JP4289736B2 - Method for determining functionality of NOx storage catalyst - Google Patents

Method for determining functionality of NOx storage catalyst Download PDF

Info

Publication number
JP4289736B2
JP4289736B2 JP26889599A JP26889599A JP4289736B2 JP 4289736 B2 JP4289736 B2 JP 4289736B2 JP 26889599 A JP26889599 A JP 26889599A JP 26889599 A JP26889599 A JP 26889599A JP 4289736 B2 JP4289736 B2 JP 4289736B2
Authority
JP
Japan
Prior art keywords
catalyst
nox
storage
behind
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26889599A
Other languages
Japanese (ja)
Other versions
JP2000104536A (en
Inventor
ヨアヒム・ベルガー
レネ・シェンク
アンドレアス・ブルーメンシュトック
クラウス・ヴィンクラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2000104536A publication Critical patent/JP2000104536A/en
Application granted granted Critical
Publication of JP4289736B2 publication Critical patent/JP4289736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は触媒の流れ方向後方に配置されたNOxセンサによるNOx貯蔵触媒の診断に関するものである。
【0002】
【従来の技術】
NOx貯蔵触媒は、リーンな燃料/空気混合物(λ>1)の燃焼範囲内の燃焼過程における有害物質転化のために使用される。この範囲においては、三元触媒は、排気ガス品質に対する要求をもはや満たしていない。この場合、ガソリン機関においてのみならずディーゼル機関においてもまたリーンな機関運転において放出される窒素酸化物を貯蔵するNOx貯蔵触媒が使用される。機関をリッチな範囲(λ<1)において運転することにより、貯蔵された硝酸塩が、放出されかつ窒素に還元される。
【0003】
NOx貯蔵触媒が満タンになるまで、すなわちさらに窒素酸化物をもはや貯蔵できなくなるまで、機関が第1の過程においてリーンで運転されることが理想的である。それに続いて、NOx貯蔵触媒の再生のために必要とされる時間の間リッチな運転を有する第2の過程が行われることが理想的である。
【0004】
NOx貯蔵触媒の経時劣化により、活性貯蔵場所は損傷される。したがって、NOx触媒の貯蔵能力は経時劣化の進行と共に連続的に低下する。
ドイツ特許公開第19635977号は、そのときの充填度をモニタリングしてNOx貯蔵触媒をモニタリングすることを提案する。そのときの充填度、すなわちNOx貯蔵触媒の窒素酸化物による充満度のデータが制御の目的に使用される。そのときの貯蔵充填度の測定が貯蔵能力の満タンを指示したとき、リッチ化パルスが発生され、すなわち貯蔵触媒の再生のためのリッチ混合物を用いた機関運転が開始される。
【0005】
SAE Paper 960334からほぼ直線的な信号特性を有するNOxセンサが既知である。
法規制による要求は、有害物質エミッションに関連する触媒のような自動車構成部品のオンボード診断を規定している。
【0006】
劣化したときNOx貯蔵触媒の活性貯蔵場所が損傷され、これによりNOx触媒の貯蔵特性および放出特性が低下される。熱による劣化のほかに、たとえば硫黄の取込みによる被毒現象が発生する。このとき、触媒は、フレッシュ状態においてよりも少ない硝酸塩を貯蔵することになる。したがって、触媒後方エミッションは上昇し、同じ平均転化能力を維持するためには頻繁に再生が行われなければならない。
【0007】
【発明が解決しようとする課題】
NOx貯蔵触媒の機能性の判定方法を提供することが本発明の課題である。
【0008】
【課題を解決するための手段】
上記課題は、排気ガスが第1の過程において第2の過程においてよりも多量のNOxを含むように調節され、排気ガスが第2の過程において還元剤を含むように調節され、第1の過程から第2の過程への反復切換が行われる、NOx貯蔵触媒の流れ方向後方に配置されたNOxセンサによる、燃焼過程から排気ガスが供給されるNOx貯蔵触媒の機能性の判定方法において、NOx触媒の機能性がNOxセンサ信号に基づいて判定されることを特徴とする本発明のNOx貯蔵触媒の機能性の判定方法により解決される。
【0009】
本発明は、NOx貯蔵触媒の機能性の低下が触媒後方において測定可能なNOx濃度の時間線図内に表わされるという知見に基づいている。
所定のNOx供給質量取込量mno1において、劣化により機能性が低下したとき、触媒後方窒素酸化物エミッションmno2が上昇する。この関係を診断に利用することができる。
【0010】
たとえば、貯蔵過程において、触媒後方の測定可能なNOx濃度は、触媒の劣化の進行と共にますます急速に上昇する。再生過程においては、触媒後方の測定可能なNOx濃度は、触媒の劣化の進行と共にますます急速に低下する。言い換えると、触媒後方において測定されたNOx濃度の勾配は触媒の劣化の進行と共により急になる。
【0011】
【発明の実施の形態】
以下に本発明の実施形態を図面により説明する。
図1は詳細には触媒2、排気ガスセンサ3、NOxセンサ4、制御装置5、燃料供給手段6、ならびに負荷Lおよび回転速度nならびに場合により温度、絞り弁位置等のような内燃機関の他の運転パラメータのための種々のセンサ7、8、9、ならびにたとえばエラーの指示手段および/または記憶手段としてのエラーランプ10を備えた内燃機関1を示す。
【0012】
前記の入力信号場合によりその他の入力信号から、制御装置5は、とくに燃料供給手段6を操作する燃料供給信号を形成する。燃料供給手段6は、いわゆる吸気管噴射としてのみでなく個々のシリンダの燃焼室内へのガソリンまたはディーゼルの直接噴射として形成されてもよい。混合物組成の変化は、燃料供給手段6を操作する噴射パルス幅の変化により行ってもよい。
【0013】
本発明による方法の本質は、この環境においてまず第1に、制御装置5と触媒の後方に配置されたNOxセンサ4との協働に関するものである。
図2は、触媒の後方に配置されたNOxセンサ4の信号特性線図(図2の(A))と、触媒の前方に配置された排気ガスセンサ3により測定される付属の空燃比λ(図2の(B))とによる過程の切換を示している。
【0014】
時点t=0においてNOx貯蔵触媒は空であると仮定する。それに続く第1の過程Ph1において内燃機関はリーンな混合物(λ>1)で運転される。これが図3のステップ3.1に対応する。この場合に放出される窒素酸化物は、貯蔵触媒内に貯蔵される。貯蔵過程とも呼ばれる第1の過程(リーン過程)は貯蔵触媒2aが満タンになったときに終了されることが理想的である。
【0015】
この場合、NOxセンサ信号がたとえば上限しきい値ULに到達したとき、貯蔵触媒は満タンであるとみなされる。図3のステップ3.2参照。
この第1の過程に第2の過程Ph2が続き、この第2の過程Ph2において貯蔵触媒が再生され、これが図3のステップ3.3により表わされる。第2の過程は再生過程とも呼ばれる。この実施形態においては、再生は、過程Ph2におけるλ値が1より小さいリッチな機関運転により行われる。この場合、燃料がリッチな混合物で運転する内燃機関は、還元剤として未燃のHCおよびCOを放出する。触媒の作用の下で、還元剤は、貯蔵されている窒素酸化物と反応して水、CO2およびN2を生成し、水、CO2およびN2は排気ガスと共に排出される。これにより貯蔵触媒は新たに窒素酸化物を受入可能となり、すなわち再生される。再生の間、貯蔵触媒後方の排気ガスのNOx含有量は次第に低下する。NOxセンサ信号が下限しきい値LLに到達すると直ちに、リーン運転への移行および貯蔵触媒内へのNOxの新たな貯蔵が行われる。図3のステップ3.4参照。過程Ph1およびPh2の間で制御装置5により連続的に切換が行われる。
【0016】
劣化により、貯蔵時間および再生時間は短くなる。これが図2において周期の短縮により略図で示されている。実際にはこの短縮はきわめてゆっくり行われる。これに対し、上限しきい値および下限しきい値の位置は一定のままである。
【0017】
貯蔵触媒後方のNOx濃度の定常的な上昇および低下は、既知のNOx貯蔵触媒の特性を表わしている。NOxの貯蔵速度は、充填度の増加と共に連続的に低下するので、貯蔵触媒後方で測定可能な排気ガス中のNOx濃度は充填度の増加と共に増大する。
【0018】
診断の考え方は、NOxセンサによる触媒後方のNOxエミッションの測定に基づいている。
第1の実施形態においては、フレッシュ状態における図2に示す曲線線図の測定、この曲線線図の記憶、後の時点における曲線線図の測定、および後に得られた曲線線図と記憶されている曲線線図との比較が行われる。偏差が所定の尺度を超えた場合、触媒は劣化しているとみなされる。
【0019】
図2に示す曲線線図は、たとえば所定の時点におけるNOx濃度の一対の所定特性値から再構成することができる。一対の特性値は、たとえば図2における信号線図の反転点O1,O2,…,U1,U2,…により表わされる。
【0020】
曲線の多数の個々の点の比較の代わりに、たとえば曲線の勾配、すなわち2つのNOx値の差とこれらの値が測定された時間間隔との商が評価されてもよい。たとえば、放出過程すなわち再生過程における勾配Gは、G=(LL−UL)/(t2−t1)により計算することができる。図4のステップ4.1および4.2参照。
【0021】
ステップ4.3において、勾配が所定の限界値G_Schwellと比較される。この限界値を超えた場合、ステップ4.4において場合により統計的検定が行われた後に警報ランプMIL(図1の参照番号10)によりエラー指示が行われる。
【0022】
限界値はたとえば以下のように決定することができる。新しい触媒において初期勾配G0が決定される。限界値は、オフセット、またはたとえば初期勾配の1.5倍という係数として決定される。
【0023】
初期の曲線線図を記憶する代わりに、曲線線図がモデル化されてもよい。機能性を有する触媒を基礎とする場合、負荷、回転速度、λ、触媒前方のλ値の線図のような機関の運転パラメータから触媒後方のNOx濃度に対する期待値を形成することができる。実際に測定されたNOx濃度がモデル化された線図から許容できないほど大きく異なっている場合、これが劣化している触媒に対する兆候として評価される。
【0024】
勾配は、貯蔵過程および再生過程に対し別々に決定かつ評価されてもよく、または貯蔵および再生の1つまたは複数の周期にわたる両方の過程における勾配の平均値として決定されてもよい。
【0025】
同様に、勾配に対する尺度として、1つまたは複数の貯蔵過程または再生過程の長さ、貯蔵/再生サイクルの周期時間、または周期的なNOx濃度振動の周波数が使用されてもよい。
【0026】
たとえば、再生過程の長さが貯蔵触媒の放出可能性により共に決定される。この場合、λが1以下の再生の間にNOx濃度が特性時間線図に従って低下することから出発される。これにより、最大許容再生時間を定義することができる。NOx濃度がしきい値を下回ることなく再生時間が所定の許容再生時間を超えたとき、触媒は劣化しているとみなされる。
【0027】
他の実施形態は、触媒後方の瞬間NOx質量流量または積分NOx質量流量の形成に基づいている。触媒後方のNOx質量流量mno2は、場合により吸気質量流量(センサ7)または負荷信号および/または回転速度信号を同時に使用することにより触媒後方において測定されたNOx濃度に基づいて評価することができる。
【0028】
触媒内への供給質量取込量mno1はモデルにより評価することができる。したがって、ベンチテストにより、1つのモデルシリーズの機関に対し排気ガス後処理手段を用いることなく機関の窒素酸化物供給エミッションを決定し、特性曲線群内に記憶しかつこのモデルシリーズの他の機関の後の運転においてモデル化のために使用することができる。
【0029】
商mno2/mno1ないしこれらの値の積分の商が、劣化の関数である触媒の貯蔵能力に対する尺度である。貯蔵触媒が健全なとき、この商は理想的には0に等しい。劣化が進行するにつれて、この商は値1に近づき、この値1において入口エミッションおよび出口エミッションは等しくなり、これが転化能力の完全な低下を示している。法規制を満たすために決定された所定の限界値により、健全な触媒と劣化した触媒とを区別することができる。
【0030】
値の計算は成層運転においてのみ行われるが、その他は運転点とは無関係である。成層運転とはシリンダ内に成層充填を有する運転である。これは、シリンダ内の空間的に不均一な燃料/空気混合物組成と理解される。たとえば、点火プラグの領域内の混合物は確実な点火を保証するためにリッチであり、他の領域においては燃料消費を低減するためにリーンである。平均として、成層運転においては混合物はリーン(1<λ<約3)である。たとえば高い出力を出す均質混合物分配を有する運転はこれとは区別される。
【0031】
積分形成は、外乱たとえばセンサ信号変化またはNOx供給質量変化に関して感度がきわめて小さいという利点を伴い、したがって外乱の影響を受けない有利な方法を示している。さらに、NOxの触媒内への供給質量取込量を制限することによりモデル形成が少なくされ、これが同様にこの方法が外乱の影響を受けないようにしている。
【0032】
さらに、触媒が機能性を有することを前提として、供給質量取込量から充填量すなわち充填度を計算することができる。上記のように、貯蔵能力は充填量の増大と共に低下する。したがって、触媒後方のNOxエミッションは、充填量の増加と共に上昇する。計算された充填量と触媒後方の測定されたNOx濃度との間の妥当性比較は同様に診断に使用可能である。
【0033】
NOx濃度がたとえば計算された充填量に関して妥当な尺度を超えたとき、触媒は劣化している。
すべての例において、診断のために触媒後方にNOxセンサが使用されることは共通である。NOxセンサの信号から、触媒後方のNOx濃度の特性値が導かれる。
【図面の簡単な説明】
【図1】本発明の作用を示す技術的周辺図である。
【図2】(A)は触媒の種々の経時劣化状態における触媒後方に配置されたNOxセンサの信号時間線図であり、(B)は触媒の前方に配置された排気ガスセンサにより測定される付属の空燃比λの時間線図である。
【図3】NOx貯蔵触媒の機能に適合される混合物制御方式の一例を示す流れ図である。
【図4】本発明による方法の過程を示す一実施形態の流れ図である。
【符号の説明】
1 内燃機関
1a 燃焼室
2 触媒
2a 触媒の第1の部分(NOx貯蔵触媒)
2b 触媒の第2の部分
3 排気ガスセンサ
4 NOxセンサ
5 制御装置
6 燃料供給手段
7、8、9 センサ
10 エラーランプ(警報ランプ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diagnosis of a NOx storage catalyst by a NOx sensor arranged behind the catalyst in the flow direction.
[0002]
[Prior art]
NOx storage catalysts are used for the conversion of harmful substances in the combustion process within the combustion range of lean fuel / air mixtures (λ> 1). In this range, the three-way catalyst no longer meets the requirements for exhaust gas quality. In this case, NOx storage catalysts are used which store nitrogen oxides released in lean engine operation as well as in gasoline engines as well as in diesel engines. By operating the engine in a rich range (λ <1), the stored nitrate is released and reduced to nitrogen.
[0003]
Ideally, the engine is operated lean in the first process until the NOx storage catalyst is full, i.e. no more nitrogen oxides can be stored. Ideally, this is followed by a second process having a rich operation for the time required for regeneration of the NOx storage catalyst.
[0004]
The active storage location is damaged by the aging of the NOx storage catalyst. Therefore, the storage capacity of the NOx catalyst continuously decreases as the deterioration with time progresses.
German Patent Publication No. 19635977 proposes to monitor the NOx storage catalyst by monitoring the filling degree at that time. Data on the degree of filling at that time, that is, the degree of filling of the NOx storage catalyst with nitrogen oxides, is used for control purposes. When the current storage charge measurement indicates that the storage capacity is full, a rich pulse is generated, i.e. engine operation with the rich mixture for regeneration of the storage catalyst is started.
[0005]
From SAE Paper 960334, a NOx sensor with a substantially linear signal characteristic is known.
Regulatory requirements stipulate onboard diagnostics for automotive components such as catalysts associated with hazardous emissions.
[0006]
When degraded, the active storage location of the NOx storage catalyst is damaged, thereby reducing the storage and release characteristics of the NOx catalyst. In addition to deterioration due to heat, poisoning due to, for example, sulfur uptake occurs. At this time, the catalyst will store less nitrate than in the fresh state. Thus, catalyst back-emission increases and regeneration must occur frequently to maintain the same average conversion capacity.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for determining the functionality of a NOx storage catalyst.
[0008]
[Means for Solving the Problems]
The problem is that the exhaust gas is adjusted to contain more NOx in the first process than in the second process, and the exhaust gas is adjusted to contain a reducing agent in the second process. NOx catalyst in a method for determining the functionality of a NOx storage catalyst to which exhaust gas is supplied from a combustion process, using a NOx sensor disposed at the rear of the NOx storage catalyst in the flow direction, wherein repetitive switching from the first process to the second process is performed Is determined based on the NOx sensor signal, and is solved by the NOx storage catalyst functionality determination method of the present invention.
[0009]
The present invention is based on the finding that the decrease in functionality of the NOx storage catalyst is represented in a NOx concentration time diagram that can be measured behind the catalyst.
When the functionality is reduced due to deterioration at a predetermined NOx supply mass intake amount mno1, the catalyst rearward nitrogen oxide emission mno2 rises. This relationship can be used for diagnosis.
[0010]
For example, during storage, the measurable NOx concentration behind the catalyst increases more and more rapidly with the progress of catalyst degradation. During the regeneration process, the measurable NOx concentration behind the catalyst decreases more and more rapidly with the progress of catalyst degradation. In other words, the slope of the NOx concentration measured behind the catalyst becomes steeper as the catalyst progresses.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows in detail the catalyst 2, exhaust gas sensor 3, NOx sensor 4, control device 5, fuel supply means 6 and other internal combustion engines such as load L and rotational speed n and possibly temperature, throttle valve position, etc. 1 shows an internal combustion engine 1 with various sensors 7, 8, 9 for operating parameters and an error lamp 10, for example as an error indication means and / or storage means.
[0012]
From the said input signal and possibly other input signals, the control device 5 forms a fuel supply signal, in particular for operating the fuel supply means 6. The fuel supply means 6 may be formed not only as so-called intake pipe injection but also as direct injection of gasoline or diesel into the combustion chambers of the individual cylinders. The mixture composition may be changed by changing the injection pulse width for operating the fuel supply means 6.
[0013]
The essence of the method according to the invention firstly relates in this environment to the cooperation of the control device 5 and the NOx sensor 4 arranged behind the catalyst.
FIG. 2 is a signal characteristic diagram (FIG. 2A) of the NOx sensor 4 disposed behind the catalyst and an attached air-fuel ratio λ (FIG. 2) measured by the exhaust gas sensor 3 disposed in front of the catalyst. 2 (B)) shows the process switching.
[0014]
Assume that at time t = 0, the NOx storage catalyst is empty. In the subsequent first phase Ph1, the internal combustion engine is operated with a lean mixture (λ> 1). This corresponds to step 3.1 in FIG. The nitrogen oxides released in this case are stored in the storage catalyst. Ideally, the first process (lean process), also called a storage process, is terminated when the storage catalyst 2a is full.
[0015]
In this case, the storage catalyst is considered full when the NOx sensor signal reaches, for example, the upper threshold UL. See step 3.2 in FIG.
This first process is followed by a second process Ph2, in which the storage catalyst is regenerated, which is represented by step 3.3 in FIG. The second process is also called a regeneration process. In this embodiment, the regeneration is performed by a rich engine operation in which the λ value in the process Ph2 is smaller than 1. In this case, an internal combustion engine operating with a fuel rich mixture releases unburned HC and CO as a reducing agent. Under the action of the catalyst, the reducing agent reacts with the nitrogen oxides being stored to produce water, CO 2 and N 2, water, CO 2 and N 2 is discharged together with the exhaust gases. This allows the storage catalyst to newly accept nitrogen oxides, i.e., be regenerated. During regeneration, the NOx content of the exhaust gas behind the storage catalyst gradually decreases. As soon as the NOx sensor signal reaches the lower threshold LL, the shift to lean operation and new storage of NOx in the storage catalyst are performed. See step 3.4 in FIG. Switching between the processes Ph1 and Ph2 is performed continuously by the control device 5.
[0016]
Deterioration shortens storage time and regeneration time. This is shown schematically in FIG. 2 by shortening the period. In practice, this shortening is very slow. On the other hand, the positions of the upper threshold and the lower threshold remain constant.
[0017]
Steady increases and decreases in NOx concentration behind the storage catalyst are characteristic of the known NOx storage catalyst. Since the storage rate of NOx continuously decreases as the degree of filling increases, the concentration of NOx in the exhaust gas that can be measured behind the storage catalyst increases as the degree of filling increases.
[0018]
The concept of diagnosis is based on the measurement of NOx emission behind the catalyst by a NOx sensor.
In the first embodiment, the measurement of the curve diagram shown in FIG. 2 in the fresh state, the storage of this curve diagram, the measurement of the curve diagram at a later time, and the curve diagram obtained later are stored. Comparison with the existing curve diagram is performed. If the deviation exceeds a predetermined scale, the catalyst is considered degraded.
[0019]
The curve diagram shown in FIG. 2 can be reconstructed from a pair of predetermined characteristic values of the NOx concentration at a predetermined time, for example. The pair of characteristic values are represented by, for example, inversion points O1, O2,..., U1, U2,.
[0020]
Instead of comparing a number of individual points on a curve, for example, the slope of the curve, ie the quotient of the difference between two NOx values and the time interval at which these values were measured, may be evaluated. For example, the gradient G in the release or regeneration process can be calculated by G = (LL−UL) / (t2−t1). See steps 4.1 and 4.2 in FIG.
[0021]
In step 4.3, the slope is compared with a predetermined limit value G_Schwell. If this limit value is exceeded, an error indication is given by the warning lamp MIL (reference numeral 10 in FIG. 1) after optionally performing a statistical test in step 4.4.
[0022]
The limit value can be determined as follows, for example. An initial gradient G0 is determined for the new catalyst. The limit value is determined as an offset or a factor of eg 1.5 times the initial slope.
[0023]
Instead of storing an initial curve diagram, a curve diagram may be modeled. When based on a functional catalyst, an expected value for the NOx concentration behind the catalyst can be formed from engine operating parameters such as a diagram of load, rotational speed, λ, and λ value in front of the catalyst. If the actual measured NOx concentration is unacceptably different from the modeled diagram, this is evaluated as an indication for a degraded catalyst.
[0024]
The slope may be determined and evaluated separately for storage and regeneration processes, or may be determined as the average value of the slope in both processes over one or more cycles of storage and regeneration.
[0025]
Similarly, the length of one or more storage or regeneration processes, the period time of a storage / regeneration cycle, or the frequency of periodic NOx concentration oscillations may be used as a measure for the slope.
[0026]
For example, the length of the regeneration process is determined both by the release potential of the stored catalyst. In this case, the starting point is that the NOx concentration decreases according to the characteristic time diagram during the regeneration when λ is 1 or less. Thereby, the maximum allowable reproduction time can be defined. When the regeneration time exceeds a predetermined allowable regeneration time without the NOx concentration falling below the threshold, the catalyst is considered degraded.
[0027]
Other embodiments are based on the formation of instantaneous NOx mass flow or integrated NOx mass flow behind the catalyst. The NOx mass flow mno2 behind the catalyst can be evaluated based on the NOx concentration measured behind the catalyst, optionally using the intake mass flow (sensor 7) or load signal and / or rotational speed signal simultaneously.
[0028]
The supplied mass take-in amount mno1 into the catalyst can be evaluated by a model. Therefore, the bench test determines the nitrogen oxide supply emission of an engine without using exhaust gas aftertreatment means for one model series engine, stores it in the characteristic curve group, and the other engine of this model series. It can be used for modeling in later driving.
[0029]
The quotient mno2 / mno1 or the integral quotient of these values is a measure for the storage capacity of the catalyst as a function of degradation. When the storage catalyst is healthy, this quotient is ideally equal to zero. As the deterioration progresses, the quotient approaches a value of 1, at which the inlet and outlet emissions are equal, indicating a complete reduction in conversion capacity. A healthy catalyst and a deteriorated catalyst can be distinguished from each other by a predetermined limit value determined in order to satisfy legal regulations.
[0030]
Values are calculated only in stratified operation, but the others are independent of the operating point. The stratified operation is an operation having stratified filling in the cylinder. This is understood as a spatially non-uniform fuel / air mixture composition within the cylinder. For example, the mixture in the spark plug region is rich to ensure reliable ignition and in other regions it is lean to reduce fuel consumption. On average, in stratified operation, the mixture is lean (1 <λ <about 3). For example, operation with a homogeneous mixture distribution that produces high power is distinguished from this.
[0031]
Integral formation has the advantage of being very insensitive with respect to disturbances such as sensor signal changes or NOx feed mass changes and thus represents an advantageous method that is not affected by disturbances. Furthermore, by limiting the amount of feed mass taken into the catalyst for NOx, model formation is reduced, which in turn makes the method unaffected by disturbances.
[0032]
Furthermore, on the assumption that the catalyst has functionality, the filling amount, that is, the filling degree, can be calculated from the supplied mass intake amount. As noted above, storage capacity decreases with increasing fill. Therefore, the NOx emission behind the catalyst rises as the filling amount increases. A validity comparison between the calculated charge and the measured NOx concentration behind the catalyst can be used for diagnosis as well.
[0033]
When the NOx concentration exceeds a reasonable measure, for example with respect to the calculated charge, the catalyst is degraded.
In all examples, it is common that a NOx sensor is used behind the catalyst for diagnosis. The characteristic value of the NOx concentration behind the catalyst is derived from the NOx sensor signal.
[Brief description of the drawings]
FIG. 1 is a technical peripheral view showing the operation of the present invention.
FIG. 2A is a signal time diagram of a NOx sensor disposed behind a catalyst in various aging states of the catalyst, and FIG. 2B is an accessory measured by an exhaust gas sensor disposed in front of the catalyst. FIG. 6 is a time diagram of the air-fuel ratio λ.
FIG. 3 is a flow diagram illustrating an example of a mixture control scheme adapted to the function of the NOx storage catalyst.
FIG. 4 is a flowchart of an embodiment showing the process of the method according to the present invention.
[Explanation of symbols]
1 Internal combustion engine 1a Combustion chamber 2 Catalyst 2a First part of catalyst (NOx storage catalyst)
2b Second part of catalyst 3 Exhaust gas sensor 4 NOx sensor 5 Control device 6 Fuel supply means 7, 8, 9 Sensor 10 Error lamp (alarm lamp)

Claims (1)

排気ガスが第1の過程において第2の過程においてよりも多量のNOxを含むように調節され、排気ガスが第2の過程において還元剤を含むように調節され、第1の過程から第2の過程への反復切換が行われる、NOx貯蔵触媒の流れ方向後方に配置されたNOxセンサによる、燃焼過程から排気ガスが供給されるNOx貯蔵触媒の機能性の判定方法において、NOx触媒の機能性がNOxセンサ信号に基づいて判定されることと、機関と触媒の運転パラメータから、触媒の窒素酸化物による充填状態がモデル化されることと、モデル化された充填状態から触媒後方のNOx濃度に対する期待値が形成され、かつ触媒後方において測定されたNOx濃度と比較されることと、期待値と測定値との間の少なくとも1つの偏差がしきい値を超えたとき、触媒が劣化していると評価されることと、を特徴とするNOx貯蔵触媒の機能性の判定方法。The exhaust gas is adjusted to contain a larger amount of NOx in the first process than in the second process, and the exhaust gas is adjusted to contain a reducing agent in the second process. In a method for determining the functionality of a NOx storage catalyst to which exhaust gas is supplied from a combustion process, by a NOx sensor arranged at the rear of the NOx storage catalyst in the flow direction, wherein the NOx catalyst functionality is determined. The determination based on the NOx sensor signal, the filling state of the catalyst with nitrogen oxides from the engine and catalyst operating parameters are modeled, and the expectation for the NOx concentration behind the catalyst from the modeled filling state A value is formed and compared with the NOx concentration measured behind the catalyst and at least one deviation between the expected value and the measured value exceeds the threshold Come, the functionality of the determination method of the NOx storage catalyst, wherein the the catalyst is evaluated to have deteriorated, the.
JP26889599A 1998-09-25 1999-09-22 Method for determining functionality of NOx storage catalyst Expired - Fee Related JP4289736B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843871A DE19843871B4 (en) 1998-09-25 1998-09-25 Diagnosis of a NOx storage catalytic converter with downstream NOx sensor
DE19843871.0 1998-09-25

Publications (2)

Publication Number Publication Date
JP2000104536A JP2000104536A (en) 2000-04-11
JP4289736B2 true JP4289736B2 (en) 2009-07-01

Family

ID=7882137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26889599A Expired - Fee Related JP4289736B2 (en) 1998-09-25 1999-09-22 Method for determining functionality of NOx storage catalyst

Country Status (3)

Country Link
JP (1) JP4289736B2 (en)
DE (1) DE19843871B4 (en)
GB (1) GB2342597B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877641B1 (en) * 2016-11-29 2018-07-11 재단법인 자동차융합기술원 Degrading apparatus of catalyst using oxidation catalyst

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19922981A1 (en) * 1999-05-19 2000-11-30 Bosch Gmbh Robert Procedure for checking the functionality of a NO¶x¶ storage catalytic converter
DE10023080B4 (en) * 2000-05-11 2009-10-22 Volkswagen Ag Method and device for monitoring a storage capacity of a NOx storage catalytic converter
DE10036453A1 (en) * 2000-07-26 2002-02-14 Bosch Gmbh Robert Operating a nitrogen oxide storage catalyst on vehicle IC engine comprises storing nitrogen oxides generated from the engine in first phase in storage catalyst
DE10039709A1 (en) * 2000-08-14 2002-03-07 Bosch Gmbh Robert Method and control device for determining the state of a nitrogen oxide (NOx) storage catalytic converter
US6698188B2 (en) 2000-12-08 2004-03-02 Toyota Jidosha Kabushiki Kaisha Emission control apparatus of internal combustion engine
JP3649130B2 (en) * 2001-01-22 2005-05-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10300555B4 (en) * 2002-01-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A deterioration determination device for an engine exhaust gas control device and deterioration determination method
DE10226873B4 (en) * 2002-06-12 2012-05-31 Volkswagen Ag Method for controlling the mode selection of an internal combustion engine
DE10258876A1 (en) * 2002-12-06 2004-08-19 Volkswagen Ag Method and device for diagnosing a NOx storage catalytic converter when the vehicle is stationary
DE10305452B4 (en) * 2002-12-30 2013-04-18 Volkswagen Ag Method for diagnosing a catalyst in the exhaust gas flow of an internal combustion engine and device for carrying out the method
DE10302700B4 (en) * 2002-12-31 2013-01-17 Volkswagen Ag Method and device for diagnosing a NOx storage catalytic converter in the exhaust gas tract of an internal combustion engine
ITBO20030136A1 (en) * 2003-03-13 2004-09-14 Magneti Marelli Powertrain Spa METHOD FOR ESTIMATING THE DEGRADATION OF THE CAPACITY OF
DE10312440B4 (en) * 2003-03-20 2006-04-06 Siemens Ag Emission control method for lean-burn engines
DE10313216B4 (en) * 2003-03-25 2012-07-12 Robert Bosch Gmbh Method for operating a nitrogen oxide (NOx) storage catalytic converter arranged in the exhaust region of an internal combustion engine
JP2005273653A (en) * 2004-02-27 2005-10-06 Nissan Motor Co Ltd Deterioration diagnosis device for filter
DE102004049577A1 (en) * 2004-10-12 2006-04-20 Robert Bosch Gmbh Method for operating an internal combustion engine, in whose exhaust gas area a NOx storage catalytic converter and a NOx sensor are arranged, and apparatus for carrying out the method
DE102005050517A1 (en) * 2005-10-21 2007-04-26 Umicore Ag & Co. Kg Method for operating a nitrogen oxide storage catalytic converter on a diesel engine
JP4737010B2 (en) * 2006-08-30 2011-07-27 トヨタ自動車株式会社 Catalyst deterioration diagnosis device
DE102007009840B4 (en) 2007-03-01 2018-11-22 Robert Bosch Gmbh Method for determining a malfunction of a device for metering fuel
JP4729518B2 (en) * 2007-03-07 2011-07-20 トヨタ自動車株式会社 NOx catalyst deterioration diagnosis device
JP4349425B2 (en) 2007-03-19 2009-10-21 日産自動車株式会社 NOx catalyst diagnostic device
FR2942502A1 (en) * 2009-02-24 2010-08-27 Peugeot Citroen Automobiles Sa Nitrogen oxide controlling method for oil engine of motor vehicle, involves operating engine according to calibration so as to provoke reduction of nitrogen oxide production source, when engine is placed in specific environment
GB2502797A (en) * 2012-06-06 2013-12-11 Gm Global Tech Operations Inc Method of assessing the thermal ageing of a catalyst in an exhaust system
KR101406495B1 (en) * 2012-12-17 2014-06-27 현대자동차주식회사 Lnt control method for vehicle
US11435332B2 (en) * 2020-09-25 2022-09-06 GM Global Technology Operations LLC Sensor offset diagnostic in idle and after-run

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69326217T3 (en) * 1992-06-12 2009-11-12 Toyota Jidosha Kabushiki Kaisha, Toyota-shi EXHAUST EMISSION CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINES
JP3316066B2 (en) * 1993-12-22 2002-08-19 富士重工業株式会社 Failure diagnosis device for exhaust gas purification device
JP3633055B2 (en) * 1995-09-27 2005-03-30 日産自動車株式会社 Engine diagnostic equipment
DE19543219C1 (en) * 1995-11-20 1996-12-05 Daimler Benz Ag Diesel engine operating method
US5704339A (en) * 1996-04-26 1998-01-06 Ford Global Technologies, Inc. method and apparatus for improving vehicle fuel economy
DE19635977A1 (en) * 1996-09-05 1998-03-12 Bosch Gmbh Robert Sensor for monitoring a NOx catalytic converter
US5771685A (en) * 1996-10-16 1998-06-30 Ford Global Technologies, Inc. Method for monitoring the performance of a NOx trap
DE19800665C1 (en) * 1998-01-10 1999-07-01 Degussa Method for operating a nitrogen oxide storage catalytic converter
JP3456401B2 (en) * 1998-02-12 2003-10-14 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19816175A1 (en) * 1998-04-14 1999-10-21 Degussa Procedure for checking the functionality of a nitrogen oxide storage catalytic converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877641B1 (en) * 2016-11-29 2018-07-11 재단법인 자동차융합기술원 Degrading apparatus of catalyst using oxidation catalyst

Also Published As

Publication number Publication date
DE19843871B4 (en) 2005-05-04
GB2342597B (en) 2001-09-05
GB9921660D0 (en) 1999-11-17
GB2342597A (en) 2000-04-19
DE19843871A1 (en) 2001-08-02
JP2000104536A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP4289736B2 (en) Method for determining functionality of NOx storage catalyst
US6408615B1 (en) Method for controlling an NOx accumulating catalytic converter
JP4436472B2 (en) Method and apparatus for diagnosing catalyst in exhaust gas of internal combustion engine
US6230487B1 (en) Method for regenerating a catalytic converter
US7073465B2 (en) Method and device for operating an internal combustion engine
US6901745B2 (en) Method for operating a nitrogen oxide (nox) storage catalyst
US6347513B2 (en) Method for regenerating a NOx storage catalytic converter for an internal combustion engine
US8434294B2 (en) Method and device for determining a dynamic time duration for exhaust gas probes of an internal combustion engine
US7918086B2 (en) System and method for determining a NOx storage capacity of catalytic device
US6216450B1 (en) Exhaust emission control system for internal combustion engine
JP7421896B2 (en) Method for controlling the filling of a reservoir of a catalyst for exhaust gas components as a function of catalyst deterioration
JP5207574B2 (en) Modeling method and model of release process of nitrogen oxide storage catalyst
JP4008810B2 (en) Calculation method of nitrogen oxide content in exhaust gas of internal combustion engine
US20070084196A1 (en) System and method for determining a NOx storage capacity of a catalytic device
US6862880B2 (en) Method for operating a catalyst
EP1174611B1 (en) Exhaust emission control system for internal combustion engine
KR20010102446A (en) Method for operating an accunmulator-type catalytic converter of an internal combustion engine
KR101467190B1 (en) Regeneration method for a storage catalytic converter
JP2003519323A (en) Especially the operation method of the internal combustion engine of the automobile
KR101629284B1 (en) Method and device for operating an internal combustion engine
US20020134075A1 (en) Method for operation of a nox storage catalyst in internal combustion engines
GB2360956A (en) Assessing deterioration of a NOx catalytic converter
US7337658B2 (en) Method for operating an internal combustion engine
GB2416717A (en) A method for regenerating an exhaust treatment device
CN117780527A (en) Method for adjusting the oxygen filling level of a catalyst in the exhaust gas of an internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees