JP4288715B2 - Method for producing tris (dibromopropyl) isocyanurate - Google Patents

Method for producing tris (dibromopropyl) isocyanurate Download PDF

Info

Publication number
JP4288715B2
JP4288715B2 JP03579498A JP3579498A JP4288715B2 JP 4288715 B2 JP4288715 B2 JP 4288715B2 JP 03579498 A JP03579498 A JP 03579498A JP 3579498 A JP3579498 A JP 3579498A JP 4288715 B2 JP4288715 B2 JP 4288715B2
Authority
JP
Japan
Prior art keywords
methylene chloride
water
heptane
solvent
taic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03579498A
Other languages
Japanese (ja)
Other versions
JPH11228549A (en
Inventor
光時 河畑
巧 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP03579498A priority Critical patent/JP4288715B2/en
Publication of JPH11228549A publication Critical patent/JPH11228549A/en
Application granted granted Critical
Publication of JP4288715B2 publication Critical patent/JP4288715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は合成樹脂用の難燃剤として良好なトリス(ジブロモプロピル)イソシアヌレート(以下TAIC−6Bと略す)の製造方法に関する。
【0002】
【従来の技術】
従来よりTAIC−6Bの製造方法としては、トリアリルイソシアヌレート(以下TAICと略す)を良溶媒中、臭素と反応させることにより得られる反応液を貧溶媒中に添加して晶析させる方法や、TAICを良溶媒と貧溶媒の混合溶媒中、臭素と反応させることにより結晶を生成させる方法が知られている。例えば、特開昭56−53668号公報では、脂肪族ハロゲン化炭化水素中でTAICと臭素を反応させ、臭素滴下終了後、炭素数5以上の飽和炭化水素を加え反応生成物を結晶化させた後濾過して生成物を得ている。また、同公報には、脂肪族ハロゲン化炭化水素と炭素数5以上の飽和炭化水素との混合溶媒中で、TAICと臭素の反応を行い、得られた反応液を濾過して結晶を得る方法が示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開昭56−53668号公報に記載の方法は、工業的製法としては満足できるものではなかった。すなわち、良溶媒中でTAICと臭素を反応させ得られた反応液に炭素数5以上の飽和炭化水素を加えて晶析する場合には、晶析の初期にスケーリング等が発生するという問題があった。また、脂肪族ハロゲン化炭化水素と炭素数5以上の飽和炭化水素との混合溶媒中で、TAICと臭素の反応を行い、得られた反応液を濾過して結晶を得る方法では、TAIC−6Bの収率が低いという問題があり、工業的製法としては十分ではなかった。
【0004】
【課題を解決するための手段】
本発明者らは、操作性の簡略化ができ、かつ収率が良好なTAIC−6Bの製法について鋭意検討した結果、良溶媒と貧溶媒との混合溶媒中でTAICの臭素化を行い得られた反応液に貧溶媒を加え加熱し、良溶媒を留去して反応生成物を晶析させることにより、高い収率でTAIC−6Bが得られることを見出し本発明を完成させるに至った。
【0005】
