JP4295173B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4295173B2
JP4295173B2 JP2004219089A JP2004219089A JP4295173B2 JP 4295173 B2 JP4295173 B2 JP 4295173B2 JP 2004219089 A JP2004219089 A JP 2004219089A JP 2004219089 A JP2004219089 A JP 2004219089A JP 4295173 B2 JP4295173 B2 JP 4295173B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
valve
intake
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004219089A
Other languages
Japanese (ja)
Other versions
JP2006037847A (en
Inventor
典之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004219089A priority Critical patent/JP4295173B2/en
Publication of JP2006037847A publication Critical patent/JP2006037847A/en
Application granted granted Critical
Publication of JP4295173B2 publication Critical patent/JP4295173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の制御装置に関し、より詳しくは、吸気バルブと排気バルブのオーバーラップ量が所定値以上であり、且つ、吸気工程時期に燃料を噴射する際の排気エミッションを向上させるための技術に係わる。   The present invention relates to a control device for an internal combustion engine, and more specifically, to improve exhaust emission when an overlap amount of an intake valve and an exhaust valve is a predetermined value or more and fuel is injected at an intake process timing. Related to technology.

従来より、吸排気バルブを電磁バルブにより構成し、目標空気量(要求負荷)が所定値以上である場合、吸気バルブと排気バルブの開閉タイミングを制御することにより吸気バルブと排気バルブのオーバーラップ量を大きくし、吸気工程時期に燃料を噴射する内燃機関の制御装置が知られている(例えば特許文献1を参照)。そして、このような内燃機関の制御装置によれば、掃気効果を利用して目標空気量を実現することができる。
特開2001−159343号公報
Conventionally, when the intake / exhaust valve is composed of an electromagnetic valve and the target air amount (required load) is greater than or equal to a predetermined value, the amount of overlap between the intake and exhaust valves is controlled by controlling the opening and closing timing of the intake and exhaust valves. There is known a control device for an internal combustion engine that increases fuel flow and injects fuel during the intake stroke (see, for example, Patent Document 1). According to such a control device for an internal combustion engine, the target air amount can be realized using the scavenging effect.
JP 2001-159343 A

しかしながら、従来までの内燃機関の制御装置は、吸気バルブと排気バルブのオーバーラップ量を大きくし、吸気工程時期に燃料を噴射する構成となっているために、シリンダからの吹き返しによって燃料噴霧の速度が低下し、噴霧パターンが乱される。そしてこの結果、吸気ポートに付着する燃料噴霧の壁流量が増大し、未燃焼燃料(HC)の増大等の原因によって排気エミッションが低下する。   However, conventional control devices for internal combustion engines have a configuration in which the amount of overlap between the intake valve and the exhaust valve is increased and fuel is injected at the time of the intake stroke. Decreases and the spray pattern is disturbed. As a result, the wall flow rate of the fuel spray adhering to the intake port increases, and the exhaust emission decreases due to an increase in unburned fuel (HC).

本発明は、上記課題を解決するためになされたものであり、その目的は、吸気バルブと排気バルブのオーバーラップ量が所定値以上であり、且つ、吸気工程時期に燃料を噴射する際の排気エミッションを向上させることが可能な内燃機関の制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust when fuel is injected at the intake process timing when the overlap amount between the intake valve and the exhaust valve is a predetermined value or more. An object of the present invention is to provide a control device for an internal combustion engine capable of improving emission.

上記目的を達成するために、本発明に係る内燃機関の制御装置は、燃料噴射時期が吸気工程時期であるか否かを判別し、燃料噴射時期が吸気工程時期である場合、吸気バルブと排気バルブのオーバーラップ量が所定値以上であるか否かを判別し、オーバーラップ量が所定値以上である場合、燃料の噴射圧力を高める。そして、このような態様によれば、燃料噴霧に対するシリンダからの吹き返しの影響を低減させることができるので、燃料の壁流量を低減し、排気エミッションを向上させることができる。   In order to achieve the above object, the control device for an internal combustion engine according to the present invention determines whether or not the fuel injection timing is the intake stroke timing, and when the fuel injection timing is the intake stroke timing, It is determined whether or not the overlap amount of the valve is equal to or greater than a predetermined value. If the overlap amount is equal to or greater than the predetermined value, the fuel injection pressure is increased. And according to such an aspect, since the influence of the blowback from the cylinder with respect to fuel spray can be reduced, the wall flow rate of fuel can be reduced and exhaust emission can be improved.

