GB2360956A - Assessing deterioration of a NOx catalytic converter - Google Patents

Assessing deterioration of a NOx catalytic converter Download PDF

Info

Publication number
GB2360956A
GB2360956A GB0116050A GB0116050A GB2360956A GB 2360956 A GB2360956 A GB 2360956A GB 0116050 A GB0116050 A GB 0116050A GB 0116050 A GB0116050 A GB 0116050A GB 2360956 A GB2360956 A GB 2360956A
Authority
GB
United Kingdom
Prior art keywords
nox
catalytic converter
phase
variable
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0116050A
Other versions
GB2360956B (en
GB0116050D0 (en
Inventor
Joachim Berger
Rene Schenk
Andreas Blumenstock
Klaus Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19843871A external-priority patent/DE19843871B4/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of GB0116050D0 publication Critical patent/GB0116050D0/en
Publication of GB2360956A publication Critical patent/GB2360956A/en
Application granted granted Critical
Publication of GB2360956B publication Critical patent/GB2360956B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0818SOx storage amount, e.g. for SOx trap or NOx trap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Assessing deterioration of NOx catalytic converter of an i.c.e. (internal combustion engine), having a NOx sensor downstream of a NOx trap, wherein the NOx trap is supplied with alternating pulses of either NOx rich fumes (lean burn mode) or fumes of lesser NOx content which also include reducing agents (rich burn mode). At least one variable of the progression with respect to time of a signal of the NOx sensor in a new NOx catalytic converter is measured. This process is repeated. Deviations between the measured variables beyond a predetermined threshold value are taken to be indicators of a defective NOx catalytic converter. The threshold value is obtained by the multiplication of at least one variable by a factor, or by addition of an offset value to at least one variable.

Description

2360956 1
DESCRIPTION
MONITORING OF AN NOx-STORAGE CATALYTIC CONVERTER HAVING AN NOx-SENSOR CONNECTED DMINSTREAM The invention relates to the monitoring of an NOx-storage catalytic converter having an NOx-sensor which is disposed in the direction of flow downstream of the catalytic converter.
NOx-storage catalytic converters are used for the purpose of converting pollutants in the combustion processes in the range of lean fuellair mixtures (lambda > 1). In this range the three-way catalytic converter no longer meets the requirements of exhaust gas quality. In this case, NOxstorage catalytic converters are used both in the case of petrol and diesel engines and store the nitrogen oxides emitted during the lean engine operation. When operating the engine in the rich range (lambda < 1), stored nitrates are released and reduced to form nitrogen.
Ideally, the engine is operated in a lean manner during a first phase, until the NOx-storage catalytic converter is full, i.e. until it is no longer able to store any further nitrogen oxides. This is then ideally followed by a second phase having a rich operation for the particular period of time which is required for the purpose of regeneratingthe NOxstorage catalytic converter.
2 The ageing of the NOx-storage catalytic converter causes the active storage areas to become damaged. Therefore, the storage capability of the NOx-catalytic converter decreases continuously with age.
DE OS 196 35 977 proposes an NOx-sensor for the purpose of monitoring an NOx-storage catalytic converter in the sense of monitoring its current charging level. Knowledge of the current charging level, i.e. the level at which the NOxstorage device is filled with nitrogen oxides is utilized for control purposes. If the measurement of the current charging level of the storage device indicates that the storage capacity is exhausted, a rich pulse, i.e. an operation of the engine using a rich mixture is produced for the purpose of regenerating the storage catalytic converter.
The SAE Paper 960334 discloses an NOx-sensor with approximately linear signal characteristics.
Legislative requirements provide for an 'On Board' monitoring of motor vehicle components which are relevant to the emission of pollutants, such as catalytic converters.
Upon ageing, the active storage areas of the NOx-storage catalytic converter are 3 damaged, which causes the storage and discharge behaviour of the NOx- catalytic converter to deteriorate. In addition to thermal ageing, symptoms of contamination are also produced, for example, by virtue of sulphur charges. The catalytic converter will then store fewer nitrates than in the fresh state. Therefore, the emissions downstream of the catalytic converter increase and in order to maintain the same average conversion efficiency, a regeneration process must be implemented more frequently.
It is an object of the invention to provide a method and a device for the purpose of assessing the capability of an NOx-storage catalytic converter to function.
In accordance with the present invention, there is provided a method of assessing the functionability of an NOx-storage catalytic converter which is supplied with exhaust gas from a combustion process, having an NOxsensor which is disposed in the direction of flow downstream of an NOxstorage device, the exhaust gas being influenced in a first phase in such a manner that it contains more NOx than in a second phase, the exhaust gas in the second phase being influenced in such a manner that it contains reducing agents, a change from the first phase to the second phase being performed repeatedly, at least one variable representing the progression with respect to time of a signal of the NOx-sensor in a new catalytic converter being detected and stored, the process of detecting the at least one variable being repeated at later points in time, deviations between the variables, 4 which variables are detected at different points in time, being ascertained and the catalytic converter being judged as being defective, if at least one deviation exceeds a predetermined threshold value, wherein the threshold value is ascertained by the multiplication of the at least one variable by a factor, or by the addition of an offset value to the at least one variable.
The invention is based upon the recognition that losses in the fanctionability of the NOx-storage catalytic converter are illustrated in the progression with respect to time of the NOx-concentration which can be measured downstream of the catalytic converter.
In the case of a predetermined NOx-raw mass charge mnol, the nitrogen oxide emissions nmo2 downstream of the catalytic converter increase when the functionability decreases as a result of the ageing process. This behaviour can be diagnosed; For example, the NOx-concentrations which can be measured in the storage phase downstream of the catalytic converter rise in an increasingly more rapid manner as the catalytic converter gets older. In the regeneration phase, the said concentrations fall in an increasingly more rapid manner as the catalytic converter gets older. In other words: the gradients of the NOx-concentrations measured downstream of the catalytic converter become steeper as the age of the catalytic 1k converter increases.
Exemplified embodiments of the invention are explained hereinunder with reference to the drawings, in which Figure 1 shows the technical environment of the invention, Figure 2 shows the progression with respect to time of the signal of an NOxsensor, which is disposed downstream of the catalytic converter, with the catalytic converter at different states of ageing, Figure 3 shows an example of a mixture control strategy which is tailored to suit the function of the NOx-storage catalytic converter, and Figure 4 shows one exemplified embodiment of the sequence of the method in accordance with the invention.
Figure 1 shows in detail an internal combustion engine 1 having a catalytic converter 2, an exhaust gas probe 3, an NOx-sensor 4, a control device 5, a fuel metering means 6, different sensors 7, 8, 9 for load L and rotational speed n and, where appropriate, further operating parameters of the internal combustion engine such 6 as temperatures, throttle valve position etc. and a malfunction lamp 10 as an example of a means for indicating and/or storing a malfunction.
From the said input signals and, where appropriate, further input signals, the control device forms inter alia fuel metering signals by means of which the fuel metering means 6 is controlled. The fuel metering means 6 can be formed both for a so-called intake manifold injection procedure and for a direct petrol injection or diesel injection procedure into the combustion chambers of the individual cylinders. The mixture composition can be varied by way of a change in the injection pulse widths, by means of which the fuel metering means is controlled.
The core of the method in accordance with the invention relates primarily in this environment to the cooperation of the control device 5 with the NOx-sensor 4 which is disposed downstream of the catalytic converter.
Figure 2 illustrates the phase change with an illustration of the signal behaviour of the NOx-sensor 4 which is disposed downstream of the catalytic converter (Figure 2a) and with the associated fuel/air ratio lambda, as detected by the exhaust gas probe 3 which is disposed upstream of the catalytic converter (Figure 2b).
At time t=O, the NOx-storage catalytic converter is empty. In the subsequent first 7 phase Phl the internal combustion engine is operated with a lean mixture (lambda > 1). This corresponds to the step 3.1 in Figure 3. The nitrogen oxides emitted are stored in the storage catalytic converter. The first phase (lean phase) which is also defined as the storage phase is terminated ideally when the storage catalytic converter 2 is full.
The storage catalytic converter is considered, for example, to be full, if the signal of the NOx-sensor achieves an upper threshold value UL. See step 3.2 in Figure 3.
The first phase is followed by a second phase M2, in which the storage catalytic converter is regenerated, which is represented by the step 3.3 in Figure 3. The second phase is also defined as a regeneration phase. In this exemplified embodiment, the regeneration process is performed in phase M2 when the engine is operating with a lambda value less than 1. The internal combustion engine which operates with a richer fuel mixture emits non-combusted HC and CO as a reducing agent. Under the influence of the catalytic converter the reducing agent reacts with the stored nitrogen oxides to produce water, C02 and N2, which are transported further with the exhaust gas. As a result, the storage device is then ready to receive nitrogen oxides once again, Le it is regenerated. During the regeneration, the NOx-content of the exhaust gas downstream of the storage catalytic converter decreases in a continuous manner. As soon as the signal of the 8 NOx-sensor achieves a lower threshold value LL, there is a change-over to the lean operation and NOx is stored once again in the storage catalytic converter. See step 3.4 in Figure 3. Between the phases Phl and M2 the control device 5 performs a continuous change-over procedure.
As a result of ageing, the storage and regeneration times are shortened. This illustrated in a symbolic manner in Figure 2 by a reduction in the duration of the time period. In reality, the reduction occurs substantially more slowly. However, the position of the upper and lower threshold remains constant.
The constant increase and decrease in the NOx-concentration downstream of the storage catalytic converter is typical of known NOx-storage catalytic converters. The rate of NOx-storage falls in a continuous manner as the filling rate increases, so that the NOx-concentrations which can be measured downstream of the storage catalytic converter increase in the exhaust gas as the filling rate increases.
The ideas for the monitoring process are based upon a measurement of the NOxemissions downstream of the catalytic converter using the NOx-sensor.
In a first exemplified embodiment, the curve progression as shown in Figure 2a is measured in the fresh state, the curve progression is stored, the curve progression is measured at subsequent points in time and the curve progression which is 9 recorded subsequently is compared to the stored curve progression. If the deviations exceed a predetermined measurement, the catalytic converter is considered to be defective.
The curve progression as shown in Figure 2 can be reconstructed at specific times, for example, from predetermined characteristic value pairs of the NOxconcentration. Characteristic value pairs are represented, for example, by the reversal points 0 1, 02,..., U 1, U2,... of the signal progression in Figure 2.
Instead of comparing a plurality of individual points of the curves it is possible, for example, to evaluate the ascending gradient thereof, i.e. the quotient of the difference between two NOx-values and the time difference, by means of which these values have been determined. For example, the ascending gradient G in the discharge or regeneration phase can be calculated to G = (LI, - UL) ffl - tl). See Figure 4, steps 4.1 and 4.2.
The ascending gradient can be compared in step 4.3 to a predetermined limit value G-Schwell. An error is indicated by a warning lamp MIL (no. 10 in Figure 1) in step 4.4 if this limit value is exceeded, where appropriate after statistical protection.
The limit value can be fixed, for example, in the following manner: The initial ascending gradient GO is determined in the case of a new catalytic converter. The limit value is fixed as an offset or factor, for example, as 1.5 times of the initial ascending gradient.
As an alternative to storing an initial curve progression, the curve progression can also be modelled. If a functional catalytic converter is taken as a basis, it is possible to form an expected value for the NOxconcentration downstream of the catalytic converter from the operating parameters of the engine, such as load, rotational speed, lambda, progression of the lambda value upstream of the catalytic converter. If the actually measured NOx-concentration deviates to an unacceptable extent from the modelled progression, it is judged to be a sign of a defective catalytic converter.
The ascending gradient can be determined and evaluated separately for the storage and regeneration phase or can also be determined as an average value of the ascending gradients in both phases over one or several storage and regeneration periods.
Likewise, the length of one or several storage or regeneration phases, the duration of the period of the storage/regeneration cycle or the frequency of the periodic NOx-concentration oscillations can be used as a measurement for the ascending gradient.
11 For example, the length of the regeneration phase is simultaneously determined by the discharge capability of the storage catalytic converter. In so doing, it is assumed that during the regeneration phase at lambda 1 the NOx-concentration fails according to a characteristic progression with respect to time. Therefore, it is possible to define the maximum permissible regeneration periods. If the regeneration period has exceeded a predetermined permissible regeneration period but the NOx-concentration has not achieved a threshold value, the catalytic converter is considered to be defective.
Further exemplified embodiments are based upon the formation of the instantaneous or integrated NOx-mass flow downstream of the catalytic converter. The NOx-mass flow mn02 downstream of the catalytic converter can be estimated on the basis of the NOx-concentration, which is detected downstream of the catalytic converter, where appropriate by also using the intake air mass flow (sensor 7) or a load and/or rotational speed signal.
The raw mass charge mno 1 into the catalytic converter can be estimated by virtue of a model. Therefore, by virtue of the test bench trials the raw nitrogen oxide emission of the engine can be ascertained without any subsequent exhaust gas treatment measures for an engine of a constructional series, can be stored in characteristics maps and used for modelling during the subsequent operation of different engines of this constructional series.
12 The quotient nmo2/mno I or the quotient of the integrals of these variables is a measurement for the storage capability of the catalytic converter as dependent upon ageing. Ideally, the quotient in an effective storage catalytic converter equals zero. As the storage catalytic converter ages, this quotient moves towards the value 1, at which the equality of the input and output emissions signifies a complete failure in the ability of the catalytic converter to convert pollutants. By virtue of a predetermined limit value, which is intended to comply with legislative standards, it is possible to differentiate between effective and inadequate catalytic converters.
The variables are only calculated during the layered operation but this calculation process is otherwise dependent upon the operating point. The layered operation is the operation using a layered charge in the cylinder. This refers to a spatially nonhomogenous fuel/air mixture composition in the cylinder. For example, the mixture in the region of the spark plug is rich, in order to guarantee a reliable ignition procedure and is lean in other regions, in order to reduce consumption. On average, the mixture in the layered operation is lean (1 <lambda<ca.3). Differentiated from this is the operation using a homogenous mixture distribution which, for example, provides a high level of output.
The process of forming the integral is associated with the advantage of extremely low sensitivity in relation to disruptions, for example, changes in the sensor signal 13 or changes in the NOx-raw mass and constitutes therefore an advantageously robust method. Moreover, the formation of the model is minimized by the limitation to the raw mass charge of NOx into the catalytic converter, which also enhances the robust nature of the method.
Furthermore, the raw mass charge can be used to calculate the charging, i. e. the filling level under the premise of a functional catalytic converter. As already described above, the storage capability falls as the charging increases. Consequently, the NOx-emission increases downstream of the catalytic converter as the charging increases. A plausibility comparison between the calculated charging and the measured NOx-concentration downstream of the catalytic converter can also be used for diagnostic purposes.
If the NOx-concentration exceeds a measurement which is plausible with respect to the calculated charging, the catalytic converter is defective.
The common aspect in all of the examples is the use of the NOx-sensor downstream of the catalytic converter for diagnostic purposes. The signal thereof is used to derive a characteristic variable of the NOxconcentration downstream of the catalytic converter.
I

Claims (1)

14 CLAIMS
1. A method of assessing the functionability of an NOx-storage catalytic converter which is supplied with exhaust gas from a combustion process, having an NOx-sensor which is disposed in the direction of flow downstream of an NOxstorage device, the exhaust gas being influenced in a first phase in such a manner that it contains more NOx-than in a second phase, the exhaust gas in the second phase being influenced in such a manner that it contains reducing agents, a change from the first phase to the second phase being performed repeatedly, at least one variable representing the progression with respect to time of a signal of the NOxsensor in a new catalytic converter being detected and stored, the process of detecting the at least one variable being repeated at later points in time, deviations between the variables, which variables are detected at different points in time, being ascertained and the catalytic converter being judged as being defective, if at least one deviation exceeds a predetermined threshold value, wherein the threshold value is ascertained by the multiplication of the at least one variable by a factor, or by the addition of an offset value to the at least one variable.
GB0116050A 1998-09-25 1999-09-15 Monitoring of an NOx-storage catalytic converter having an NOx-sensor connected downstream Expired - Fee Related GB2360956B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843871A DE19843871B4 (en) 1998-09-25 1998-09-25 Diagnosis of a NOx storage catalytic converter with downstream NOx sensor
GB9921660A GB2342597B (en) 1998-09-25 1999-09-15 Monitoring of an NOx-storage catalytic converter having an NOx-sensor connected downstream

Publications (3)

Publication Number Publication Date
GB0116050D0 GB0116050D0 (en) 2001-08-22
GB2360956A true GB2360956A (en) 2001-10-10
GB2360956B GB2360956B (en) 2002-04-03

Family

ID=26049064

Family Applications (2)

Application Number Title Priority Date Filing Date
GB0116045A Expired - Fee Related GB2360955B (en) 1998-09-25 1999-09-15 Monitoring of an NOx-storage catalytic converter having an NOx-sensor connected downstream
GB0116050A Expired - Fee Related GB2360956B (en) 1998-09-25 1999-09-15 Monitoring of an NOx-storage catalytic converter having an NOx-sensor connected downstream

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB0116045A Expired - Fee Related GB2360955B (en) 1998-09-25 1999-09-15 Monitoring of an NOx-storage catalytic converter having an NOx-sensor connected downstream

Country Status (1)

Country Link
GB (2) GB2360955B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1402935A1 (en) * 2002-09-20 2004-03-31 Ford Global Technologies, Inc. Filter diagnostics method and arrangement
GB2517140A (en) * 2013-07-29 2015-02-18 Gm Global Tech Operations Inc Control apparatus for operating an internal combustion engine

Also Published As

Publication number Publication date
GB2360955A (en) 2001-10-10
GB2360956B (en) 2002-04-03
GB2360955B (en) 2002-04-03
GB0116045D0 (en) 2001-08-22
GB0116050D0 (en) 2001-08-22

Similar Documents

Publication Publication Date Title
GB2342597A (en) Assessing deterioration of a NOx catalytic converter
US6347513B2 (en) Method for regenerating a NOx storage catalytic converter for an internal combustion engine
US6408615B1 (en) Method for controlling an NOx accumulating catalytic converter
US7458203B2 (en) Hybrid vehicle and method for operating a hybrid vehicle
US8683856B2 (en) Catalyst abnormality diagnosis apparatus
US8091404B2 (en) Abnormality diagnosis apparatus for NOx sensor
US9021789B2 (en) Degradation diagnostic apparatus for NOx catalyst
US6230487B1 (en) Method for regenerating a catalytic converter
US8434294B2 (en) Method and device for determining a dynamic time duration for exhaust gas probes of an internal combustion engine
US8613219B2 (en) Catalyst abnormality diagnosis apparatus
US6438947B2 (en) Method for adapting a raw NOx concentration value of an internal combustion engine operating with an excess of air
US20020173919A1 (en) Exhaust emission control system for internal combustion engine
US6826471B2 (en) Method for determining nitrogen oxide content in internal combustion engine exhaust gases containing oxygen
US6901749B2 (en) Exhaust emission control system for internal combustion engine
US6484493B2 (en) Exhaust emission control device for internal combustion engine
US7159385B2 (en) Apparatus for and method of detecting deterioration of catalyst in internal combustion engine
US6467256B2 (en) Exhaust emission control system for internal combustion engine
GB2360956A (en) Assessing deterioration of a NOx catalytic converter
JP3626020B2 (en) Exhaust gas purification device for internal combustion engine
US8312707B2 (en) Method for operating an exhaust-gas catalytic converter of an internal combustion engine
KR101629284B1 (en) Method and device for operating an internal combustion engine
KR101467190B1 (en) Regeneration method for a storage catalytic converter
JP4144405B2 (en) Deterioration judgment device for exhaust aftertreatment device
JP4505330B2 (en) Method for regenerating first and second catalysts of exhaust purification equipment
CN114729587A (en) Method for diagnosing an aftertreatment system of a spark-ignition engine

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20060915