すなわち本発明は、(1)良溶媒と貧溶媒との混合溶媒中でTAICと臭素を反応させ得られた反応液に貧溶媒を加え、この反応液を加熱して良溶媒を留去することにより、反応生成物を高回収率で晶析させることを特徴とするTAIC−6Bの製造方法、及び(2)良溶媒と貧溶媒との混合溶媒中でTAICと臭素を反応させ得られた反応液を、該反応液中に貧溶媒を加えながら加熱して良溶媒を留去することにより、反応生成物を高回収率で晶析させることを特徴とするTAIC−6Bの製造方法である。
【0006】
以下、本発明を詳細に説明する。
【0007】
本発明の方法で使用される良溶媒としては、TAICを溶解でき、かつ臭素に対し不活性であるか又は極めて低い反応性を有するものであれば特に限定するものではないが、一般的にはハロゲン化炭化水素系溶剤が使用される。具体的には、例えば、1,1,1−トリクロロエタン、ジクロロメタン、クロロホルム、1,1,2−トリクロエタン、エチレンジクロライド、臭化メチレン、ブロモホルム等が挙げられる。有機溶剤の使用量としては、特に限定するものではないが、反応液粘度、経済性等により反応に具するTAICに対して重量比で2〜50倍量用いるのが望ましい。
【0008】
本発明の方法において貧溶媒としては、TAIC−6Bが溶解せず、かつ臭素に対し不活性であるか又は極めて低い反応性を有するものであれば特に限定するものではないが、使用される良溶媒の沸点以上の沸点を有するものが好ましい。例えば、メタノール、エタノール、n−プロパノール、イソプロパノール等のアルコール類、ペンタン、ヘキサン、シクロヘキサン等の脂肪族炭化水素類、水等が挙げられ、これらを単独又は混合して使用しても差し支えない。なお本発明の方法において、TAICと臭素との反応時に使用される貧溶媒としては水は好ましくない。
【0009】
本発明において、良溶媒と貧溶媒の組み合わせとしては、用いる良溶媒の沸点以上の沸点を有する貧溶媒が好ましく、良溶媒の蒸留分離を簡便に行うため、貧溶媒の沸点が用いる良溶媒の沸点より10℃以上高いことが更に好ましい。例えば、塩化メチレン(b.p.39.8℃)−メタノール(b.p.64.5℃)、塩化メチレン−イソプロパノール(b.p.82.4℃)、塩化メチレン−ジイソプロピルエーテル(b.p.68.5℃)、塩化メチレン−ヘプタン(b.p.98.4℃)、クロロホルム(b.p.61.2℃)−ヘプタン、塩化メチレン−メタノール−水、塩化メチレン−イソプロパノール−水、塩化メチレン−ジイソプロピルエーテル−水、塩化メチレン−ヘプタン−水、クロロホルム−ヘプタン−水等の組み合わせが好適なものとして挙げられる。これらのうち、結晶の分散状態が良好な塩化メチレン−ヘプタン−水の組み合わせが特に好ましい。
【0010】
貧溶媒の使用量は、臭素化反応工程では、反応生成物が全量晶析しないようにすることが肝要であり、良溶媒に対し通常0.2〜0.8重量比である。
【0011】
臭素化反応が終了後、添加する貧溶媒の量は、アルコール類及び脂肪族炭化水素類からなる群から選ばれる1種又は2種以上と水を併用する場合、先の良溶媒量に対し各々通常0.2〜0.8重量比及び0.1〜0.8重量比であり、水のみを加える場合、先の良溶媒に対し通常0.5〜1.5重量比である。
【0012】
貧溶媒の量としては、特に限定するものではないが、最終的にはTAIC−6Bに対して2〜10倍量となる量が好ましい。
【0013】
本発明の方法において臭素化試剤として使用する臭素の使用量は、反応に具するTAICに対して通常3〜5倍モル比を使用するが、好ましくは3〜3.5倍モル比である。
【0014】
本発明の方法では触媒を必要としないが、触媒を用いても良い。使用されるルイス酸触媒としては、特に限定するものではないが有機溶媒に可溶なものが好まれる。例えば、目的により三塩化アンチモン、五塩化アンチモン、三臭化アンチモン等のハロゲン化アンチモン類、三塩化チタン、四塩化チタン等のハロゲン化チタン類、三塩化硼素、三臭素硼素等のハロゲン化硼素類及び三弗化硼素ジエチルエーテル錯体等のハロゲン化硼素錯体等を用いても良い。これらは、単独又は混合して使用しても差支えない。
【0015】
臭素の滴下温度は、触媒及び目的とする臭素化数により異なるが、通常−30〜50℃の範囲であり、好ましくは−5〜40℃の範囲である。また、臭素の滴下時間は、触媒の種類及び添加量、TAICの濃度、そして滴下時の反応温度により調整するが、通常1〜12時間程度で滴下する。滴下後、直ちに後処理を行っても良いが所定の温度で1〜12時間熟成を行っても良い。
【0016】
反応終了後、余剰の臭素をそのままの状態で次工程へ移行しても良いが、必要により、例えば、ヒドラジン、亜硫酸水素ナトリウム等の還元剤を添加することにより還元してもよい。
【0017】
反応終了後、余剰の臭素をそのまま又は還元した後、貧溶媒を滴下後加熱により良溶媒を留去するか、又は貧溶媒を滴下しながら良溶媒を留去する。貧溶媒の滴下時間は、通常30分以上の時間であれば問題なく、好ましくは、結晶の分散状態等を考慮すると約1〜3時間の範囲が好ましい。
【0018】
良溶媒の蒸留は、通常常圧下で行われるが、減圧下でも実施できる。良溶媒の留去又は途中において、スラリー濃度調整のため貧溶媒を添加しても良い。良溶媒の蒸留後、結晶の析出量を増加させるため、更に水を添加してもよい。この時の水量としては、特に限定するものではないが、反応に使用する良溶媒に対し、0.2〜2重量比が良い。
【0019】
得られたTAIC−6Bのスラリー溶液を濾過、乾燥することによりTAIC−6Bを製品として得る事ができる。分離する方法は特に限定するものではないが、例えば、遠心分離、吸引濾過等が挙げられる。また、乾燥方法としては、常圧乾燥、減圧乾燥、スプレードライ等が挙げられる。
【0020】
【発明の効果】
本発明により高純度のTAIC−6Bを高収率で得ることができる。
【0021】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0022】
実施例1
攪拌機、温度計及びジムロート冷却器を備えた1Lの丸底4つ口丸底フラスコにTAIC60g、ジクロロメタン394g、ヘプタン202gを仕込み、水浴上で30℃とした後、これに臭素119gを4時間かけて滴下し、さらに同温度で1時間熟成を行った。
【0023】
反応終了後、反応液に水60gを添加し、次に20重量%ヒドラジン水溶液を5g添加し、余剰の臭素を還元した。
【0024】
余剰臭素を還元後、ヘプタン202gを滴下ロートに仕込み、温度30℃で1時間かけて滴下した。
【0025】
滴下後、常圧攪拌下、バス温度を55℃にし、塩化メチレンを留去した。
【0026】
内温が70℃まで加熱しながら約30分間蒸留留去を続けた。蒸留留去後、内温を30℃まで冷却した。TAIC−6Bは、白色結晶となってヘプタン/水中で均一分散していた。
【0027】
その後、TAIC−6Bのスラリー溶液を吸引濾過し、水洗を行った後、乾燥することにより目的とするTAIC−6B白色の粉体163gを得た。
【0028】
実施例2
実施例1と同じ反応装置を用い、原料の貧溶媒をイソプロパノールに変更した以外、実施例1と同じ操作を行いTAIC−6B白色の粉体162gを得た。
【0029】
実施例3
実施例1と同じ反応装置及び原料を用い、塩化メチレン蒸留留去後、内温を30℃まで冷却し、更に水200gを30分かけて滴下した以外、実施例1と同じ操作を行いTAIC−6B白色の粉体168gを得た。
【0030】
実施例4
実施例1と同じ反応装置及び原料を用い、ヘプタン202gを滴下しながら塩化メチレンを蒸留留去し、内温を30℃まで冷却後、更に水200gを30分かけて滴下した以外、実施例1と同じ操作を行いTAIC−6B白色の粉体168gを得た。
【0031】
比較例1
実施例1と同じ反応装置を用い、反応器にTAIC60g、ジクロロメタン394gを仕込み、水浴上で30℃とした後、これに臭素119gを4時間かけて滴下し、さらに同温度で1時間熟成を行った。
【0032】
反応終了後、20重量%ヒドラジン水溶液を5g添加し、余剰の臭素を還元後、ヘプタン202gを滴下ロートに仕込み、温度30℃で1時間かけて滴下するとスケーリングが発生し、TAIC−6Bは粘調物となり取り上げる事ができなかった。
【0033】
比較例2
実施例1と同じ反応装置を用い、反応器にTAIC60g、ジクロロメタン394g、ヘプタン202gを仕込み、水浴上で30℃とした後、これに臭素119gを4時間かけて滴下し、さらに同温度で1時間熟成を行った。
【0034】
反応終了後、20重量%ヒドラジン水溶液を5g添加し、余剰の臭素を還元した。ここで濾過を行いTAIC−6B白色の粉体140gを得た。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing tris (dibromopropyl) isocyanurate (hereinafter abbreviated as TAIC-6B) as a flame retardant for a synthetic resin.
[0002]
[Prior art]
Conventionally, as a method for producing TAIC-6B, triallyl isocyanurate (hereinafter abbreviated as TAIC) in a good solvent, a reaction solution obtained by reacting with bromine is added to a poor solvent for crystallization, A method for producing crystals by reacting TAIC with bromine in a mixed solvent of a good solvent and a poor solvent is known. For example, in Japanese Patent Application Laid-Open No. 56-53668, TAIC and bromine are reacted in an aliphatic halogenated hydrocarbon, and after completion of the dropwise addition of bromine, a saturated hydrocarbon having 5 or more carbon atoms is added to crystallize the reaction product. After filtration, the product is obtained. Further, the publication discloses a method of obtaining crystals by reacting TAIC and bromine in a mixed solvent of an aliphatic halogenated hydrocarbon and a saturated hydrocarbon having 5 or more carbon atoms, and filtering the obtained reaction solution. It is shown.
[0003]
[Problems to be solved by the invention]
However, the method described in JP-A-56-53668 is not satisfactory as an industrial production method. That is, when crystallization is performed by adding a saturated hydrocarbon having 5 or more carbon atoms to a reaction solution obtained by reacting TAIC and bromine in a good solvent, there is a problem that scaling or the like occurs at the initial stage of crystallization. It was. In the method of obtaining a crystal by reacting TAIC and bromine in a mixed solvent of an aliphatic halogenated hydrocarbon and a saturated hydrocarbon having 5 or more carbon atoms and filtering the resulting reaction solution, TAIC-6B There was a problem that the yield of was low, and it was not enough as an industrial manufacturing method.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on the production method of TAIC-6B that can simplify the operability and have a good yield, the present inventors can perform the bromination of TAIC in a mixed solvent of a good solvent and a poor solvent. The reaction solution was heated by adding a poor solvent, and the good solvent was distilled off to crystallize the reaction product. As a result, it was found that TAIC-6B was obtained in a high yield, and the present invention was completed.
[0005]
That is, the present invention includes (1) adding a poor solvent to a reaction solution obtained by reacting TAIC and bromine in a mixed solvent of a good solvent and a poor solvent, and heating the reaction solution to distill off the good solvent. And the production method of TAIC-6B characterized by crystallizing the reaction product at a high recovery rate, and (2) reaction obtained by reacting TAIC and bromine in a mixed solvent of a good solvent and a poor solvent The liquid is heated while adding a poor solvent to the reaction liquid to distill off the good solvent, whereby the reaction product is crystallized at a high recovery rate.
[0006]
Hereinafter, the present invention will be described in detail.
[0007]
The good solvent used in the method of the present invention is not particularly limited as long as it can dissolve TAIC and is inert to bromine or has a very low reactivity, but in general, Halogenated hydrocarbon solvents are used. Specific examples include 1,1,1-trichloroethane, dichloromethane, chloroform, 1,1,2-trichloroethane, ethylene dichloride, methylene bromide, bromoform, and the like. The amount of the organic solvent used is not particularly limited, but it is desirable to use 2 to 50 times the weight ratio of TAIC provided for the reaction due to the viscosity of the reaction solution, economy and the like.
[0008]
In the method of the present invention, the poor solvent is not particularly limited as long as TAIC-6B does not dissolve and is inactive to bromine or has extremely low reactivity. What has the boiling point more than the boiling point of a solvent is preferable. Examples thereof include alcohols such as methanol, ethanol, n-propanol, and isopropanol, aliphatic hydrocarbons such as pentane, hexane, and cyclohexane, and water. These may be used alone or in combination. In the method of the present invention, water is not preferred as a poor solvent used in the reaction of TAIC and bromine.
[0009]
In the present invention, the combination of the good solvent and the poor solvent is preferably a poor solvent having a boiling point equal to or higher than the boiling point of the good solvent to be used. More preferably, it is 10 ° C. or higher. For example, methylene chloride (bp 39.8 ° C.)-Methanol (bp 64.5 ° C.), methylene chloride-isopropanol (bp 82.4 ° C.), methylene chloride-diisopropyl ether (b. 68.5 ° C), methylene chloride-heptane (bp 98.4 ° C), chloroform (bp 61.2 ° C) -heptane, methylene chloride-methanol-water, methylene chloride-isopropanol-water Suitable combinations include methylene chloride-diisopropyl ether-water, methylene chloride-heptane-water, chloroform-heptane-water, and the like. Of these, the combination of methylene chloride-heptane-water with good crystal dispersion is particularly preferred.
[0010]
In the bromination reaction step, it is important that the amount of the poor solvent used is such that the entire reaction product is not crystallized, and is usually 0.2 to 0.8 weight ratio with respect to the good solvent.
[0011]
After the bromination reaction is completed, the amount of the poor solvent to be added is one or two or more selected from the group consisting of alcohols and aliphatic hydrocarbons, and when water is used in combination with the above good solvent amount, respectively. Usually 0.2 to 0.8 weight ratio and 0.1 to 0.8 weight ratio. When only water is added, it is usually 0.5 to 1.5 weight ratio with respect to the previous good solvent.
[0012]
The amount of the poor solvent is not particularly limited, but an amount that is finally 2 to 10 times that of TAIC-6B is preferable.
[0013]
The amount of bromine used as the bromination reagent in the method of the present invention is usually 3 to 5 times the molar ratio with respect to TAIC included in the reaction, but preferably 3 to 3.5 times the molar ratio.
[0014]
The method of the present invention does not require a catalyst, but a catalyst may be used. The Lewis acid catalyst used is not particularly limited but is preferably soluble in an organic solvent. For example, antimony halides such as antimony trichloride, antimony pentachloride, and antimony tribromide, titanium halides such as titanium trichloride and titanium tetrachloride, and boron halides such as boron trichloride and boron tribromide. Alternatively, a boron halide complex such as boron trifluoride diethyl ether complex may be used. These may be used alone or in combination.
[0015]
The dropping temperature of bromine varies depending on the catalyst and the target bromination number, but is usually in the range of −30 to 50 ° C., preferably in the range of −5 to 40 ° C. Moreover, although the dripping time of bromine adjusts with the kind and addition amount of a catalyst, the density | concentration of TAIC, and the reaction temperature at the time of dripping, it is dripped normally about 1 to 12 hours. Immediately after the dropping, post-treatment may be performed, but aging may be performed at a predetermined temperature for 1 to 12 hours.
[0016]
After completion of the reaction, excess bromine may be transferred to the next step as it is, but may be reduced, for example, by adding a reducing agent such as hydrazine or sodium hydrogen sulfite.
[0017]
After completion of the reaction, after excess bromine is reduced or reduced, the poor solvent is added dropwise and then the good solvent is distilled off by heating, or the good solvent is distilled off while dropping the poor solvent. The dropping time of the poor solvent is usually no problem as long as it is 30 minutes or longer, and preferably in the range of about 1 to 3 hours in consideration of the dispersed state of the crystal.
[0018]
Although the good solvent is usually distilled under normal pressure, it can also be carried out under reduced pressure. A poor solvent may be added to adjust the slurry concentration during or after the good solvent is distilled off. After distillation of the good solvent, water may be further added to increase the amount of precipitated crystals. The amount of water at this time is not particularly limited, but is preferably 0.2 to 2 weight ratio with respect to the good solvent used in the reaction.
[0019]
TAIC-6B can be obtained as a product by filtering and drying the obtained slurry solution of TAIC-6B. The method for separation is not particularly limited, and examples thereof include centrifugation and suction filtration. Examples of the drying method include normal pressure drying, reduced pressure drying, and spray drying.
[0020]
【The invention's effect】
According to the present invention, high purity TAIC-6B can be obtained in high yield.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
[0022]
Example 1
A 1 L round bottom 4-neck round bottom flask equipped with a stirrer, a thermometer and a Dimroth condenser was charged with 60 g of TAIC, 394 g of dichloromethane and 202 g of heptane and brought to 30 ° C. on a water bath. The solution was added dropwise and further aged at the same temperature for 1 hour.
[0023]
After completion of the reaction, 60 g of water was added to the reaction solution, and then 5 g of 20% by weight hydrazine aqueous solution was added to reduce excess bromine.
[0024]
After reducing excess bromine, 202 g of heptane was charged into the dropping funnel and added dropwise at 30 ° C. over 1 hour.
[0025]
After dropping, the bath temperature was raised to 55 ° C. with stirring at normal pressure, and methylene chloride was distilled off.
[0026]
Distilling off was continued for about 30 minutes while heating the internal temperature to 70 ° C. After distilling off, the internal temperature was cooled to 30 ° C. TAIC-6B became white crystals and was uniformly dispersed in heptane / water.
[0027]
Thereafter, the TAIC-6B slurry solution was subjected to suction filtration, washed with water, and dried to obtain 163 g of the desired TAIC-6B white powder.
[0028]
Example 2
Using the same reactor as in Example 1, the same operation as in Example 1 was performed except that the poor solvent of the raw material was changed to isopropanol to obtain 162 g of TAIC-6B white powder.
[0029]
Example 3
Using the same reaction apparatus and raw materials as in Example 1, after distilling off methylene chloride, the internal temperature was cooled to 30 ° C., and the same operation as in Example 1 was carried out except that 200 g of water was added dropwise over 30 minutes. 168 g of 6B white powder was obtained.
[0030]
Example 4
Example 1 except that methylene chloride was distilled off while 202 g of heptane was added dropwise, the internal temperature was cooled to 30 ° C., and 200 g of water was added dropwise over 30 minutes, using the same reaction apparatus and raw materials as in Example 1. 168 g of TAIC-6B white powder was obtained.
[0031]
Comparative Example 1
Using the same reactor as in Example 1, the reactor was charged with 60 g of TAIC and 394 g of dichloromethane, adjusted to 30 ° C. on a water bath, 119 g of bromine was added dropwise over 4 hours, and further aged at the same temperature for 1 hour. It was.
[0032]
After completion of the reaction, 5 g of 20% by weight hydrazine aqueous solution was added, excess bromine was reduced, 202 g of heptane was charged into the dropping funnel, and dripping over 1 hour at a temperature of 30 ° C., scaling occurred. TAIC-6B I couldn't take it up.
[0033]
Comparative Example 2
Using the same reactor as in Example 1, the reactor was charged with 60 g of TAIC, 394 g of dichloromethane, and 202 g of heptane, adjusted to 30 ° C. on a water bath, and then dropped with 119 g of bromine over 4 hours, and further at the same temperature for 1 hour Aged.
[0034]
After completion of the reaction, 5 g of 20% by weight hydrazine aqueous solution was added to reduce excess bromine. Filtration was performed here to obtain 140 g of TAIC-6B white powder.

Claims (4)

良溶媒と貧溶媒との混合溶媒中でトリアリルイソシアヌレートと臭素を反応させ得られた反応液に貧溶媒を加え、この反応液を加熱して良溶媒を留去することにより、反応生成物を高回収率で晶析させるトリス(ジブロモプロピル)イソシアヌレートの製造方法であって、良溶媒と貧溶媒との組合せが、塩化メチレン−メタノール、塩化メチレン−イソプロパノール、塩化メチレン−ジイソプロピルエーテル、塩化メチレン−ヘプタン、クロロホルム−ヘプタン、塩化メチレン−メタノール−水、塩化メチレン−イソプロパノール−水、塩化メチレン−ジイソプロピルエーテル−水、塩化メチレン−ヘプタン−水、及びクロロホルム−ヘプタン−水からなる群より選ばれることを特徴とするトリス(ジブロモプロピル)イソシアヌレートの製造方法A reaction product is obtained by adding a poor solvent to the reaction solution obtained by reacting triallyl isocyanurate and bromine in a mixed solvent of a good solvent and a poor solvent, and heating the reaction solution to distill off the good solvent. Is a method for producing tris (dibromopropyl) isocyanurate which crystallizes at a high recovery rate, and a combination of a good solvent and a poor solvent is methylene chloride-methanol, methylene chloride-isopropanol, methylene chloride-diisopropyl ether, methylene chloride -Selected from the group consisting of heptane, chloroform-heptane, methylene chloride-methanol-water, methylene chloride-isopropanol-water, methylene chloride-diisopropyl ether-water, methylene chloride-heptane-water, and chloroform-heptane-water. Made of featured tris (dibromopropyl) isocyanurate Method. 良溶媒と貧溶媒との混合溶媒中でトリアリルイソシアヌレートと臭素を反応させ得られた反応液を、該反応液中に貧溶媒を加えながら加熱して良溶媒を留去することにより、反応生成物を高回収率で晶析させるトリス(ジブロモプロピル)イソシアヌレートの製造方法であって、良溶媒と貧溶媒との組合せが、塩化メチレン−メタノール、塩化メチレン−イソプロパノール、塩化メチレン−ジイソプロピルエーテル、塩化メチレン−ヘプタン、クロロホルム−ヘプタン、塩化メチレン−メタノール−水、塩化メチレン−イソプロパノール−水、塩化メチレン−ジイソプロピルエーテル−水、塩化メチレン−ヘプタン−水、及びクロロホルム−ヘプタン−水からなる群より選ばれることを特徴とするトリス(ジブロモプロピル)イソシアヌレートの製造方法The reaction solution obtained by reacting triallyl isocyanurate and bromine in a mixed solvent of a good solvent and a poor solvent is heated by adding the poor solvent to the reaction solution, and the good solvent is distilled off to react. A method for producing tris (dibromopropyl) isocyanurate in which a product is crystallized at a high recovery rate, wherein a combination of a good solvent and a poor solvent is methylene chloride-methanol, methylene chloride-isopropanol, methylene chloride-diisopropyl ether, Selected from the group consisting of methylene chloride-heptane, chloroform-heptane, methylene chloride-methanol-water, methylene chloride-isopropanol-water, methylene chloride-diisopropyl ether-water, methylene chloride-heptane-water, and chloroform-heptane-water. Tris (dibromopropyl) isocyanurate characterized by The method of production. 良溶媒と貧溶媒との組合せが、塩化メチレン−イソプロパノール、塩化メチレン−ヘプタン、塩化メチレン−イソプロパノール−水、塩化メチレン−ヘプタン−水、及びクロロホルム−ヘプタン−水からなる群より選ばれることを特徴とする請求項1又は請求項2に記載のトリス(ジブロモプロピル)イソシアヌレートの製造方法The combination of the good solvent and the poor solvent is selected from the group consisting of methylene chloride-isopropanol, methylene chloride-heptane, methylene chloride-isopropanol-water, methylene chloride-heptane-water, and chloroform-heptane-water. A process for producing tris (dibromopropyl) isocyanurate according to claim 1 or 2 貧溶媒の沸点が、使用される良溶媒の沸点より10℃以上高いことを特徴とする請求項1乃至請求項3のいずれかに記載の製造方法。4. The production method according to claim 1, wherein the boiling point of the poor solvent is 10 ° C. or more higher than the boiling point of the good solvent used.
JP03579498A 1998-02-18 1998-02-18 Method for producing tris (dibromopropyl) isocyanurate Expired - Fee Related JP4288715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03579498A JP4288715B2 (en) 1998-02-18 1998-02-18 Method for producing tris (dibromopropyl) isocyanurate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03579498A JP4288715B2 (en) 1998-02-18 1998-02-18 Method for producing tris (dibromopropyl) isocyanurate

Publications (2)

Publication Number Publication Date
JPH11228549A JPH11228549A (en) 1999-08-24
JP4288715B2 true JP4288715B2 (en) 2009-07-01

Family

ID=12451841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03579498A Expired - Fee Related JP4288715B2 (en) 1998-02-18 1998-02-18 Method for producing tris (dibromopropyl) isocyanurate

Country Status (1)

Country Link
JP (1) JP4288715B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039490B3 (en) * 2004-08-14 2005-10-20 Degussa Process for the preparation of solid tris (2,3-dibromopropyl) isocyanurate
CN102617496B (en) * 2012-02-15 2014-05-21 中国石油大学(华东) Synthetic method of tris (2,3-dibromopropyl) sulfone isocyanurate

Also Published As

Publication number Publication date
JPH11228549A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
JPS6344756B2 (en)
ZA200505574B (en) Method for the production of benzophenones
JP4288715B2 (en) Method for producing tris (dibromopropyl) isocyanurate
JP2000053658A (en) Production of tris(dibromopropyl) isocyanurate
JP2729347B2 (en) Method for producing tris (tribromophenoxy) -s-triazine
JPS63316748A (en) Production of tetrabromobisphenol a
KR20010072086A (en) Method for the Production of N,N'-Carbonyldiazoles
JPH02223575A (en) Production of monochloroacetaldehyde trimer
US2662918A (en) Process for the preparation of polychlorinated derivatives of phenol
CN114634454A (en) Preparation method of 2, 4-dichlorophenyl triazolinone compound
JPS59225151A (en) Conversion of e isomer of 1,2-diphenyl-1- (4-(2-dimethylaminoethoxy)phenyl)-1-butene to tamoxiphene hcl
JP3956155B2 (en) Method for producing tetrabromobisphenol A bisdibromopropyl ether
JP2558497B2 (en) Method for producing alkyldihalogenophosphane
JP3161723B2 (en) Method for producing chlorosulfonyl isocyanate
JP3044828B2 (en) Preparation of hexabromocyclododecane
JP2844899B2 (en) Method for producing hexabromocyclododecane
JP3044830B2 (en) Method for producing hexabromocyclododecane
JPH05125017A (en) Production of chloromethyl pivalate
JPH01143878A (en) Production of silicon azide
McCrindle et al. Palladium (II) complexes derived from the potentially chelating ligands 2, 2, NN-tetramethylpent-4-enylamine and 2, 2-dimethylpent-4-enyl methyl sulphide. Crystal structures of dichloro [2, 2-dimethylpent-(E)-3-enyl methyl sulphide] palladium (II) and chloro [1–3-η-syn-1-(1, 1′-dimethyl-2′-methylthioethyl) allyl] palladium (II)
JPS63196593A (en) Production of alkyldihalogenophosphane
KR100407857B1 (en) Preparation Method Of Hexabromocyclododecane
JPH05155790A (en) Production of tetrachlorotetrafluoropropanes
JPS6284091A (en) Production of electrically conductive inorganic high polymer containing group v metal
JP2020026413A (en) Method for purifying 4-halo cyclohexane-1-carboxylic acid, and methods for producing products containing 4- halo cyclohexane-1-carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees