JP4292947B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4292947B2
JP4292947B2 JP2003366349A JP2003366349A JP4292947B2 JP 4292947 B2 JP4292947 B2 JP 4292947B2 JP 2003366349 A JP2003366349 A JP 2003366349A JP 2003366349 A JP2003366349 A JP 2003366349A JP 4292947 B2 JP4292947 B2 JP 4292947B2
Authority
JP
Japan
Prior art keywords
temperature
catalyst
nox
nox storage
storage catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003366349A
Other languages
Japanese (ja)
Other versions
JP2005127287A (en
Inventor
真治 中山
晋 纐纈
圭樹 田邊
峰啓 村田
大輔 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003366349A priority Critical patent/JP4292947B2/en
Publication of JP2005127287A publication Critical patent/JP2005127287A/en
Application granted granted Critical
Publication of JP4292947B2 publication Critical patent/JP4292947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、NOx吸蔵触媒を用いて排ガスを浄化する内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that purifies exhaust gas using a NOx storage catalyst.

自動車に搭載されるエンジン(内燃機関)では、排ガス対策として、NOx吸蔵触媒を用いた排気浄化装置を装備して、エンジンの排ガス中に含まれるNOxを浄化させることが進められている。特にNox吸蔵触媒は、NOx吸蔵触媒に流入する排気ガスの空燃比がリーン(理論空燃比より希薄)のときにNOxを吸蔵し、排気ガスの空燃比がリッチ(理論空燃比を含む過濃)のときに吸蔵されたNOxを放出して還元する特性をもつために、通常、排気ガスの空燃比がリーンで運転される傾向の多いディーゼルエンジンやリーンバーンガソリンエンジンなどで多く採用される。   In an engine (internal combustion engine) mounted on an automobile, as an exhaust gas countermeasure, an exhaust gas purification device using a NOx storage catalyst is equipped to purify NOx contained in the exhaust gas of the engine. In particular, the NOx storage catalyst stores NOx when the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst is lean (lean than the stoichiometric air-fuel ratio), and the air-fuel ratio of the exhaust gas is rich (excessive concentration including the stoichiometric air-fuel ratio). In general, it is often used in diesel engines, lean burn gasoline engines, and the like that tend to operate with lean air-fuel ratios because they have the characteristic of releasing and reducing the stored NOx.

ところで、排気浄化装置のNOx吸蔵触媒は、通常のリーン運転状態のときに、排気ガス中のNOxを吸蔵するが、NOx吸蔵触媒の吸蔵能力には限りがあり、ある吸蔵量まで達するとNOx浄化能力が低下する。そのため、NOx吸蔵触媒は、ある時期にエンジンのリッチ運転を実施して吸蔵NOxを放出還元させて、NOx浄化性能を維持させることが行われている(例えば特許文献1を参照)。   By the way, the NOx occlusion catalyst of the exhaust purification device occludes NOx in the exhaust gas in a normal lean operation state, but the occlusion capacity of the NOx occlusion catalyst is limited, and when it reaches a certain occlusion amount, NOx purification is performed. Ability is reduced. Therefore, the NOx storage catalyst performs a rich operation of the engine at a certain time to release and reduce the stored NOx to maintain the NOx purification performance (see, for example, Patent Document 1).

このNOx吸蔵触媒を再生させるべくリッチ運転に移行させる行為は、リッチスパイク(RS)と呼ばれ、多くは、リーン運転中、定期的、具体的にはリーン運転時間を積算した時間がある一定時間になると、エンジンをリッチ運転に切り換えるようにしている。
特開平6−272540号公報
The action of shifting to the rich operation in order to regenerate the NOx storage catalyst is called rich spike (RS), and in many cases, the lean operation is periodically performed, specifically, a certain amount of time obtained by integrating the lean operation time. Then, the engine is switched to rich operation.
JP-A-6-272540

ところで、NOx吸蔵触媒の触媒温度は、エンジン(車両)の運転状態に応じて変化する。具体的には、NOx吸蔵触媒の触媒温度は、エンジン運転中の排気ガス温度の変化により、触媒活性が立ち上がる温度域(触媒活性が始まる温度から活性上限に達するまで)、それより高温域の活性上限が保たれる温度域、それより高温域、具体的には高温のために活性が失われやすい温度域(活性上限から活性が低下する温度域)といった低〜高温域を推移する。   By the way, the catalyst temperature of the NOx storage catalyst changes according to the operating state of the engine (vehicle). Specifically, the catalyst temperature of the NOx storage catalyst is the temperature range where the catalyst activity rises due to the change in exhaust gas temperature during engine operation (from the temperature at which the catalyst activity starts to the upper limit of activity), and the activity in the higher temperature range The temperature ranges from a low to high temperature range such as a temperature range where the upper limit is maintained, a higher temperature range, specifically, a temperature range where activity is easily lost due to high temperature (a temperature range where activity decreases from the upper limit of activity).

定期的なリッチスパイクは、こうした種々の触媒温度に対して行われるために、活性上限が保たれる温度域のときのリッチスパイクでは十分なNOx還元性能が発揮されるものの、立ち上り温度域で行われるリッチスパイクだと、触媒温度が不十分なので、NOx還元性能が十分に発揮されにくい。また高温側の活性が失われやすい温度域(活性上限温度から活性が低下する温度域)で行われるリッチスパイクだと、逆にNOx還元がもたらす反応熱により、触媒温度が触媒活性を失う温度以上まで昇温するという過昇温現象が生じる傾向がある。このため、安定してNOx吸蔵触媒の浄化性能が保てる領域は狭く、NOx浄化性能が良好に発揮できないといった問題がある。   Since the periodic rich spike is performed for these various catalyst temperatures, the rich spike in the temperature range where the upper limit of the activity is maintained exhibits sufficient NOx reduction performance, but is performed in the rising temperature range. In the case of the rich spike, the catalyst temperature is insufficient, so that the NOx reduction performance is not sufficiently exhibited. In addition, in the case of a rich spike performed in a temperature range where the activity on the high temperature side is likely to be lost (temperature range where the activity decreases from the upper limit temperature of the activity), on the contrary, the catalyst temperature exceeds the temperature at which the catalyst activity is lost due to the reaction heat caused by NOx reduction There is a tendency for an excessive temperature rise phenomenon to occur. For this reason, there is a problem that the region where the purification performance of the NOx storage catalyst can be stably maintained is narrow and the NOx purification performance cannot be satisfactorily exhibited.

そこで、本発明の目的は、高いNOx浄化性能が安定して発揮し得る領域の拡大が図れる内燃機関の排気ガス浄化装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purifying device for an internal combustion engine capable of expanding an area where high NOx purification performance can be stably exhibited.

本発明は、上記目的を達成するため、リーン運転中、定期的にリッチスパイクを実行させる実行周期を、NOx吸蔵触媒の温度もしくはその温度に相当するパラメータに応じて変更させるようにした。 In order to achieve the above object, according to the present invention, the execution cycle for periodically executing rich spikes during lean operation is changed according to the temperature of the NOx storage catalyst or a parameter corresponding to the temperature.

また本発明は、簡単に安定したNOx浄化性能が確保されるよう、少なくとも、触媒活性が開始される温度から活性上限に達するまでの温度域では、実行周期が、通常時の時間値より短く、活性上限温度より高く、かつ触媒活性が下がる温度域では、実行周期が、通常時の時間値より長くなるようにした。 Further, in the present invention , the execution cycle is shorter than the normal time value at least in the temperature range from the temperature at which the catalyst activity is started to reach the upper limit of the activity, so that stable and stable NOx purification performance is ensured. In the temperature range where the activity is higher than the upper limit temperature and the catalyst activity decreases, the execution cycle is made longer than the normal time value .

本発明によれば、リッチスパイク(リッチ運転)が、触媒活性が不十分な低温側の温度域で実行されるときは、実行周期が短くなり、還元剤の増加に伴うNOx還元反応の促進により、NOx吸蔵触媒が昇温される。また触媒活性が失われやすい高温側の温度域でリッチスパイクが実行されるときは、実行周期が長くなり、還元剤の減少に伴うNOx還元反応の抑制により、NOx吸蔵触媒の昇温が抑えられる。 According to the present invention, when the rich spike (rich operation) is executed in the temperature range on the low temperature side where the catalyst activity is insufficient, the execution cycle is shortened, and the NOx reduction reaction accompanying the increase of the reducing agent is accelerated. The NOx storage catalyst is heated. Further, when rich spike is executed in the high temperature range where the catalytic activity is likely to be lost , the execution cycle becomes longer, and the NOx reduction reaction accompanying the reduction of the reducing agent is suppressed, so that the temperature rise of the NOx storage catalyst can be suppressed. .

それ故、触媒温度が低いときは、NOx還元性能が最大限発揮され、触媒温度が高いときは、NOx還元性能の低下が抑えられるから、高いNOx浄化性能が安定して発揮し得る領域の拡大を図ることができる。   Therefore, when the catalyst temperature is low, the NOx reduction performance is maximized, and when the catalyst temperature is high, the NOx reduction performance can be prevented from being lowered. Therefore, the region where high NOx purification performance can be stably exhibited is expanded. Can be achieved.

更に本発明によれば、触媒温度の変化に対してリッチスパイク(リッチ運転)の実行周期を変更させることで、NOx浄化性能を高いレベルで確保できるといった効果を奏する。 Furthermore, according to the present invention, there is an effect that the NOx purification performance can be secured at a high level by changing the execution cycle of the rich spike (rich operation) with respect to the change of the catalyst temperature .

[第1の実施形態]
以下、本発明を図1〜図5に示す第1の実施形態にもとづいて説明する。
[First Embodiment]
Hereinafter, the present invention will be described based on a first embodiment shown in FIGS.

図1は、自動車(車両)に搭載される内燃式のエンジン(内燃機関)、例えばディーゼルエンジンの主要部を示し、同図中1は、シリンダブロック2とシリンダヘッド3とで構成されるエンジン本体部、4はシリンダブロック2に形成されたシリンダ、5はシリンダ4内に往復動可能に設けられたピストン、6,7はシリンダヘッド3に設けられた吸・排気ポート、8,9は吸・排気ポート6,7を開閉する吸・排気弁、10はシリンダヘッド3に設けられたインジェクタである。このうち、吸気ポート6は、同吸気ポート6から延びる第1吸気通路12を介して、ターボ過給機13のコンプレッサ14の吐出部に接続してある。なお、コンプレッサ14の吸込部は、エアクリーナー(図示しない)へ向かう第2吸気通路15に接続してある。但し、17は第1吸気通路12に介装されたインタクーラである。排気ポート9は、同排気ポート9から延びる第1排気通路18を介して、ターボ過給機13のタービン19の入口部に接続してある。タービン19の出口部は、大気開放の第2排気通路20が接続してある。またインジェクタ10は、制御部を構成するECU21に接続されている。このインジェクタ10の噴射動作は、予めECU21に設定されている、エンジンの運転状態に応じた噴射タイミング、燃料噴射量にしたがい制御され、同制御によりエンジンが所定のサイクル(例えば吸入、圧縮、膨張、排気の4サイクル)で運転(通常時:リーン運転(空気過剰率が通常大なため))されるようにしている。   FIG. 1 shows a main part of an internal combustion engine (internal combustion engine), for example, a diesel engine, which is mounted on an automobile (vehicle). In FIG. 1, reference numeral 1 denotes an engine body composed of a cylinder block 2 and a cylinder head 3. , 4 is a cylinder formed in the cylinder block 2, 5 is a piston provided in a reciprocating manner in the cylinder 4, 6 and 7 are intake / exhaust ports provided in the cylinder head 3, and 8 and 9 are intake / exhaust ports The intake / exhaust valves 10 for opening and closing the exhaust ports 6 and 7 are injectors provided in the cylinder head 3. Among these, the intake port 6 is connected to the discharge part of the compressor 14 of the turbocharger 13 via the first intake passage 12 extending from the intake port 6. In addition, the suction part of the compressor 14 is connected to the 2nd intake passage 15 which goes to an air cleaner (not shown). However, 17 is an intercooler interposed in the first intake passage 12. The exhaust port 9 is connected to an inlet portion of the turbine 19 of the turbocharger 13 via a first exhaust passage 18 extending from the exhaust port 9. A second exhaust passage 20 that is open to the atmosphere is connected to the outlet of the turbine 19. Moreover, the injector 10 is connected to ECU21 which comprises a control part. The injection operation of the injector 10 is controlled according to the injection timing and the fuel injection amount that are set in advance in the ECU 21 according to the operating state of the engine, and the engine performs a predetermined cycle (for example, suction, compression, expansion, (Exhaust cycle 4) (Normal operation: lean operation (because the excess air ratio is usually large)).

なお、第1吸気通路12の下流側と第1排気通路18の上流側との間には、EGR装置22を構成する各機器、例えばEGRクーラ23が介装されたEGR通路24、同EGR通路24を開閉するEGR弁25が設けてあり、EGR通路24の出口と合流する上流の吸気通路部分には、電動式のスロットル弁26が設けてある。   Note that, between the downstream side of the first intake passage 12 and the upstream side of the first exhaust passage 18, each device constituting the EGR device 22, for example, an EGR passage 24 in which an EGR cooler 23 is interposed, and the EGR passage are provided. An EGR valve 25 that opens and closes 24 is provided, and an electric throttle valve 26 is provided in an upstream intake passage portion that merges with an outlet of the EGR passage 24.

こうしたディーゼルエンジンの排気系には、排気ガス浄化装置30が組付けられている。排気ガス浄化装置30は、ケーシング32内蔵のNOx吸蔵触媒33と、還元剤を供給する還元剤添加部34と、再生制御を行う制御系35とを組み合わせた構成が用いてある。   An exhaust gas purification device 30 is assembled in the exhaust system of such a diesel engine. The exhaust gas purification apparatus 30 uses a configuration in which a NOx storage catalyst 33 with a built-in casing 32, a reducing agent addition unit 34 that supplies a reducing agent, and a control system 35 that performs regeneration control are combined.

すなわち、NOx吸蔵触媒33は、第2排気通路20の途中に介装されている。その構造には、例えば担体に、例えば白金(Pt)のような貴金属と、吸蔵剤としての例えばバリウム(Ba)とを担持させた構造が用いられる。同構造により、NOx吸蔵触媒33に流入する排ガスの空燃比がリーン(理論空燃比より希薄)のときは、排気中のNOxが白金(Pt)上で酸素と反応して、硝酸イオンの形でバリウム(Ba)に吸収され、NOx吸蔵触媒33に流入する排ガスの空燃比がリッチ(理論空燃を含む過濃)のときは、反対にバリウム(Ba)内の硝酸イオンがNOxの形で放出し、放出したNOxを白金(Pt)上で排ガス中の未燃HC、COなどと反応して窒素に還元させる機能をもたらしている。   That is, the NOx storage catalyst 33 is interposed in the middle of the second exhaust passage 20. As the structure, for example, a structure in which a carrier is supported with a noble metal such as platinum (Pt) and barium (Ba) as an occlusion agent is used. With this structure, when the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst 33 is lean (lean than the stoichiometric air-fuel ratio), NOx in the exhaust reacts with oxygen on platinum (Pt), and in the form of nitrate ions When the air-fuel ratio of the exhaust gas absorbed by barium (Ba) and flowing into the NOx storage catalyst 33 is rich (overconcentration including theoretical air fuel), the nitrate ions in barium (Ba) are released in the form of NOx. In addition, the released NOx reacts with unburned HC, CO, etc. in the exhaust gas on platinum (Pt) to reduce it to nitrogen.

還元剤添加部34には、例えばNOx吸蔵触媒33の上流側から還元剤、例えば燃料(ここでは、例えば軽油)を排気通路20内へ噴射させる還元剤用のインジェクタ36と、先のEGR装置22とを併用した構造が用いられる。つまり、燃料(還元剤)が第2排気通路20内を流れる排ガスに添加され、エンジン吸気側へEGRガスを還流させるという手法により、リッチ運転が行われるようにしてある。これで、通常時のディーゼルエンジンの運転中(リーン運転)、必要なときに、還元剤となる未燃HC,COを多量に含むリッチ(過濃)の排ガスがNOx吸蔵触媒33に流入される構成にしてある。   In the reducing agent adding section 34, for example, a reducing agent injector 36 for injecting a reducing agent, for example, fuel (for example, light oil in this case) into the exhaust passage 20 from the upstream side of the NOx storage catalyst 33, and the previous EGR device 22. A structure using a combination of and is used. That is, the rich operation is performed by a technique in which fuel (reducing agent) is added to the exhaust gas flowing through the second exhaust passage 20 and the EGR gas is recirculated to the engine intake side. Thus, during normal operation of the diesel engine (lean operation), when necessary, rich exhaust gas containing a large amount of unburned HC and CO serving as a reducing agent flows into the NOx storage catalyst 33. It is configured.

制御系35としてECU21には、リーン運転中(通常)、リッチスパイクを行うべく、定期的にリーン運転からリッチ運転へ移行させる機能と、このリッチ運転へ移行させる移行周期をNOx吸蔵触媒33の温度に応じて変える機能とが設定してある。   As a control system 35, the ECU 21 has a function of periodically shifting from lean operation to rich operation to perform rich spikes during lean operation (usually), and a transition period for shifting to rich operation, and the temperature of the NOx storage catalyst 33. The function to change according to is set.

このうち定期的にリッチ運転へ移行させる機能には、例えばタイマにより、リーン運転時間を積算し、該積算時間が所定の間隔、すなわち定められたRS(リッチスパイク)間隔trsの値(時間)に達すると、リッチ運転に切り換え、同運転を積算時間で推定されるNOx吸蔵量に応じた時間実施するという、リッチスパイクを定期的に実行させる制御が用いてある。   Among these functions, for the function of periodically shifting to rich operation, for example, a timer is used to accumulate the lean operation time, and the accumulated time is set to a predetermined interval, that is, a value (time) of a predetermined RS (rich spike) interval trs. When reaching, the operation is switched to the rich operation, and the operation is performed for a period of time corresponding to the NOx occlusion amount estimated by the accumulated time, so that the rich spike is periodically executed.

またリッチスパイクの実行周期を変更させる制御には、例えば触媒温度とリッチスパイクの間隔(以下、RS間隔trsという)とを関連付けた実行周期決定用のマップを用い、このマップにより触媒温度に応じてRS間隔(trs)を変更するという制御が用いられている。 For the control to change the execution cycle of the rich spike , for example, a map for determining the execution cycle in which the catalyst temperature is associated with the rich spike interval (hereinafter referred to as the RS interval trs ) is used. Control is used to change the RS interval ( trs ).

すなわち、RS間隔(trs)の変更には、図4に示されるNOx吸蔵触媒33のNOx還元特性を考慮して、NOx吸蔵触媒33の触媒活性が始まる温度から活性上限に達するまでの低温側の温度域αのとき、RS間隔(trs)は、通常時(活性上限が続く温度域)のそれよりも短く、活性上限温度より高く、かつ触媒活性が下がる高温側の温度域βのとき、RS間隔(trs)は、通常時のそれよりも長くさせている。そのため、実行周期決定用のマップには、図2中のステップS5のマップに示されるような、RS間隔(trs)を触媒温度に応じて変化させた二次曲線状の線図が用いてある。具体的には、NOx吸蔵触媒33が十分に活性される温度のときは、今まで通常に用いられていたRS間隔(trs)の時間値が設定され、該温度より低くなるにしたがい、その通常時のRS間隔(trs)の時間値が次第に短くなり、該温度より高くなるにしたがい、その通常時のRS間隔(trs)の時間値が次第に長くなる特性の線図が用いられている。またこのRS間隔(trs)の決定には、例えば前回リッチスパイクの終了後、例えばNOx吸蔵触媒33の出入側の双方に設けた排ガス温度センサ39,40(触媒温度を検知する温度検知手段)を用いてNOx吸蔵触媒33を代表する触媒温度(Tc)を検知し、この検知した触媒温度(Tc)により上記マップ(ステップS5)の中から、対応するRS間隔(trs)の時間値を選択し、選択したRS間隔(trs)の時間値にしたがってリッチスパイクを実行させる制御が用いてある。さらに同制御には、選択した時間値を補正する機能が付加されている。これは、RS間隔(trs)の決定後、リッチスパイクが実施されるまでの間に触媒温度(Tc)が変化したとき、決定したRS間隔(trs)の時間値を決定し直す機能で形成されている。具体的には、例えばRS間隔(trs)の決定後、リッチスパイクが実行されるまでの間に、再度、触媒温度を検知して、再度検知した触媒の温度と、前回のRS間隔(trs)の決定で検知した触媒温度との差(絶対値)が、NOx還元性能に大きく関与する所定の温度差値ΔTより大きくなるときだけ、RS間隔(trs)が再び決定し直されるようにしてある。これにより、できるだけ触媒温度(Tc)の温度変化をRS間隔(trs)の設定に反映させるようにしている。 That is, in changing the RS interval (trs), considering the NOx reduction characteristics of the NOx storage catalyst 33 shown in FIG. 4, the low temperature side from the temperature at which the catalytic activity of the NOx storage catalyst 33 starts to the upper limit of activity is reached. In the temperature range α, the RS interval (trs) is shorter than that in normal time (the temperature range in which the activity upper limit continues), higher than the activity upper limit temperature, and in the temperature range β on the high temperature side where the catalytic activity decreases, RS The interval (trs) is set longer than that in the normal state. Therefore, a quadratic curve diagram in which the RS interval (trs) is changed in accordance with the catalyst temperature as shown in the map of step S5 in FIG. 2 is used in the execution cycle determination map. . Specifically, when the temperature at which the NOx storage catalyst 33 is sufficiently activated , the time value of the RS interval (trs) that has been normally used until now is set, and as the temperature becomes lower than the temperature, A characteristic diagram is used in which the time value of the normal RS interval (trs) becomes gradually shorter and becomes higher than the temperature, and the time value of the normal RS interval (trs) becomes gradually longer. The RS interval (trs) is determined by, for example, exhaust gas temperature sensors 39 and 40 (temperature detecting means for detecting the catalyst temperature) provided on both the entrance and exit sides of the NOx storage catalyst 33 after the end of the previous rich spike, for example. The catalyst temperature (Tc) representing the NOx storage catalyst 33 is detected, and the time value of the corresponding RS interval (trs) is selected from the map (step S5) based on the detected catalyst temperature (Tc). The control for executing the rich spike according to the time value of the selected RS interval (trs) is used. Furthermore, a function for correcting the selected time value is added to the control. This is formed by the function of re-determining the time value of the determined RS interval (trs) when the catalyst temperature (Tc) changes after the determination of the RS interval (trs) and before the rich spike is performed. ing. Specifically, for example, after the RS interval (trs) is determined and before the rich spike is executed, the catalyst temperature is detected again, and the detected catalyst temperature and the previous RS interval (trs) are detected again. The RS interval ( trs ) is re-determined only when the difference (absolute value) from the catalyst temperature detected in this determination becomes larger than a predetermined temperature difference value ΔT that greatly affects NOx reduction performance. . Thereby, the temperature change of the catalyst temperature (Tc) is reflected in the setting of the RS interval ( trs ) as much as possible.

こうした定期的なリッチスパイクの制御が図2のフローチャートに示されている。図2のフローチャートを参照して排気ガス浄化装置30の作用を説明すれば、今、ディーゼルエンジンの通常運転(リーン運転)中、前回リッチスパイクが終了したとする。   Such periodic rich spike control is illustrated in the flowchart of FIG. If the operation of the exhaust gas purifying device 30 is described with reference to the flowchart of FIG. 2, it is assumed that the previous rich spike has ended during the normal operation (lean operation) of the diesel engine.

すると、まず、ECU21は、リッチスパイクの実施終了に伴い、ステップS1に示されるように実施時間を規定していたタイマをリセット(t=0)する。続いて、ステップS2へ進み、排ガス温度センサ39,40からの出力によって、NOx吸蔵触媒33の触媒温度(Tc)を検知する。この検知された触媒温度(Tc)が、ステップS3,4で示す判定処理により、極端に高い温度や極端に低い温度、すなわちNOx吸蔵触媒33の熱劣化をきたすような高温度やNOx吸蔵触媒33が活性しない低温度でないことが判定されると、リッチスパイクが移行可能と判定され、つぎのステップS5のリッチスパイク周期(RS間隔)を定める処理へ入る。   Then, first, the ECU 21 resets the timer that defined the execution time (t = 0) as shown in step S1 with the end of the execution of the rich spike. Then, it progresses to step S2, and the catalyst temperature (Tc) of the NOx storage catalyst 33 is detected by the outputs from the exhaust gas temperature sensors 39 and 40. The detected catalyst temperature (Tc) is extremely high or extremely low, that is, a high temperature or NOx occlusion catalyst 33 that causes thermal degradation of the NOx occlusion catalyst 33 by the determination processing shown in steps S3 and S4. If it is determined that the temperature is not low and the temperature is not active, it is determined that the rich spike can be transferred, and the processing enters the processing for determining the rich spike cycle (RS interval) in the next step S5.

ステップS5では、マップから、検知された触媒温度(Tc)と対応したRS間隔(trs)が選ばれる。このとき、検知された触媒温度(Tc)が、例えばNOx還元性能が十分に発揮されるNOx吸蔵触媒33の活性上限温度域の温度であれば、今まで定期的にリッチスパイクの要求をしていた通常時の周期と同じRS間隔(trs)の時間値が選ばれる。また活性始めから活性上限へまでの温度域αの温度であれば、通常時のRS間隔(trs)の時間値よりも短い、温度域αの温度値に応じた時間値(trs1)が選ばれる。また活性上限から下がる温度域βの温度であれば、通常時のRS間隔(trs)の時間値より長い、温度域βの温度値に応じた時間値(trs2)が選ばれる。この選択により、RS間隔(trs)の変更が行われる(リッチスパイクの実行周期の変更)。 In step S5, an RS interval ( trs ) corresponding to the detected catalyst temperature (Tc) is selected from the map. At this time, if the detected catalyst temperature (Tc) is, for example, the temperature in the upper limit temperature range of the NOx storage catalyst 33 where the NOx reduction performance is sufficiently exhibited, a request for a rich spike has been made regularly until now. In addition, a time value having the same RS interval ( trs ) as the normal period is selected. If the temperature is in the temperature range α from the start of activity to the upper limit of activity, the time value ( trs 1) corresponding to the temperature value in the temperature range α, which is shorter than the normal RS interval ( trs ) time value, is selected. It is. If the temperature is in the temperature range β lowering from the upper limit of activity, a time value ( trs 2) corresponding to the temperature value in the temperature range β that is longer than the time value of the normal RS interval ( trs ) is selected. This selection changes the RS interval (trs) is performed (changing the execution cycle of the rich spike).

RS間隔(trs)が決定されたら、ECU21は、続くステップS6を経て、ステップS7へ進み、タイマをスタートさせ、リッチスパイク実行後からのリーン運転時間の積算を始める。 When the RS interval ( trs ) is determined, the ECU 21 proceeds to step S7 through subsequent step S6, starts a timer, and starts to accumulate lean operation time after execution of rich spike.

この計時が行われている間に、触媒温度の変化を検出する処理が行われる。具体的には、ステップS10で行われる再び触媒温度(Tc′)を検知する処理、つぎのステップS11で行われる前回の触媒温度(Tc)と再検知の触媒温度(Tc′)との差(絶対値)を演算して所定の温度差値(ΔT)よりも変化したか否かを判定する処理が行われ、触媒温度の変化具合を検出している。   While this timing is being performed, a process for detecting a change in the catalyst temperature is performed. Specifically, the process of detecting the catalyst temperature (Tc ′) again performed in step S10, the difference between the previous catalyst temperature (Tc) performed in the next step S11 and the re-detected catalyst temperature (Tc ′) ( (Absolute value) is calculated to determine whether or not the temperature has changed from a predetermined temperature difference value (ΔT), and the degree of change in the catalyst temperature is detected.

このとき、算出した温度値が、温度差値(ΔT)以下であると、ECU21は、RS間隔(trs)の変更をもたらすような触媒温度の変化はないと判定する。また算出した温度値が、温度差値(ΔT)を上回るときは、RS間隔(trs)の変更をもたらす触媒温度の変化が生じていると判定して、ステップS11のように再検知の触媒温度Tc′を当初の触媒温度Tcと置き換えてから、再びステップS3〜S6へと戻り、再びマップからRS間隔(trs)を決定し直す。こうしたRS間隔(trs)の修正が、リッチスパイクが実施されるまでの間に繰り返し行われる。 At this time, if the calculated temperature value is equal to or less than the temperature difference value (ΔT), the ECU 21 determines that there is no change in the catalyst temperature that causes a change in the RS interval ( trs ). When the calculated temperature value exceeds the temperature difference value (ΔT), it is determined that a change in the catalyst temperature that causes a change in the RS interval (trs) has occurred, and the re-detected catalyst temperature as in step S11. After replacing Tc ′ with the initial catalyst temperature Tc, the process returns to steps S3 to S6 again, and the RS interval ( trs ) is determined again from the map. Such correction of the RS interval ( trs ) is repeatedly performed until the rich spike is performed.

この後、計時しているタイマ時間(t)が該RS間隔(trs)を上回ると、ステップS9へ進み、ECU21は、修正が必要でないRS間隔(trs)や修正されたRS間隔(trs)で、リッチスパイクの実行指示を行う。 Thereafter, when the timed timer time (t) exceeds the RS interval (trs), the process proceeds to step S9, and the ECU 21 sets the RS interval ( trs ) that does not require correction or the corrected RS interval ( trs ). Instructs execution of rich spike.

これにより、触媒温度が活性温度に十分でない温度であるとき、具体的には例えば図4中の温度域α(触媒活性が始まる温度から活性上限に達するまでの温度域:例えば150℃〜200℃)のときは、通常時(活性上限が続く温度域)のそれよりも短い、例えば図3中の破線で示されるようなRS間隔(trs1:例えば30秒)といった短い実行周期で、リッチスパイクが周期的に実行される。 Thereby, when the catalyst temperature is not sufficient for the activation temperature, specifically, for example, the temperature range α in FIG. 4 (temperature range from the temperature at which the catalyst activity starts to the activation upper limit: for example, 150 ° C. to 200 ° C. ) Is shorter than that in normal time (temperature range in which the upper limit of activity continues), for example, with a short execution cycle such as the RS interval ( trs 1: 30 seconds) as shown by the broken line in FIG. Are executed periodically.

また触媒温度が高く、活性を失いやすい温度、具体的には、図4中の温度域β(活性上限から下がる温度域:例えば450℃〜550℃)のときは、通常時(活性上限が続く温度域)のそれよりも長い、例えば図3中の実線で示されるようなRS間隔(trs2:例えば90秒))といった長い実行周期で、リッチスパイクが周期的に実行される。 Further, when the catalyst temperature is high and the activity tends to lose its activity, specifically, in the temperature range β in FIG. 4 (temperature range falling from the upper limit of activity: for example, 450 ° C. to 550 ° C.), the normal time (the upper limit of activity continues). Rich spikes are periodically executed with a long execution period longer than that in the temperature range (eg, RS interval ( trs 2: 90 seconds, for example)) as indicated by a solid line in FIG.

ここで、NOx吸蔵触媒33の還元特性を見ると、図5に示されるようにNOx吸蔵触媒は、還元剤の投入量が増加すれば、還元反応が進んで大きな反応熱(昇温巾)を発生し、還元剤の投入量が減少すれば、還元反応が抑えられて反応熱(昇温巾)が少なくなるという挙動を示す。   Here, looking at the reduction characteristics of the NOx occlusion catalyst 33, as shown in FIG. 5, the NOx occlusion catalyst increases the reaction heat (temperature increase range) as the reduction reaction proceeds as the amount of reducing agent input increases. If it occurs and the input amount of the reducing agent is reduced, the reduction reaction is suppressed and the reaction heat (temperature rise width) is reduced.

このとき、実行周期の短いリッチスパイクは、通常時の周期でのスパイクに比べ、リッチスパイクを実施する機会が多く、通常時よりも還元剤が投入される量が多くなるから、NOx還元反応が促進されて、その分、NOx吸蔵触媒33は大きく昇温される。つまり、NOx吸蔵触媒33は、触媒活性が十分に発揮できる上限温度へ昇温される。これにより、NOx吸蔵触媒33のNOx還元性能は、活性が不十分とされる低温側の触媒活性が立ち上がり始める温度域でも、最大限に発揮されるようになる。   At this time, the rich spike with a short execution cycle has more opportunities to execute the rich spike than the spike at the normal cycle, and the amount of reducing agent to be introduced is larger than the normal spike. As a result, the temperature of the NOx storage catalyst 33 is greatly increased. That is, the NOx storage catalyst 33 is heated to the upper limit temperature at which the catalytic activity can be sufficiently exerted. As a result, the NOx reduction performance of the NOx storage catalyst 33 is exhibited to the maximum even in a temperature range where the low-temperature side catalyst activity starts to rise where the activity is insufficient.

一方、実行周期の長いリッチスパイクは、通常時の周期でのスパイクに比べ、リッチスパイクを実施する機会が少なく、通常時よりも還元剤が投入される量が少なくなるから、反対にNOx還元反応が抑制され、NOx吸蔵触媒33の昇温は抑えられる。つまり、NOx吸蔵触媒33は、過活性温度に近い高温域でも、活性を失う温度以上に昇温する挙動(過昇温現象)が抑えられ、NOx還元性能が失われる(低下)という挙動が抑制される。これにより、NOx吸蔵触媒33は、活性が失いやすい高温側の触媒温度域でも、NOx還元性能が確保されし続ける。しかも、過昇温によるNOx吸蔵触媒33の熱劣化も防げる。   On the other hand, a rich spike with a long execution cycle has fewer opportunities to carry out a rich spike than a spike at a normal cycle, and the amount of reducing agent to be introduced is smaller than that in a normal cycle. Is suppressed, and the temperature rise of the NOx storage catalyst 33 is suppressed. That is, the NOx storage catalyst 33 suppresses the behavior that the temperature rises to a temperature higher than the temperature at which the activity is lost (overheating phenomenon) even in a high temperature range close to the overactive temperature, and the behavior that the NOx reduction performance is lost (decreased) is suppressed. Is done. Thereby, the NOx storage catalyst 33 continues to ensure the NOx reduction performance even in the high temperature side catalyst temperature range where the activity tends to be lost. In addition, thermal deterioration of the NOx storage catalyst 33 due to excessive temperature rise can be prevented.

したがって、NOx吸蔵触媒33は、触媒温度に応じてリッチスパイクの実行周期を変更させることにより、安定して高いNOx浄化性能を発揮し続けることができる領域の拡大が図れる。特に少なくともNOx吸蔵触媒33の触媒活性が始まる温度から活性上限に達するまでの温度域αでの実行周期を、通常時より短く、活性上限から下がる温度域βでの実行周期を、通常時より長くなるように設定すると、簡単に安定したNOx浄化性能の拡大が確保できる。 Therefore, the NOx occlusion catalyst 33 can expand the region where it can continue to exhibit stable and high NOx purification performance by changing the execution cycle of the rich spike according to the catalyst temperature. In particular the execution period in the temperature range α of at least the temperature at which the catalytic activity of the NOx storage catalyst 33 starts to the active upper, shorter than normal, the execution period in the temperature range β descending from the active upper, longer than normal If it sets so, expansion of the stable NOx purification performance can be ensured easily.

[第2の実施形態]
図6は、本発明の第2の実施形態を示す。本実施形態は、第1の実施形態のようなNOX吸蔵触媒の触媒温度に応じてリッチスパイク(リッチ運転)の実行周期を変更したのではなく、触媒温度に相当するパラメータを用いて、リッチスパイクの実行周期を変更したものである。
[Second Embodiment]
FIG. 6 shows a second embodiment of the present invention. The present embodiment does not change the execution cycle of the rich spike (rich operation) according to the catalyst temperature of the NOX storage catalyst as in the first embodiment, but uses a parameter corresponding to the catalyst temperature to perform the rich spike. The execution cycle of is changed .

具体的には、本実施形態は、触媒温度の代わりに、図6に示されるようなエンジンの負荷(例えばアクセル開度)とエンジンの回転数といったパラメータに用いて、リッチスパイク(リーン運転)の実行周期を変更させる制御を採用して、触媒温度が立ち上がるときに相当するエンジン運転状態のときにリッチスパイク(リッチ運転)の実行周期を通常時よりも短めにし、触媒温度が活性上限から低下するときに相当するエンジン運転状態のときにリッチスパイク(リッチ運転)の実行周期を通常時よりも長めに設定しようとしたものである。 Specifically, in the present embodiment, instead of the catalyst temperature, parameters such as the engine load (for example, accelerator opening) and the engine speed as shown in FIG. By adopting control to change the execution cycle, the rich spike (rich operation) execution cycle is made shorter than normal when the engine operating state corresponds to when the catalyst temperature rises, and the catalyst temperature falls from the upper limit of activity. When the engine operating state is equivalent, the execution cycle of the rich spike (rich operation) is to be set longer than usual.

このようにしても第1の実施形態と同様の効果を奏する。   Even if it does in this way, there exists an effect similar to 1st Embodiment.

但し、本実施形態は、エンジンの負荷とエンジンの回転数とを用いた点以外は、第1の実施形態と同じなので、他の部分は第1の実施形態を流用して、図面を省略した。   However, since this embodiment is the same as the first embodiment except that the engine load and the engine speed are used, other parts are diverted from the first embodiment and the drawings are omitted. .

なお、本発明は上述した各実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施しても構わない。例えば上述のいずれの実施形態も、本発明をディーゼルエンジンに適用した例を挙げたが、これに限らず、ガソリンエンジンといった他のエンジンに本発明を適用してもよい。   In addition, this invention is not limited to each embodiment mentioned above, You may implement in various changes within the range which does not deviate from the main point of this invention. For example, in any of the above-described embodiments, the present invention is applied to a diesel engine. However, the present invention is not limited thereto, and the present invention may be applied to other engines such as a gasoline engine.

本発明の第1の実施形態に係る排気浄化装置の概略的な構成を共に示す図。The figure which shows together schematic structure of the exhaust gas purification apparatus which concerns on the 1st Embodiment of this invention. 触媒温度に応じてリッチスパイクの実行周期を変更する制御を説明するためのフローチャート。The flowchart for demonstrating the control which changes the execution period of a rich spike according to a catalyst temperature. 触媒温度毎のリッチスパイクの周期(RS間隔)変更具合を説明するための線図。The diagram for demonstrating the change condition of the rich spike period (RS interval) for every catalyst temperature. NOx吸蔵触媒の触媒温度に対するNOx還元性能の変化を説明するための線図。The diagram for demonstrating the change of NOx reduction performance with respect to the catalyst temperature of a NOx storage catalyst. NOx吸蔵触媒の還元剤投入量に対する昇温具合を説明するための線図。The diagram for demonstrating the temperature rising condition with respect to the reducing agent injection quantity of a NOx storage catalyst. 本発明の第2の実施形態の要部を説明するための線図。The diagram for demonstrating the principal part of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…エンジン本体、20…第2排気通路(排気通路)、21…ECU(リッチスパイク手段、周期可変手段)、33…NOx吸蔵触媒。   DESCRIPTION OF SYMBOLS 1 ... Engine main body, 20 ... 2nd exhaust passage (exhaust passage), 21 ... ECU (rich spike means, period variable means), 33 ... NOx occlusion catalyst.

Claims (1)

内燃機関の排気通路に設けられ、前記内燃機関がリーン運転状態のとき排気ガス中のNOxを吸蔵し、前記内燃機関がリッチ運転状態のとき当該吸蔵されたNOxを放出して還元させるNOx吸蔵触媒と、
前記内燃機関がリーン運転中、定期的にリッチスパイクを実行させるリッチスパイク手段と、
前記リッチスパイクを実行させる実行周期を、前記NOx吸蔵触媒の温度もしくはその温度に相当するパラメータに応じて変更する周期変更手段とを備え、
かつ前記周期変更手段は、前記NOx吸蔵触媒の温度が、該NOx吸蔵触媒の触媒活性が開始される温度から活性上限に達するまでの温度域αにあるときは、該温度域αの温度値に応じた通常時の時間値より短い時間値を前記実行周期として選択し、前記NOx吸蔵触媒の温度が、前記活性上限温度より高く、かつ活性が下がる温度域βにあるときは、該温度域βの温度値に応じた通常時の時間値より長い時間値を前記実行周期として選択することを特徴とした内燃機関の排気浄化装置。
NOx storage catalyst provided in the exhaust passage of the internal combustion engine, which stores NOx in the exhaust gas when the internal combustion engine is in a lean operation state, and releases and reduces the stored NOx when the internal combustion engine is in a rich operation state When,
Rich spike means for periodically executing a rich spike during the lean operation of the internal combustion engine;
A cycle changing means for changing the execution cycle for executing the rich spike according to the temperature of the NOx storage catalyst or a parameter corresponding to the temperature ;
In addition, when the temperature of the NOx storage catalyst is in the temperature range α from the temperature at which the catalytic activity of the NOx storage catalyst is started to the upper limit of activity, the cycle changing means sets the temperature value in the temperature range α. A time value shorter than the corresponding normal time value is selected as the execution period, and when the temperature of the NOx storage catalyst is higher than the upper limit temperature of activation and in the temperature range β where the activity decreases, the temperature range β An exhaust gas purification apparatus for an internal combustion engine, wherein a time value longer than a normal time value according to the temperature value is selected as the execution cycle .
JP2003366349A 2003-10-27 2003-10-27 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4292947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366349A JP4292947B2 (en) 2003-10-27 2003-10-27 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003366349A JP4292947B2 (en) 2003-10-27 2003-10-27 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005127287A JP2005127287A (en) 2005-05-19
JP4292947B2 true JP4292947B2 (en) 2009-07-08

Family

ID=34644723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366349A Expired - Fee Related JP4292947B2 (en) 2003-10-27 2003-10-27 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4292947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048767A (en) * 2013-08-30 2015-03-16 本田技研工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2005127287A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
KR100802209B1 (en) Exhaust emission control device of internal combustion engine
US20170058805A1 (en) Method of operating an engine
JP6331231B2 (en) Engine exhaust purification system
JP5459521B2 (en) Air-fuel ratio control device for internal combustion engine
JP6230005B1 (en) Engine exhaust purification system
US10933374B2 (en) Exhaust emission control device, method and computer program product for an engine
JP6268688B1 (en) Engine exhaust purification control system
JP6270247B1 (en) Engine exhaust purification system
JP6230006B1 (en) Engine exhaust purification system
JP4292947B2 (en) Exhaust gas purification device for internal combustion engine
JP2001020781A (en) Exhaust emission control device for internal combustion engine
JP6569873B2 (en) Engine exhaust purification system
JP3777788B2 (en) Lean combustion internal combustion engine
JP6230011B1 (en) Engine exhaust purification control system
JP3539286B2 (en) Exhaust gas purification device for internal combustion engine
JP6270246B1 (en) Engine exhaust purification system
JP2006274985A (en) Exhaust gas aftertreatment device
JP4292948B2 (en) Exhaust gas purification device for internal combustion engine
JP3661461B2 (en) Exhaust gas purification device for internal combustion engine
JP3661464B2 (en) Exhaust gas purification device for internal combustion engine
JP2019132165A (en) Exhaust emission control device for engine
JP3334634B2 (en) Exhaust gas purification device for internal combustion engine
JP4244510B2 (en) Exhaust gas purification device for internal combustion engine
JP6270245B1 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees