JP4292459B2 - Polymerizable liquid crystal composition and optical anisotropic body - Google Patents

Polymerizable liquid crystal composition and optical anisotropic body Download PDF

Info

Publication number
JP4292459B2
JP4292459B2 JP2002355053A JP2002355053A JP4292459B2 JP 4292459 B2 JP4292459 B2 JP 4292459B2 JP 2002355053 A JP2002355053 A JP 2002355053A JP 2002355053 A JP2002355053 A JP 2002355053A JP 4292459 B2 JP4292459 B2 JP 4292459B2
Authority
JP
Japan
Prior art keywords
oco
liquid crystal
compound represented
formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002355053A
Other languages
Japanese (ja)
Other versions
JP2004182949A (en
Inventor
丞治 河村
直紀 小尾
浩史 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2002355053A priority Critical patent/JP4292459B2/en
Publication of JP2004182949A publication Critical patent/JP2004182949A/en
Application granted granted Critical
Publication of JP4292459B2 publication Critical patent/JP4292459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は重合性液晶組成物、及び、該重合性液晶組成物中の重合性化合物を重合して得られる光学異方体に関する。
【0002】
【従来の技術】
重合性液晶化合物、又は、液晶化合物と混合して、ネマチック相、スメクチック相、コレステリック相等の液晶相を示す重合性化合物を含有する重合性液晶組成物を、液晶相を保持した状態で重合させると、液晶分子の配向状態を固定化した重合体を作製することができる。この重合体は、屈折率、誘電率、磁化率、弾性率、熱膨張率等の物理的性質の異方性を有していることから、特に光学異方体として応用が検討されている。
【0003】
液晶分子の配向状態を固定化させるための重合方法の1つとして光重合がある。光重合においては、液晶分子の配向に対して外乱要因となる熱を加えることなしに重合反応が進行するので、液晶分子の配向状態を乱すことなく固定化することができる。しかしながら、液晶相を示す温度が高い場合、液晶相を保持させるために該重合性液晶組成物を加熱する必要があるが、この加熱によって、光重合を開始する前に部分的な熱重合がおこり、配向乱れの原因となることがある。従って、重合性液晶組成物は、できるだけ低い温度で、例えば25℃〜40℃の温度範囲で液晶相を示すようにその組成を調整する。
以下、例として、液晶相としてネマチック相を示す重合性液晶組成物を中心に説明する。しかし、他の液晶相を示す重合性液晶組成物についても同様である。
【0004】
液晶分子の配向状態を固定化した重合体を光学異方体に応用する場合には、該重合体には、透明性に優れることが求められている。
例えば、C−N転移温度が94℃の式Aで表されるスワローテイル型の重合性液晶化合物に、式Bで表される重合性液晶化合物及び式Cで表される重合性液晶化合物を混合することによって、25℃でネマチック相を示す重合性液晶組成物を調製し、これを25℃以下で重合すると、局所的な熱重合が起こらないので、透明性に優れる光学異方体が得られることが知られている(例えば、特許文献1参照。)。
【0005】
【化4】

Figure 0004292459
式A
【0006】
【化5】
Figure 0004292459
式B
【0007】
【化6】
Figure 0004292459
式C
【0008】
【特許文献1】
特開2000−327632号公報
【0009】
【発明が解決しようとする課題】
しかし、式Aで表される化合物と、式Bで表される化合物、及び式Cで表される化合物を混合した場合、いったん均一に混合したように見えても、短時間内に相分離を起こすといった問題があった。これは、式Aで表される化合物は分子末端にシアノ基を有しており双極子モーメントが大きく、式Bで表される化合物や式Cで表される化合物のような、電子吸引基を持たない双極子モーメントの小さい重合性化合物とは一般に相溶性が低いことや、式Aで表される化合物と、式Bで表される化合物や式Cで表される化合物とでは、液晶骨格が大きく異なるため相溶性が低いことが、原因として考えられる。
式Bで表される化合物及び式Cで表される化合物の配合量を多くした場合には、相溶性は幾分向上する反面、系全体のスワローテイル型化合物の濃度が下がってしまうために、これを重合して得られる光学異方体の透明性が低下するといった問題があった。
【0010】
本発明が解決しようとする課題は、双極子モーメントの小さい液晶化合物との相溶性にも優れるスワローテイル型の重合性化合物を含有する重合性液晶組成物を提供することにあり、且つ、該重合性液晶組成物が液晶相を示す温度範囲内で、該重合性液晶組成物中の重合性化合物を重合させて得られる、透明性に優れた光学異方体を提供することにある。
【0011】
【課題を解決するための手段】
分子末端にシアノ基を有するスワローテイル型重合性化合物は双極子モーメントが大きいため、双極子モーメントの小さい液晶化合物と相溶性が低い。同じスワローテイル型の重合性化合物であるが、分子末端にシアノ基を有さない、下記一般式(1)及び(2)で表されるスワローテイル型重合性化合物を含有する重合性液晶組成物は、双極子モーメントの小さい液晶化合物との相溶性に優れると同時に、骨格構造が類似し、分子末端にシアノ基を持ち、双極子モーメントの大きい前記スワローテイル型重合性化合物ともよく相溶する。従って、一般式(1)及び(2)で表されるスワローテイル型重合性化合物に、双極子モーメントの大きいスワローテイル型重合性化合物と双極子モーメントの小さく骨格構造が異なる液晶化合物を混合した重合性液晶組成物は、長期にわたって相分離を起こすことなく、保存安定性に優れ、好適なC−N転移温度を有する重合性液晶組成物の組成の調整が容易である。
【0012】
即ち、本発明は、一般式(1)で表される重合性化合物、及び一般式(2)で表される重合性化合物を含有する重合性液晶組成物を提供する。
【0013】
【化7】
Figure 0004292459
一般式(1)
【0014】
【化8】
Figure 0004292459
一般式(2)
【0015】
(式中、A〜Gは六員環であり、各々独立してベンゼン環、シクロヘキサン環又はシクロヘキセン環を表し、Y〜Yは、各々独立して、単結合、−CHCH−、−CHO−、−OCH−、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−CHCH−、−CHCH−CH=CH−、−CH=CH−CO−O−及び−OCO−CH=CH−からなる群から選ばれる連結基を表わす。X〜Xは、各々独立して単結合、−O−、−CO−O−、又は−OCO−を表し、S〜Sは、各々独立してC2m−、又は−(C2m−O)−C2m−を表わし、mは1〜20の整数を表し、nは1〜10の整数を表し、L〜Lは、各々独立して水素原子又はメチル基を表す。Z及びZは、各々独立して、−OCO−CH−CH−Cl、−OCO−CH=CH、−OCO−C(CH)=CH、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClを表すが、Zが−OCO−CH−CH−Clの時、Zは−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClである。Zは、Cl−又はCH−CO−O−を表す。)
【0016】
【発明の実施の形態】
前記一般式(1)又は(2)において、六員環A〜Gは、炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数1〜7のアルカノイル基、又はハロゲン原子等の置換基を有していても良い。前記六員環A〜Gに、液晶分子の長軸方向に共役するようなベンゼン環を選択すれば、複屈折率の大きな重合性化合物を得ることができ、液晶分子の長軸方向に共役しないシクロヘキサン環を選択すれば、複屈折率の小さな重合性化合物を得ることができる。
【0017】
前記一般式(1)又は(2)において、Y〜Yは、単結合、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−等の、液晶分子の長軸方向に共役するような構造を選択すれば、複屈折率の大きな重合性化合物を得ることができ、−CHCH−、−CHO−、−OCH−、−(CH−、−CHCHCHO−、−OCHCHCH−等の、液晶分子の長軸方向に共役しない構造を選択すれば、複屈折率の小さな重合性化合物を得ることができる。
【0018】
前記一般式(1)又は(2)において、S〜Sは、液晶骨格と(メタ)アクリロイルオキシ基とを隔てるスペーサーとしての役割を持つ。具体的には、例えば、メチレン基、プロピレン基、ヘキサメチレン基、あるいはこれらの基がエーテル結合によって連結された基があげられる。中でも、mが2〜15であることが好ましく、mが3〜11であることが特に好ましい。
【0019】
前記一般式(1)又は(2)において、L〜Lは、水素原子であると重合反応性が高く好ましい。
【0020】
前記一般式(1)において、ZとZとの組み合わせとしては、例えば、
が−OCO−CH−Clで、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OCO−CHCHOHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OCO−CHCH−OCO−CH=CHの場合や、Zが−OCO−CH=CH又は−OCO−C(CH)=CHで、Zが−OCO−CH=CHの場合があげられる。また、前記一般式(2)において、Zは、Cl−又はCH−CO−O−を表す。
【0021】
前記一般式(1)及び一般式(2)で表される化合物は、六員環A〜Gが全てベンゼン環であり、Y及びYは単結合、−CO−O−、又は−OCO−で表される同一の連結鎖であり、Y及びYが単結合、−CO−O−、又は−OCO−で表される同一の連結鎖であることが好ましい。即ち、前記一般式(1)における六員環A−Y−六員環B−Y−六員環D、及び前記一般式(2)における六員環E−Y−六員環F−Y−六員環Gで表される液晶骨格が同一であると、得られる組成物の保存安定性が増し、双極子モーメントの小さい化合物とより安定に相溶させることができる。このような液晶骨格の例を以下に示す。
【0022】
【化9】
Figure 0004292459
【0023】
【化10】
Figure 0004292459
【0024】
【化11】
Figure 0004292459
【0025】
前記一般式(1)で表される重合性化合物としては、例えば下記式(1−1)〜(1−10)の化合物が挙げられる。これらの化合物は2種以上を併用してもよい。
【0026】
【化12】
Figure 0004292459
(1−1)
【0027】
【化13】
Figure 0004292459
(1−2)
【0028】
【化14】
Figure 0004292459
(1−3)
【0029】
【化15】
Figure 0004292459
(1−4)
【0030】
【化16】
Figure 0004292459
(1−5)
【0031】
【化17】
Figure 0004292459
(1−6)
【0032】
【化18】
Figure 0004292459
(1−7)
【0033】
【化19】
Figure 0004292459
(1−8)
【0034】
【化20】
Figure 0004292459
(1−9)
【0035】
【化21】
Figure 0004292459
(1−10)
【0036】
また、前記一般式(2)で表される重合性化合物としては、例えば下記式(2−1)〜(2−3)の化合物が挙げられる。これらの化合物は2種以上を併用してもよい。
【0037】
【化22】
Figure 0004292459
(2−1)
【0038】
【化23】
Figure 0004292459
(2−2)
【0039】
【化24】
Figure 0004292459
(2−3)
【0040】
(一般式(1−1)〜(1−10)及び一般式(2−1)〜(2−3)において、m及びnは各々独立して1〜20の整数を表し、Lは水素原子又はメチル基を表す。)
【0041】
前記一般式(1−1)〜(1−10)及び一般式(2−1)〜(2−3)で表される重合性化合物は、公知の合成方法によって合成することができる。具体的な合成例は、「ハンドブックオブリキッドクリスタルズ」、ワイリー社、第1巻の第4章や、第2巻の第3〜5章に記載されている。
【0042】
例えば、一般式(1−1)で表される化合物は、次のようにして合成することができる。3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、3−クロロプロピオニルクロリドを反応させ、式(a)で表される化合物を得る(以下、一般式(a)〜(o)において、m及びnは各々独立して1〜20の整数を表す。)。
【0043】
【化25】
Figure 0004292459
(a)
【0044】
式(a)で表される化合物を、炭酸カリウムの存在下、脱塩化水素反応させ、式(b)又は式(c)で表される化合物を得る。
【0045】
【化26】
Figure 0004292459
(b)
【0046】
【化27】
Figure 0004292459
(c)
【0047】
前記式(c)で表される化合物と、4,4’−ビフェノールをハロゲン化アルコールでエーテル化した後アクリル酸を脱水縮合反応させることによって得た式(d)で表される化合物とを、脱水縮合反応させて、一般式(1−1)で表される化合物が得られる。
【0048】
【化28】
Figure 0004292459
(d)
【0049】
一般式(1−2)で表される化合物は、次のようにして合成することができる。1−ヨード−3,4−ジメトキシベンゼンとフェニルグリニアール試薬とを反応させてビフェニル誘導体を得、これに塩化アセチルを反応させる。得られた化合物をアルカリで加水分解後、メトキシ基のメチル基を臭化水素酸で切断して式(e)で表される化合物を得る。
【0050】
【化29】
Figure 0004292459
(e)
【0051】
式(e)で表される化合物をハロゲン化アルコールでエーテル化した後、3−クロロプロピオニルクロリドを反応させて、式(f)で表される化合物を得る。これを、炭酸カリウム存在下で脱塩化水素反応を行うことによって、式(g)又は式(h)で表される化合物を得る。
【0052】
【化30】
Figure 0004292459
(f)
【0053】
【化31】
Figure 0004292459
(g)
【0054】
【化32】
Figure 0004292459
(h)
【0055】
前記式(h)で表される化合物と、ヒドロキノンをハロゲン化アルコールでエーテル化した後アクリル酸を脱水縮合反応させて得た式(i)で表される化合物とを脱水縮合反応させて、式(1−2)で表される化合物が得られる。
【0056】
【化33】
Figure 0004292459
(i)
【0057】
式(1−3)で表される化合物は、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、アクリル酸を1:1のモル比で脱水縮合反応させて、式(j)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0058】
【化34】
Figure 0004292459
(j)
【0059】
式(1−4)で表される化合物は、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、3−ブロモプロピオニルクロリドを反応させ、これをアルカリ処理して、式(k)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0060】
【化35】
Figure 0004292459
(k)
【0061】
また、式(1−6)で表される化合物は、6−ブロモ−1−ヘキサノール等のハロゲン化アルコールとアクリル酸メチルとをエステル交換反応させて、ハロゲン化アルキルアクリレートを合成し、これとブロモ−1−ヘキセン等のハロゲン化アルケンとを1:1のモル比で混合し、3,4−ジヒドロキシ安息香酸と反応させて、式(l)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0062】
【化36】
Figure 0004292459
(l)
【0063】
式(1−8)で表される化合物は、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、3−ブロモプロピオニルクロリドを反応させ、これをアルカリ処理した後、アクリル酸クロリドやメタクリル酸クロリドを反応させて、式(m)で表される化合物を得る。これに、前記一般式(d)で表される化合物を脱水縮合反応させて得られる。
【0064】
【化37】
Figure 0004292459
(m)
【0065】
式(2−1)で表される化合物は、4,4’−ビフェノールをハロゲン化アルコールでエーテル化した後、無水酢酸や塩化アセチルを反応させて、式(n)で表される化合物を得る。
【0066】
【化38】
Figure 0004292459
(n)
【0067】
これに、3,4−ジヒドロキシ安息香酸をハロゲン化アルコールでエーテル化した後、アクリル酸又はメタクリル酸を反応させた、式(o)で表される化合物を脱水縮合反応させて得られる。
【0068】
【化39】
Figure 0004292459
(o)
【0069】
また、式(2−2)で表される化合物は、以下のようにして合成することができる。6-クロロ−1−(p−トルエンスルホニルオキシ)−アルカンと、4−フェニルフェノールとを塩基の存在下に室温で反応させて、式(p)で表される化合物を得る。
【0070】
【化40】
Figure 0004292459
(p)
【0071】
式(p)で表される化合物を、塩化アルミニウムと塩化アセチルを使用してフリーデルクラフツ反応させた後、これを過ギ酸で酸化し、アルカリ加水分解させて得られた式(q)で表される化合物と、化合物(o)とをエステル化反応させて、式(2−2)で表される化合物を得る。
【0072】
【化41】
Figure 0004292459
(q)
【0073】
前記一般式(1)で表される化合物及び一般式(2)で表される化合物のうち、液晶骨格が同じ化合物は、数種類を1つの反応容器で同時に合成することもできる。例えば、前記式(a)で表される化合物を炭酸カリウムの存在下で脱塩化水素反応させると、前記式(b)で表される化合物と前記式(c)で表される化合物の他に前記式(o)で表される化合物も同時に合成することができる。式(b)で表される化合物、式(c)で表される化合物、及び式(o)で表される化合物の比率は、反応条件等を変えることによって制御できる。
【0074】
また、前記式(a)で表される化合物を、少量の水分を添加した上で炭酸カリウムの存在下で脱塩化水素反応させると、前記式(b)で表される化合物と前記式(c)で表される化合物と前記式(o)で表される化合物の他に、前記式(j)で表される化合物と前記式(k)で表される化合物とを同時に合成することができる。この反応生成物に、前記式(d)で表される化合物を反応させれば、一般式(1−1)で表される化合物、(1−2)で表される化合物、及び(1−3)で表される化合物を含有する液晶組成物が簡単に得られる。
【0075】
本発明の重合性液晶組成物は、一般式(1)で表される重合性化合物と一般式(2)で表される重合性化合物との比が、60:40〜99:1であることが好ましい。なかでも、比が80:20〜97:3であると尚好ましい。
【0076】
本発明の重合性液晶組成物に、一般式(3)で表される重合性化合物を、重合性液晶組成物の40〜80質量%を占めるように配合すると、25℃でネマチック相を示す重合性液晶組成物が得られる。本発明の重合性液晶組成物は、一般式(3)で表されるような双極子モーメントの小さい重合性化合物を配合しても、長時間相分離することがない。
【0077】
【化42】
Figure 0004292459
(3)
【0078】
前記一般式(3)において、Lは水素原子又はメチル基を表す。J〜Mは六員環であり、各々独立してベンゼン環、シクロヘキサン環又はシクロヘキセン環を表す。Y及びYは、各々独立して結合、−CHCH−、−CHO−、−OCH− 、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO− 、 −OCHCHCH−、−CH=CH−CHCH−、−CHCH−CH=CH−、−CH=CH−CO−O−及び−OCO−CH=CH−からなる群から選ばれる連結基を表わす。Yは、単結合、−O−、−CO−O−又は−OCO−を表し、Zは水素原子、ハロゲン原子、炭素数1〜20のアルキル基又は炭素数2〜20のアルケニル基を表し、bは0又は1の整数を表す。
【0079】
前記一般式(3)で表される重合性液晶化合物としては、具体的には、式(3−1)〜(3−4)で表される化合物があげられる。中でも、式(3−1)で表される化合物と式(3−2)で表される化合物を併用することが好ましく、式(3−1)で表される化合物と式(3−2)で表される化合物との比が、75:25〜25:75であるとなお好ましい。中でも、式(3−1)で表される化合物と式(3−2)で表される化合物との比が、40:60〜60:40であることが好ましい。この範囲において、25℃でネマチック相を示し、長時間相分離することのない重合性液晶組成物が得られる。
【0080】
【化43】
Figure 0004292459
(3−1)
【0081】
【化44】
Figure 0004292459
(3−2)
【0082】
【化45】
Figure 0004292459
(3−3)
【0083】
【化46】
Figure 0004292459
(3−4)
【0084】
一般式(1)で表される重合性化合物、一般式(2)で表される重合性化合物、及び一般式(3)で表される重合性化合物を併用すると、25℃でネマチック相を示し、長時間相分離しない重合性液晶組成物が得られる。また、該重合性液晶組成物が液晶相を示す温度範囲内で、該重合性液晶組成物中の重合性化合物を重合させて得られる重合体は特に透明性に優れる。具体的には、一般式(1)で表される重合性化合物が20〜29.5質量%、一般式(2)で表される重合性化合物が0.5〜10質量%、一般式(3)で表される重合性化合物が70質量%で併用すると、特に好ましい。
【0085】
その他、本発明の重合性液晶組成物に配合することのできる、公知慣用の重合性化合物としては、下記構造の化合物が挙げられる。
【0086】
【化47】
Figure 0004292459
【0087】
【化48】
Figure 0004292459
【0088】
【化49】
Figure 0004292459
【0089】
(式中、Lは水素原子又はメチル基を、n及びmは各々独立して1〜20の整数を表す。)
【0090】
本発明の重合性液晶組成物には、重合性官能基を有していない液晶化合物を必要に応じて添加してもよい。しかし、添加量が多すぎると、得られる重合体の耐熱性が劣る傾向にあるので、添加する場合は、本発明の重合性液晶組成物に対して80質量%以下とすることが好ましく、30質量%以下がさらに好ましく、10質量%以下が特に好ましい。
【0091】
本発明の重合性液晶組成物には、重合性官能基を有する液晶性骨格を持たない化合物を添加することもできる。このような化合物としては、通常、この技術分野で重合性モノマーあるいは重合性オリゴマーとして認識されるものであれば特に制限なく使用することができる。添加する場合は、本発明の重合性液晶組成物に対して、5質量%以下であることが好ましく、3質量%以下が更に好ましい。
【0092】
本発明の重合性液晶組成物には、光学活性を有する化合物、すなわちキラル化合物を添加してもよい。該キラル化合物は、それ自体が液晶相を示す必要は無く、また、重合性官能基を有していても、有していなくても良い。また、キラル化合物の螺旋の向きは、重合体の使用用途によって適宜選択することができる。
具体的には、例えば、キラル基としてコレステリル基を有するペラルゴン酸コレステロール、ステアリン酸コレステロール、キラル基として2−メチルブチル基を有するビーディーエイチ社製の「CB−15」、「C−15」、メルク社製の「S−1082」、チッソ社製の「CM−19」、「CM−20」、「CM」、キラル基として1−メチルヘプチル基を有するメルク社製の「S−811」、チッソ社製の「CM−21」、「CM−22」などを挙げることができる。
キラル化合物を添加する場合は、該重合性液晶組成物の用途によるが、得られる重合体の厚み(d)を重合体中での螺旋ピッチ(P)で除した値(d/P)が0.1〜100の範囲となる量を添加することが好ましく、0.1〜20の範囲となる量がさらに好ましい。
【0093】
本発明の重合性液晶組成物には、熱重合開始剤、光重合開始剤等の重合開始剤を添加することもできる。熱重合開始剤としては、例えば、過酸化ベンゾイル、2,2’−アゾビスイソブチロニトリル等が挙げられる。また、光重合開始剤としては、例えば、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類等が挙げられる。添加する場合は、該重合性液晶組成物に対して、10質量%以下であることが好ましく、5質量%以下が特に好ましく、0.5〜1.5質量%の範囲が更に好ましい。
【0094】
本発明の重合性液晶組成物には、その保存安定性を向上させるために、安定剤を添加することもできる。安定剤としては、例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類等が挙げられる。添加する場合は、該重合性液晶組成物に対して1質量%以下であることが好ましく、0.5質量%以下が特に好ましい。
【0095】
本発明の重合性液晶組成物を偏光フィルムや配向膜の原料、又は印刷インキ及び塗料、保護膜等の用途に利用する場合には、その目的に応じて、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、界面活性剤、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物、などを添加してもよい。
【0096】
本発明の重合性液晶組成物が液晶相を示す温度範囲内で、該重合性液晶組成物中の重合性化合物を重合させると、本発明の光学異方体が得られる。具体的には、本発明の重合性液晶組成物を、配向機能を付与した基板上に塗布するか、又は二枚の基板間に挟持させた後、該重合性液晶組成物中の液晶分子をネマチック相を保持した状態で均一に配向させ、重合させることによって、本発明の光学異方体が得られる。
【0097】
前記基板は、有機、無機を問わず、公知慣用の材質の基板を使用することができる。例えば、ポリエチレンテレフタレート板、ポリカーボネート板、ポリイミド板、ポリアミド板、ポリメタクリル酸メチル板、ポリスチレン板、ポリ塩化ビニル板、ポリテトラフルオロエチレン板、セルロース板、シリコン板、ガラス板、方解石板等が挙げられる。基板の形状としては、平板の他、曲面を有するものであっても良い。これらの基板は、必要に応じて、電極層を有していてもよい。
【0098】
前記基板に配向機能を付与する方法としては特に限定はなく、公知慣用の方法が挙げられる。具体的には、布等で基板表面をラビング処理する方法、ポリイミド薄膜又はポリビニルアルコール薄膜等の有機薄膜を基板表面に形成し、これを布等でラビング処理する方法、基板にSiOを斜方蒸着して配向膜を形成する方法、分子内に光二量化反応する官能基を有する有機薄膜や光で異性化する官能基を有する有機薄膜に、偏光を照射する方法等が挙げられる。特に、通常のツイステッド・ネマチック素子又はスーパー・ツイステッド・ネマチック素子で使用されているプレチルト角を与えるポリイミド薄膜を使用すると、液晶分子の配向状態の制御を容易にすることができ、特に好ましい。
【0099】
本発明の重合性液晶組成物を基板上に塗布する場合は、スピンコーティング、ロールコーティング、グラビアコーティング、スプレーコーティング、ディッピング法等の公知慣用のコーティング法を利用すればよい。このとき、塗工性を高めるために、該重合性液晶組成物に公知慣用の有機溶媒を添加しても良い。この場合は、該重合性液晶組成物を基板上に塗布後、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等で有機溶媒を除去する。本発明の重合性液晶組成物を基板間に挟持させる場合は、毛細管現象あるいは真空注入法を利用した注入法等を利用すればよい。
【0100】
本発明の重合性液晶組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線強度は、0.1mW/cm〜2W/cmの範囲が好ましい。紫外線強度が0.1mW/cm未満の場合、重合を完了させるのに多大な時間がかかり、一方、2W/cmを超える強度では、重合性液晶組成物中の液晶分子が光分解する傾向にある。照射時の温度は、本発明の重合性液晶組成物が液晶相を保持できる温度とし、重合性液晶組成物の熱重合の誘起を避けるため、可能な限り25℃以下とすることが好ましい。尚、液晶組成物は、通常、昇温過程において、C−N転移温度から、N(ネマチック相)−I(等方性液体相)転移温度(以下、N−I転移温度と略す。)範囲内で液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、C−N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある液晶組成物も液晶相を保持している状態に含めるものとする。
また、本発明の重合性液晶組成物を二枚の基板間に挟持させた状態で重合させる場合は、光照射面側の基板として、透明性を有する基板を使用する。
【0101】
マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する光学異方体を得ることもできる。
【0102】
本発明の重合性液晶組成物を重合させて得られる重合体は、基板から剥離して単体で光学異方体として使用することも、基板から剥離せずにそのまま光学異方体として使用することもできる。剥離した場合は、それらを積層することも、他の基板に貼り合わせて使用することもできる。
【0103】
本発明の重合性液晶組成物は、双極子モーメントの小さい液晶化合物を添加して25℃でネマチック相を示すように調製し、加温せずに重合させることができる。双極子モーメントの小さい液晶化合物の配合量を増やさなくとも、25℃で長時間安定にネマチック相を示すように重合性液晶組成物を調製できるので、重合性液晶組成物中のスワローテイル骨格の濃度は下がらない。従って、得られた光学異方体は異方性及び透明性に優れる。
本発明の光学異方体は、光学補償板、光学的ローパスフィルタ、又は偏光プリズム材料としては勿論のこと、位相差板、偏光板、光導波路、圧電素子、非線形光学素子、各種光フィルター、コレステリック液晶相等の選択反射を利用した顔料、光ファイバー等の被覆剤等への応用が可能である。
【0104】
【実施例】
以下、実施例及び比較例によって、本発明を具体的に説明する。
【0105】
[評価項目]
重合性液晶組成物のC−N転移温度、N−I転移温度、結晶相−スメクチックC相転移温度、及びスメクチックC相−等方相転移温度は、偏光顕微鏡観察及び示差走査熱量測定により決定した。
相溶性は、相溶後の安定性で評価し、重合性液晶組成物を封入したサンプル瓶を25℃に放置し、相分離や結晶の析出が見られるか否かを目視にて観察し、その時間を測定した。
透明度は、JIS K−7136に準拠し、ヘーズ値で表した。ヘーズ値の小さいものほど透明度に優れることを表す。
リタデーション値は、ヘリウム−ネオンレーザー(He−Ne LASER)とフォトエラスティックモジュレーター(Photo Elastic Modulator)を使用した偏光解析装置により測定した。値が高いものほどリタデーションに優れることを表す。
【0106】
(合成例1)
4,4’−ビフェノール1200g、6−クロロ−1−ヘキサノール880g、炭酸カリウム800g、ヨウ化カリウム80g、ジメチルホルムアミド(以下、DMFと略す。)4800mlからなる混合物を撹拌しながら、90℃で8時間加熱した。得られた反応液を室温まで冷却後、反応液の水層が弱酸性になるまで希塩酸を加えた。析出した結晶をガラスフィルターを用いて濾取した後、結晶を水20000mlで洗い、粗生成物900gを得た。この粗生成物を、メタノール9000mlで精製し、生成物Aを500g得た。高速液体クロマトグラフィー(以下、HPLCと略す)で分析した結果、生成物Aは、式(m1)で表される化合物が92%、式(m2)で表される化合物が5%、帰属不能な化合物が3%含まれていた。
【0107】
【化50】
Figure 0004292459
(m1)
【0108】
【化51】
Figure 0004292459
(m2)
【0109】
生成物Aを480g、アクリル酸480g、p−トルエンスルホン酸150g、ヒドロキノン25g、トルエン2000ml、シクロヘキサン2000mlからなる混合物を加熱撹拌し、生成してくる水を留去しながら4時間還流させた。反応液を室温まで冷却後、反応液に飽和食塩水10000ml、酢酸エチル7000mlを加えて抽出を行った。有機層を水洗した後、酢酸エチルを減圧留去して粗生成物609g得た。得られた粗生成物をトルエン600mlとヘキサン1200mlの混合溶媒で洗い、酢酸エチル及びトルエンからなる混合溶媒(容量比で酢酸エチル:トルエン=1:4)を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製して、生成物Bを190g得た。HPLCで分析した結果、生成物Bは、式(m3)で表される化合物が5%、式(m4)で表される化合物が91%、式(m5)で表される化合物が2%、帰属不可能な化合物が2%含まれていた。
【0110】
【化52】
Figure 0004292459
(m3)
【0111】
【化53】
Figure 0004292459
(m4)
【0112】
【化54】
Figure 0004292459
(m5)
【0113】
3,4−ジヒドロキシ安息香酸100g、6−クロロ−1−ヘキサノール194g、水酸化ナトリウム82g、ヨウ化カリウム10g、エタノール450ml、水450mlからなる混合物を撹拌しながら、80℃で32時間加熱した。得られた反応液を室温まで冷却後、反応液に飽和食塩水5000mlを加え、反応液の水層が弱酸性になるまで希塩酸を加えた。この反応溶液に酢酸エチル3000mlを加えて抽出した。有機層を水洗した後、酢酸エチルを減圧留去して生成物Cを232g得た。生成物CをHPLCで分析した結果、式(m6)で表される化合物が48%、帰属不明な化合物が52%含まれていた。
【0114】
【化55】
Figure 0004292459
(m6)
【0115】
生成物Cを232g、アクリル酸300g、p−トルエンスルホン酸50g、ヒドロキノン10g、トルエン1000ml、シクロヘキサン800ml、テトラヒドロフラン200mlからなる混合物を加熱撹拌し、生成してくる水を留去しながら4時間還流させた。反応液を室温まで冷却後、反応液に飽和食塩水5000ml、酢酸エチル3000mlを加えて抽出を行った。有機層を水洗した後、有機溶媒を減圧留去し、ヘキサン1000mlとトルエン200mlの混合物で洗った後、酢酸エチル及びトルエンからなる混合溶媒(容量比で酢酸エチル:トルエン=1:3)を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、生成物Dを165g得た。生成物DをHPLCで分析した結果、式(m7)で表される化合物が55%、式(m8)で表される化合物が7%、式(m9)で表される化合物が7%、式(m10)で表される化合物が5%、式(m11)で表される化合物が5%及び式(m12)で表される化合物が4%、帰属不明な化合物が17%含まれていた。
【0116】
【化56】
Figure 0004292459
【0117】
【化57】
Figure 0004292459
(m8)
【0118】
【化58】
Figure 0004292459
(m9)
【0119】
【化59】
Figure 0004292459
(m10)
【0120】
【化60】
Figure 0004292459
(m11)
【0121】
【化61】
Figure 0004292459
(m12)
【0122】
生成物Bを55gと、生成物Dを65gを塩化メチレン1000mlに溶解させた。これを5℃に冷却し、ジメチルアミノピリジン6gと1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド(以下WSCと略す。)50gを加えて攪拌した。2時間後室温に戻し、さらに36時間攪拌を続けた。反応終了後、反応液を1N塩酸で洗浄してから水で中性になるまで洗浄し、この有機相に無水硫酸ナトリウムを入れて乾燥した。乾燥後に溶媒を減圧除去して粗生成物を得た。この粗生成物をヘキサン:酢酸エチル=10:1の混合溶媒を移動相とするシリカゲルカラムクロマトグラフィーで精製し、組成物(I)を得た。HPLC及びGC/MS(MSは質量分析を表す。)で分析した結果、式(m13)で表される化合物が69%、式(m14)で表される化合物が9%、式(m15)で表される化合物が4%、式(m16)で表される化合物が2%、式(m17)で表される化合物、式(m18)で表される化合物、式(m19)で表される化合物、式(m20)で表される化合物、式(m21)で表される化合物がそれぞれ1%、式(m22)で表される化合物が2%、式(m23)で表される化合物が1%、帰属不明な化合物が8%含まれていた。
【0123】
【化62】
Figure 0004292459
(m13)
【0124】
【化63】
Figure 0004292459
(m14)
【0125】
【化64】
Figure 0004292459
(m15)
【0126】
【化65】
Figure 0004292459
(m16)
【0127】
【化66】
Figure 0004292459
(m17)
【0128】
【化67】
Figure 0004292459
(m18)
【0129】
【化68】
Figure 0004292459
(m19)
【0130】
【化69】
Figure 0004292459
(m20)
【化70】
Figure 0004292459
(m21)
【0131】
【化71】
Figure 0004292459
(m22)
【0132】
【化72】
Figure 0004292459
(m23)
【0133】
(実施例1)
上記組成物(I)の結晶相−スメクチックC相転移温度は75℃であり、スメクチックC相−等方相転移温度は80℃であった。
【0134】
(実施例2)
組成物(I)30質量部、式(B)で表される化合物35質量部、及び式(C)で表される化合物35質量部からなる組成物(II)を調製した。組成物(II)は、25℃でネマチック液晶相を呈した。C−N転移温度は−30℃であり、N−I転移温度は46℃であった。組成物(II)は25℃で1ヶ月以上保っても、安定的にネマチック相を呈することがわかった。また、25℃における粘度は128mPa・sであった。
【0135】
【化73】
Figure 0004292459
式(B)
【0136】
【化74】
Figure 0004292459
式(C)
【0137】
(実施例3)
組成物(II)99質量部に、チバガイギー社製の光重合開始剤「イルガキュアー651」1質量部を添加し、光学異方体用組成物とした。室温で、セルギャップ50ミクロンのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に該組成物を注入した。注入後2分以内に配向が安定し、均一な一軸配向が得られているのが確認できた。次に、目白プレシジョン製の超高圧水銀灯750Wを使用し、14W/mの紫外線(波長366nm)を該ガラスセルに200秒間照射して、光学異方体を得た。得られた光学異方体の平行光透過率は88.1%で、ヘーズは1.3%であった。リタデーション値は3.0ミクロンであった。
【0138】
(比較例1)
実施例2における組成物(I)30質量部に代えて、C−N転移温度が94℃である式(A)で表される化合物を30質量部使用した他は、実施例2と同様にして、組成物(III)を調製した。組成物(III)のC−N転移温度は41℃であり、N−I転移温度は61℃であった。この組成物は冷却過程に於いて25℃で過冷却によるネマチック相を示したが、約2時間程度で相分離してしまった。
【0139】
【化75】
Figure 0004292459
式(A)
【0140】
(比較例2)
実施例3における光学異方体用組成物に代えて、組成物(III)99質量部に「イルガキュアー651」1質量部を添加し、光学異方体用組成物とした以外は、実施例3と同様にして光学異方体を得た。得られた光学異方体の平行光透過率は82.9%で、ヘーズは5.0%であった。リタデーション値は2.7ミクロンであった。
【0141】
【発明の効果】
本発明の重合性液晶組成物は、分子末端にシアノ基を有さないので、双極子モーメントの小さい液晶化合物との相溶性に優れる。従って、一般式(1)及び(2)で表されるスワローテイル型重合性化合物に、双極子モーメントの小さく骨格構造が異なる液晶化合物を混合した重合性液晶組成物は、長期にわたって相分離を起こすことなく、保存安定性に優れ、好適なC−N転移温度を有する重合性液晶組成物の組成の調整が容易である。特に、双極子モーメントの小さく骨格構造が異なる液晶化合物として、一般式(3)で表される重合性化合物を混合すると、25℃でネマチック相を示し、保存安定性に優れた重合性液晶組成物を得ることができる。
この重合性液晶組成物中の液晶分子を配向させた状態で重合させると、異方性及び透明性に優れた光学異方体を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymerizable liquid crystal composition and an optical anisotropic body obtained by polymerizing a polymerizable compound in the polymerizable liquid crystal composition.
[0002]
[Prior art]
Polymerizing a polymerizable liquid crystal compound or a polymerizable liquid crystal composition containing a polymerizable compound exhibiting a liquid crystal phase such as a nematic phase, a smectic phase, or a cholesteric phase by mixing with the liquid crystal compound while maintaining the liquid crystal phase A polymer in which the alignment state of the liquid crystal molecules is fixed can be produced. Since this polymer has anisotropy of physical properties such as a refractive index, a dielectric constant, a magnetic susceptibility, an elastic modulus, and a thermal expansion coefficient, its application is particularly studied as an optical anisotropic body.
[0003]
One polymerization method for fixing the alignment state of liquid crystal molecules is photopolymerization. In the photopolymerization, since the polymerization reaction proceeds without applying heat that becomes a disturbance factor to the alignment of the liquid crystal molecules, it can be fixed without disturbing the alignment state of the liquid crystal molecules. However, when the temperature showing the liquid crystal phase is high, it is necessary to heat the polymerizable liquid crystal composition in order to maintain the liquid crystal phase. This heating causes partial thermal polymerization before starting photopolymerization. This may cause orientation disorder. Therefore, the composition of the polymerizable liquid crystal composition is adjusted so as to exhibit a liquid crystal phase at a temperature as low as possible, for example, in a temperature range of 25 to 40 ° C.
Hereinafter, as an example, a polymerizable liquid crystal composition showing a nematic phase as a liquid crystal phase will be mainly described. However, the same applies to polymerizable liquid crystal compositions exhibiting other liquid crystal phases.
[0004]
When a polymer in which the alignment state of liquid crystal molecules is fixed is applied to an optical anisotropic body, the polymer is required to have excellent transparency.
For example, a polymerizable liquid crystal compound represented by formula B and a polymerizable liquid crystal compound represented by formula C are mixed with a swallow tail type polymerizable liquid crystal compound represented by formula A having a CN transition temperature of 94 ° C. By preparing a polymerizable liquid crystal composition exhibiting a nematic phase at 25 ° C. and polymerizing it at 25 ° C. or lower, local thermal polymerization does not occur, so an optically anisotropic body having excellent transparency can be obtained. It is known (for example, refer to Patent Document 1).
[0005]
[Formula 4]
Figure 0004292459
Formula A
[0006]
[Chemical formula 5]
Figure 0004292459
Formula B
[0007]
[Chemical 6]
Figure 0004292459
Formula C
[0008]
[Patent Document 1]
JP 2000-327632 A
[0009]
[Problems to be solved by the invention]
However, when the compound represented by Formula A, the compound represented by Formula B, and the compound represented by Formula C are mixed, phase separation can be achieved within a short time even if it appears to be uniformly mixed. There was a problem of waking up. This is because the compound represented by the formula A has a cyano group at the molecular end and has a large dipole moment, and an electron withdrawing group such as the compound represented by the formula B or the compound represented by the formula C In general, the polymerizable compound having a small dipole moment does not have low compatibility, and the compound represented by the formula A and the compound represented by the formula B or the compound represented by the formula C have a liquid crystal skeleton. The cause is considered to be low compatibility because of the large difference.
When the compounding amount of the compound represented by the formula B and the compound represented by the formula C is increased, the compatibility is somewhat improved, but the concentration of the swallowtail compound in the entire system is lowered. There was a problem that the transparency of the optically anisotropic body obtained by polymerizing this was lowered.
[0010]
The problem to be solved by the present invention is to provide a polymerizable liquid crystal composition containing a swallow tail type polymerizable compound that is excellent in compatibility with a liquid crystal compound having a small dipole moment, and the polymerization. Another object of the present invention is to provide an optically anisotropic body excellent in transparency obtained by polymerizing a polymerizable compound in the polymerizable liquid crystal composition within a temperature range in which the liquid crystalline composition exhibits a liquid crystal phase.
[0011]
[Means for Solving the Problems]
Since a swallowtail polymerizable compound having a cyano group at the molecular end has a large dipole moment, it has low compatibility with a liquid crystal compound having a small dipole moment. Polymerizable liquid crystal composition containing the same swallowtail polymerizable compound represented by the following general formulas (1) and (2), which is the same swallowtail polymerizable compound but has no cyano group at the molecular end Is excellent in compatibility with a liquid crystal compound having a small dipole moment, and at the same time has a similar skeleton structure, has a cyano group at the molecular end, and is well compatible with the swallow tail polymerizable compound having a large dipole moment. Therefore, a polymerization in which a swallowtail polymerizable compound represented by the general formulas (1) and (2) is mixed with a swallowtail polymerizable compound having a large dipole moment and a liquid crystal compound having a small dipole moment and a different skeleton structure. The liquid crystalline composition is excellent in storage stability without causing phase separation over a long period of time, and the composition of the polymerizable liquid crystal composition having a suitable CN transition temperature can be easily adjusted.
[0012]
That is, this invention provides the polymeric liquid crystal composition containing the polymeric compound represented by General formula (1), and the polymeric compound represented by General formula (2).
[0013]
[Chemical 7]
Figure 0004292459
General formula (1)
[0014]
[Chemical 8]
Figure 0004292459
General formula (2)
[0015]
Wherein A to G are 6-membered rings, each independently representing a benzene ring, a cyclohexane ring or a cyclohexene ring; 1 ~ Y 4 Each independently represents a single bond, —CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -CO-O-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH 2 ) 4 -, -CH 2 CH 2 CH 2 O-, -OCH 2 CH 2 CH 2 -, -CH = CH-CH 2 CH 2 -, -CH 2 CH 2 A linking group selected from the group consisting of —CH═CH—, —CH═CH—CO—O— and —OCO—CH═CH— is represented. X 1 ~ X 6 Each independently represents a single bond, —O—, —CO—O—, or —OCO—; 1 ~ S 6 Are each independently C m H 2m -Or-(C m H 2m -O) n -C m H 2m -, M represents an integer of 1-20, n represents an integer of 1-10, L 1 ~ L 3 Each independently represents a hydrogen atom or a methyl group. Z 1 And Z 2 Each independently represents —OCO—CH 2 -CH 2 -Cl, -OCO-CH = CH 2 , -OCO-C (CH 3 ) = CH 2 , -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO-CH = CH 2 , -OCO-CH 2 CH 2 -OCO-C (CH 3 ) = CH 2 , -CH = CH 2 , -OCO-CH = CH 2 , -OCO-C (CH 3 ) = CH 2 , -CO-CH 3 Or -CH 2 CH 2 Represents Cl, but Z 1 -OCO-CH 2 -CH 2 Z when Z 2 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 And Z 1 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 Z 2 Is -OCO-CH 2 -CH 2 -Cl, -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO-CH = CH 2 , -OCO-CH 2 CH 2 -OCO-C (CH 3 ) = CH 2 , -CH = CH 2 , -OCO-CH = CH 2 , -OCO-C (CH 3 ) = CH 2 , -CO-CH 3 Or -CH 2 CH 2 Cl and Z 2 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 Z 1 Is -OCO-CH 2 -CH 2 -Cl, -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO-CH = CH 2 , -OCO-CH 2 CH 2 -OCO-C (CH 3 ) = CH 2 , -CH = CH 2 , -OCO-CH = CH 2 , -OCO-C (CH 3 ) = CH 2 , -CO-CH 3 Or -CH 2 CH 2 Cl. Z 3 Is Cl- or CH 3 -CO-O- is represented. )
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the general formula (1) or (2), the six-membered rings A to G are an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkanoyl group having 1 to 7 carbon atoms, Or you may have substituents, such as a halogen atom. If a benzene ring that is conjugated in the major axis direction of the liquid crystal molecules is selected for the six-membered rings A to G, a polymerizable compound having a large birefringence can be obtained, and it is not conjugated in the major axis direction of the liquid crystal molecules. If a cyclohexane ring is selected, a polymerizable compound having a small birefringence can be obtained.
[0017]
In the general formula (1) or (2), Y 1 ~ Y 4 Select a structure that is conjugated in the major axis direction of the liquid crystal molecule, such as a single bond, —CO—O—, —OCO—, —C≡C—, —CH═CH—, —CF═CF—. For example, a polymerizable compound having a large birefringence can be obtained. 2 CH 2 -, -CH 2 O-, -OCH 2 -,-(CH 2 ) 4 -, -CH 2 CH 2 CH 2 O-, -OCH 2 CH 2 CH 2 If a structure that is not conjugated in the major axis direction of the liquid crystal molecules, such as −, is selected, a polymerizable compound having a small birefringence can be obtained.
[0018]
In the general formula (1) or (2), S 1 ~ S 6 Has a role as a spacer separating the liquid crystal skeleton from the (meth) acryloyloxy group. Specific examples include a methylene group, a propylene group, a hexamethylene group, or a group in which these groups are linked by an ether bond. Especially, it is preferable that m is 2-15, and it is especially preferable that m is 3-11.
[0019]
In the general formula (1) or (2), L 1 ~ L 3 Is preferably a hydrogen atom because of high polymerization reactivity.
[0020]
In the general formula (1), Z 1 And Z 2 As a combination with, for example,
Z 1 -OCO-CH 2 -Cl and Z 2 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 Or Z 1 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 So, Z 2 Is -OH or Z 1 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 So, Z 2 -OCO-CH 2 CH 2 In the case of OH or Z 1 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 So, Z 2 -OCO-CH 2 CH 2 -OCO-CH = CH 2 Or Z 1 Is -OCO-CH = CH 2 Or -OCO-C (CH 3 ) = CH 2 So, Z 2 Is -OCO-CH = CH 2 Is the case. In the general formula (2), Z 3 Is Cl- or CH 3 -CO-O- is represented.
[0021]
In the compounds represented by the general formulas (1) and (2), the six-membered rings A to G are all benzene rings, and Y 1 And Y 3 Are the same connecting chain represented by a single bond, -CO-O-, or -OCO-, 2 And Y 4 Are preferably the same connecting chain represented by a single bond, -CO-O-, or -OCO-. That is, the six-membered ring AY in the general formula (1) 1 -Six-membered ring BY 2 -Six-membered ring D and the six-membered ring EY in the general formula (2) 3 -Six-membered ring FY 4 -When the liquid crystal skeleton represented by the six-membered ring G is the same, the storage stability of the resulting composition increases, and it can be more stably compatible with a compound having a small dipole moment. Examples of such a liquid crystal skeleton are shown below.
[0022]
[Chemical 9]
Figure 0004292459
[0023]
[Chemical Formula 10]
Figure 0004292459
[0024]
Embedded image
Figure 0004292459
[0025]
Examples of the polymerizable compound represented by the general formula (1) include compounds represented by the following formulas (1-1) to (1-10). Two or more of these compounds may be used in combination.
[0026]
Embedded image
Figure 0004292459
(1-1)
[0027]
Embedded image
Figure 0004292459
(1-2)
[0028]
Embedded image
Figure 0004292459
(1-3)
[0029]
Embedded image
Figure 0004292459
(1-4)
[0030]
Embedded image
Figure 0004292459
(1-5)
[0031]
Embedded image
Figure 0004292459
(1-6)
[0032]
Embedded image
Figure 0004292459
(1-7)
[0033]
Embedded image
Figure 0004292459
(1-8)
[0034]
Embedded image
Figure 0004292459
(1-9)
[0035]
Embedded image
Figure 0004292459
(1-10)
[0036]
Moreover, as a polymeric compound represented by the said General formula (2), the compound of following formula (2-1)-(2-3) is mentioned, for example. Two or more of these compounds may be used in combination.
[0037]
Embedded image
Figure 0004292459
(2-1)
[0038]
Embedded image
Figure 0004292459
(2-2)
[0039]
Embedded image
Figure 0004292459
(2-3)
[0040]
(In General Formulas (1-1) to (1-10) and General Formulas (2-1) to (2-3), m and n each independently represents an integer of 1 to 20, and L represents a hydrogen atom. Or represents a methyl group.)
[0041]
The polymerizable compounds represented by the general formulas (1-1) to (1-10) and the general formulas (2-1) to (2-3) can be synthesized by a known synthesis method. Specific synthesis examples are described in “Handbook of Liquid Crystals”, Wiley, Chapter 4 of Volume 1 and Chapters 3 to 5 of Volume 2.
[0042]
For example, the compound represented by the general formula (1-1) can be synthesized as follows. After etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, 3-chloropropionyl chloride is reacted to obtain a compound represented by the formula (a) (hereinafter, in the general formulas (a) to (o)) , M and n each independently represents an integer of 1 to 20.)
[0043]
Embedded image
Figure 0004292459
(A)
[0044]
The compound represented by the formula (a) is dehydrochlorinated in the presence of potassium carbonate to obtain the compound represented by the formula (b) or the formula (c).
[0045]
Embedded image
Figure 0004292459
(B)
[0046]
Embedded image
Figure 0004292459
(C)
[0047]
A compound represented by the formula (c) and a compound represented by the formula (d) obtained by etherifying 4,4′-biphenol with a halogenated alcohol and then dehydrating and condensing acrylic acid, A compound represented by the general formula (1-1) is obtained by a dehydration condensation reaction.
[0048]
Embedded image
Figure 0004292459
(D)
[0049]
The compound represented by the general formula (1-2) can be synthesized as follows. 1-iodo-3,4-dimethoxybenzene and a phenyl Grignard reagent are reacted to obtain a biphenyl derivative, which is reacted with acetyl chloride. The obtained compound is hydrolyzed with an alkali, and then the methyl group of the methoxy group is cleaved with hydrobromic acid to obtain a compound represented by the formula (e).
[0050]
Embedded image
Figure 0004292459
(E)
[0051]
The compound represented by the formula (e) is etherified with a halogenated alcohol and then reacted with 3-chloropropionyl chloride to obtain the compound represented by the formula (f). This is subjected to a dehydrochlorination reaction in the presence of potassium carbonate to obtain a compound represented by formula (g) or formula (h).
[0052]
Embedded image
Figure 0004292459
(F)
[0053]
Embedded image
Figure 0004292459
(G)
[0054]
Embedded image
Figure 0004292459
(H)
[0055]
A compound represented by the formula (h) and a compound represented by the formula (i) obtained by dehydrating and condensing acrylic acid after etherifying hydroquinone with a halogenated alcohol are subjected to a dehydrating and condensing reaction. The compound represented by (1-2) is obtained.
[0056]
Embedded image
Figure 0004292459
(I)
[0057]
The compound represented by the formula (1-3) is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, and then subjecting acrylic acid to a dehydration condensation reaction at a molar ratio of 1: 1. To obtain a compound represented by: This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0058]
Embedded image
Figure 0004292459
(J)
[0059]
The compound represented by the formula (1-4) is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, reacting with 3-bromopropionyl chloride, treating this with an alkali, To obtain a compound represented by: This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0060]
Embedded image
Figure 0004292459
(K)
[0061]
In addition, the compound represented by the formula (1-6) is obtained by transesterifying a halogenated alcohol such as 6-bromo-1-hexanol with methyl acrylate to synthesize a halogenated alkyl acrylate. A halogenated alkene such as -1-hexene is mixed at a molar ratio of 1: 1 and reacted with 3,4-dihydroxybenzoic acid to obtain a compound represented by the formula (l). This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0062]
Embedded image
Figure 0004292459
(L)
[0063]
The compound represented by the formula (1-8) is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol, reacting with 3-bromopropionyl chloride, treating this with alkali, A compound represented by the formula (m) is obtained by reacting methacrylic acid chloride. This is obtained by subjecting the compound represented by the general formula (d) to a dehydration condensation reaction.
[0064]
Embedded image
Figure 0004292459
(M)
[0065]
The compound represented by the formula (2-1) is obtained by etherifying 4,4′-biphenol with a halogenated alcohol and then reacting with acetic anhydride or acetyl chloride to obtain a compound represented by the formula (n). .
[0066]
Embedded image
Figure 0004292459
(N)
[0067]
This is obtained by etherifying 3,4-dihydroxybenzoic acid with a halogenated alcohol and then reacting acrylic acid or methacrylic acid with a compound represented by formula (o) by dehydration condensation reaction.
[0068]
Embedded image
Figure 0004292459
(O)
[0069]
Moreover, the compound represented by Formula (2-2) is compoundable as follows. 6-Chloro-1- (p-toluenesulfonyloxy) -alkane and 4-phenylphenol are reacted at room temperature in the presence of a base to obtain a compound represented by the formula (p).
[0070]
Embedded image
Figure 0004292459
(p)
[0071]
The compound represented by the formula (p) is subjected to Friedel-Crafts reaction using aluminum chloride and acetyl chloride, and then oxidized with performic acid and subjected to alkali hydrolysis. The compound represented by the formula (2-2) is obtained by esterifying the compound to be compounded with the compound (o).
[0072]
Embedded image
Figure 0004292459
(Q)
[0073]
Among the compound represented by the general formula (1) and the compound represented by the general formula (2), several compounds having the same liquid crystal skeleton can be synthesized simultaneously in one reaction vessel. For example, when the compound represented by the formula (a) is dehydrochlorinated in the presence of potassium carbonate, in addition to the compound represented by the formula (b) and the compound represented by the formula (c) The compound represented by the formula (o) can also be synthesized simultaneously. The ratio of the compound represented by the formula (b), the compound represented by the formula (c), and the compound represented by the formula (o) can be controlled by changing reaction conditions and the like.
[0074]
When the compound represented by the formula (a) is dehydrochlorinated in the presence of potassium carbonate after adding a small amount of water, the compound represented by the formula (b) and the formula (c) In addition to the compound represented by formula (o) and the compound represented by formula (o), the compound represented by formula (j) and the compound represented by formula (k) can be synthesized simultaneously. . When this reaction product is reacted with the compound represented by the formula (d), the compound represented by the general formula (1-1), the compound represented by (1-2), and (1- A liquid crystal composition containing the compound represented by 3) is easily obtained.
[0075]
In the polymerizable liquid crystal composition of the present invention, the ratio of the polymerizable compound represented by the general formula (1) and the polymerizable compound represented by the general formula (2) is 60:40 to 99: 1. Is preferred. Of these, the ratio is more preferably 80:20 to 97: 3.
[0076]
When the polymerizable compound represented by the general formula (3) is blended in the polymerizable liquid crystal composition of the present invention so as to occupy 40 to 80% by mass of the polymerizable liquid crystal composition, polymerization showing a nematic phase at 25 ° C. Liquid crystalline composition is obtained. The polymerizable liquid crystal composition of the present invention does not undergo phase separation for a long time even when a polymerizable compound having a small dipole moment as represented by the general formula (3) is blended.
[0077]
Embedded image
Figure 0004292459
(3)
[0078]
In the general formula (3), L 4 Represents a hydrogen atom or a methyl group. J to M are 6-membered rings, each independently representing a benzene ring, a cyclohexane ring or a cyclohexene ring. Y 5 And Y 6 Are each independently a bond, —CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -CO-O-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH 2 ) 4 -, -CH 2 CH 2 CH 2 O-, -OCH 2 CH 2 CH 2 -, -CH = CH-CH 2 CH 2 -, -CH 2 CH 2 A linking group selected from the group consisting of —CH═CH—, —CH═CH—CO—O— and —OCO—CH═CH— is represented. Y 7 Represents a single bond, —O—, —CO—O— or —OCO—; 4 Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, and b represents an integer of 0 or 1.
[0079]
Specific examples of the polymerizable liquid crystal compound represented by the general formula (3) include compounds represented by the formulas (3-1) to (3-4). Especially, it is preferable to use together the compound represented by Formula (3-1), and the compound represented by Formula (3-2), and the compound represented by Formula (3-1) and Formula (3-2) It is still more preferable that ratio with the compound represented by these is 75: 25-25: 75. Especially, it is preferable that ratio of the compound represented by Formula (3-1) and the compound represented by Formula (3-2) is 40: 60-60: 40. In this range, a polymerizable liquid crystal composition that exhibits a nematic phase at 25 ° C. and does not undergo phase separation for a long time can be obtained.
[0080]
Embedded image
Figure 0004292459
(3-1)
[0081]
Embedded image
Figure 0004292459
(3-2)
[0082]
Embedded image
Figure 0004292459
(3-3)
[0083]
Embedded image
Figure 0004292459
(3-4)
[0084]
When the polymerizable compound represented by the general formula (1), the polymerizable compound represented by the general formula (2), and the polymerizable compound represented by the general formula (3) are used in combination, a nematic phase is exhibited at 25 ° C. A polymerizable liquid crystal composition that does not undergo phase separation for a long time is obtained. In addition, a polymer obtained by polymerizing a polymerizable compound in the polymerizable liquid crystal composition within a temperature range in which the polymerizable liquid crystal composition exhibits a liquid crystal phase is particularly excellent in transparency. Specifically, the polymerizable compound represented by the general formula (1) is 20 to 29.5% by mass, the polymerizable compound represented by the general formula (2) is 0.5 to 10% by mass, the general formula ( It is particularly preferable that the polymerizable compound represented by 3) is used in combination at 70% by mass.
[0085]
In addition, examples of known and commonly used polymerizable compounds that can be blended in the polymerizable liquid crystal composition of the present invention include compounds having the following structures.
[0086]
Embedded image
Figure 0004292459
[0087]
Embedded image
Figure 0004292459
[0088]
Embedded image
Figure 0004292459
[0089]
(In the formula, L represents a hydrogen atom or a methyl group, and n and m each independently represents an integer of 1 to 20.)
[0090]
If necessary, a liquid crystal compound having no polymerizable functional group may be added to the polymerizable liquid crystal composition of the present invention. However, if the addition amount is too large, the resulting polymer tends to be inferior in heat resistance. Therefore, when added, the content is preferably 80% by mass or less based on the polymerizable liquid crystal composition of the present invention. It is more preferably at most 10 mass%, particularly preferably at most 10 mass%.
[0091]
In the polymerizable liquid crystal composition of the present invention, a compound having a polymerizable functional group and not having a liquid crystalline skeleton can also be added. Such a compound can be used without particular limitation as long as it is generally recognized as a polymerizable monomer or polymerizable oligomer in this technical field. When adding, it is preferable that it is 5 mass% or less with respect to the polymeric liquid crystal composition of this invention, and 3 mass% or less is still more preferable.
[0092]
A compound having optical activity, that is, a chiral compound may be added to the polymerizable liquid crystal composition of the present invention. The chiral compound itself does not have to exhibit a liquid crystal phase, and may or may not have a polymerizable functional group. Moreover, the direction of the spiral of the chiral compound can be appropriately selected depending on the intended use of the polymer.
Specifically, for example, CB-15, “C-15”, Merck manufactured by BDH Corporation having cholesterol as a chiral group having cholesteryl group as cholesterol group, cholesterol stearate, and 2-methylbutyl group as a chiral group. “S-1082” manufactured by the company, “CM-19”, “CM-20”, “CM” manufactured by Chisso, “S-811” manufactured by Merck having 1-methylheptyl group as a chiral group, “CM-21”, “CM-22” and the like manufactured by the company can be mentioned.
When a chiral compound is added, depending on the use of the polymerizable liquid crystal composition, the value (d / P) obtained by dividing the thickness (d) of the obtained polymer by the helical pitch (P) in the polymer is 0. It is preferable to add an amount in the range of 1 to 100, and an amount in the range of 0.1 to 20 is more preferable.
[0093]
A polymerization initiator such as a thermal polymerization initiator and a photopolymerization initiator can be added to the polymerizable liquid crystal composition of the present invention. Examples of the thermal polymerization initiator include benzoyl peroxide and 2,2′-azobisisobutyronitrile. Examples of the photopolymerization initiator include benzoin ethers, benzophenones, acetophenones, and benzyl ketals. When adding, it is preferable that it is 10 mass% or less with respect to this polymeric liquid crystal composition, 5 mass% or less is especially preferable, and the range of 0.5-1.5 mass% is still more preferable.
[0094]
In order to improve the storage stability of the polymerizable liquid crystal composition of the present invention, a stabilizer may be added. Examples of the stabilizer include hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols and the like. When adding, it is preferable that it is 1 mass% or less with respect to this polymeric liquid crystal composition, and 0.5 mass% or less is especially preferable.
[0095]
When the polymerizable liquid crystal composition of the present invention is used for a polarizing film, a raw material for an alignment film, or printing ink and paint, a protective film, etc., depending on the purpose, a metal, a metal complex, a dye, a pigment, Add fluorescent materials, phosphorescent materials, surfactants, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, metal oxides such as titanium oxide, etc. May be.
[0096]
When the polymerizable compound in the polymerizable liquid crystal composition is polymerized within the temperature range in which the polymerizable liquid crystal composition of the present invention exhibits a liquid crystal phase, the optical anisotropic body of the present invention is obtained. Specifically, the polymerizable liquid crystal composition of the present invention is applied on a substrate provided with an alignment function or sandwiched between two substrates, and then the liquid crystal molecules in the polymerizable liquid crystal composition are added. The optically anisotropic body of the present invention can be obtained by uniformly aligning and polymerizing while maintaining the nematic phase.
[0097]
The substrate may be a known and commonly used substrate, regardless of whether it is organic or inorganic. For example, polyethylene terephthalate plate, polycarbonate plate, polyimide plate, polyamide plate, polymethyl methacrylate plate, polystyrene plate, polyvinyl chloride plate, polytetrafluoroethylene plate, cellulose plate, silicon plate, glass plate, calcite plate, etc. . The shape of the substrate may be a curved surface in addition to a flat plate. These substrates may have an electrode layer as necessary.
[0098]
The method for imparting an alignment function to the substrate is not particularly limited, and a known and commonly used method can be used. Specifically, a method of rubbing the substrate surface with a cloth or the like, a method of forming an organic thin film such as a polyimide thin film or a polyvinyl alcohol thin film on the substrate surface, and rubbing the substrate with a cloth or the like; 2 And a method of irradiating polarized light onto an organic thin film having a functional group that undergoes photodimerization reaction in the molecule or an organic thin film having a functional group that is isomerized by light. In particular, it is particularly preferable to use a polyimide thin film that gives a pretilt angle that is used in a normal twisted nematic element or a super twisted nematic element, because the alignment state of liquid crystal molecules can be easily controlled.
[0099]
When the polymerizable liquid crystal composition of the present invention is applied on a substrate, a known and commonly used coating method such as spin coating, roll coating, gravure coating, spray coating, dipping method may be used. At this time, in order to improve coatability, a known and commonly used organic solvent may be added to the polymerizable liquid crystal composition. In this case, after coating the polymerizable liquid crystal composition on the substrate, the organic solvent is removed by natural drying, heat drying, reduced pressure drying, reduced pressure heat drying or the like. When the polymerizable liquid crystal composition of the present invention is sandwiched between substrates, a capillary phenomenon or an injection method using a vacuum injection method may be used.
[0100]
Examples of the method for polymerizing the polymerizable liquid crystal composition of the present invention include a method of irradiating active energy rays and a thermal polymerization method. However, since the reaction proceeds at room temperature without requiring heating, active energy rays are used. A method of irradiating is preferable, and among them, a method of irradiating light such as ultraviolet rays is preferable because the operation is simple. UV intensity is 0.1 mW / cm 2 ~ 2W / cm 2 The range of is preferable. UV intensity is 0.1 mW / cm 2 Less than 2 W / cm, while it takes a long time to complete the polymerization. 2 When the strength exceeds 1, the liquid crystal molecules in the polymerizable liquid crystal composition tend to be photodegraded. The temperature during irradiation is preferably set to 25 ° C. or less as much as possible in order to avoid the induction of thermal polymerization of the polymerizable liquid crystal composition at a temperature at which the polymerizable liquid crystal composition of the present invention can maintain the liquid crystal phase. The liquid crystal composition usually has a temperature range from a CN transition temperature to an N (nematic phase) -I (isotropic liquid phase) transition temperature (hereinafter abbreviated as an NI transition temperature). The liquid crystal phase is shown in the figure. On the other hand, in the temperature lowering process, a non-equilibrium state is taken thermodynamically, so that the liquid crystal state may be maintained without being solidified even at a temperature lower than the CN transition temperature. This state is called a supercooled state. In the present invention, the liquid crystal composition in a supercooled state is also included in the state in which the liquid crystal phase is retained.
When the polymerizable liquid crystal composition of the present invention is polymerized while being sandwiched between two substrates, a transparent substrate is used as the substrate on the light irradiation surface side.
[0101]
After only a specific part is polymerized by UV irradiation using a mask, the orientation state of the unpolymerized part is changed by applying an electric field, a magnetic field or temperature, and then the unpolymerized part is polymerized. An optical anisotropic body having a plurality of regions having orientation directions can also be obtained.
[0102]
The polymer obtained by polymerizing the polymerizable liquid crystal composition of the present invention can be peeled off from the substrate and used alone as an optical anisotropic body, or can be used as an optical anisotropic body as it is without peeling off from the substrate. You can also. When peeled, they can be laminated or used by being attached to another substrate.
[0103]
The polymerizable liquid crystal composition of the present invention can be prepared by adding a liquid crystal compound having a small dipole moment so as to exhibit a nematic phase at 25 ° C. and polymerizing without heating. Since the polymerizable liquid crystal composition can be prepared so as to exhibit a nematic phase stably at 25 ° C. for a long time without increasing the blending amount of the liquid crystal compound having a small dipole moment, the concentration of the swallow tail skeleton in the polymerizable liquid crystal composition Will not go down. Therefore, the obtained optical anisotropic body is excellent in anisotropy and transparency.
The optical anisotropic body of the present invention is not only an optical compensator, an optical low-pass filter, or a polarizing prism material, but also a retardation plate, a polarizing plate, an optical waveguide, a piezoelectric element, a nonlinear optical element, various optical filters, cholesteric. Application to coatings such as pigments and optical fibers using selective reflection of liquid crystal phases and the like is possible.
[0104]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0105]
[Evaluation item]
The CN transition temperature, NI transition temperature, crystal phase-smectic C phase transition temperature, and smectic C phase-isotropic phase transition temperature of the polymerizable liquid crystal composition were determined by observation with a polarizing microscope and differential scanning calorimetry. .
The compatibility is evaluated by the stability after the compatibilization, the sample bottle containing the polymerizable liquid crystal composition is left at 25 ° C., and whether or not phase separation or crystal precipitation is observed is visually observed. The time was measured.
The transparency was expressed as a haze value in accordance with JIS K-7136. The smaller the haze value, the better the transparency.
The retardation value was measured by an ellipsometer using a helium-neon laser (He-Ne LASER) and a photoelastic modulator (Photo Elastic Modulator). The higher the value, the better the retardation.
[0106]
(Synthesis Example 1)
While stirring a mixture of 1200 g of 4,4′-biphenol, 880 g of 6-chloro-1-hexanol, 800 g of potassium carbonate, 80 g of potassium iodide and 4800 ml of dimethylformamide (hereinafter abbreviated as DMF), the mixture is stirred at 90 ° C. for 8 hours. Heated. The obtained reaction solution was cooled to room temperature, and diluted hydrochloric acid was added until the aqueous layer of the reaction solution became weakly acidic. The precipitated crystals were collected by filtration using a glass filter, and the crystals were washed with 20000 ml of water to obtain 900 g of a crude product. The crude product was purified with 9000 ml of methanol to obtain 500 g of product A. As a result of analysis by high performance liquid chromatography (hereinafter abbreviated as HPLC), the product A is 92% of the compound represented by the formula (m1), 5% of the compound represented by the formula (m2), and cannot be assigned. The compound contained 3%.
[0107]
Embedded image
Figure 0004292459
(M1)
[0108]
Embedded image
Figure 0004292459
(M2)
[0109]
A mixture consisting of 480 g of product A, 480 g of acrylic acid, 150 g of p-toluenesulfonic acid, 25 g of hydroquinone, 2000 ml of toluene and 2000 ml of cyclohexane was heated and stirred, and refluxed for 4 hours while distilling off the water produced. The reaction solution was cooled to room temperature, and extracted by adding 10000 ml of saturated brine and 7000 ml of ethyl acetate to the reaction solution. After the organic layer was washed with water, ethyl acetate was distilled off under reduced pressure to obtain 609 g of a crude product. The obtained crude product was washed with a mixed solvent of 600 ml of toluene and 1200 ml of hexane, and purified by silica gel column chromatography using a mixed solvent composed of ethyl acetate and toluene (volume ratio of ethyl acetate: toluene = 1: 4) as a developing solvent. As a result, 190 g of the product B was obtained. As a result of analysis by HPLC, the product B was found that the compound represented by the formula (m3) was 5%, the compound represented by the formula (m4) was 91%, the compound represented by the formula (m5) was 2%, 2% of non-assignable compounds were contained.
[0110]
Embedded image
Figure 0004292459
(M3)
[0111]
Embedded image
Figure 0004292459
(M4)
[0112]
Embedded image
Figure 0004292459
(M5)
[0113]
A mixture consisting of 100 g of 3,4-dihydroxybenzoic acid, 194 g of 6-chloro-1-hexanol, 82 g of sodium hydroxide, 10 g of potassium iodide, 450 ml of ethanol and 450 ml of water was heated at 80 ° C. for 32 hours with stirring. After cooling the resulting reaction solution to room temperature, 5000 ml of saturated brine was added to the reaction solution, and dilute hydrochloric acid was added until the aqueous layer of the reaction solution became weakly acidic. The reaction solution was extracted with 3000 ml of ethyl acetate. After the organic layer was washed with water, ethyl acetate was distilled off under reduced pressure to obtain 232 g of product C. As a result of analyzing product C by HPLC, 48% of the compound represented by the formula (m6) and 52% of an unidentified compound were contained.
[0114]
Embedded image
Figure 0004292459
(M6)
[0115]
A mixture of 232 g of product C, 300 g of acrylic acid, 50 g of p-toluenesulfonic acid, 10 g of hydroquinone, 1000 ml of toluene, 800 ml of cyclohexane and 200 ml of tetrahydrofuran was heated and stirred and refluxed for 4 hours while distilling off the water produced. It was. The reaction solution was cooled to room temperature, and extracted by adding 5000 ml of saturated brine and 3000 ml of ethyl acetate to the reaction solution. After the organic layer is washed with water, the organic solvent is distilled off under reduced pressure, and after washing with a mixture of 1000 ml of hexane and 200 ml of toluene, a mixed solvent composed of ethyl acetate and toluene (ethyl acetate: toluene = 1: 3 by volume ratio) is developed. Purification by silica gel column chromatography using a solvent gave 165 g of product D. As a result of analyzing product D by HPLC, 55% of the compound represented by the formula (m7), 7% of the compound represented by the formula (m8), 7% of the compound represented by the formula (m9), the formula 5% of the compound represented by (m10), 5% of the compound represented by formula (m11), 4% of the compound represented by formula (m12), and 17% of an unidentified compound were contained.
[0116]
Embedded image
Figure 0004292459
[0117]
Embedded image
Figure 0004292459
(M8)
[0118]
Embedded image
Figure 0004292459
(M9)
[0119]
Embedded image
Figure 0004292459
(M10)
[0120]
Embedded image
Figure 0004292459
(M11)
[0121]
Embedded image
Figure 0004292459
(M12)
[0122]
55 g of product B and 65 g of product D were dissolved in 1000 ml of methylene chloride. This was cooled to 5 ° C., 6 g of dimethylaminopyridine and 50 g of 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide (hereinafter abbreviated as WSC) were added and stirred. After 2 hours, the temperature was returned to room temperature and stirring was continued for another 36 hours. After completion of the reaction, the reaction solution was washed with 1N hydrochloric acid and then neutralized with water, and dried over anhydrous sodium sulfate in this organic phase. After drying, the solvent was removed under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography using a mixed solvent of hexane: ethyl acetate = 10: 1 as a mobile phase to obtain a composition (I). As a result of analysis by HPLC and GC / MS (MS represents mass spectrometry), the compound represented by the formula (m13) was 69%, the compound represented by the formula (m14) was 9%, and the formula (m15) 4% of the compound represented, 2% of the compound represented by the formula (m16), a compound represented by the formula (m17), a compound represented by the formula (m18), a compound represented by the formula (m19) 1% of the compound represented by formula (m20) and 1% of the compound represented by formula (m21), 2% of the compound represented by formula (m22), and 1% of the compound represented by formula (m23) , 8% of an unidentified compound was contained.
[0123]
Embedded image
Figure 0004292459
(M13)
[0124]
Embedded image
Figure 0004292459
(M14)
[0125]
Embedded image
Figure 0004292459
(M15)
[0126]
Embedded image
Figure 0004292459
(M16)
[0127]
Embedded image
Figure 0004292459
(M17)
[0128]
Embedded image
Figure 0004292459
(M18)
[0129]
Embedded image
Figure 0004292459
(M19)
[0130]
Embedded image
Figure 0004292459
(M20)
Embedded image
Figure 0004292459
(M21)
[0131]
Embedded image
Figure 0004292459
(M22)
[0132]
Embedded image
Figure 0004292459
(M23)
[0133]
Example 1
The crystal phase-smectic C phase transition temperature of the composition (I) was 75 ° C, and the smectic C phase-isotropic phase transition temperature was 80 ° C.
[0134]
(Example 2)
A composition (II) comprising 30 parts by mass of the composition (I), 35 parts by mass of the compound represented by the formula (B), and 35 parts by mass of the compound represented by the formula (C) was prepared. The composition (II) exhibited a nematic liquid crystal phase at 25 ° C. The CN transition temperature was −30 ° C. and the NI transition temperature was 46 ° C. The composition (II) was found to stably exhibit a nematic phase even when kept at 25 ° C. for 1 month or longer. Moreover, the viscosity in 25 degreeC was 128 mPa * s.
[0135]
Embedded image
Figure 0004292459
Formula (B)
[0136]
Embedded image
Figure 0004292459
Formula (C)
[0137]
(Example 3)
1 part by mass of a photopolymerization initiator “Irgacure 651” manufactured by Ciba Geigy Co. was added to 99 parts by mass of the composition (II) to obtain a composition for optical anisotropic bodies. At room temperature, the composition was injected into an anti-parallel alignment liquid crystal glass cell having a cell gap of 50 microns (a glass cell subjected to alignment treatment so that the liquid crystal was uniaxially aligned). It was confirmed that the orientation was stable and uniform uniaxial orientation was obtained within 2 minutes after the injection. Next, an extra-high pressure mercury lamp 750W manufactured by Mejiro Precision was used, and 14 W / m 2 UV rays (wavelength 366 nm) were irradiated to the glass cell for 200 seconds to obtain an optical anisotropic body. The obtained optical anisotropic body had a parallel light transmittance of 88.1% and a haze of 1.3%. The retardation value was 3.0 microns.
[0138]
(Comparative Example 1)
In the same manner as in Example 2, except that 30 parts by mass of the compound represented by the formula (A) having a CN transition temperature of 94 ° C. was used instead of 30 parts by mass of the composition (I) in Example 2. Thus, composition (III) was prepared. The CN transition temperature of the composition (III) was 41 ° C., and the NI transition temperature was 61 ° C. This composition showed a nematic phase due to supercooling at 25 ° C. during the cooling process, but phase separation occurred in about 2 hours.
[0139]
Embedded image
Figure 0004292459
Formula (A)
[0140]
(Comparative Example 2)
Example 1 except that 1 part by mass of “Irgacure 651” was added to 99 parts by mass of the composition (III) instead of the composition for optical anisotropic bodies in Example 3 to obtain an optically anisotropic composition. In the same manner as in No. 3, an optical anisotropic body was obtained. The obtained optical anisotropic body had a parallel light transmittance of 82.9% and a haze of 5.0%. The retardation value was 2.7 microns.
[0141]
【The invention's effect】
Since the polymerizable liquid crystal composition of the present invention does not have a cyano group at the molecular end, it is excellent in compatibility with a liquid crystal compound having a small dipole moment. Therefore, a polymerizable liquid crystal composition obtained by mixing a swallow tail polymerizable compound represented by the general formulas (1) and (2) with a liquid crystal compound having a small dipole moment and a different skeleton structure causes phase separation over a long period of time. Therefore, the composition of the polymerizable liquid crystal composition having excellent storage stability and a suitable CN transition temperature can be easily adjusted. In particular, when a polymerizable compound represented by the general formula (3) is mixed as a liquid crystal compound having a small dipole moment and a different skeleton structure, a polymerizable liquid crystal composition exhibiting a nematic phase at 25 ° C. and excellent in storage stability. Can be obtained.
When the liquid crystal molecules in the polymerizable liquid crystal composition are polymerized in an aligned state, an optical anisotropic body excellent in anisotropy and transparency can be obtained.

Claims (5)

一般式(1)で表される重合性化合物、及び一般式(2)で表される重合性化合物を含有することを特徴とする重合性液晶組成物。
Figure 0004292459
一般式(1)
Figure 0004292459
一般式(2)
(式中、A〜Gは六員環であり、各々独立してベンゼン環、シクロヘキサン環又はシクロヘキセン環を表し、Y〜Yは、各々独立して、単結合、−CHCH−、−CHO−、−OCH−、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−CHCH−、−CHCH−CH=CH−、−CH=CH−CO−O−及び−OCO−CH=CH−からなる群から選ばれる連結基を表わす。X〜Xは、各々独立して単結合、−O−、−CO−O−、又は−OCO−を表し、S〜Sは、各々独立してC2m−、又は−(C2m−O)−C2m−を表わし、mは1〜20の整数を表し、nは1〜10の整数を表し、L〜Lは、各々独立して水素原子又はメチル基を表す。Z及びZは、各々独立して、−OCO−CH−CH−Cl、−OCO−CH=CH、−OCO−C(CH)=CH、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClを表すが、Zが−OCO−CH−CH−Clの時、Zは−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHの時、Zは−OCO−CH−CH−Cl、−OCO−CHCHOH、−OH、−OCO−CHCH−OCO−CH=CH、−OCO−CHCH−OCO−C(CH)=CH、−CH=CH、−OCO−CH=CH、−OCO−C(CH)=CH、−CO−CH、又は−CHCHClである。Zは、Cl−又はCH−CO−O−を表す。)
A polymerizable liquid crystal composition comprising a polymerizable compound represented by the general formula (1) and a polymerizable compound represented by the general formula (2).
Figure 0004292459
General formula (1)
Figure 0004292459
General formula (2)
(Wherein, A to G are 6-membered rings, each independently represents a benzene ring, a cyclohexane ring or a cyclohexene ring, and Y 1 to Y 4 are each independently a single bond, —CH 2 CH 2 — , —CH 2 O—, —OCH 2 —, —CO—O—, —OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH═CH—CH 2 CH 2 —, —CH 2 CH 2 —CH═CH—, —CH═CH—CO—O— and — .X 1 to X 6 represent a linking group selected from the group consisting OCO-CH = CH- are each independently a single bond, -O -, - CO-O- , or -OCO- represents, S 1 to S 6 are each independently C m H 2m -, or - (C m H 2m -O) n -C m H 2m - Table M represents an integer of 1 to 20, n represents an integer of 1 to 10, L 1 to L 3 each independently represents a hydrogen atom or a methyl group, and Z 1 and Z 2 each independently represent to, -OCO-CH 2 -CH 2 -Cl , -OCO-CH = CH 2, -OCO-C (CH 3) = CH 2, -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO-CH = CH 2, -OCO-CH 2 CH 2 -OCO-C (CH 3) = CH 2, -CH = CH 2, -OCO-CH = CH 2, -OCO-C (CH 3 ) = CH 2 , —CO—CH 3 , or —CH 2 CH 2 Cl, but when Z 1 is —OCO—CH 2 —CH 2 —Cl, Z 2 is —OCO—CH═CH 2 or -OCO-C (CH 3) = a CH 2, Z 1 is -OCO-CH = CH 2 The --OCO-C when (CH 3) = CH 2, Z 2 is -OCO-CH 2 -CH 2 -Cl, -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO -CH = CH 2, -OCO-CH 2 CH 2 -OCO-C (CH 3) = CH 2, -CH = CH 2, -OCO-CH = CH 2, -OCO-C (CH 3) = CH 2 , —CO—CH 3 , or —CH 2 CH 2 Cl, and when Z 2 is —OCO—CH═CH 2 or —OCO—C (CH 3 ) ═CH 2 , Z 1 is —OCO—CH 2. -CH 2 -Cl, -OCO-CH 2 CH 2 OH, -OH, -OCO-CH 2 CH 2 -OCO-CH = CH 2, -OCO-CH 2 CH 2 -OCO-C (CH 3) = CH 2 , —CH═CH 2 , —OCO—CH═CH 2 , —OC O—C (CH 3 ) ═CH 2 , —CO—CH 3 , or —CH 2 CH 2 Cl. Z 3 represents Cl— or CH 3 —CO—O—. )
前記一般式(1)及び一般式(2)で表される化合物が、六員環A〜Gが全てベンゼン環を表し、Y及びYは単結合、−CO−O−、又は−OCO−で表される同一の連結鎖を表し、Y及びYは単結合、−CO−O−、又は−OCO−で表される同一の連結鎖を表す化合物である、請求項1に記載の重合性液晶組成物。In the compounds represented by the general formula (1) and the general formula (2), the six-membered rings A to G all represent a benzene ring, and Y 1 and Y 3 are a single bond, —CO—O—, or —OCO. - represents the same linking chain represented by, Y 2 and Y 4 is a single bond, -CO-O-, or a compound which represents the same linking chain represented by -OCO-, according to claim 1 Polymerizable liquid crystal composition. 前記一般式(1)で表される化合物が、六員環A、B及びDが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH−Clであり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHである化合物と、六員環A、B及びDが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OHである化合物と、六員環A、B及びDが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CHCHOHである化合物と、六員環A、B及びDが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CHCH−OCO−CH=CHである化合物と、六員環A、B及びDが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、Zが−OCO−CH=CH又は−OCO−C(CH)=CHであり、Zが−OCO−CH=CHである化合物であり、前記一般式(2)で表される化合物が、六員環E、F、Gが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、ZがCl−である化合物と、六員環E、F、Gが全てベンゼン環であり、Yが単結合であり、Yが−OCO−であり、ZがCH−CO−O−である化合物であり、前記に示す化合物七つを全て含む請求項1に記載の重合性液晶組成物。In the compound represented by the general formula (1), the six-membered rings A, B and D are all benzene rings, Y 1 is a single bond, Y 2 is —OCO—, and Z 1 is —OCO. A compound in which —CH 2 —Cl, Z 2 is —OCO—CH═CH 2 or —OCO—C (CH 3 ) ═CH 2 , and the six-membered rings A, B and D are all benzene rings, A compound in which Y 1 is a single bond, Y 2 is —OCO—, Z 1 is —OCO—CH═CH 2 or —OCO—C (CH 3 ) ═CH 2 , and Z 2 is —OH. And the six-membered rings A, B and D are all benzene rings, Y 1 is a single bond, Y 2 is —OCO—, and Z 1 is —OCO—CH═CH 2 or —OCO—C ( CH 3) = a CH 2, the compound Z 2 is -OCO-CH 2 CH 2 OH, six-membered rings a, B and D are all A benzene ring, Y 1 is a single bond, Y 2 is -OCO-, Z 1 is -OCO-CH = CH 2 or -OCO-C (CH 3) = a CH 2, Z 2 is A compound in which —OCO—CH 2 CH 2 —OCO—CH═CH 2 and the six-membered rings A, B and D are all benzene rings, Y 1 is a single bond, and Y 2 is —OCO—. Z 1 is —OCO—CH═CH 2 or —OCO—C (CH 3 ) ═CH 2 , and Z 2 is —OCO—CH═CH 2, which is represented by the general formula (2). A compound in which 6-membered rings E, F, and G are all benzene rings, Y 3 is a single bond, Y 4 is —OCO—, and Z 3 is Cl— E, F and G are all benzene rings, Y 3 is a single bond, Y 4 is —OCO—, and Z 3 is CH 3. The polymerizable liquid crystal composition according to claim 1, wherein the polymerizable liquid crystal composition is a compound that is —CO—O— and includes all seven compounds shown above. 一般式(3)で表される重合性化合物を含有する請求項1に記載の重合性液晶組成物。
Figure 0004292459
一般式(3)
(式中、Lは水素原子又はメチル基を表し、J〜Mは六員環であり、各々独立してベンゼン環、シクロヘキサン環又はシクロヘキセン環を表し、Y及びYは、各々独立して結合、−CHCH−、−CHO−、−OCH−、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CH−CHCH−、−CHCH−CH=CH−、−CH=CH−CO−O−及び−OCO−CH=CH−からなる群から選ばれる連結基を表わし、Yは、単結合、−O−、−CO−O−又は−OCO−を表し、Zは水素原子、ハロゲン原子、シアノ基、炭素数1〜20のアルキル基又は炭素数2〜20のアルケニル基を表し、bは0又は1の整数を表す。)
The polymerizable liquid crystal composition according to claim 1, comprising a polymerizable compound represented by the general formula (3).
Figure 0004292459
General formula (3)
(Wherein L 4 represents a hydrogen atom or a methyl group, J to M are 6-membered rings, each independently represents a benzene ring, a cyclohexane ring or a cyclohexene ring, and Y 5 and Y 6 are each independently binding Te, -CH 2 CH 2 -, - CH 2 O -, - OCH 2 -, - CO-O -, - OCO -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 -, - CH = CH-CH 2 CH 2 -, - CH 2 CH 2 -CH = CH -, - CH Represents a linking group selected from the group consisting of ═CH—CO—O— and —OCO—CH═CH—, Y 7 represents a single bond, —O—, —CO—O— or —OCO—; 4 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, or 2 to 20 carbon atoms. And b represents an integer of 0 or 1.)
請求項1に記載の重合性液晶組成物中の液晶分子を配向させた状態で重合させて得られる高分子量体を含有することを特徴とする光学異方体。An optically anisotropic body comprising a high molecular weight polymer obtained by polymerizing the polymerizable liquid crystal composition according to claim 1 in an aligned state.
JP2002355053A 2002-12-06 2002-12-06 Polymerizable liquid crystal composition and optical anisotropic body Expired - Fee Related JP4292459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355053A JP4292459B2 (en) 2002-12-06 2002-12-06 Polymerizable liquid crystal composition and optical anisotropic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355053A JP4292459B2 (en) 2002-12-06 2002-12-06 Polymerizable liquid crystal composition and optical anisotropic body

Publications (2)

Publication Number Publication Date
JP2004182949A JP2004182949A (en) 2004-07-02
JP4292459B2 true JP4292459B2 (en) 2009-07-08

Family

ID=32755861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355053A Expired - Fee Related JP4292459B2 (en) 2002-12-06 2002-12-06 Polymerizable liquid crystal composition and optical anisotropic body

Country Status (1)

Country Link
JP (1) JP4292459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323729A (en) * 2003-04-25 2004-11-18 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optically anisotropic material
CN102575167A (en) * 2009-11-18 2012-07-11 株式会社艾迪科 Liquid crystal composition comprising polymerizable compound, and liquid crystal display element using said liquid crystal composition

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461692B2 (en) * 2003-03-13 2010-05-12 Dic株式会社 Polymerizable liquid crystal composition and optical anisotropic body
US7727417B2 (en) 2007-08-24 2010-06-01 Chisso Corporation Optically isotropic liquid crystal medium and optical device
US7879413B2 (en) 2007-08-29 2011-02-01 Chisso Corporation Optically isotropic liquid crystal medium and optical device
JP5577566B2 (en) 2007-08-31 2014-08-27 Jnc株式会社 Liquid crystal composition and liquid crystal element
JP5544695B2 (en) 2007-11-20 2014-07-09 Jnc株式会社 Optically isotropic liquid crystal medium and optical element
EP2065362A1 (en) 2007-11-29 2009-06-03 Agfa Graphics N.V. Preparation method of copolymerizable photoinitiators
CN102007197B (en) 2008-05-15 2014-09-24 Jnc株式会社 Optically isotropic liquid crystalline medium, and optical element
EP2360229B1 (en) 2008-11-19 2016-08-31 JNC Corporation Optically isotropic liquid crystal medium and optical element
EP2433923B1 (en) 2009-05-19 2017-12-13 JNC Corporation Chlorobenzene derivative, optically isotropic liquid crystal medium, and optical element
JP5625461B2 (en) 2009-05-19 2014-11-19 Jnc株式会社 Chlorofluorobenzene compound, optically isotropic liquid crystal medium and optical element
KR102042001B1 (en) 2011-11-01 2019-11-07 제이엔씨 주식회사 Liquid crystal composition, mixture, polymer/liquid crystal composite material and optical device
EP2787058B1 (en) 2011-11-30 2016-07-27 JNC Corporation Optically isotropic liquid crystal medium and optical device
CN104854217B (en) 2012-12-17 2017-06-23 捷恩智株式会社 Liquid-crystal composition, mixture, composite, liquid crystal cell and chipal compounds
EP3730590A1 (en) * 2014-03-10 2020-10-28 Merck Patent GmbH Liquid crystal media with homeotropic alignment
JP6055569B1 (en) * 2016-05-18 2016-12-27 日本ゼオン株式会社 Polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device, and antireflection film
JP6090514B1 (en) * 2016-05-18 2017-03-08 日本ゼオン株式会社 Method for producing polymerizable compound
KR20190140401A (en) 2018-06-11 2019-12-19 제이엔씨 주식회사 Optically isotropic liquid crystal composition and optical switching device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323729A (en) * 2003-04-25 2004-11-18 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optically anisotropic material
JP4505709B2 (en) * 2003-04-25 2010-07-21 Dic株式会社 Polymerizable liquid crystal composition and optical anisotropic body
CN102575167A (en) * 2009-11-18 2012-07-11 株式会社艾迪科 Liquid crystal composition comprising polymerizable compound, and liquid crystal display element using said liquid crystal composition

Also Published As

Publication number Publication date
JP2004182949A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4292459B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP3963035B2 (en) Liquid crystalline (meth) acrylate compound and composition, and optical anisotropic body using the same
JP4175049B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4200195B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition containing the compound, and optical anisotropic body using the same
JP4006608B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP2002145830A (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the same and polymer of the composition
JP2007269640A (en) Polymerizable chiral compound
JP2007269639A (en) Polymerizable chiral compound
JP2005320317A (en) Photopolymerizable oxetane derivative and liquid crystal composition containing the same
JP5288156B2 (en) Polymerizable chiral compound
JP4924865B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition and polymer thereof
JP2011184417A (en) Polymerizable acetylene compound
JP4929546B2 (en) Polymerizable liquid crystal composition and optical anisotropic body using the same
JP5545516B2 (en) Polymerizable compound
JP2005002164A (en) Liquid crystal orientation accelerator, liquid crystal composition and optically anisotropic item
JP4461692B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4506232B2 (en) Polymerizable liquid crystal compound, liquid crystal composition containing the same, and polymers thereof
KR20100086922A (en) Polymerizable biphenyl compound
JP4208058B2 (en) Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound
JP2002220421A (en) Polymerizable composition exhibiting liquid crystalline phase and optically anisotropic body using the same
JP4474826B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
JP4505709B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP2003313250A (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4182452B2 (en) Liquid crystal composition and optical anisotropic body using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090312

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees