FIG. 4 shows a schematic cross-sectional view of a mold when the resin molded product of FIG. 3 is injection-molded. In the figure, 11 is a seal packing, 12a and 12b are hydraulic cylinders, 10a and 10b are mold inserts screwed to the hydraulic cylinders 12a and 12b, and the same members as those in FIG.
[0018]
In the embodiment of FIG. 4, the pipe 3 penetrating the mold cavity 9 is disposed in the cavity 9, and the mold inserts 10 a and 10 b are inserted into the mold by using hydraulic cylinders 12 a and 12 b at both ends of the pipe 3. The cooling medium is introduced from the introduction pipe 6 and discharged from the discharge pipe 7 through the pipe 3.
[0019]
Further, FIG. 6 shows a schematic sectional view of a mold when the resin molded product of FIG. 5 is injection-molded. In the figure, the same members as those in FIGS. 2 and 4 are denoted by the same reference numerals.
[0020]
In the embodiment of FIG. 6, the pipe 3 penetrating the mold cavity 9 is disposed in the cavity 9, and the slide core blocks 4 a and 4 b are fitted inside the both ends of the pipe 3, fixed, and introduced. A cooling medium is introduced from the pipe 6 and discharged from the discharge pipe 7 through the pipe 3. In the present embodiment, by fitting the slide core blocks 4a and 4b inside the pipe 3, it is possible to obtain a resin molded product in which the pipe 3 does not protrude from both ends of the resin molded product.
[0021]
The cooling medium used in the present invention is preferably air or water from the viewpoint of being easy to handle and inexpensive. In particular, in the case of a thick wall, it is desirable to use water from the viewpoint of heat exchange capability. The temperature of these cooling media should be lower than the temperature at which the thermoplastic resin is melted and injection-filled, and in view of the melting temperature of the normal injection-molded thermoplastic resin, a sufficient cooling effect can be obtained at about room temperature. it can. The usable temperature is in the range of 0 ° C. to 150 ° C., preferably 15 ° C. to 90 ° C.
[0022]
In this way, the molten thermoplastic resin is injected into the mold cavity 9 while preferably cooling the pipe 3 through the cooling medium, and the resin molding portion 2 is molded around the pipe 3. At this time, the resin in contact with the surfaces of the molds 5a and 5b is oriented by receiving a shearing force as usual, but when the cooling medium is passed, the pipe 3 is always cooled by the cooling medium passing therethrough. The resin in contact with the pipe 3 is similarly oriented by receiving a shearing force, and a new orientation layer is formed around the pipe 3.
[0023]
FIG. 7 is a diagram schematically showing a cross section of resin molded products of Examples and Comparative Examples described later. FIG. 7A shows the resin molded product of the present invention, and FIG. As shown in FIG. 7, in the conventional solid resin molded product (b), the alignment layer 14 is formed only on the outer surface thereof, but the resin molded product of the present invention when a cooling medium is used during molding ( In a), as described above, since the orientation layer 14 is newly formed on the surface in contact with the pipe 3 in addition to the outer surface of the resin molded portion 2, the strength and rigidity are higher than those of conventional resin molded products. improves.
[0024]
The orientation layer means that when a reinforcing material such as glass fiber is added to a resin to form a resin molded product, the angle at which the reinforcing material is aligned in the flow direction is 0 °, and the angle at which the reinforcing material is aligned perpendicular to the flow direction is 90 °. In this case, it means a layer in which 50% or more of reinforcing materials having an angle of 45 ° or less are arranged. This angle can be determined from the ratio of the major axis to the minor axis of the reinforcing material section by observing a section perpendicular to the flow direction.
[0025]
Further, by passing the cooling medium through the pipe 3 even after resin filling, the resin molded portion 2 can be efficiently cooled from the inside, and the resin molded portion 2 can be solidified in a short time.
[0026]
In the said embodiment, although the structure which has arrange | positioned the pipe in the center of a long resin molded product was illustrated, the resin molded product of this invention is not limited to this structure, A several pipe is paralleled. You may arrange. Also, a single pipe may be bent and placed in the resin molding part of the mold.
[0027]
【Example】
(Examples 1 and 2 and Comparative Example 1)
A large resin bolt having the shape shown in FIG. 1 was injection molded. The bolt has an outer diameter of 24 mm and a thread valley diameter of 19 mm. As the thermoplastic resin, 50% by weight of an aromatic polyamide resin and 50% by weight of glass fiber ("Leona 90G50" manufactured by Asahi Kasei Kogyo Co., Ltd.) are used. As the pipe, an aluminum pipe having a diameter of 10 mm is used. did.
[0028]
2 using an injection molding machine with a clamping force of 150 t for strength measurement, resin temperature is 296 ° C., mold surface temperature is 52 ° C., screw advance speed is 200 mm / s, holding pressure Was molded under the molding conditions of 400 kgf / cm 2 and an injection time of 20 seconds while flowing industrial water (18 ° C.) as a cooling medium, and a large resin bolt with a pipe penetrated was obtained.
[0029]
Furthermore, as Example 2, a similar molded product was molded without using a cooling medium.
[0030]
Further, as Comparative Example 1, a solid large-sized resin bolt was molded under the same injection conditions except that a pipe was not used and an extra resin corresponding to the volume of the pipe and the inside of the pipe was filled.
[0031]
About each large sized resin bolt of the said Example 1 and the comparative example 1, 50% R.S at 23 degreeC on the conditions of a tension speed of 20 mm / min and a full scale of 10 t. H. Tensile fracture strength was measured under the following conditions. Five bolts were prepared for each measurement, and the average value was obtained. As a result, Example 1 was 2600 kgf, while Comparative Example 1 was 2160 kgf.
[0032]
Furthermore, each of Examples 1, 2 and Comparative Example 1 was molded under the same conditions as described above except that the mold surface temperature was 93 ° C. and the injection time was 10 seconds, and the molding cycle was measured. As a result, in Example 1, even when the total cycle (the time from the start of filling of resin to the removal) was 40 seconds of the molding operation limit cycle, no abnormality such as resin blowing from the molded product was observed, and Example 2 The molded product showed no abnormalities such as resin blowing from the molded product even when the total cycle was 45 seconds. In addition, it was found that the molded product of Comparative Example 1 was not sufficiently cooled and solidified to the inside after the molten resin was blown out from the bolt head after leaving from the mold even when the total cycle was 59 seconds.
[0033]