なお、燃料の噴射圧力は、オーバーラップ量の大きさに合わせて高くすることが望ましい。一般に、シリンダからの吹き返し量は、吸気バルブと排気バルブのオーバーラップ量が大きくなるのに従って多くなる。従って、このような態様によれば、シリンダから吹き返し量に合わせて最適な噴射圧力を設定することができる。   It is desirable that the fuel injection pressure be increased in accordance with the amount of overlap. In general, the amount of blowback from the cylinder increases as the amount of overlap between the intake valve and the exhaust valve increases. Therefore, according to such an aspect, it is possible to set an optimal injection pressure in accordance with the blowback amount from the cylinder.

また、内燃機関温度が所定値以下であるか否かを判別し、内燃機関温度が所定値以下である場合、上記処理を実行することが望ましい。一般に、内燃機関温度が低い場合には、燃料は霧化され難く、シリンダから吹き返しによる燃料の壁流量が増大する。従って、このような態様によれば、燃料の壁流量を低減し、排気エミッションを向上させることができる。   Further, it is desirable to determine whether or not the internal combustion engine temperature is equal to or lower than a predetermined value, and when the internal combustion engine temperature is equal to or lower than the predetermined value, it is desirable to execute the above processing. In general, when the internal combustion engine temperature is low, the fuel is difficult to atomize, and the wall flow rate of the fuel due to blow-back from the cylinder increases. Therefore, according to such an aspect, the fuel wall flow rate can be reduced and the exhaust emission can be improved.

本発明に係る制御装置は、図1に示すような油圧制御式の可変動弁機構を有する内燃機関に適用することができる。以下、図面を参照して、本発明の実施形態となる内燃機関の構成及びその制御方法について詳しく説明する。   The control device according to the present invention can be applied to an internal combustion engine having a hydraulically controlled variable valve mechanism as shown in FIG. Hereinafter, a configuration of an internal combustion engine and a control method thereof according to an embodiment of the present invention will be described in detail with reference to the drawings.

