JP4290295B2 - Double-side polishing template and double-side polishing method using the same - Google Patents

Double-side polishing template and double-side polishing method using the same Download PDF

Info

Publication number
JP4290295B2
JP4290295B2 JP34898799A JP34898799A JP4290295B2 JP 4290295 B2 JP4290295 B2 JP 4290295B2 JP 34898799 A JP34898799 A JP 34898799A JP 34898799 A JP34898799 A JP 34898799A JP 4290295 B2 JP4290295 B2 JP 4290295B2
Authority
JP
Japan
Prior art keywords
polishing
template
double
semiconductor wafer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34898799A
Other languages
Japanese (ja)
Other versions
JP2001162521A (en
Inventor
宏道 磯貝
勝義 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP34898799A priority Critical patent/JP4290295B2/en
Publication of JP2001162521A publication Critical patent/JP2001162521A/en
Application granted granted Critical
Publication of JP4290295B2 publication Critical patent/JP4290295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は両面研磨用テンプレートおよびこれを用いた両面研磨方法に係わり、特に被研磨物を高平坦度に研磨できる両面研磨用テンプレートおよびこれを用いた両面研磨方法に関する。
【0002】
【従来の技術】
半導体ウェーハを製造するには、多結晶シリコンから例えばチョクラルスキー法により単結晶の半導体インゴットを作り、このインゴットをマルチワイヤソーなどにより所定の厚さにスライシングし、半導体ウェーハを製造する。
【0003】
この半導体ウェーハの表面に存在する凹凸のソーマークを除去して平滑にし、加工歪みの深さの均一化、ウェーハ内およびウェーハ間の厚さを均一化するためにアルミナ砥粒等を用いたラッピングおよび研磨剤を用いた鏡面研磨工程で平滑で無歪みの鏡面に加工される。
【0004】
従来の鏡面研磨工程は、図9に示すような両面研磨装置31を用い、研磨剤を上定盤32、下定盤33に各々設けられた上研磨布34、下研磨布35間に流し込み、この上研磨布34、下研磨布35間に配置されたテンプレート36に装填された半導体ウェーハW1を加圧下で回転、摺り合わせにより半導体ウェーハW1の両面を化学的、機械的に研磨し、加工歪層、汚れを除去し半導体ウェーハW1を鏡面状に研磨するものである。
【0005】
従来のテンプレート36は、テンプレート本体37とこのテンプレート本体37に設けられた収納孔38とからなり、テンプレート本体37は単層、円板形状、非弾性体からなるガラスエポキシ樹脂製で、その厚さtは、収納孔38に収納される半導体ウェーハWの厚さtよりも薄い。
【0006】
従って、上記のようにして半導体ウェーハW1をテンプレート36に装填し、上研磨布34、下研磨布35間で加圧研磨すると、図10(a)に示すように、テンプレート本体37の厚さtpが半導体ウェーハW1の厚さtwよりも薄いで、半導体ウェーハW1の一部がテンプレート本体37から突出するため、上研磨布34、下研磨布35を押圧して変形させるため、図10(b)に示すように、半導体ウェーハW1の外周部W1oにかかる加工圧力は中央部W1cに比べて大きくなるため、研磨加工後の半導体ウェーハW1は、外周部の厚さが中央部の厚さに比べて薄くなり、平坦度の低下を招いていた。
【0007】
半導体ウェーハの外周部に生じる面だれを防止する半導体ウェーハの研磨方法として特開平9−234667号公報に開示された研磨方法があり、この開示の研磨方法は、研磨ブロックを定盤とバッキングパッドとテンプレートとで構成し、バッキングパッドとして研磨クロスよりその圧縮率が大きいものを使用する半導体ウェーハの研磨方法である。
【0008】
この研磨方法の問題点として、開示の研磨方法は、上定盤にバッキングパッドを取り付け、下定盤に研磨布を設けた片面研磨方法であり、より平坦度に優れ、生産性のよい両面研磨方法ではない点が挙げられる。
【0009】
【発明が解決しようとする課題】
そこで、研磨された半導体ウェーハの外周部の厚さが、中央部の厚さに比べて薄くならず、高平坦度の半導体ウェーハが製造できる両面研磨用テンプレートおよびこれを用いた両面研磨方法が要望されていた。
【0010】
本発明は上述した事情を考慮してなされたもので、研磨された半導体ウェーハの外周部の厚さが、中央部の厚さに比べて薄くならず、高平坦度の半導体ウェーハが製造できる両面研磨用テンプレートおよびこれを用いた両面研磨方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述した目的を達成するためになされた本願請求項1の発明は、弾性体と、この弾性体の両面に設けられた円板形状の2枚の非弾性体とからなるテンプレート本体を有しかつ、被研磨物が装填される収納孔が設けられ、前記テンプレート本体は、非加圧状態では厚さが研磨前の平板形状の被研磨物の厚さよりも厚く、加圧状態では厚さが前記収納孔に収納された被研磨物の厚さと同等であることを特徴とする両面研磨用テンプレートであることを要旨としている。
【0012】
本願請求項2の発明では、上記弾性体は、非弾性体と同一の円板形状であることを特徴とする請求項1に記載の両面研磨用テンプレートであることを要旨としている。
【0014】
本願請求項の発明では、上記被研磨物は、半導体ウェーハであることを特徴とする請求項1または2に記載の両面研磨用テンプレートであることを要旨としている。
【0015】
本願請求項の発明では、円板形状を有し圧縮自在に形成され、非研磨時には研磨される平板形状の被研磨物より厚い厚さを有する両面研磨用テンプレートに対して、被研磨物の装填と上下研磨布間への配置をした後、この研磨布により両面研磨用テンプレートを被研磨物と同等の厚さに圧縮しながら、研磨布を回転させ、所定量研磨することを特徴とする両面研磨方法であることを要旨としている。
【0016】
本願請求項の発明では、上記被研磨物は、半導体ウェーハであることを特徴とする請求項に記載の両面研磨方法であることを要旨としている。
【0017】
【発明の実施の形態】
以下、本発明に係わる両面研磨用テンプレートおよびこれを用いた両面研磨方法の実施の形態について添付図面に基づき説明する。
【0018】
図1は本発明に係わるテンプレートを一部切欠して示す斜視図である。
【0019】
このテンプレート1は、円板形状の弾性体2と、この弾性体2と同一の大きさをなし、弾性体2の両面に設けられた円板形状の2枚の非弾性体3a、3bとで3層構造に形成されたテンプレート本体4に複数個、例えば3個の被研磨物用の収納孔5を有している。テンプレート本体4は厚さTを有し、非研磨(不使用)時研磨される平板形状の被研磨物、例えば半導体ウェーハWの研磨前の厚さTW1よりも厚く形成されている。
【0020】
弾性体2は、平板形状であることが好ましく、複数個から構成されていても良い。材質としては、発泡ウレタン、SUSあるいは研磨布と同じ材質であることが好ましく、弾性体2の厚さは研磨取代の範囲で弾性変形する程度が好ましいが、この弾性体2の両面に設けられる非弾性体3a、3bの厚さの関係でそれ以下の厚さであってもよい。
【0021】
非弾性体3a、3bは、一般にテンプレートの部材として用いられているガラスエポキシ樹脂、SUSのような剛性を有し、非弾性部材で形成され、その2枚の非弾性体3a、3bの厚さ(2枚の和)は研磨半導体ウェーハの厚さと、弾性体2が弾性領域内で圧縮されたときの最も薄くなるときの厚さとの差であるのが好ましい。
【0022】
テンプレート本体4は、弾性体2および非弾性体3a、3bを所定の形状に加工した後に貼り合せるか、貼り合せた後に所定の形状に切断するかにより形成されており、弾性体2は非弾性体3a、3bと同一の円板形状であるので、テンプレートは全体に亘って均一な弾性を有し、確実に研磨布を均一な平面状態にすることができる。
【0023】
また、テンプレート本体4の外周部には全周に亘り研磨装置に設けられた駆動歯車と内歯車に噛合する歯部6が形成されている。
【0024】
なお、上記テンプレート1は、弾性体2と非弾性体3a、3bとを全面に亘って接触するようにして形成されているが、図2に示すように、テンプレート7は、弾性体8を非弾性体9a、9bに形成された収納孔10の周囲を囲繞するように収納孔10の周囲のみに設けたものであってもよい。この場合には、必要に応じてテンプレートの圧縮状態を変えることができ、応用範囲の広いテンプレートを得ることができる。
【0025】
次に本発明に係わるテンプレートを用いた半導体ウェーハの両面研磨方法について説明する。
【0026】
はじめに半導体ウェーハの両面研磨に用いられる両面研磨装置について説明する。
【0027】
図3に示すように、両面研磨装置11は、テンプレート1に装填された半導体ウェーハWが載置される下研磨布12と、この下研磨布12が取り付けられる下定盤13を有し、この下定盤13は中央に円形の開口部が形成された円盤体で、その下面にはこれを連続して下方に延びる肉厚円筒状の支柱14が設けられている。この支柱14はこの両面研磨装置11の本体フレーム(図示せず)に固定されている。
【0028】
また、支柱14には回転軸15が挿入され、さらに、この回転軸15の上端部には、駆動歯車16が下定盤13の上面と略同一水平位置になるように設けられている。そして、この回転軸15は、その下方で駆動装置(図示せず)に連結され、回転自在になっている。さらに、下定盤13の外側には、この下定盤13を環状に被う薄肉円筒状の外側構体17が、駆動歯車16と共通軸線を有するようにして設けられている。
【0029】
この外側構体17はその上端内縁に内周フランジ18を有し、この内周フランジ18の内周面に沿い駆動歯車16に対向した内歯車19が形成されている。
【0030】
駆動歯車16と内歯車19との間に複数枚配置され、その外周に形成された歯部6は駆動歯車16および内歯車19にそれぞれ噛合されている。そして、この噛合により、テンプレート1はそれぞれ駆動歯車16および内歯車19に対して遊星歯車として動作し、回転軸15の回転駆動により、テンプレート1は自転しながら公転するようになっている。
【0031】
また、半導体ウェーハWの上面には、上定盤20に取り付けられた上研磨布21が摺接自在となるように設けられている。この上定盤20はその中央に下定盤13の開口部と同形の開口部を有し、その外径が下定盤13と略等しい肉厚円盤体であり、駆動装置(図示せず)に連結されることにより、上定盤20は、駆動歯車16の軸線と同じくして回転されるものである。
【0032】
上記のような両面研磨装置11を用いて半導体ウェーハWを両面研磨するには、最初に図1および図4に示すように、テンプレート1の各収納孔5に半導体ウェーハWを収納して、半導体ウェーハWをテンプレート1に装填する。
【0033】
しかる後、さらに半導体ウェーハWが装填されたテンプレート1を図3に示すような両面研磨装置11に取り付ける。または、テンプレート1を両面研磨装置11に取り付けた後、テンプレート1の各収納孔5に半導体ウェーハを収納してもよい。
【0034】
このテンプレート1の両面研磨装置11の取り付けは、テンプレート1を下研磨布12上に載置して、上部より上研磨布21を半導体ウェーハWの上面に当接するように設置する。このとき、図4に示すように、テンプレート本体4は、その厚さTp1が半導体ウェーハWの研磨前の厚さTW1よりも厚く形成されているので、非弾性体3aと上研磨布21は接触するが、半導体ウェーハWと上研磨布21は接触せず、半導体ウェーハWと上研磨布21間には間隙gが形成される。
【0035】
次に、図3に示すように、研磨剤を半導体ウェーハWの上下表面に注入しながら駆動歯車16を図中矢印方向に回転させ、テンプレート1を駆動歯車16と反対方向に回転させる。この回転により、半導体ウェーハWは下研磨布12上で遊星軌道を描きながら、その下表面が下研磨布12の上面に擦られて研磨される。さらに、上定盤20を駆動歯車16と逆方向に回転させることにより、半導体ウェーハWの上表面が上研磨布21の下面に擦られて研磨される。
【0036】
この研磨工程中においては、図5に示すように、上定盤20およびこの上定盤20の設けられた上研磨布21が降下し、テンプレート1およびこのテンプレート1に装填された半導体ウェーハWは、上研磨布21および下研磨布12間で押圧される。テンプレート1は弾性体2が圧縮されるので、テンプレート1全体の厚みTP1が減少して厚みはTP2となり、研磨工程中、テンプレート1厚みTP2は、常に研磨される半導体ウェーハWの研磨中の厚さTW2と同じ厚さになる。
【0037】
従って、半導体ウェーハWは、その両面が全面(全域)に亘って均一状態で上研磨布21および下研磨布12に当接する。
【0038】
さらに、図6(a)に示すように、研磨工程中、半導体ウェーハWは上研磨布21、下研磨布12により、両面から全面均一に押圧されており、図6(b)に示すように、上研磨布21、下研磨布12は、半導体ウェーハWに均一の加工圧力をかける。このため、研磨される半導体ウェーハWには、従来のように半導体ウェーハの外周部が中央部に比べて多く研磨され厚さが薄くなり、半導体ウェーハ全体の平坦度が低下することもなく、全体が高平坦度の半導体ウェーハを製造することができる。
【0039】
なお、半導体ウェーハの加工に用いられる本発明に係わるテンプレートを研磨に用いた例で説明したが、本発明に係わるテンプレートをラッピングに用いることも可能である。
【0040】
このラッピングは上述研磨に用いたと同様に半導体ウェーハが装填されたテンプレートを平行に保ち、上ラップ定盤、下ラップ定盤の間に置き、上ラップ定盤、下ラップ定盤と半導体ウェーハに流し込み加圧下で回転、摺り合わせにより半導体ウェーハ両面をラッピングする。この場合にも、上述研磨に用いたと同様に高平坦度の半導体ウェーハを製造することができる。
【0041】
【実施例】
図1に示すような本発明に係わるテンプレート、および図3に示すような研磨装置を用いて、直径8インチのシリコンウェーハを研磨し、研磨工程中の加工圧力と研磨後のシリコンウェーハの厚さを測定し、図7および図8に示すような結果を得た。
【0042】
(結果)
▲1▼ 図7に示すように、実施例はシリコンウェーハの全面に亘り、均一に加工圧力がかかっていることがわかった。これに対して、従来例は外周部に大きな加工圧力がかかっていることがわかった。
【0043】
▲2▼ 図8に示すように、実施例はシリコンウェーハの全面に亘り、均一な厚さを有していることがわかった。これに対して、従来例は外周部が中央部に比べて薄いことがわかった。
【0044】
【発明の効果】
本発明に係わる両面研磨用テンプレートおよびこれを用いた両面研磨方法によれば、研磨された半導体ウェーハの外周部の厚さが、中央部の厚さに比べて薄くならず、高平坦度の半導体ウェーハが製造できる両面研磨用テンプレートおよびこれを用いた両面研磨方法を提供することができる。
【0045】
すなわち、弾性体と、この弾性体の両面に設けられた2枚の平板形状の非弾性体とからなるテンプレート本体を有し、このテンプレート本体は、その厚さが非研磨時には研磨される平板形状の被研磨物の厚さよりも厚く、研磨時には研磨中の被研磨物と同等の厚さになり、かつ被研磨物が装填される収納孔を有する両面研磨用テンプレートであるので、研磨される半導体ウェーハには、従来のように半導体ウェーハの外周部が中央部に比べて多く研磨され厚さが薄くなり、半導体ウェーハ全体の平坦度が低下することもなく、全体が高平坦度の半導体ウェーハを製造することができる。
【0046】
また、弾性体は、非弾性体と同一の円板形状であるので、テンプレート全体に亘って均一な弾性を有し、確実に研磨布を均一な平面状態にすることができ、半導体ウェーハを高平坦に研磨することができる。
【0047】
また、弾性体は、収納孔を囲繞するように収納孔の周囲にのみ設けたので、必要に応じてテンプレートの圧縮状態を変えることができ、応用範囲の広いテンプレートを提供することができる。
【0048】
また、被研磨物は、半導体ウェーハであるので、高平坦度の半導体ウェーハを製造することができる。
【0049】
また、円板形状を有し圧縮自在に形成され、非研磨時には研磨される平板形状の被研磨物より厚い厚さを有する両面研磨用テンプレートに対し、被研磨物の装填と上下研磨布間への配置をした後、この研磨布により両面研磨用テンプレートを被研磨物と同等の厚さに圧縮しながら、研磨布を回転させ、所定量研磨する両面研磨方法であるので、研磨される半導体ウェーハには、従来のように半導体ウェーハの外周部が中央部に比べて多く研磨され厚さが薄くなり、半導体ウェーハ全体の平坦度が低下することもなく、全体が高平坦度の半導体ウェーハを製造することができる。
【図面の簡単な説明】
【図1】本発明に係わるテンプレートを一部切欠して示す斜視図。
【図2】本発明に係わるテンプレートの他に実施形態の断面図。
【図3】本発明に係わる両面研磨方法に用いられる研磨装置の説明図。
【図4】本発明に係わるテンプレートの使用状態を示す説明図。
【図5】本発明に係わるテンプレートの使用状態を示す説明図。
【図6】(a)および(b)は本発明に係わるテンプレートの使用状態およびその加工圧力状態を示す説明図。
【図7】本発明に係わるテンプレートを用いて研磨試験を行ったときの結果図。
【図8】本発明に係わるテンプレートを用いて研磨試験を行ったときの結果図。
【図9】従来のテンプレートの使用状態を示す説明図。
【図10】(a)および(b)は従来のテンプレートの使用状態およびその加工圧力状態を示す説明図。
【符号の説明】
1 テンプレート
2 弾性体
3a 非弾性体
3b 非弾性体
4 テンプレート本体
5 収納孔
6 歯部
7 テンプレート
8 弾性体
9a 非弾性体
9b 非弾性体
10 収納孔
11 両面研磨装置
12 下研磨布
13 下定盤
14 支柱
15 回転軸
16 駆動歯車
17 外側構体
18 内周フランジ
19 内歯車
20 上定盤
21 上研磨布
W 半導体ウェーハ
p1 非研磨時のテンプレートの厚さ
p2 研磨加工中のテンプレートの厚さ
W1 研磨前の半導体ウェーハの厚さ
W2 半導体ウェーハWの研磨中の厚さ
g 間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a double-sided polishing template and a double-sided polishing method using the same, and more particularly to a double-sided polishing template capable of polishing an object to be polished with high flatness and a double-sided polishing method using the same.
[0002]
[Prior art]
In order to manufacture a semiconductor wafer, a single crystal semiconductor ingot is made from polycrystalline silicon by, for example, the Czochralski method, and this ingot is sliced to a predetermined thickness using a multi-wire saw or the like to manufacture a semiconductor wafer.
[0003]
The uneven saw marks present on the surface of the semiconductor wafer are removed and smoothed, and the depth of processing distortion is made uniform, lapping using alumina abrasive grains or the like to make the thickness within the wafer and between the wafers uniform, and so on. It is processed into a smooth and undistorted mirror surface by a mirror polishing process using an abrasive.
[0004]
In the conventional mirror polishing process, a double-side polishing apparatus 31 as shown in FIG. 9 is used, and an abrasive is poured between an upper polishing cloth 34 and a lower polishing cloth 35 provided on an upper surface plate 32 and a lower surface plate 33, respectively. A semiconductor wafer W1 loaded on a template 36 disposed between an upper polishing cloth 34 and a lower polishing cloth 35 is rotated under pressure, and both surfaces of the semiconductor wafer W1 are chemically and mechanically polished by rubbing, thereby processing strain layers. The dirt is removed and the semiconductor wafer W1 is polished into a mirror surface.
[0005]
The conventional template 36 includes a template main body 37 and a storage hole 38 provided in the template main body 37. The template main body 37 is made of a glass epoxy resin made of a single layer, a disc shape, and an inelastic body, and has a thickness thereof. t p is less than the thickness t w of the semiconductor wafer W 1, which is housed in the housing hole 38.
[0006]
Therefore, when the semiconductor wafer W1 is loaded on the template 36 as described above and is pressure-polished between the upper polishing cloth 34 and the lower polishing cloth 35, the thickness tp of the template main body 37 is obtained as shown in FIG. 10 is thinner than the thickness tw of the semiconductor wafer W1, and a part of the semiconductor wafer W1 protrudes from the template main body 37, so that the upper polishing cloth 34 and the lower polishing cloth 35 are pressed and deformed. As shown in FIG. 3, since the processing pressure applied to the outer peripheral portion W1o of the semiconductor wafer W1 is larger than that of the central portion W1c, the thickness of the outer peripheral portion of the semiconductor wafer W1 after polishing is larger than the thickness of the central portion. It became thin and caused a decrease in flatness.
[0007]
There is a polishing method disclosed in Japanese Patent Laid-Open No. 9-234667 as a method for polishing a semiconductor wafer that prevents surface fringing that occurs on the outer periphery of the semiconductor wafer. This polishing method includes a polishing block, a surface plate, a backing pad, and a polishing block. This is a method for polishing a semiconductor wafer comprising a template and using a backing pad having a higher compression ratio than the polishing cloth.
[0008]
As a problem of this polishing method, the disclosed polishing method is a single-side polishing method in which a backing pad is attached to an upper surface plate and a polishing cloth is provided on a lower surface plate, and a double-side polishing method that is superior in flatness and good in productivity. The point which is not.
[0009]
[Problems to be solved by the invention]
Therefore, there is a demand for a double-sided polishing template and a double-sided polishing method using the same, which can manufacture a semiconductor wafer having a high flatness without reducing the thickness of the outer peripheral portion of the polished semiconductor wafer as compared with the thickness of the central portion. It had been.
[0010]
The present invention has been made in consideration of the above-described circumstances, and the thickness of the outer peripheral portion of the polished semiconductor wafer is not reduced compared to the thickness of the central portion, and both sides on which a highly flat semiconductor wafer can be manufactured. An object is to provide a polishing template and a double-side polishing method using the same.
[0011]
[Means for Solving the Problems]
The invention of claim 1 of the present invention made to achieve the above-mentioned object has a template main body comprising an elastic body and two disc-shaped inelastic bodies provided on both sides of the elastic body, and The template body is thicker than the thickness of the flat plate-shaped workpiece before polishing in the non-pressurized state, and the thickness is in the pressurized state. The gist of the present invention is a double-side polishing template characterized by being equivalent to the thickness of an object to be polished accommodated in the accommodation hole .
[0012]
The gist of the invention of claim 2 is the double-side polishing template according to claim 1, wherein the elastic body has the same disc shape as the inelastic body.
[0014]
The gist of the invention of claim 3 is the double-side polishing template according to claim 1 or 2, wherein the object to be polished is a semiconductor wafer.
[0015]
In the invention of claim 4 of the present application, the object to be polished is compared with the double-sided polishing template that has a disk shape, is formed to be compressible, and has a thickness greater than that of the flat plate-shaped object to be polished when not polished. After loading and placing between the upper and lower polishing cloths, the polishing cloth is rotated to a predetermined amount by compressing the double-side polishing template to a thickness equivalent to the object to be polished by this polishing cloth. The gist is that it is a double-side polishing method.
[0016]
The gist of the invention of claim 5 is the double-side polishing method according to claim 4 , wherein the object to be polished is a semiconductor wafer.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a double-side polishing template and a double-side polishing method using the same according to the present invention will be described below with reference to the accompanying drawings.
[0018]
FIG. 1 is a perspective view showing a template according to the present invention with a part cut away.
[0019]
The template 1 includes a disk-shaped elastic body 2 and two disk-shaped inelastic bodies 3 a and 3 b which are the same size as the elastic body 2 and are provided on both sides of the elastic body 2. The template main body 4 formed in a three-layer structure has a plurality, for example, three storage holes 5 for an object to be polished. It has a template body 4 has a thickness T p, non-abrasive (not used) during workpiece polished by a flat plate shape and is thicker than the thickness T W1 before polishing, for example, a semiconductor wafer W.
[0020]
The elastic body 2 preferably has a flat plate shape, and may be composed of a plurality. The material is preferably the same material as urethane foam, SUS, or polishing cloth, and the thickness of the elastic body 2 is preferably such that the elastic body 2 is elastically deformed within the polishing allowance range. The thickness may be less than that of the elastic bodies 3a and 3b.
[0021]
The non-elastic bodies 3a and 3b have rigidity such as glass epoxy resin and SUS generally used as a template member, and are formed of non-elastic members. The thickness of the two non-elastic bodies 3a and 3b (Sum of two sheets) is preferably the difference between the thickness of the polished semiconductor wafer and the thickness when the elastic body 2 is thinned when compressed in the elastic region.
[0022]
The template body 4 is formed by either bonding the elastic body 2 and the non-elastic bodies 3a and 3b after processing into a predetermined shape, or cutting them into a predetermined shape after bonding. The elastic body 2 is inelastic. Since it is the same disk shape as the bodies 3a and 3b, the template has uniform elasticity throughout, and the polishing cloth can be surely brought into a uniform plane state.
[0023]
Further, a tooth portion 6 that meshes with a drive gear and an internal gear provided in the polishing apparatus is formed on the outer peripheral portion of the template body 4 over the entire periphery.
[0024]
The template 1 is formed so that the elastic body 2 and the non-elastic bodies 3a, 3b are in contact with each other over the entire surface. However, as shown in FIG. You may provide only the circumference | surroundings of the storage hole 10 so that the circumference | surroundings of the storage hole 10 formed in the elastic bodies 9a and 9b may be surrounded. In this case, the compression state of the template can be changed as necessary, and a template having a wide application range can be obtained.
[0025]
Next, a method for polishing both sides of a semiconductor wafer using a template according to the present invention will be described.
[0026]
First, a double-side polishing apparatus used for double-side polishing of a semiconductor wafer will be described.
[0027]
As shown in FIG. 3, the double-side polishing apparatus 11 has a lower polishing cloth 12 on which the semiconductor wafer W loaded in the template 1 is placed, and a lower surface plate 13 to which the lower polishing cloth 12 is attached. The disc 13 is a disc body having a circular opening formed at the center, and a thick cylindrical column 14 is provided on the lower surface of the disc 13 so as to continuously extend downward. The support column 14 is fixed to a main body frame (not shown) of the double-side polishing apparatus 11.
[0028]
A rotary shaft 15 is inserted into the column 14, and a drive gear 16 is provided at the upper end of the rotary shaft 15 so as to be substantially at the same horizontal position as the upper surface of the lower surface plate 13. The rotating shaft 15 is connected to a driving device (not shown) below and is rotatable. Further, a thin cylindrical outer structure 17 that covers the lower surface plate 13 in an annular shape is provided outside the lower surface plate 13 so as to have a common axis with the drive gear 16.
[0029]
The outer structure 17 has an inner peripheral flange 18 at the inner edge of the upper end, and an inner gear 19 is formed along the inner peripheral surface of the inner peripheral flange 18 so as to face the drive gear 16.
[0030]
A plurality of gears 6 are arranged between the drive gear 16 and the internal gear 19, and the tooth portions 6 formed on the outer periphery thereof are meshed with the drive gear 16 and the internal gear 19, respectively. By this meshing, the template 1 operates as a planetary gear with respect to the drive gear 16 and the internal gear 19 respectively, and the template 1 revolves while rotating by the rotational drive of the rotating shaft 15.
[0031]
An upper polishing cloth 21 attached to the upper surface plate 20 is provided on the upper surface of the semiconductor wafer W so as to be slidable. The upper surface plate 20 has an opening having the same shape as the opening of the lower surface plate 13 in the center thereof, and is a thick disk body whose outer diameter is substantially equal to that of the lower surface plate 13, and is connected to a driving device (not shown). Thus, the upper surface plate 20 is rotated in the same manner as the axis of the drive gear 16.
[0032]
To double-side polish a semiconductor wafer W using the double-side polishing apparatus 11 as described above, first, as shown in FIGS. 1 and 4, the semiconductor wafer W is accommodated in each accommodation hole 5 of the template 1, and the semiconductor The wafer W is loaded on the template 1.
[0033]
Thereafter, the template 1 loaded with the semiconductor wafer W is attached to a double-side polishing apparatus 11 as shown in FIG. Alternatively, after attaching the template 1 to the double-side polishing apparatus 11, a semiconductor wafer may be stored in each storage hole 5 of the template 1.
[0034]
The template 1 is mounted on the double-side polishing apparatus 11 by placing the template 1 on the lower polishing cloth 12 and placing the upper polishing cloth 21 in contact with the upper surface of the semiconductor wafer W from above. At this time, as shown in FIG. 4, the template body 4 is formed such that the thickness T p1 is thicker than the thickness T W1 before polishing of the semiconductor wafer W, so that the non-elastic body 3 a and the upper polishing cloth 21 are formed. Are in contact with each other, but the semiconductor wafer W and the upper polishing cloth 21 are not in contact with each other, and a gap g is formed between the semiconductor wafer W and the upper polishing cloth 21.
[0035]
Next, as shown in FIG. 3, the driving gear 16 is rotated in the direction of the arrow in the figure while injecting the abrasive into the upper and lower surfaces of the semiconductor wafer W, and the template 1 is rotated in the direction opposite to the driving gear 16. By this rotation, the semiconductor wafer W is polished by rubbing the lower surface thereof against the upper surface of the lower polishing cloth 12 while drawing a planetary orbit on the lower polishing cloth 12. Further, the upper surface plate 20 is rotated in the direction opposite to that of the drive gear 16, whereby the upper surface of the semiconductor wafer W is rubbed against the lower surface of the upper polishing cloth 21 and polished.
[0036]
During this polishing step, as shown in FIG. 5, the upper surface plate 20 and the upper polishing cloth 21 provided with the upper surface plate 20 are lowered, and the template 1 and the semiconductor wafer W loaded in the template 1 are The upper polishing cloth 21 and the lower polishing cloth 12 are pressed. Since the elastic body 2 of the template 1 is compressed, the thickness TP1 of the entire template 1 is reduced to become TP2 , and the template 1 thickness TP2 is constantly being polished during polishing of the semiconductor wafer W to be polished. The thickness becomes the same as the thickness TW2 .
[0037]
Accordingly, the semiconductor wafer W contacts the upper polishing cloth 21 and the lower polishing cloth 12 in a uniform state over the entire surface (entire area).
[0038]
Further, as shown in FIG. 6 (a), the semiconductor wafer W is uniformly pressed from both sides by the upper polishing cloth 21 and the lower polishing cloth 12 during the polishing process, as shown in FIG. 6 (b). The upper polishing cloth 21 and the lower polishing cloth 12 apply a uniform processing pressure to the semiconductor wafer W. For this reason, in the semiconductor wafer W to be polished, the outer peripheral portion of the semiconductor wafer is polished more than the central portion as in the conventional case, the thickness is reduced, and the flatness of the entire semiconductor wafer is not deteriorated. However, a semiconductor wafer with high flatness can be manufactured.
[0039]
In addition, although the example which used the template concerning this invention used for processing of a semiconductor wafer for grinding | polishing was demonstrated, it is also possible to use the template concerning this invention for lapping.
[0040]
This lapping keeps the template loaded with the semiconductor wafer in parallel as in the case of the above polishing and puts it between the upper lap surface plate and the lower lap surface plate, and pours into the upper lap surface plate, the lower lap surface plate and the semiconductor wafer. Wrapping both sides of the semiconductor wafer by rotation and sliding under pressure. Also in this case, a semiconductor wafer with high flatness can be manufactured in the same manner as used for the above polishing.
[0041]
【Example】
Using a template according to the present invention as shown in FIG. 1 and a polishing apparatus as shown in FIG. 3, a silicon wafer having a diameter of 8 inches is polished, the processing pressure during the polishing process and the thickness of the polished silicon wafer Was measured, and the results shown in FIGS. 7 and 8 were obtained.
[0042]
(result)
(1) As shown in FIG. 7, it was found that the working pressure was uniformly applied over the entire surface of the silicon wafer in the example. On the other hand, it was found that a large working pressure was applied to the outer peripheral portion in the conventional example.
[0043]
(2) As shown in FIG. 8, it was found that the example had a uniform thickness over the entire surface of the silicon wafer. In contrast, it has been found that the outer peripheral portion of the conventional example is thinner than the central portion.
[0044]
【The invention's effect】
According to the double-side polishing template and the double-side polishing method using the same according to the present invention, the thickness of the outer peripheral portion of the polished semiconductor wafer is not thinner than the thickness of the central portion, and the semiconductor with high flatness A double-side polishing template capable of producing a wafer and a double-side polishing method using the same can be provided.
[0045]
That is, it has a template main body composed of an elastic body and two flat plate-shaped non-elastic bodies provided on both sides of the elastic body, and the template main body has a flat plate shape that is polished when its thickness is not polished. The semiconductor to be polished is a double-sided polishing template that is thicker than the thickness of the polishing object, has a thickness equivalent to that of the polishing object during polishing, and has a storage hole in which the polishing object is loaded. For the wafer, the outer peripheral part of the semiconductor wafer is polished and thinned as compared with the central part as before, and the flatness of the entire semiconductor wafer is not lowered. Can be manufactured.
[0046]
In addition, since the elastic body has the same disk shape as the non-elastic body, the elastic body has uniform elasticity over the entire template, and the polishing cloth can be surely made to be in a uniform plane state. It can be polished flat.
[0047]
Further, since the elastic body is provided only around the storage hole so as to surround the storage hole, the compression state of the template can be changed as necessary, and a template with a wide application range can be provided.
[0048]
Further, since the object to be polished is a semiconductor wafer, a semiconductor wafer with high flatness can be manufactured.
[0049]
In addition, for a double-sided polishing template having a disk shape that is compressible and thicker than a flat plate-shaped workpiece to be polished when not polished, the workpiece is loaded and between the upper and lower polishing cloths. This is a double-sided polishing method in which a predetermined amount of polishing is performed by rotating the polishing cloth while compressing the double-sided polishing template to a thickness equivalent to the object to be polished. As in the past, the outer peripheral part of the semiconductor wafer is polished more than the center part and the thickness is reduced, and the flatness of the entire semiconductor wafer is not lowered, and the entire semiconductor wafer is manufactured with high flatness. can do.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a template according to the present invention with a part cut away.
FIG. 2 is a cross-sectional view of an embodiment in addition to a template according to the present invention.
FIG. 3 is an explanatory view of a polishing apparatus used in a double-side polishing method according to the present invention.
FIG. 4 is an explanatory diagram showing a use state of a template according to the present invention.
FIG. 5 is an explanatory diagram showing a use state of a template according to the present invention.
FIGS. 6A and 6B are explanatory views showing a use state of a template according to the present invention and a processing pressure state thereof.
FIG. 7 is a result diagram when a polishing test is performed using a template according to the present invention.
FIG. 8 is a result diagram when a polishing test is performed using a template according to the present invention.
FIG. 9 is an explanatory diagram showing a use state of a conventional template.
FIGS. 10A and 10B are explanatory views showing a use state of a conventional template and a processing pressure state thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Template 2 Elastic body 3a Inelastic body 3b Inelastic body 4 Template main body 5 Storage hole 6 Tooth part 7 Template 8 Elastic body 9a Inelastic body 9b Inelastic body 10 Storage hole 11 Double-side polishing apparatus 12 Lower polishing cloth 13 Lower surface plate 14 gear struts 15 in the rotary shaft 16 driving the gear 17 the outer assembly 18 inner peripheral flange 19 20 upper surface plate 21 above the polishing cloth W semiconductor wafer T p1 thickness T W1 thickness T p2 polishing in the template of the non-polishing time of template Thickness of semiconductor wafer before polishing TW2 Thickness during polishing of semiconductor wafer W

Claims (5)

弾性体と、この弾性体の両面に設けられた円板形状の2枚の非弾性体とからなるテンプレート本体を有しかつ、被研磨物が装填される収納孔が設けられ、前記テンプレート本体は、非加圧状態では厚さが研磨前の平板形状の被研磨物の厚さよりも厚く、加圧状態では厚さが前記収納孔に収納された被研磨物の厚さと同等であることを特徴とする両面研磨用テンプレート。A template body comprising an elastic body and two disc-shaped inelastic bodies provided on both sides of the elastic body, and a storage hole for loading an object to be polished is provided; In the non-pressurized state, the thickness is thicker than the thickness of the flat-plate-shaped workpiece before polishing, and in the pressurized state, the thickness is equal to the thickness of the workpiece stored in the storage hole. Double-sided polishing template. 上記弾性体は、非弾性体と同一の円板形状であることを特徴とする請求項1に記載の両面研磨用テンプレート。  The double-sided polishing template according to claim 1, wherein the elastic body has the same disk shape as the inelastic body. 上記被研磨物は、半導体ウェーハであることを特徴とする請求項1または2に記載の両面研磨用テンプレート。  The double-side polishing template according to claim 1, wherein the object to be polished is a semiconductor wafer. 円板形状を有し圧縮自在に形成され、非研磨時には研磨される平板形状の被研磨物より厚い厚さを有する両面研磨用テンプレートに対して、被研磨物の装填と上下研磨布間への配置をした後、この研磨布により両面研磨用テンプレートを被研磨物と同等の厚さに圧縮しながら、研磨布を回転させ、所定量研磨することを特徴とする両面研磨方法。  For a double-sided polishing template that has a disc shape, is formed to be compressible, and has a thickness greater than that of a flat plate-shaped workpiece to be polished when not polished, loading the workpiece and placing it between the upper and lower polishing cloths A double-side polishing method comprising: polishing a predetermined amount by rotating the polishing cloth while compressing the double-side polishing template to a thickness equivalent to an object to be polished with the polishing cloth after the arrangement. 上記被研磨物は、半導体ウェーハであることを特徴とする請求項4に記載の両面研磨方法。  The double-side polishing method according to claim 4, wherein the object to be polished is a semiconductor wafer.
JP34898799A 1999-12-08 1999-12-08 Double-side polishing template and double-side polishing method using the same Expired - Lifetime JP4290295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34898799A JP4290295B2 (en) 1999-12-08 1999-12-08 Double-side polishing template and double-side polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34898799A JP4290295B2 (en) 1999-12-08 1999-12-08 Double-side polishing template and double-side polishing method using the same

Publications (2)

Publication Number Publication Date
JP2001162521A JP2001162521A (en) 2001-06-19
JP4290295B2 true JP4290295B2 (en) 2009-07-01

Family

ID=18400736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34898799A Expired - Lifetime JP4290295B2 (en) 1999-12-08 1999-12-08 Double-side polishing template and double-side polishing method using the same

Country Status (1)

Country Link
JP (1) JP4290295B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239895A (en) * 2001-01-31 2002-08-28 Internatl Business Mach Corp <Ibm> Polishing holding member, polishing method and polishing device
JP2010036288A (en) * 2008-08-01 2010-02-18 Sumco Techxiv株式会社 Polishing jig
JP5312911B2 (en) * 2008-11-12 2013-10-09 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Also Published As

Publication number Publication date
JP2001162521A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP3923107B2 (en) Silicon wafer manufacturing method and apparatus
JP3379097B2 (en) Double-side polishing apparatus and method
TWI509679B (en) Method for fabricating semiconductor wafer
KR101174925B1 (en) Wafer polishing method and polished wafer
JPH09270401A (en) Polishing method of semiconductor wafer
KR20000035712A (en) Semiconductor wafer and method for fabrication thereof
JP4860192B2 (en) Wafer manufacturing method
JPH10180599A (en) Thin plate work surface grinding device and method thereof
JP2002124490A (en) Method of manufacturing semiconductor wafer
JPH10180624A (en) Device and method for lapping
JP2000031099A (en) Fabrication of semiconductor wafer
JP2000114216A (en) Manufacture of semiconductor wafer
JP2013258227A (en) Semiconductor wafer manufacturing method
US6224712B1 (en) Polishing apparatus
JP2002217149A (en) Wafer polishing apparatus and method
JP4290295B2 (en) Double-side polishing template and double-side polishing method using the same
KR101079468B1 (en) Carrier for double side polishing apparatus and double side polishing method using the same
JP3779104B2 (en) Wafer polishing equipment
JP3872967B2 (en) Double-side polishing apparatus, double-side polishing method and double-side polishing support member
JP2004356336A (en) Double-sided polishing method of semiconductor wafer
JP3587505B2 (en) Polishing carrier
JP4982037B2 (en) Dressing plate for polishing cloth, dressing method for polishing cloth, and polishing method for workpiece
JPH11333707A (en) Carrier
JP3821944B2 (en) Wafer single wafer polishing method and apparatus
JPH11189500A (en) Production of oxide single crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Ref document number: 4290295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term