(Examples 3 to 5, Comparative Examples 2 and 3)
As the thermoplastic resin, “Leona 90G50” and polyamide 66 resin (“Leona 1300S” manufactured by Asahi Kasei Kogyo Co., Ltd.) used in Example 1 were used, and the same pipe and mold as Example 1 were used. A large-sized resin bolt having the same shape as was molded. The molding conditions of “Leona 90G50” were the same as those of Example 1 except that the screw advance speed was 20 mm / min. The molding conditions of “Leona 1300S” were a resin temperature of 288 ° C. and a mold surface temperature of The screw advance speed was 20 mm / min, the holding pressure was 400 kgf / cm 2 , and the injection time was 30 seconds. Moreover, although a pipe is used, a cooling medium is not passed (Example 3), room temperature air (Example 4) or industrial water (Example 5) is used as a cooling medium, and it is made solid without using a pipe (Comparison) Example 2), each was molded.
[0034]
With respect to the obtained large resin bolt, 50% R.D. at 23 ° C. under conditions of a tensile speed of 50 mm / min and a full scale of 10 t. H. Tensile fracture strength was measured under the following conditions. The results are shown in Table 1. The measured values are average values of 5 bolts.
[0035]
[Table 1]
Figure 0004295401
[0036]
Further, for these obtained large resin bolts and the aluminum pipe used (Comparative Example 3), 50% R.D. at 23 ° C. under conditions of a bending speed of 5 mm / min and a full scale of 10 t. H. The maximum bending load, bending stress and bending elastic modulus were measured under the following conditions. In addition, each measured value is an average value of 5 times.
[Table 2]
Figure 0004295401
[0037]
[Table 3]
Figure 0004295401
[0038]
[Table 4]
Figure 0004295401
[0039]
From Table 2 to Table 4, in any of the maximum bending load, bending stress, and bending elastic modulus, Examples 4 and 5 showed high values, and it was found that it was effective to use a cooling medium.
[0040]
(Example 6)
A resin molded product of a straight portion of a handrail for a general residential toilet having the shape shown in FIG. 3 was injection molded using the mold shown in FIG. The outer diameter of the resin molded product is φ30 mm. As a thermoplastic resin, a polyamide 66 resin ("Leona 1402S" manufactured by Asahi Kasei Kogyo Co., Ltd.) added to 5 parts by weight of a masterbatch for black coloring is added as a pipe. An aluminum pipe having a thickness of 600 mm was used.
[0041]
4 using an injection molding machine having a clamping force of 220 t, the resin temperature is 284 ° C., the mold surface temperature is 53 ° C., the screw advance speed is 20 mm / s, and the holding pressure is 400 kgf / cm. 2 , injection molding was performed while flowing industrial water (21 ° C.) as a cooling medium under molding conditions of an injection time of 30 seconds, and a straight portion of a handrail for a general residential toilet with a pipe penetrated was obtained.
[0042]
(Example 7, Comparative Example 4)
A resin molded product of the straight portion of the handle for a general house entrance having the shape shown in FIG. 5 was injection molded. The resin molded product has an outer diameter of 35 mm. As the thermoplastic resin, 40% by weight of an aromatic polyamide resin and 60% by weight of glass fiber ("Leona 90G60" manufactured by Asahi Kasei Kogyo Co., Ltd.) are used. The pipe has a diameter of 25 mm and a wall thickness of 1.5 mm. A stainless steel pipe having a length of 400 mm was used.
[0043]
6 using an injection molding machine having a clamping force of 220 t, the resin temperature is 297 ° C., the mold surface temperature is 93 ° C., the screw advance speed is 20 mm / s, and the holding pressure is 400 kgf / cm. 2 , injection molding was performed while flowing industrial water (22 ° C.) as a cooling medium under molding conditions of an injection time of 20 seconds, and a straight portion of a handle for a general house entrance through which a pipe penetrated was obtained.
[0044]
Further, as Comparative Example 4, a resin molded product of the straight part of the handle for a general house entrance is used under the same injection conditions except that the pipe and the resin corresponding to the volume inside the pipe are not filled, and the pipe is not used. Molded.
[0045]
About Example 7 and Comparative Example 4, what cut | disconnected at right angles with respect to the flow direction and surface-polished the cross section after having been surface-polished is shown in FIG. FIGS. 7A and 7B are diagrams schematically illustrating the range of the alignment layer observed by a stereomicroscope after cutting the molded product, fixing both in an epoxy resin, and polishing the surface. FIG. 7B schematically illustrates the cross section of Comparative Example 4, and the alignment layer 14 is formed only about 2 mm near the mold surface. On the other hand, in Example 7 of the present invention shown in FIG. 7 (a), the vicinity of the mold surface is oriented only about 2 mm as in Comparative Example 4, but an about 2 mm oriented layer 14 is newly provided around the pipe. Is formed.
[0046]
【The invention's effect】
As described above, according to the present invention, a thick molded product can be efficiently molded in a short time. In the present invention, a resin molded product having high strength and rigidity can be efficiently molded in a shorter time by passing a cooling medium through the pipe at the time of molding. Even a difficult metal member can be replaced with a resin molded product. In addition, compared with conventional solid resin molded products, the resin molded products of the present invention are lighter because of the penetration of the pipe, are easy to handle, and are desirable from the viewpoint of transportation.
[Brief description of the drawings]
FIG. 1 is an external view of a large resin bolt which is an embodiment of a resin molded product of the present invention.
2 is a schematic cross-sectional view of a mold used for molding the resin molded product of FIG. 1. FIG.
FIG. 3 is an external view of a handrail for a general residential toilet using an embodiment of the resin molded product of the present invention.
4 is a schematic cross-sectional view of a mold used for molding the resin molded product of FIG. 3;
FIG. 5 is an external view of a handle for a general house entrance using an embodiment of the resin molded product of the present invention.
6 is a schematic cross-sectional view of a mold used for molding the resin molded product of FIG. 5. FIG.
7 is a schematic cross-sectional view of a resin molded product of Example 7 and Comparative Example 4 of the present invention. FIG.
FIG. 8 is a schematic exploded cross-sectional view of a height adjuster for a mechanical device using an embodiment of a resin molded product of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resin molding 2 Resin molding part 3 Pipe 4a, 4b Slide core block 5a, 5b Mold 6 Cooling medium introduction pipe 7 Cooling medium discharge pipe 8 O-ring 9 Cavity 10a, 10b Mold insert 11 Seal packing 12a, 12b Hydraulic cylinder 14 Orientation layer 21 Adjustment member 22a, 22b Screwing member 23 Support member 24 Receiving member

Claims (5)

熱可塑性樹脂からなる樹脂成形部と、該樹脂成形部を貫通した金属パイプと、を有し、該金属パイプが射出成形時に冷却媒体を通した冷却用パイプであることを特徴とする樹脂成形品。And a resin molded portion made of a thermoplastic resin, possess a metal pipe passing through the molded resin portion, the resin molded article, characterized in that said metal pipe is a cooling pipe through the cooling medium at the time of injection molding . 樹脂成形部の外側表面および冷却用パイプに接する面に配向層を有することを特徴とする請求項記載の樹脂成形品。Claim 1, wherein the resin molded article characterized by having an orientation layer to the surface in contact with the outer surface and the cooling pipes of the resin molded portion. ネジ、ボルト、アジャスター、取っ手、手摺りのいずれかに使用されることを特徴とする請求項1または2に記載の樹脂成形品。Screws, bolts, adjusters, handle, resin molded article according to claim 1 or 2, characterized in that it is used in any of the handrail. 金型キャビティ内に該キャビティを貫通する金属パイプを配置し、該金属パイプ内に冷却媒体を通しながら、上記キャビティ内に溶融した熱可塑性樹脂を射出して上記金属パイプの周囲に樹脂成形部を成形することを特徴とする樹脂成形品の成形方法。A metal pipe penetrating the cavity is placed in the mold cavity, and a molten thermoplastic resin is injected into the cavity while passing a cooling medium through the metal pipe, and a resin molded portion is placed around the metal pipe. A method for molding a resin molded product, comprising molding. 上記冷却媒体が、空気或いは水である請求項記載の樹脂成形品の成形方法。The method for molding a resin molded product according to claim 4 , wherein the cooling medium is air or water.
JP27811299A 1998-12-01 1999-09-30 Resin molded product and molding method thereof Expired - Fee Related JP4295401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27811299A JP4295401B2 (en) 1998-12-01 1999-09-30 Resin molded product and molding method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-341372 1998-12-01
JP34137298 1998-12-01
JP27811299A JP4295401B2 (en) 1998-12-01 1999-09-30 Resin molded product and molding method thereof

Publications (2)

Publication Number Publication Date
JP2000225629A JP2000225629A (en) 2000-08-15
JP4295401B2 true JP4295401B2 (en) 2009-07-15

Family

ID=26552729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27811299A Expired - Fee Related JP4295401B2 (en) 1998-12-01 1999-09-30 Resin molded product and molding method thereof

Country Status (1)

Country Link
JP (1) JP4295401B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20041090A1 (en) * 2004-05-28 2004-08-28 Meccanica Finnord S P A METHOD AND APPARATUS TO PRINT A RUBBER FITTING ON A PLASTIC PIPE
JP5285268B2 (en) * 2007-12-04 2013-09-11 倉敷化工株式会社 Mold for molding
US8197924B2 (en) * 2010-10-05 2012-06-12 Ford Global Technologies, Llc Compostable interior panel for use in a vehicle and method of manufacture
CN104309030A (en) * 2014-10-20 2015-01-28 苏州广型模具有限公司 Rapid cooling sectional die for manufacturing hollow products
CN104354282B (en) * 2014-11-19 2016-09-14 黎明 A kind of polypropylene slab and the method manufacturing high-strength polypropylene sheet material with it
JP6208704B2 (en) * 2015-03-17 2017-10-04 三菱重工業株式会社 Manufacturing method of impeller
JP6579768B2 (en) 2015-03-24 2019-09-25 三菱日立パワーシステムズ株式会社 boiler
JP7451856B2 (en) * 2019-08-27 2024-03-19 三桜工業株式会社 Method for manufacturing a resin pipe with a fixing member and apparatus for manufacturing a resin pipe with a fixing member
CN116100753B (en) * 2023-02-13 2023-08-22 广州市旭胜模具有限公司 Adjustable automobile shell injection mold

Also Published As

Publication number Publication date
JP2000225629A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP4295401B2 (en) Resin molded product and molding method thereof
CA2039160C (en) Method for producing molded article of fiber-reinforced thermoplastic resin
US11034069B2 (en) 3D printed injection mold tool with improved heat transfer and mechanical strength
US20070187522A1 (en) Composite railroad tie and method of manufacture
CN106677362A (en) Vented-box thermal insulation wallboard structure with built-in connecting bolts and construction method thereof
JPH04254201A (en) Resinous wheel
JPH081800A (en) Long member made of fiber reinforced resin and production thereof
KR100743114B1 (en) Manhole cover
GB2167513A (en) Fastening device
JP3232387B2 (en) Grooved resin molded product and molding method
JPH10337744A (en) Manufacture of fiber reinforced thermoplastic resin molded product, and molded product
JPH0257401A (en) Resin wheel
US7111331B2 (en) Method of molding a toilet seat assembly
US10828816B1 (en) 3D printed injection mold coating to extend lifetime and performance
JPH08169035A (en) Injection molding method for synthetic resin
JPS6372517A (en) Manufacture of fiber reinforced plastic bolt
CN210730566U (en) H13 double-wing double-hole aluminum profile rapid forming die
KR100487579B1 (en) Three layer polyethylene pipe
JPH11309720A (en) Method for insert molding, insert-molded article, and mold assembly for insert molding
JPH0318824B2 (en)
WO2000037241A1 (en) Method of making rotationally moulded parts having nano-particle reinforcement
JP2000271970A (en) Molded product comprising polyacetal resin and production thereof
KR200342862Y1 (en) Duct having flange
US20060244180A1 (en) Mold pin and mold for its use
JP2004044186A (en) Method of manufacturing form fixture and form fixture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees