JP4290795B2 - Manufacturing method of polymer dispersion type liquid crystal display device - Google Patents

Manufacturing method of polymer dispersion type liquid crystal display device Download PDF

Info

Publication number
JP4290795B2
JP4290795B2 JP03829699A JP3829699A JP4290795B2 JP 4290795 B2 JP4290795 B2 JP 4290795B2 JP 03829699 A JP03829699 A JP 03829699A JP 3829699 A JP3829699 A JP 3829699A JP 4290795 B2 JP4290795 B2 JP 4290795B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
display
display device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03829699A
Other languages
Japanese (ja)
Other versions
JP2000241806A (en
Inventor
茂 千本松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP03829699A priority Critical patent/JP4290795B2/en
Publication of JP2000241806A publication Critical patent/JP2000241806A/en
Application granted granted Critical
Publication of JP4290795B2 publication Critical patent/JP4290795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置の製造方法のうち、高分子分散型液晶の表示装置の製造方法に関する。
【0002】
【従来技術】
液晶表示装置は薄型で消費電力が少ないなど多くの優れた特徴を有するため、色々な用途の機器の表示パネルとして多用されている。
液晶表示装置の表示方式には、一般的な液晶表示方式としてTN(ツイステッド・ネマチック)モードやSTN(スーパー・ツイストテッド・ネマチック)モードに代表されるような偏光板を1枚ないし2枚用いて液晶による複屈折や旋光性を利用した方式のものがある。TNモ−ドやSTNモ−ドの光の利用効率は、偏光板による光の吸収損失があるため理論的には50%以下となり、表示が暗くなってしまう。
【0003】
一方、相転移モ−ドおよび高分子分散モ−ドなどに代表されるような偏光板を使用せず液晶による光散乱性を利用した方式がある。これら光散乱方式は偏光板が不要なため、偏光板による光の吸収損失がなく、光を有効に利用できるため、明るい表示が可能となる。
近年、光散乱モードの中でも高分子分散型液晶パネルが、低電圧化や低ヒステリシス化などが可能であることから、注目を集めている。
【0004】
高分子分散型液晶パネルは、少なくとも一方が透明な電極を設けた一対の電極基板の間に、高分子の層を配置し、この高分子層の中に正の誘電異方性を有するネマチック液晶を小滴粒状または微小な連続相として分散させた構造(以下、高分子分散液晶層と称す)をしており、一般的には偏光板や配向膜が不要であるために、光の利用効率を80%以上にすることが可能であるという特徴を有している。
【0005】
従来の高分子分散型液晶の製造方法を以下に示す。
高分子分散型液晶層は、UV重合性高分子樹脂とTN液晶を適度の配合で混合分散させ、電極基板間に数μmの間隔で封入し紫外線を照射すると、高分子がネットワークを形成すると同時に配合されているTN液晶がポリマーネットワーク中に均一に分散されて、ポリマーとTN液晶のそれぞれの機能を合わせ持った性質を有するようになる。ポリマーネットワークとTN液晶の屈折率の差を利用して、入射光を散乱させる光散乱モード型の表示素子である。従来のTN−LCDで使用されていた偏向板を不要とするだけなく、配向膜も必要としないため光損失が極めて少ないことにより明るい表示が可能である。
【0006】
高分子分散型液晶パネルは、電圧無印加の状態(OFF状態)では光散乱作用により表示が乳白色の状態となり、電圧印加の状態(ON状態)では光散乱作用が無くなり表示が透明な状態となる。
【0007】
【発明が解決しようとする課題】
上述した従来の高分子分散型液晶の製造方法では、図3に示したように平面の高分子分散型液晶パネル22CにUVランプ21を用いてUV硬化していた。この方法で作製した高分子分散型液晶パネル22Cの平面時の電圧透過率特性を図7に示す。図7は、電圧ON時(Vsat1)の透過率は85%、電圧OFF時(0V)の透過率は5%でスタティック駆動を行った場合、コントラスト比は約17:1となり、極めて視認性の高い表示品質が得られることがわかる。したがって図5において観測者24は高分子分散型液晶パネル22Cの表示文字23Cを明確に視認できる。一方、図4に示すように透明電極基板に高分子フィルム(例えばポリカーボネートやポリエーテルスルホン)を用いて曲面表示パネルとして用いる場合の電圧−透過率特性を図6に示す。図6は、電圧ON時(Vsat2)の透過率は85%、電圧OFF時(0V)の透過率は60%で、スタティック駆動を行った場合、コントラスト比は約1.4:1となり極めて視認性が低下してしまう問題点があ有ることを示している。すなわち、図4の観測者24は液晶パネル22Cの表示文字23Bを視認することが困難であった。
【0008】
要するに、従来の製造方法で作製した高分子分散型液晶パネルで曲面表示を行う場合、曲面表示パネル方向に液晶分子の配向が起こり、電圧OFF時の散乱特性を著しく低下(透過率上昇)させるため、曲面表示が不可能であった。
【0009】
【課題を解決するための手段】
本発明は、高分子分散型液晶の製造方法のうち、紫外線照射して硬化させる工程において、パネルを曲面に保持した。この方法により、曲面パネルの配向を防止し、電圧OFF時の散乱特性を著しく向上し、曲面表示で極めてコントラストの高い表示品位を得ることができた。
【0010】
【発明の実施の形態】
以下、本発明の実施例を、図面を参照しながら説明する。
(実施例1)
図1は本実施例1の高分子分散型液晶表示装置のUV照射工程を示した図であり、図9は本実施例1の高分子分散型晶表示装置の断面構造図である。図9に示すように、液晶パネル22Aは、パタ−ニングされた透明電極12A、12Bを備えた一対の透明基板11A、11Bと、該透明基板11A、11Bとの間に狭持された光変調層13より構成されている。尚、セルギャップは10μmになるように前記液晶パネル10を作成した。液晶パネル22Aの背後(図9に於いて下側)に反射板50を配置した。
【0011】
透明基板11A、11Bとして、本実施例1では、高分子フィルムとして透明な厚さ200μmのポリカーボネートフィルムを用いた。尚、透明高分子フィルムとしてはポリエーテルスルホンやポリスルホンなどを用いてもかまわない。
透明電極12A、12Bとして、本実施例1では、スパッタリング法や真空蒸着法で形成されるIn2O3−SnO2膜(以下ITO膜と称す)からなる透明導電膜をホトリソグラフィーによってパターニングしたものを用いた。尚、透明電極12A、12Bには、ITO膜の他にSnO2膜を用いてももかまわない。
【0012】
光変調層13として、本実施例1では、高分子分散液晶層を用いた。高分子分散液晶層は、紫外線(UV)により架橋反応し重合するアクリレートモノマーなどの高分子樹脂と正の誘電異方性を有するネマチック液晶と紫外線硬化開始剤などを均一に混合溶解させた混合溶液を、空の液晶パネル22Aに注入し、UV照射により高分子樹脂のみ硬化し、正の誘電異方性を有するネマチック液晶を相分離して製作されたものである。UV照射の際に図1に示すように液晶パネル22Aを曲面状態に保持した。この時、高分子樹脂とネマチック液晶との配合量の割合が、高分子樹脂の割合が多い場合には、独立した粒子状の液晶小滴が形成される。一方、高分子樹脂の割合が少ない場合には、高分子樹脂は網の目状(ネットワーク状)の構造を形成し、液晶はこの高分子樹脂のネットワーク構造の中に連続相となって存在する。液晶小滴粒およびポリマーネットワーク孔径は、なるべく均一で、且つ平均粒径が0.5μm〜3.5μmの範囲であること望ましい。尚、この範囲外の平均粒径の場合は、光散乱状態が悪化しコントラストが上がらなくなる。好ましくは、平均粒径は0.8μm〜1.8μmの範囲が良い。高分子樹脂とネマチック液晶との配合量の割合は、8:2〜1:9である。尚、独立した液晶小滴粒構造よりもポリマーネットワークの液晶連続相構造の方が、低電圧化や低ヒステリシス化を実現し易い。従って、好ましくは、4:6〜1:9の範囲が望ましい。
【0013】
ここで本実施例1にて作製した高分子分散型液晶表示パネルの曲面表示の電圧−透過率特性を図7に示す。図7からスタティック駆動を行った場合、電圧ON時(Vsat3)の透過率は85%、電圧OFF時(0V)の透過率は5%で、コントラスト比は約17:1となり、曲面表示においても極めて視認性の高い表示品質が得られた。尚、本実施例1は高分子分散型液晶パネルを反射型として用いたため反射板50を配置したが、透過型として反射板50を用いない場合も全く同様の効果が得られる。
【0014】
【発明の効果】
以上説明したように本発明によれば、高分子分散型液晶を紫外線硬化させる場合に、パネルを曲面に保持することにより、高分子分散型液晶の曲面表示においてコントラストの高い表示品質がえられた。
【図面の簡単な説明】
【図1】本発明の実施例1のUV照射の説明図。
【図2】本発明の実施例1の曲面表示パネルの表示状態の説明図。
【図3】従来のUV照射の説明図。
【図4】従来の曲面表示パネルの表示状態の説明図。
【図5】従来の平面表示パネルの表示状態の説明図。
【図6】従来の曲面表示パネルの電圧−透過率特性。
【図7】本発明の実施例1の曲面表示パネルの電圧−透過率特性。
【図8】従来の平面表示パネルの電圧−透過率特性。
【図9】本発明の実施例1の高分子分散型液晶表示装置の断面図。
【符号の説明】
11A、11B・・・・・・・・・・・・透明基板
12A、12B・・・・・・・・・・・・透明電極
13・・・・・・・・・・・・・・・・・光変調層
50・・・・・・・・・・・・・・・・・反射板
21・・・・・・・・・・・・・・・・・UVランプ
22A、22B、22C・・・・・・・・液晶パネル
23A、23B、23C・・・・・・・・表示文字
24・・・・・・・・・・・・・・・・・観測者
Vsat1、Vsat2、Vsat3・・ON電圧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a polymer-dispersed liquid crystal display device among methods for manufacturing a liquid crystal display device.
[0002]
[Prior art]
Since liquid crystal display devices have many excellent features such as thinness and low power consumption, they are widely used as display panels for devices for various purposes.
As a display method of the liquid crystal display device, one or two polarizing plates represented by a TN (twisted nematic) mode or STN (super twisted nematic) mode are used as a general liquid crystal display method. Some systems use birefringence or optical rotation using liquid crystals. The light utilization efficiency of the TN mode or STN mode is theoretically 50% or less because of the light absorption loss by the polarizing plate, and the display becomes dark.
[0003]
On the other hand, there is a method using light scattering by liquid crystal without using a polarizing plate as typified by a phase transition mode and a polymer dispersion mode. Since these light scattering methods do not require a polarizing plate, there is no light absorption loss by the polarizing plate, and light can be used effectively, so that bright display is possible.
In recent years, polymer dispersion type liquid crystal panels are attracting attention among light scattering modes because they can reduce voltage and hysteresis.
[0004]
A polymer-dispersed liquid crystal panel is a nematic liquid crystal in which a polymer layer is disposed between a pair of electrode substrates on which at least one of the electrodes is provided with a transparent electrode, and the polymer layer has positive dielectric anisotropy. Is used in the form of small droplets or a fine continuous phase (hereinafter referred to as a polymer-dispersed liquid crystal layer). Generally, no polarizing plate or alignment film is required. Has a feature that it can be made 80% or more.
[0005]
A method for producing a conventional polymer-dispersed liquid crystal will be described below.
The polymer-dispersed liquid crystal layer mixes and disperses UV-polymerizable polymer resin and TN liquid crystal with an appropriate blend, encloses them at an interval of several μm between electrode substrates, and irradiates ultraviolet rays. The blended TN liquid crystal is uniformly dispersed in the polymer network, and has a property that combines the functions of the polymer and the TN liquid crystal. This is a light scattering mode type display element that scatters incident light by utilizing a difference in refractive index between a polymer network and a TN liquid crystal. Not only does the deflecting plate used in the conventional TN-LCD unnecessary, but also an alignment film is not required, so that a bright display is possible due to very little light loss.
[0006]
In the polymer dispersion type liquid crystal panel, the display is milky white due to the light scattering action when no voltage is applied (OFF state), and the light scattering action is eliminated and the display is transparent when the voltage is applied (ON state). .
[0007]
[Problems to be solved by the invention]
In the conventional method for producing a polymer dispersed liquid crystal described above, UV curing is performed using a UV lamp 21 on a planar polymer dispersed liquid crystal panel 22C as shown in FIG. FIG. 7 shows the voltage transmittance characteristics of the polymer dispersed liquid crystal panel 22C produced by this method when it is flat. FIG. 7 shows that when the voltage is ON (Vsat1) and the transmittance is 85%, and when the voltage is OFF (0V) and the transmittance is 5%, the contrast ratio is about 17: 1 when the static drive is performed. It can be seen that high display quality can be obtained. Therefore, in FIG. 5, the observer 24 can clearly see the display characters 23C of the polymer dispersed liquid crystal panel 22C. On the other hand, as shown in FIG. 4, the voltage-transmittance characteristics when a polymer film (for example, polycarbonate or polyethersulfone) is used for the transparent electrode substrate as a curved display panel are shown in FIG. FIG. 6 shows that the transmittance is 85% when the voltage is ON (Vsat2), the transmittance is 60% when the voltage is OFF (0V), and the contrast ratio is about 1.4: 1 when static driving is performed. This indicates that there is a problem that the performance decreases. That is, it is difficult for the observer 24 in FIG. 4 to visually recognize the display characters 23B on the liquid crystal panel 22C.
[0008]
In short, when curved display is performed with a polymer-dispersed liquid crystal panel produced by a conventional manufacturing method, the orientation of liquid crystal molecules occurs in the direction of the curved display panel, and the scattering characteristics when the voltage is OFF are significantly reduced (transmittance increased). Curved surface display was impossible.
[0009]
[Means for Solving the Problems]
In the method for producing a polymer dispersed liquid crystal according to the present invention, the panel is held on a curved surface in the step of curing by ultraviolet irradiation. By this method, the orientation of the curved panel was prevented, the scattering characteristics when the voltage was turned off were remarkably improved, and a display quality with extremely high contrast was obtained with a curved display.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
FIG. 1 is a view showing a UV irradiation process of the polymer dispersion type liquid crystal display device of the first embodiment, and FIG. 9 is a cross-sectional structure diagram of the polymer dispersion type crystal display device of the first embodiment. As shown in FIG. 9, the liquid crystal panel 22A includes a pair of transparent substrates 11A and 11B having patterned transparent electrodes 12A and 12B, and light modulation sandwiched between the transparent substrates 11A and 11B. It is composed of the layer 13. The liquid crystal panel 10 was prepared so that the cell gap was 10 μm. A reflector 50 is disposed behind the liquid crystal panel 22A (lower side in FIG. 9).
[0011]
As the transparent substrates 11A and 11B, in Example 1, a transparent polycarbonate film having a thickness of 200 μm was used as the polymer film. In addition, as the transparent polymer film, polyethersulfone, polysulfone, or the like may be used.
In the first embodiment, the transparent electrodes 12A and 12B are obtained by patterning a transparent conductive film made of an In2O3-SnO2 film (hereinafter referred to as an ITO film) formed by a sputtering method or a vacuum evaporation method by photolithography. In addition, SnO2 film | membrane may be used for transparent electrode 12A, 12B other than an ITO film | membrane.
[0012]
In Example 1, a polymer dispersed liquid crystal layer was used as the light modulation layer 13. The polymer-dispersed liquid crystal layer is a mixed solution in which a polymer resin such as an acrylate monomer that crosslinks and polymerizes by ultraviolet rays (UV), a nematic liquid crystal having positive dielectric anisotropy, and an ultraviolet curing initiator are uniformly mixed and dissolved Is injected into an empty liquid crystal panel 22A, and only the polymer resin is cured by UV irradiation, and nematic liquid crystal having positive dielectric anisotropy is phase-separated and manufactured. During the UV irradiation, the liquid crystal panel 22A was held in a curved surface state as shown in FIG. At this time, when the proportion of the polymer resin and the nematic liquid crystal is high, the polymer resin has a large proportion, so that independent particulate liquid crystal droplets are formed. On the other hand, when the ratio of the polymer resin is small, the polymer resin forms a network structure, and the liquid crystal exists as a continuous phase in the network structure of the polymer resin. . The liquid crystal droplets and the polymer network pore size are desirably as uniform as possible and have an average particle size in the range of 0.5 μm to 3.5 μm. When the average particle size is outside this range, the light scattering state deteriorates and the contrast cannot be increased. Preferably, the average particle size is in the range of 0.8 μm to 1.8 μm. The ratio of the blend amount of the polymer resin and the nematic liquid crystal is 8: 2 to 1: 9. In addition, the liquid crystal continuous phase structure of the polymer network is more likely to realize lower voltage and lower hysteresis than the independent liquid crystal droplet structure. Therefore, the range of 4: 6 to 1: 9 is desirable.
[0013]
Here, the voltage-transmittance characteristics of the curved surface display of the polymer-dispersed liquid crystal display panel manufactured in Example 1 are shown in FIG. When static driving is performed from FIG. 7, the transmittance when the voltage is ON (Vsat3) is 85%, the transmittance when the voltage is OFF (0V) is 5%, and the contrast ratio is about 17: 1. Display quality with very high visibility was obtained. In the first embodiment, since the polymer dispersion type liquid crystal panel is used as the reflection type, the reflection plate 50 is disposed. However, the same effect can be obtained even when the reflection plate 50 is not used as the transmission type.
[0014]
【The invention's effect】
As described above, according to the present invention, when polymer-dispersed liquid crystal is cured with ultraviolet rays, a high-contrast display quality can be obtained in curved display of polymer-dispersed liquid crystal by holding the panel in a curved surface. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of UV irradiation according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a display state of the curved display panel according to the first embodiment of the invention.
FIG. 3 is an explanatory diagram of conventional UV irradiation.
FIG. 4 is an explanatory diagram of a display state of a conventional curved display panel.
FIG. 5 is an explanatory diagram of a display state of a conventional flat display panel.
FIG. 6 shows voltage-transmittance characteristics of a conventional curved display panel.
FIG. 7 shows voltage-transmittance characteristics of the curved display panel of Example 1 of the present invention.
FIG. 8 shows voltage-transmittance characteristics of a conventional flat display panel.
FIG. 9 is a cross-sectional view of a polymer dispersion type liquid crystal display device of Example 1 of the present invention.
[Explanation of symbols]
11A, 11B ... Transparent substrate 12A, 12B ... Transparent electrode 13 ...・ ・ Light modulation layer 50 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Reflector 21 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ UV lamps 22A, 22B, 22C・ ・ ・ ・ ・ ・ ・ ・ Liquid crystal panels 23A, 23B, 23C ・ ・ ・ ・ ・ ・ ・ ・ Display character 24 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Observers Vsat1, Vsat2, Vsat3 ..ON voltage

Claims (1)

高分子フィルムからなる平板状の基板に透明電極を形成する工程と、
高分子フィルムからなる平板状の対向基板に対向電極を形成する工程と、
前記基板と前記対向基板を前記透明電極と前記対向電極が向き合うように対向させて形成した間隙に、紫外線硬化型の高分子樹脂と正の誘電異方性を有するネマチック液晶が4:6〜1:9の割合で配合された混合溶液を充填し、平板状の表示パネルを作製する工程と、
前記平板状の表示パネルを曲面状に保持した状態で紫外線を照射することにより、前記高分子樹脂をネットワーク構造化させ、高分子分散液晶層を形成する工程を備えるとともに、
前記ネットワークの孔径の平均が0.5μm〜3.5μmの範囲にあることを特徴とする曲面表示が可能な高分子分散型液晶表示装置の製造方法。
Forming a transparent electrode on a flat substrate made of a polymer film;
Forming a counter electrode on a flat counter substrate made of a polymer film;
An ultraviolet curable polymer resin and nematic liquid crystal having positive dielectric anisotropy are formed in a gap formed by facing the substrate and the counter substrate so that the transparent electrode and the counter electrode face each other. Filling the mixed solution blended at a ratio of 9 to produce a flat display panel;
By irradiating ultraviolet rays in a state where the flat display panel is held in a curved shape, the polymer resin is formed into a network structure, and a step of forming a polymer-dispersed liquid crystal layer is provided.
A method for producing a polymer-dispersed liquid crystal display device capable of curved display, wherein the average pore diameter of the network is in the range of 0.5 μm to 3.5 μm .
JP03829699A 1999-02-17 1999-02-17 Manufacturing method of polymer dispersion type liquid crystal display device Expired - Lifetime JP4290795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03829699A JP4290795B2 (en) 1999-02-17 1999-02-17 Manufacturing method of polymer dispersion type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03829699A JP4290795B2 (en) 1999-02-17 1999-02-17 Manufacturing method of polymer dispersion type liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2000241806A JP2000241806A (en) 2000-09-08
JP4290795B2 true JP4290795B2 (en) 2009-07-08

Family

ID=12521358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03829699A Expired - Lifetime JP4290795B2 (en) 1999-02-17 1999-02-17 Manufacturing method of polymer dispersion type liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4290795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799015A (en) * 2012-09-05 2012-11-28 河北工业大学 Trans-form piezooptical effect dimming glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799015A (en) * 2012-09-05 2012-11-28 河北工业大学 Trans-form piezooptical effect dimming glass

Also Published As

Publication number Publication date
JP2000241806A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
EP0488116B1 (en) Liquid crystal element with polymer dispersed in the liquid crystal and method of fabricating the same
US5400156A (en) Liquid crystal electro-optical device wherein the scattering efficiency is improved in increasing the frequency of contact between the resin and the droplet
US20020054251A1 (en) Liquid crystal device
US6215535B1 (en) Light-modulation element and production method thereof
JPH11142831A (en) High polymer dispersion type liquid crystal display device
JP3072513B2 (en) Polymer dispersed liquid crystal display panel
KR20170072270A (en) Polymer containing scattering type vertically aligned liquid crystal device
JPH08313923A (en) Liquid crystal display element
JP2000321562A (en) Liquid crystal optical device having reverse mode optical switching function and its production
US6620466B2 (en) Display device and an electro-optical device using a colloidal liquid crystal composite
US7499124B2 (en) Polymer dispersed liquid crystal device conditioned with a predetermined anchoring energy, a predetermined polymer concentration by weight percent and a predetermined cell gap to enhance phase separation and to make smaller and more uniform liquid crystal droplets
JP4220748B2 (en) Liquid crystal display element, method for manufacturing liquid crystal display element, and liquid crystal display device
JP4290795B2 (en) Manufacturing method of polymer dispersion type liquid crystal display device
JPH06324310A (en) Liquid crystal display element and optical system
JP4832027B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP2778297B2 (en) Reflective liquid crystal display device and driving method thereof
JPH0534730A (en) Liquid crystal display device
JP4399212B2 (en) Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JPH11237618A (en) Liquid crystal display element
JPH07120758A (en) High-molecular dispersion type liquid crystal display device
JPH06118398A (en) Liquid crystal electrooptical device
KR100321253B1 (en) Transmission type polymer-dispersed liquid crystal display
JPH075444A (en) Display element and its production
JPH05341268A (en) Liquid crystal electrooptical device and its production
JP2775042B2 (en) Liquid crystal electro-optical device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term