〔内燃機関の構成〕
本発明の実施形態となる内燃機関1は、図1に示すように、クランク軸2からの動力がタイミングチェーン3により各スプロケット4,5を介して排気側カム軸6と吸気側カム軸7に伝達されるようになっている。また、吸気側カム軸7には、クランク軸2に対する吸気側カム軸7の進角量を調整する油圧駆動式の吸気側可変バルブタイミング機構8と吸気側カム軸センサ9が取り付けられている。また、排気側カム軸6には、クランク軸2に対する排気側カム軸6の進角量を調整する油圧駆動式の排気側可変バルブタイミング機構10と排気側カム軸センサ11が取り付けられている。
一方、クランク軸2には、クランク軸センサ12が取り付けられている。このクランク軸センサ12は、クランク軸2の1回転当たりN個のクランク軸位相検出パルス信号を発生するのに対し、吸気側/排気側カム軸センサ9,11は、吸気側/排気側カム軸7,6の1回転当たり2N個のカム軸位相検出パルス信号を発生する。また、吸気側/排気側カム軸7,6の最大進角量/最大遅角量をθmax℃Aとした場合、N<360/θmaxとなるようにクランク軸位相検出パルス信号数Nが設定されている。これによって、クランク軸センサ12からのクランク軸位相検出パルス信号と、これに続いて発生する吸気側/排気側カム軸センサ9,11からのカム軸位相検出パルス信号との間の相対回転角により吸気バルブと排気バルブ(いずれも図示せず)の実バルブタイミング(吸気側カム軸7の実進角量と排気側カム軸6の実遅角量)が算出される。
また、クランク軸センサ12及び吸気側/排気側カム軸センサ9,11からの各検出パルス信号は、エンジン制御回路(以下「ECU」と表記する)13に入力され、このECU13によって吸気バルブと排気バルブの実バルブタイミングが演算されると共に、クランク軸センサ12からの検出パルス信号の間隔によってエンジン回転数が演算される。また、図示しないが、吸気管圧力センサ、水温センサ、スロットルセンサ等のエンジン運転状態を検出する各種センサの出力もECU13に入力され、これら各種センサ出力に基づいて、目標排気残留割合(目標バルブオーバーラップ量)が演算されると共に、吸気バルブと排気バルブの目標バルブタイミング(吸気側カム軸7の目標進角量と排気側カム軸6の目標遅角量)が演算される。
また、ECU13は、吸気バルブの実バルブタイミング(吸気側カム軸7の実進角量)を目標進角量に一致させるように吸気側油圧回路14の油圧制御弁(図示せず)を制御して吸気側可変バルブタイミング機構8をフィードバック制御すると共に、排気バルブの実バルブタイミング(排気側カム軸6の実遅角量)を目標遅角量に一致させるように排気側油圧回路15の油圧制御弁(図示せず)を制御して排気側可変バルブタイミング機構10をフィードバック制御する。
また、ECU13は、燃料噴射バルブから噴射される燃料の圧力(燃圧)とオーバーラップ量の関係をマップ化した燃圧−オーバーラップ量マップを記憶し、このマップを参照して燃圧を制御可能なように構成されている。なお、この実施形態では、燃圧−オーバーラップ量マップは、吸気バルブと排気バルブのオーバーラップ量が大きくなるのに従って燃圧が増加する特性を示す。
[Configuration of internal combustion engine]
As shown in FIG. 1, an internal combustion engine 1 according to an embodiment of the present invention transmits power from a crankshaft 2 to an exhaust side camshaft 6 and an intake side camshaft 7 via a sprocket 4, 5 by a timing chain 3. It is to be transmitted. Further, a hydraulically driven intake side variable valve timing mechanism 8 and an intake side camshaft sensor 9 for adjusting the advance amount of the intake side camshaft 7 with respect to the crankshaft 2 are attached to the intake side camshaft 7. The exhaust camshaft 6 is provided with a hydraulically driven exhaust variable valve timing mechanism 10 and an exhaust camshaft sensor 11 that adjust the advance amount of the exhaust camshaft 6 with respect to the crankshaft 2.
On the other hand, a crankshaft sensor 12 is attached to the crankshaft 2. The crankshaft sensor 12 generates N crankshaft phase detection pulse signals per revolution of the crankshaft 2, while the intake side / exhaust side camshaft sensors 9, 11 are provided with intake side / exhaust side camshafts. 2N camshaft phase detection pulse signals are generated per rotation of 7,6. Further, when the maximum advance amount / maximum retard amount of the intake side / exhaust side cam shafts 7 and 6 is θmax ° C., the crankshaft phase detection pulse signal number N is set so that N <360 / θmax. ing. As a result, the relative rotation angle between the crankshaft phase detection pulse signal from the crankshaft sensor 12 and the camshaft phase detection pulse signals from the intake side / exhaust side camshaft sensors 9 and 11 generated thereafter is determined. The actual valve timings (the actual advance amount of the intake side camshaft 7 and the actual retard amount of the exhaust side camshaft 6) of the intake valve and the exhaust valve (both not shown) are calculated.
The detection pulse signals from the crankshaft sensor 12 and the intake / exhaust-side camshaft sensors 9 and 11 are input to an engine control circuit (hereinafter referred to as “ECU”) 13, and the ECU 13 controls the intake valve and the exhaust. The actual valve timing of the valve is calculated, and the engine speed is calculated based on the detection pulse signal interval from the crankshaft sensor 12. Although not shown, the outputs of various sensors that detect engine operating conditions such as an intake pipe pressure sensor, a water temperature sensor, and a throttle sensor are also input to the ECU 13, and based on these various sensor outputs, a target exhaust residual ratio (target valve over-range) is obtained. (Lap amount) is calculated, and target valve timings of the intake valve and the exhaust valve (target advance angle amount of the intake camshaft 7 and target retard amount of the exhaust camshaft 6) are calculated.
Further, the ECU 13 controls a hydraulic control valve (not shown) of the intake side hydraulic circuit 14 so that the actual valve timing of the intake valve (actual advance angle of the intake camshaft 7) matches the target advance angle. Then, feedback control of the intake side variable valve timing mechanism 8 is performed, and the hydraulic control of the exhaust side hydraulic circuit 15 is performed so that the actual valve timing of the exhaust valve (actual retard amount of the exhaust camshaft 6) matches the target retard amount. A valve (not shown) is controlled to feedback control the exhaust side variable valve timing mechanism 10.
Further, the ECU 13 stores a fuel pressure-overlap amount map in which the relationship between the pressure (fuel pressure) of fuel injected from the fuel injection valve and the overlap amount is mapped, and the fuel pressure can be controlled with reference to this map. It is configured. In this embodiment, the fuel pressure-overlap amount map shows the characteristic that the fuel pressure increases as the overlap amount between the intake valve and the exhaust valve increases.

そして、このような構成を有する内燃機関1では、ECU13が以下に示す燃圧制御処理を実行することにより、燃料噴霧に対するシリンダからの吹き返しの影響を低減させる。以下、図2に示すフローチャートを参照して、燃圧制御処理を実行する際のECU13の動作について詳しく説明する。   And in the internal combustion engine 1 which has such a structure, ECU13 performs the fuel pressure control process shown below, and reduces the influence of the blowback from a cylinder with respect to fuel spray. Hereinafter, the operation of the ECU 13 when executing the fuel pressure control process will be described in detail with reference to the flowchart shown in FIG.

〔燃圧制御処理〕
図2に示すフローチャートは、車両のイグニッションスイッチがオン状態になるのに応じて開始となり、燃圧制御処理はステップS1の処理に進む。
[Fuel pressure control processing]
The flowchart shown in FIG. 2 starts when the ignition switch of the vehicle is turned on, and the fuel pressure control process proceeds to the process of step S1.

ステップS1の処理では、ECU13が、冷却水の温度,内燃機関1の負荷,及び内燃機関1の回転数の情報を読み込む。これにより、このステップS1の処理は完了し、燃圧制御処理はステップS1の処理からステップS2の処理に進む。   In the process of step S1, the ECU 13 reads information on the temperature of the cooling water, the load of the internal combustion engine 1, and the rotational speed of the internal combustion engine 1. Thereby, the process of step S1 is completed, and the fuel pressure control process proceeds from the process of step S1 to the process of step S2.

ステップS2の処理では、ECU13が、冷却水の温度が所定値以上であるか否かを判別する。そして、判別の結果、冷却水の温度が所定値以上である場合、ECU13は、内燃機関1の温度は高い状態(HOT状態)にあると判断し、燃圧制御処理をステップS7の処理に進める。一方、冷却水の温度が所定値以下である場合には、ECU13は、内燃機関1の温度は低い状態(COLD状態)にあると判断し、燃圧制御処理をステップS3の処理に進める。   In the process of step S2, the ECU 13 determines whether or not the temperature of the cooling water is equal to or higher than a predetermined value. As a result of the determination, if the temperature of the cooling water is equal to or higher than the predetermined value, the ECU 13 determines that the temperature of the internal combustion engine 1 is high (HOT state), and advances the fuel pressure control process to the process of step S7. On the other hand, when the temperature of the cooling water is equal to or lower than the predetermined value, the ECU 13 determines that the temperature of the internal combustion engine 1 is low (COLD state), and advances the fuel pressure control process to the process of step S3.

ステップS3の処理では、ECU13が、燃料噴射バルブからの燃料噴霧の噴射タイミングが排気工程タイミングであるか否かを判別する。そして、判別の結果、噴射タイミングが排気工程である場合、ECU13は、燃圧制御処理をステップS6の処理に進める。一方、噴射タイミングが、排気工程ではなく、吸気工程である場合には、ECU13は、燃圧制御処理をステップS4の処理に進める。   In the process of step S3, the ECU 13 determines whether or not the injection timing of the fuel spray from the fuel injection valve is the exhaust process timing. And as a result of discrimination | determination, when injection timing is an exhaust process, ECU13 advances a fuel pressure control process to the process of step S6. On the other hand, when the injection timing is not the exhaust process but the intake process, the ECU 13 advances the fuel pressure control process to the process of step S4.

ステップS4の処理では、ECU13が、ステップS1の処理により読み込まれた内燃機関1の負荷,及び内燃機関1の回転数の情報に従って吸気バルブと排気バルブのオーバーラップ(O/L)量を決定し、決定されたオーバーラップ量が所定値以下であるか否かを判別する。そして、判別の結果、オーバーラップ量が所定値以下である場合、ECU13は、燃圧制御処理をステップS6の処理に進める。一方、オーバーラップ量が所定値以上である場合には、ECU13は、燃圧制御処理をステップS5の処理に進める。   In the process of step S4, the ECU 13 determines the overlap (O / L) amount of the intake valve and the exhaust valve according to the information on the load of the internal combustion engine 1 and the rotation speed of the internal combustion engine 1 read in the process of step S1. Then, it is determined whether or not the determined overlap amount is equal to or less than a predetermined value. If the overlap amount is equal to or smaller than the predetermined value as a result of the determination, the ECU 13 advances the fuel pressure control process to the process of step S6. On the other hand, if the overlap amount is greater than or equal to the predetermined value, the ECU 13 advances the fuel pressure control process to the process of step S5.

ステップS5の処理では、ECU13が、燃圧−オーバーラップ量マップを参照して、ステップS4の処理において検出したオーバーラップ量に対応する燃圧を読み出し、燃料噴射バルブが噴射する燃料の圧力を読み出された燃圧の値に設定する。これにより、このステップS5の処理は完了し、燃圧制御処理はステップS5の処理からステップS7の処理に進む。   In the process of step S5, the ECU 13 reads the fuel pressure corresponding to the overlap amount detected in the process of step S4 with reference to the fuel pressure-overlap amount map, and reads the pressure of the fuel injected by the fuel injection valve. Set the fuel pressure value. Thereby, the process of step S5 is completed, and the fuel pressure control process proceeds from the process of step S5 to the process of step S7.

ステップS6の処理では、ECU13が、燃料噴射バルブが噴射する燃料の圧力を固定値に設定する。これにより、このステップS6の処理は完了し、燃圧制御処理はステップS6の処理からステップS7の処理に進む。   In step S6, the ECU 13 sets the pressure of the fuel injected by the fuel injection valve to a fixed value. Thereby, the process of step S6 is completed, and the fuel pressure control process proceeds from the process of step S6 to the process of step S7.

ステップS7の処理では、ECU13が、ステップS4の処理により決定されたオーバーラップ量になるように吸気バルブと排気バルブの開弁時期を制御すると共に、ステップS5又はステップS6の処理により設定された燃圧で燃料を噴射するように燃料噴射バルブを制御する。これにより、このステップS7の処理は完了し、燃圧制御処理はステップS1の処理に戻る。   In the process of step S7, the ECU 13 controls the opening timing of the intake valve and the exhaust valve so that the overlap amount determined by the process of step S4 is achieved, and the fuel pressure set by the process of step S5 or step S6. The fuel injection valve is controlled so as to inject fuel. Thereby, the process of step S7 is completed, and the fuel pressure control process returns to the process of step S1.

以上の説明から明らかなように、本発明の実施形態となる内燃機関1によれば、ECU13が、燃料噴射タイミングが吸気工程タイミングであるか否かを判別し、燃料噴射タイミングが吸気工程タイミングである場合、吸気バルブと排気バルブのオーバーラップ量が所定値以上であるか否かを判別し、オーバーラップ量が所定値以上である場合、燃料噴射バルブから噴射される燃料の圧力を高める。そして、このような構成によれば、燃料噴霧に対するシリンダからの吹き返しの影響を低減させることができるので、燃料の壁流量を低減し、排気エミッションを向上させることができる。   As is clear from the above description, according to the internal combustion engine 1 according to the embodiment of the present invention, the ECU 13 determines whether the fuel injection timing is the intake process timing, and the fuel injection timing is the intake process timing. In some cases, it is determined whether or not the overlap amount between the intake valve and the exhaust valve is equal to or greater than a predetermined value. If the overlap amount is equal to or greater than a predetermined value, the pressure of the fuel injected from the fuel injection valve is increased. And according to such a structure, since the influence of the blowback from a cylinder with respect to fuel spray can be reduced, the wall flow rate of a fuel can be reduced and exhaust emission can be improved.

また、本発明の実施形態となる内燃機関1によれば、ECU13が、燃圧−オーバーラップ量マップに従って、オーバーラップ量の大きささに合わせて燃料噴射バルブから噴射される燃料の圧力を高くする。一般に、シリンダからの吹き返し量は吸気バルブと排気バルブのオーバーラップ量が大きくなるのに従って多くなるので、このような構成によれば、シリンダからの吹き返し量に合わせて最適な燃料圧力を設定することができる。   Further, according to the internal combustion engine 1 according to the embodiment of the present invention, the ECU 13 increases the pressure of the fuel injected from the fuel injection valve in accordance with the size of the overlap amount according to the fuel pressure-overlap amount map. Generally, the amount of blowback from the cylinder increases as the amount of overlap between the intake valve and the exhaust valve increases. With such a configuration, the optimum fuel pressure is set in accordance with the amount of blowback from the cylinder. Can do.

さらに、本発明の実施形態となる内燃機関1によれば、ECU13が、冷却水の温度が所定値以下であるか否かを判別し、冷却水温度が所定値以下である場合、内燃機関1の温度が低いと判断して、上記処理を実行する。一般に、冷却水温度が低く、内燃機関1の温度が低い場合には、燃料が霧化され難く、シリンダから吹き返しによって燃料の壁流量が増大するので、このような構成によれば、燃料の壁流量を低減し、排気エミッションを向上させることができる。   Furthermore, according to the internal combustion engine 1 according to the embodiment of the present invention, the ECU 13 determines whether or not the temperature of the cooling water is equal to or lower than a predetermined value. It is determined that the temperature is low, and the above processing is executed. In general, when the temperature of the cooling water is low and the temperature of the internal combustion engine 1 is low, the fuel is difficult to be atomized, and the flow rate of the fuel wall is increased by blowing back from the cylinder. The flow rate can be reduced and exhaust emission can be improved.

なお、本実施形態は、本発明に係る制御装置を油圧制御式の可変動弁機構を有する内燃機関に適用したものであるが、本発明に係る制御装置は、バルブリフト量や作動角を変更する方式の可変動弁機構を有する内燃機関や、電磁バルブでバルブオーバーラップ量を変更する内燃機関にも適用することができる。   In this embodiment, the control device according to the present invention is applied to an internal combustion engine having a hydraulically controlled variable valve mechanism. However, the control device according to the present invention changes the valve lift amount and the operating angle. The present invention can also be applied to an internal combustion engine having a variable valve mechanism of this type or an internal combustion engine in which the valve overlap amount is changed by an electromagnetic valve.

本発明は、吸気バルブと排気バルブのオーバーラップ量を可変制御可能な内燃機関に適用することができる。   The present invention can be applied to an internal combustion engine that can variably control the amount of overlap between an intake valve and an exhaust valve.

本発明の実施形態となる内燃機関の構成を示す模式図である。It is a mimetic diagram showing composition of an internal-combustion engine used as an embodiment of the present invention. 本発明の実施形態となる燃圧制御処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the fuel pressure control process used as embodiment of this invention.

符号の説明Explanation of symbols

1:内燃機関
2:クランク軸
3:タイミングチェーン
4,5:スプロケット
6:排気側カム軸
7:吸気側カム軸
8:吸気側可変バルブタイミング機構
9:排気側カム軸センサ
10:排気側可変バルブタイミング機構
11:排気側カム軸センサ
12:クランク軸センサ
13:エンジン制御回路(ECU)
14:吸気側油圧回路
15:排気側油圧回路
1: internal combustion engine 2: crankshaft 3: timing chain 4, 5: sprocket 6: exhaust side camshaft 7: intake side camshaft 8: intake side variable valve timing mechanism 9: exhaust side camshaft sensor 10: exhaust side variable valve Timing mechanism 11: exhaust camshaft sensor 12: crankshaft sensor 13: engine control circuit (ECU)
14: Intake side hydraulic circuit 15: Exhaust side hydraulic circuit

Claims (3)

吸気バルブと排気バルブの開閉時期を制御することにより吸気バルブと排気バルブのオーバーラップ量を可変制御可能な可変動弁機構を有する内燃機関の制御装置であって、
燃料噴射時期が吸気工程時期であるか否かを判別し、燃料噴射時期が吸気工程時期である場合、前記オーバーラップ量が所定値以上であるか否かを判別し、オーバーラップ量が所定値以上である場合、燃料の噴射圧力を高める制御部を備えること
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine having a variable valve mechanism capable of variably controlling the amount of overlap between the intake valve and the exhaust valve by controlling the opening and closing timing of the intake valve and the exhaust valve,
It is determined whether or not the fuel injection timing is the intake process timing. If the fuel injection timing is the intake process timing, it is determined whether or not the overlap amount is a predetermined value or more, and the overlap amount is a predetermined value. When it is above, the control apparatus of the internal combustion engine characterized by including the control part which raises the injection pressure of fuel.
前記制御部は、前記オーバーラップ量の大きさに合わせて燃料の噴射圧力を高くすることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the control unit increases the fuel injection pressure in accordance with the size of the overlap amount. 前記制御部は、内燃機関温度が所定値以下であるか否かを判別し、内燃機関温度が所定値以下である場合、前記処理を実行することを特徴とする請求項1又は請求項2に記載の内燃機関の制御装置。   The control unit determines whether or not the internal combustion engine temperature is equal to or lower than a predetermined value, and executes the processing when the internal combustion engine temperature is equal to or lower than a predetermined value. The internal combustion engine control device described.
JP2004219089A 2004-07-27 2004-07-27 Control device for internal combustion engine Expired - Fee Related JP4295173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219089A JP4295173B2 (en) 2004-07-27 2004-07-27 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219089A JP4295173B2 (en) 2004-07-27 2004-07-27 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006037847A JP2006037847A (en) 2006-02-09
JP4295173B2 true JP4295173B2 (en) 2009-07-15

Family

ID=35903094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219089A Expired - Fee Related JP4295173B2 (en) 2004-07-27 2004-07-27 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4295173B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667000B1 (en) 2011-01-20 2016-11-02 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2006037847A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US7004148B2 (en) Control apparatus for internal combustion engine
US8096279B2 (en) Premixed compression ignition type engine and method of controlling the same
JP4525517B2 (en) Internal combustion engine
EP1910656B1 (en) Control apparatus and control method for internal combustion engine
US7520255B2 (en) Control for an engine having a variable valve-driving unit
US20040055571A1 (en) Control system and method for internal combustion engine with variable valve mechanism
US10920693B2 (en) Cylinder deactivation change apparatus
WO2014129225A1 (en) Device and method for controlling internal combustion engine
JP4609278B2 (en) Variable valve timing control device for internal combustion engine and internal combustion engine provided with the variable valve timing control device
US20020000212A1 (en) Apparatus and method for controlling variable valve timing of internal combustion engine
US7077084B2 (en) Method for operating an internal combustion engine
US20100162980A1 (en) Variable valve timing apparatus and control method therefor
JP2009057901A (en) Control device of internal combustion engine
JP2009243360A (en) Engine combustion control device
JP4526795B2 (en) Valve unit for an engine with a supercharger
US8161926B2 (en) Device and method for controlling internal combustion engine
US20070095314A1 (en) Control apparatus and control method for internal combustion engine
JP4295173B2 (en) Control device for internal combustion engine
JP4729588B2 (en) Control device for internal combustion engine
JPH1193714A (en) Variable valve timing control device for internal combustion engine
JP2003083123A (en) Control device for internal combustion engine
JP2008215142A (en) Knocking detection device for internal combustion engine
JP4075614B2 (en) In-cylinder injection internal combustion engine control device
JPH1193713A (en) Variable valve timing control device for internal combustion engine
JP2007046505A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150417

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees