JP3044830B2 - Method for producing hexabromocyclododecane - Google Patents

Method for producing hexabromocyclododecane

Info

Publication number
JP3044830B2
JP3044830B2 JP3137079A JP13707991A JP3044830B2 JP 3044830 B2 JP3044830 B2 JP 3044830B2 JP 3137079 A JP3137079 A JP 3137079A JP 13707991 A JP13707991 A JP 13707991A JP 3044830 B2 JP3044830 B2 JP 3044830B2
Authority
JP
Japan
Prior art keywords
reaction
hbcd
bromine
solvent
cdt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3137079A
Other languages
Japanese (ja)
Other versions
JPH04338345A (en
Inventor
隆雄 松葉
光時 河畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3137079A priority Critical patent/JP3044830B2/en
Publication of JPH04338345A publication Critical patent/JPH04338345A/en
Application granted granted Critical
Publication of JP3044830B2 publication Critical patent/JP3044830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性に優れた1,
2,5,6,9,10−ヘキサブロモシクロドデカンの
製造法に関する。本発明で得られる1,2,5,6,
9,10−ヘキサブロモシクロドデカンは、高分子化合
物の難燃剤として有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for producing 2,5,6,9,10-hexabromocyclododecane. 1,2,5,6 obtained by the present invention
9,10-Hexabromocyclododecane is a compound useful as a flame retardant for a polymer compound.

【0002】[0002]

【従来の技術】1,2,5,6,9,10−ヘキサブロ
モシクロドデカン(以下HBCDと略記する)はポリス
チレン樹脂等に使用されている難燃剤である。この難燃
剤は、臭素を1,5,9−シス,トランス,トランス−
シクロドデカトリエン(以下CDTと略記する)に付加
させる反応によって合成される。
2. Description of the Related Art 1,2,5,6,9,10-Hexabromocyclododecane (hereinafter abbreviated as HBCD) is a flame retardant used for polystyrene resins and the like. This flame retardant converts bromine into 1,5,9-cis, trans, trans-
It is synthesized by a reaction to be added to cyclododecatriene (hereinafter abbreviated as CDT).

【0003】ODS逆相カラムを装着した高速液体クロ
マトグラフィーを用いて分析すると、HBCDには3種
類の異性体が存在することが知られている。それらはカ
ラムから溶出する順番にα−HBCD,β−HBCD,
γ−HBCDと命名されている[E.R.Larsen
and E.L.Ecker, J.Fire Sc
i.,4,261(1986)]。
When analyzed using high performance liquid chromatography equipped with an ODS reverse phase column, it is known that HBCD has three types of isomers. They are eluted from the column in the order of α-HBCD, β-HBCD,
γ-HBCD [E. R. Larsen
and E. L. Ecker, J. et al. Fire Sc
i. , 4,261 (1986)].

【0004】本発明者らが、各異性体を単離し、物性値
を測定した結果では、α−,β−,γ−体のそれぞれの
融点は184〜186℃,168〜171℃,196〜
198℃である。また熱重量分析(空気中、昇温速度1
0℃/min)では、5%加熱重量減温度はそれぞれ2
42℃,217℃,245℃で、50%加熱重量減温度
はそれぞれ255℃,232℃,258℃である。従っ
てγ−HBCD,α−HBCD,β−HBCDの順に熱
安定性は高い。難燃剤として用いられるHBCDはγ−
体が主体のものであるが、これらの異性体の存在比の違
いにより、HBCDの品質が大きく左右される。例え
ば、融点が低く、熱安定性が低いβ−HBCDの存在比
が高くなると、HBCDの融点と耐熱性は低くなる。そ
のため、HBCDの熱分解が比較的低温で起こり始める
ために、成型加工機の腐蝕が起こったり、樹脂が着色を
起こす等の問題があった。
[0004] The inventors of the present invention have isolated each isomer and measured its physical properties. As a result, the melting points of the α-, β-, and γ-isomers were 184 to 186 ° C, 168 to 171 ° C, and 196 to 186 ° C.
198 ° C. Thermogravimetric analysis (in air, heating rate 1
0 ° C / min), the 5% weight loss on heating is 2
At 42 ° C, 217 ° C, and 245 ° C, the 50% heating weight loss temperatures are 255 ° C, 232 ° C, and 258 ° C, respectively. Therefore, the thermal stability is higher in the order of γ-HBCD, α-HBCD, and β-HBCD. HBCD used as a flame retardant is γ-
Although the body is mainly used, the quality of HBCD greatly depends on the difference in the abundance ratio of these isomers. For example, when the abundance ratio of β-HBCD having a low melting point and low thermal stability increases, the melting point and heat resistance of HBCD decrease. Therefore, since thermal decomposition of HBCD starts to occur at a relatively low temperature, there have been problems such as corrosion of the molding machine and coloring of the resin.

【0005】臭素をCDTに付加させる反応によってH
BCDは合成されているが、現在までに以下のようなさ
まざまな反応方法が開示されている。
[0005] The reaction of adding bromine to CDT results in H
Although BCD has been synthesized, various reaction methods such as the following have been disclosed to date.

【0006】ドイツ特許第1147574号明細書に
は、CDTのエチルアルコール溶液へ臭素を滴下して、
臭素付加反応を行うことが記載されてる。しかしこの方
法では、反応途中に不溶の樹脂状物が析出するため、攪
拌が困難になり、スケールアップが困難であった。さら
にこのとき生成するHBCDは融点が低く、耐熱性が劣
るといった欠点があった。
[0006] German Patent 1 147 574 discloses that bromine is added dropwise to a solution of CDT in ethyl alcohol,
It is described that a bromine addition reaction is performed. However, in this method, an insoluble resinous substance precipitates during the reaction, so that stirring is difficult and scale-up is difficult. Furthermore, the HBCD produced at this time has a drawback that the melting point is low and the heat resistance is inferior.

【0007】[0007]

【発明が解決しようとする課題】反応途中に不溶の樹脂
状物が析出する欠点を解決するために、同様の反応方法
でいくつかの混合溶媒系が開示されている。例えば特公
昭49−24474号ではアルコールとベンゼンの混合
溶媒系そして特公昭49−24475号ではアルコール
とエステルの混合溶媒系、USP3833675号では
t−ブチルアルコ−ルとベンゼンの混合溶媒系、特公昭
50−5187号ではアルコ−ルとハロゲン系炭化水素
の混合溶媒系、EP181414号ではアルコ−ルとジ
オキサンの混合溶媒系等である。これらの溶媒で反応を
行うと、反応溶媒の溶解度が高いため反応途中の樹脂状
物の析出はなくなる。しかし生成するHBCDの融点と
耐熱性が低いため、問題が残っていた。
In order to solve the drawback of insoluble resinous substances being precipitated during the reaction, several mixed solvent systems have been disclosed by a similar reaction method. For example, JP-B-49-24474 discloses a mixed solvent system of alcohol and benzene, JP-B-49-24475 discloses a mixed solvent system of alcohol and ester, US Pat. No. 3,833,675 discloses a mixed solvent system of t-butyl alcohol and benzene. No. 5187 discloses a mixed solvent system of alcohol and halogenated hydrocarbon, and EP 181414 discloses a mixed solvent system of alcohol and dioxane. When the reaction is carried out with these solvents, precipitation of resinous substances during the reaction is eliminated because the solubility of the reaction solvent is high. However, problems remain because the HBCD produced has a low melting point and low heat resistance.

【0008】また、特公昭53−12510号には、反
応器に溶媒を仕込んでおき、CDTと臭素を同時に滴下
して反応する方法が示されている。しかし、生成するH
BCDの耐熱性および融点が低いという問題が残ってい
た。
Further, Japanese Patent Publication No. 53-12510 discloses a method in which a solvent is charged in a reactor, and CDT and bromine are simultaneously dropped and reacted. However, the generated H
The problem that the heat resistance and melting point of BCD were low remained.

【0009】上述の反応方法では、耐熱性の高いγ−H
BCDの選択率が低いばかりではなく、臭素付加反応以
外に、アリル位の臭素化、脱臭化水素、または溶媒の臭
素化等のような副反応が起こりやすいため、収率が低下
したり、不純物がHBCDの結晶中に混入するなどの問
題があった。これらの不純物も、成型加工機の腐蝕や、
樹脂の着色の原因になることがわかっている。
In the above reaction method, γ-H
Not only is the selectivity of BCD low, but side reactions such as bromination at the allylic position, dehydrobromination, bromination of the solvent, and the like are liable to occur in addition to the bromine addition reaction. However, there has been a problem that HBCD is mixed into the HBCD crystal. These impurities also corrode the molding machine,
It is known to cause coloring of the resin.

【0010】そこで、本発明者らは、熱安定性が高いγ
−HBCDの高選択的な製造法について検討した。その
結果本発明者らは、有機溶媒の存在下臭素とCDTを反
応させ、HBCDを製造する方法において、臭素を炭素
数1〜4のアルコールまたはそれを含有する有機溶媒に
溶解させた中に、CDTを滴下して反応させる方法を見
出だし、すでに特許出願している(特願平2−2884
52号)。この反応方法をとると、γ−HBCDの選択
率が著しく向上し耐熱性の高いHBCDを製造できる。
しかし反応条件によっても若干異なるが、臭素と溶媒が
反応する副反応が若干おこるため、理論量以上の臭素が
必要となっていた。
Therefore, the present inventors have proposed that γ having high thermal stability.
-A highly selective production method of HBCD was studied. As a result, the present inventors reacted bromine and CDT in the presence of an organic solvent, and in a method of producing HBCD, bromine was dissolved in an alcohol having 1 to 4 carbon atoms or an organic solvent containing the same. A method of reacting by dropping CDT has been found, and a patent application has already been filed (Japanese Patent Application No. 2-2884).
No. 52). According to this reaction method, the selectivity of γ-HBCD is remarkably improved, and HBCD having high heat resistance can be produced.
However, although slightly different depending on the reaction conditions, a slight side reaction occurs in which bromine reacts with the solvent.

【0011】さらに特願平2−288453号では、炭
素数1〜4のアルコールまたはそれを含有する有機溶媒
の存在下、臭素とCDTを反応させHBCDを製造する
方法において、溶媒に対するCDTの基質濃度を0.1
〜20wt/vol%とする方法を開示している。この
反応方法をとると、γ−HBCDの選択率が著しく向上
し耐熱性の高いHBCDが製造できる。しかし、反応基
質濃度が比較的低いため、一回の反応で製造出来るHB
CDの量はかなり低く、反応プロセスの上からはあまり
好ましい方法ではなかった。
Further, Japanese Patent Application No. 2-288453 discloses a method for producing HBCD by reacting bromine with CDT in the presence of an alcohol having 1 to 4 carbon atoms or an organic solvent containing the same, and the substrate concentration of CDT with respect to the solvent. To 0.1
It discloses a method of adjusting the content to 2020 wt / vol%. According to this reaction method, the selectivity of γ-HBCD is remarkably improved, and HBCD having high heat resistance can be produced. However, since the concentration of the reaction substrate is relatively low, HB which can be produced in one reaction
The amount of CD was fairly low, which was not a very favorable method in terms of the reaction process.

【0012】そこで、過剰臭素の使用量を低減し、熱安
定性の高いHBCDが得られるような反応プロセスが求
められていた。
Therefore, there has been a demand for a reaction process capable of reducing the amount of excess bromine used and obtaining HBCD having high thermal stability.

【0013】[0013]

【課題を解決するための手段】本発明者らは、過剰臭素
の使用量を低減し、熱安定性の高いHBCDが得られる
ような反応プロセスについて鋭意検討した結果、炭素数
1〜4のアルコールまたはそれを含有する有機溶媒中で
臭素とCDTを反応させて、HBCDを製造する方法に
おいて、臭素とCDTを交互に反応溶媒中に仕込み反応
させた後に、まとめて結晶を単離する反応方法をとるこ
とで、臭素の使用量が理論量程度ですむこと、各回の反
応で結晶を単離する反応方法に比べて反応プロセス的に
も非常に有効であること、各回の反応におけるγ−HB
CDの選択率は、交互に仕込む回数を増加させても選択
率の低下や不明物の増加が認められないことを見出し本
発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies on a reaction process that can reduce the amount of excess bromine used and obtain HBCD having high thermal stability. Alternatively, in a method of producing HBCD by reacting bromine and CDT in an organic solvent containing the same, a reaction method in which bromine and CDT are alternately charged and reacted in a reaction solvent and then crystals are collectively isolated. As a result, the amount of bromine used can be about the theoretical amount, it is very effective in the reaction process as compared with the reaction method of isolating crystals in each reaction, and γ-HB in each reaction.
The present inventors have found that the selectivity of CD does not show a decrease in selectivity or an increase in unknown substances even when the number of times of alternately charging is increased, and the present invention has been reached.

【0014】すなわち本発明は、炭素数1〜4のアルコ
ールまたはそれを含有する有機溶媒中で、臭素とCDT
を反応させて、HBCDを製造する方法において、臭素
とCDTを交互に反応溶媒中に仕込み反応させることを
特徴とする、HBCDを製造するための方法に関する。
That is, the present invention provides a method for preparing bromine and CDT in an alcohol having 1 to 4 carbon atoms or an organic solvent containing the same.
And a method for producing HBCD by reacting bromine and CDT alternately in a reaction solvent.

【0015】以下本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0016】本発明の方法で用いられる溶媒は、炭素数
1〜4のアルコールまたはそれを含有する有機溶媒であ
る。炭素数1〜4のアルコールとしては、メタノール、
エタノール、n−プロパノール、イソプロパノール、n
−ブタノール、sec−ブタノール、イソブタノール、
tert−ブタノール、エチレングリコール、ジエチレ
ングリコール、プロピレングリコール等があげられる。
これらのアルコ−ルの中ではエタノール、n−プロパノ
ール、tert−ブタノールなどが特に好ましい。アル
コールと混合する溶媒としては、エーテル系の溶媒、ハ
ロゲン系炭化水素溶媒、エステル系の溶媒があげられ
る。アルコールと混合するそれぞれの溶媒の混合比率は
特に規定されない。それぞれの溶媒の具体例としては、
エーテル系の溶媒としてはジプロピルエーテル、ジイソ
プロピルエーテル、テトラヒドロフラン(THF)、ジ
オキサン、ジエチレングリコールジメチルエーテル、ジ
エチレングリコールジエチルエーテル等が、ハロゲン系
炭化水素溶媒としては、四塩化炭素、クロロホルム、塩
化メチレン、エチレンジクロライド(EDC)等が、エ
ステル系の溶媒としては酢酸エチル、酢酸メチル、2−
メトキシエチルアセタート等があげられる。混合溶媒と
してはエタノール−酢酸エチル、エタノール−THF、
エタノール−ジオキサン、エタノール−EDC、エタノ
ール−塩化メチレン等が反応成績の面から特に好ましい
ものである。
The solvent used in the method of the present invention is an alcohol having 1 to 4 carbon atoms or an organic solvent containing the same. As the alcohol having 1 to 4 carbon atoms, methanol,
Ethanol, n-propanol, isopropanol, n
-Butanol, sec-butanol, isobutanol,
tert-Butanol, ethylene glycol, diethylene glycol, propylene glycol and the like.
Among these alcohols, ethanol, n-propanol, tert-butanol and the like are particularly preferred. Examples of the solvent mixed with the alcohol include ether solvents, halogenated hydrocarbon solvents, and ester solvents. The mixing ratio of each solvent to be mixed with the alcohol is not particularly limited. Specific examples of each solvent include:
Examples of ether solvents include dipropyl ether, diisopropyl ether, tetrahydrofuran (THF), dioxane, diethylene glycol dimethyl ether, and diethylene glycol diethyl ether, and examples of halogenated hydrocarbon solvents include carbon tetrachloride, chloroform, methylene chloride, and ethylene dichloride (EDC). ), Etc., and ethyl acetate, methyl acetate, 2-
Methoxyethyl acetate and the like can be mentioned. As a mixed solvent, ethanol-ethyl acetate, ethanol-THF,
Ethanol-dioxane, ethanol-EDC, ethanol-methylene chloride and the like are particularly preferable from the viewpoint of the reaction results.

【0017】本発明の方法を実施しうる反応基質濃度
(CDT/反応溶媒=wt/vol%)は、仕込んだC
DTの総量と反応溶媒の量より計算して10〜40%程
度、好ましくは20〜30%程度が好ましい。10%よ
り低い基質濃度で反応を行うと単位体積当りに得られる
結晶の量は少なく、本発明を実施する利点は少ない。4
0%以上になるような基質濃度で反応を行うとスラリー
濃度が高すぎるため撹拌が困難になり、プロセス上好ま
しくない。
The reaction substrate concentration (CDT / reaction solvent = wt / vol%) at which the method of the present invention can be carried out depends on the charged C
It is preferably about 10 to 40%, preferably about 20 to 30%, calculated from the total amount of DT and the amount of the reaction solvent. When the reaction is carried out at a substrate concentration lower than 10%, the amount of crystals obtained per unit volume is small, and the advantage of practicing the present invention is small. 4
If the reaction is carried out at a substrate concentration of 0% or more, the slurry concentration is too high and stirring becomes difficult, which is not preferable in the process.

【0018】交互に仕込み反応させる回数は、各回の反
応基質濃度によって変化するので一概に規定できない。
しかし、特願平2−288453号にも開示したよう
に、各回の反応基質濃度は0.1〜20wt/vol
%、好ましくは0.5〜10wt/vol%の範囲で行
った方が、耐熱性の高いγ−HBCDの選択率は向上す
るため、0.1〜20wt/vol%、好ましくは0.
5〜10wt/vol%の範囲が選ばれる。0.1%よ
り低い濃度で反応を行っても、0.1wt/vol%の
時のγ−HBCDの選択率に比較して、期待されるほど
γ−HBCDの選択率は向上しない。また20wt/v
ol%を越えて反応を行うと、γ−HBCDの選択率が
著しく低下するため選ばれない。つまり、各回の反応基
質濃度と交互に仕込む回数は、0.1〜20wt/vo
l%程度の基質濃度で400回〜2回、好ましくは0.
5〜10wt/vol%程度の基質濃度で80回〜4回
程度繰返すことで、本発明は実施できる。
[0018] The number of times of alternately charging the reaction varies depending on the concentration of the reaction substrate at each time, and thus cannot be unconditionally specified.
However, as disclosed in Japanese Patent Application No. 2-288453, the concentration of the reaction substrate at each time is 0.1 to 20 wt / vol.
%, Preferably in the range of 0.5 to 10 wt / vol%, the selectivity of γ-HBCD having high heat resistance is improved, so that it is 0.1 to 20 wt / vol%, preferably 0.1 to 20 wt / vol%.
A range of 5 to 10 wt / vol% is selected. Even when the reaction is performed at a concentration lower than 0.1%, the selectivity of γ-HBCD does not improve as expected as compared with the selectivity of γ-HBCD at 0.1 wt / vol%. Also 20wt / v
If the reaction is carried out in excess of ol%, the selectivity of γ-HBCD is remarkably reduced, so that it is not selected. That is, the number of times of alternately charging with the reaction substrate concentration is 0.1 to 20 wt / vo.
400 to 2 times, preferably 0.1 to 1% at a substrate concentration of about 1%.
The present invention can be implemented by repeating about 80 to 4 times at a substrate concentration of about 5 to 10 wt / vol%.

【0019】本発明の方法を実施するにあたっての反応
温度は格別の限定はないが、高温で反応をおこなうと、
臭素付加反応以外の置換反応が起こりやすくなるため不
純物が増加したり、反応溶媒と臭素の反応が起こりやす
くなるため、あまり好ましくない。また極端な低温で反
応を行った場合には、反応速度がおそくなるため反応が
完結せず、反応中間体で止まるため好ましくない。反応
温度は通常約−20℃〜約50℃の範囲である。
The reaction temperature for carrying out the method of the present invention is not particularly limited, but when the reaction is carried out at a high temperature,
Substitution reactions other than the bromine addition reaction are likely to occur, so that impurities increase, and the reaction between the reaction solvent and bromine tends to occur. Further, when the reaction is carried out at an extremely low temperature, the reaction rate is slow, so that the reaction is not completed and stops at a reaction intermediate, which is not preferable. Reaction temperatures are usually in the range of about -20C to about 50C.

【0020】本発明を実施するにあたっての反応方法
は、反応溶媒にCDTを溶解後臭素を滴下して反応さ
せ、あらたにCDTを反応液に溶解させ臭素を滴下して
反応させる方法を繰り返す反応方法、または、反応溶媒
に臭素を溶解後CDTを滴下して反応させ、あらたに臭
素を反応液に溶解させCDTを滴下して反応させる方法
を繰り返す反応方法のいずれでも成し遂げることができ
る。
The reaction method for carrying out the present invention is a reaction method in which CDT is dissolved in a reaction solvent and then bromine is added dropwise to cause a reaction, and CDT is newly dissolved in the reaction solution and bromine is added dropwise to carry out the reaction. Alternatively, any reaction method can be achieved in which bromine is dissolved in the reaction solvent and then CDT is added dropwise to cause a reaction, and bromine is newly dissolved in the reaction solution and CDT is added dropwise to carry out the reaction.

【0021】本発明を実施するにあたり、各回の反応時
間や熟成時間、溶解時間は反応温度や仕込み量等により
変わりうるが、CDTを滴下して反応させる場合も臭素
を滴下して反応させる場合も、反応時間は通常約10分
ないし10時間程度である。反応が終了してから次のC
DTまたは臭素を反応溶媒に溶解させるまでの熟成時間
は、通常0ないし5時間程度である。またCDTおよび
臭素を反応溶媒に溶解する溶解時間は、通常約10分な
いし5時間程度である。さらに所定回数の反応を繰返し
た後の熟成時間は、通常約0ないし5時間程度反応させ
ることでなしとげられる。
In practicing the present invention, the reaction time, aging time, and dissolution time of each time can vary depending on the reaction temperature, the charged amount, and the like. However, the reaction may be carried out by dropping CDT or by dropping bromine. The reaction time is usually about 10 minutes to 10 hours. After the reaction is completed, the next C
The aging time until DT or bromine is dissolved in the reaction solvent is usually about 0 to 5 hours. The dissolution time for dissolving CDT and bromine in the reaction solvent is usually about 10 minutes to 5 hours. Further, the aging time after repeating the reaction a predetermined number of times can be usually achieved by reacting for about 0 to 5 hours.

【0022】仕込んだCDTと臭素の総量より計算した
CDTに対する臭素の使用量は、Br/CDT(モル
比)で3.0以上、好ましくは3.0〜5.0である。
3.0未満では、CDTに対して臭素が不足しているた
め、反応が完結しない。5.0を越える場合では、反応
系中に残存する過剰臭素による副反応が起りやすくなる
ことと、経済的な見地からも好ましくない。
The amount of bromine relative to the CDT calculated from the total amount of the charged CDT and bromine is 3.0 or more, preferably 3.0 to 5.0, in terms of Br 2 / CDT (molar ratio).
If it is less than 3.0, the reaction is not completed because bromine is insufficient for CDT. If it exceeds 5.0, side reactions due to excess bromine remaining in the reaction system are likely to occur, and this is not preferable from an economic viewpoint.

【0023】反応終了後生成したHBCDは公知の手段
で粉体として単離できる。例えば、析出した結晶をその
まま濾過する方法や反応終了時の反応液を貧溶媒に投入
することで結晶を取り上げる方法、反応終了時の反応液
に貧溶媒を投入する方法などが考えられる。さらにろ液
として回収された溶媒は、新しい溶媒を補充することで
繰返し反応溶媒として使用することができる。
The HBCD produced after completion of the reaction can be isolated as a powder by known means. For example, a method of filtering the precipitated crystals as they are, a method of taking the crystals by pouring the reaction solution at the end of the reaction into a poor solvent, and a method of pouring a poor solvent into the reaction solution at the end of the reaction can be considered. Further, the solvent recovered as a filtrate can be repeatedly used as a reaction solvent by replenishing a new solvent.

【0024】[0024]

【発明の効果】本発明の方法を実施することにより、理
論量程度の臭素量で色相、熱安定性に優れたHBCDの
γ−体を高選択率、高収率で製造できるようになった。
また、反応プロセス的にも非常に有効である。
By carrying out the method of the present invention, it has become possible to produce a γ-isomer of HBCD having a high stoichiometric amount of bromine and excellent in hue and thermal stability with high selectivity and high yield. .
It is also very effective in the reaction process.

【0025】[0025]

【実施例】以下実施例に従って本発明を更に詳しく説明
するが、本発明はこれらにより限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0026】実施例1〜6 還流冷却器、撹拌羽根を装備した丸底フラスコに、表1
に示す組成の反応溶媒を仕込んだ。その中に表1に示す
量のCDTと臭素を表1に示す回数に分割して交互に仕
込んだ。各回の反応温度は15℃とし反応時間は2時間
かけて滴下することで反応させた。滴下終了後、さらに
2時間熟成した。
Examples 1 to 6 In a round-bottomed flask equipped with a reflux condenser and stirring blades,
The reaction solvent having the composition shown in the following was charged. In that, CDT and bromine in the amounts shown in Table 1 were divided into the number of times shown in Table 1 and charged alternately. The reaction temperature was set to 15 ° C. for each reaction, and the reaction was performed by dropping over 2 hours. After completion of the dropwise addition, the mixture was aged for 2 hours.

【0027】反応終了後の反応スラリー液を高速液体ク
ロマトグラフィー(カラム TSKゲル−ODS80T
M、溶離液 アセトニトリル/水=80/20vol
%、検出器 UV215nm)で分析しその結果をまと
めて表1に示した。なお同定できない成分については不
明分とした。表1中のDBCD(ジブロモシクロドデカ
ジエン)、TBCD(テトラブロモシクロドデセン)
は、HBCDの反応中間体である。なおTBCDには異
性体が存在するので、高速液体クロマトグラフィーでO
DS逆相カラムを用いて分析し、カラムから溶出する順
番にα−TBCD、β−TBCDと命名した。
After the completion of the reaction, the reaction slurry was subjected to high performance liquid chromatography (column TSK gel-ODS80T).
M, eluent acetonitrile / water = 80/20 vol
%, Detector UV 215 nm) and the results are summarized in Table 1. Components that could not be identified were determined as unknown. DBCD (dibromocyclododecadien) and TBCD (tetrabromocyclododecene) in Table 1
Is a reaction intermediate of HBCD. Since TBCD has an isomer, OCD is determined by high performance liquid chromatography.
Analysis was performed using a DS reversed-phase column, and they were named α-TBCD and β-TBCD in the order of elution from the column.

【0028】γ−HBCDの選択率は、γ−HBCDの
生成量をHBCD異性体の合計量で割った値で示した
[γ−HBCD/(α−TBCD+β−TBCD+γ−
HBCD)]。
The selectivity of γ-HBCD was represented by the value obtained by dividing the amount of γ-HBCD produced by the total amount of HBCD isomers [γ-HBCD / (α-TBCD + β-TBCD + γ-
HBCD)].

【0029】反応終了時の反応液をろ過し、得られた結
晶を乾燥させ融点を測定し、その結果をまとめて表1に
示した。
At the end of the reaction, the reaction solution was filtered, the obtained crystals were dried, and the melting points were measured. The results are shown in Table 1.

【0030】[0030]

【表1】 比較例1、2 還流冷却器、撹拌羽根を装備した丸底フラスコに、表2
に示す組成の反応溶媒を仕込んだ。その中に表2に示す
量のCDTと臭素を表2に示す回数に分割して仕込ん
だ。各回の反応温度は15℃とし反応時間は2時間かけ
て滴下することで反応させた。滴下終了後、さらに2時
間熟成した。その後実施例と同様な方法で後処理と分析
をおこない結果をまとめて表2にしめした。
[Table 1] Comparative Examples 1 and 2 Table 2 was placed in a round bottom flask equipped with a reflux condenser and a stirring blade.
The reaction solvent having the composition shown in the following was charged. The CDT and bromine in the amounts shown in Table 2 were separately charged in the number of times shown in Table 2. The reaction temperature was set to 15 ° C. for each reaction, and the reaction was performed by dropping over 2 hours. After completion of the dropwise addition, the mixture was aged for 2 hours. Thereafter, post-processing and analysis were performed in the same manner as in the examples, and the results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素数1〜4のアルコールまたはそれを含
有する有機溶媒中で、臭素と1,5,9−シス,トラン
ス,トランス−シクロドデカトリエンを反応させて、
1,2,5,6,9,10−ヘキサブロモシクロドデカ
ンを製造する方法において、臭素と1,5,9−シス,
トランス,トランス−シクロドデカトリエンを交互に反
応溶媒中に仕込み反応させることを特徴とする1,2,
5,6,9,10−ヘキサブロモシクロドデカンの製造
方法。
1. A bromine is reacted with 1,5,9-cis, trans, trans-cyclododecatriene in an alcohol having 1 to 4 carbon atoms or an organic solvent containing the same,
In a method for producing 1,2,5,6,9,10-hexabromocyclododecane, bromine and 1,5,9-cis,
Characterized in that trans and trans-cyclododecatriene are alternately charged into a reaction solvent and reacted.
A method for producing 5,6,9,10-hexabromocyclododecane.
JP3137079A 1991-05-14 1991-05-14 Method for producing hexabromocyclododecane Expired - Fee Related JP3044830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137079A JP3044830B2 (en) 1991-05-14 1991-05-14 Method for producing hexabromocyclododecane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137079A JP3044830B2 (en) 1991-05-14 1991-05-14 Method for producing hexabromocyclododecane

Publications (2)

Publication Number Publication Date
JPH04338345A JPH04338345A (en) 1992-11-25
JP3044830B2 true JP3044830B2 (en) 2000-05-22

Family

ID=15190407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137079A Expired - Fee Related JP3044830B2 (en) 1991-05-14 1991-05-14 Method for producing hexabromocyclododecane

Country Status (1)

Country Link
JP (1) JP3044830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849523B1 (en) * 2006-05-15 2008-07-31 최성열 Mat for foment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849523B1 (en) * 2006-05-15 2008-07-31 최성열 Mat for foment

Also Published As

Publication number Publication date
JPH04338345A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JPH072657B2 (en) Method for producing (2,2) -paracyclophane and derivatives thereof
CN107176901B (en) Synthesis method of difluoromethylene compound
JP3044830B2 (en) Method for producing hexabromocyclododecane
JP3044829B2 (en) Method for producing hexabromocyclododecane
JP3044828B2 (en) Preparation of hexabromocyclododecane
JP2844899B2 (en) Method for producing hexabromocyclododecane
JP2844900B2 (en) Method for producing hexabromocyclododecane
WO2009149053A2 (en) Naproxcinod process and solid dispersion
JP2006188449A (en) Method for producing cyclic disulfonic acid ester
JP7018327B2 (en) Method for producing benzaldehyde derivative
JP3101721B2 (en) Method for producing aromatic fluorine compound
JP2000053658A (en) Production of tris(dibromopropyl) isocyanurate
JPH0259832B2 (en)
JP2717995B2 (en) Production method of 1,2,3-triazole
JP3006091B2 (en) Method for producing substituted pyrazole
JP3042122B2 (en) Method for producing N-cyanoacetamidine derivative
JP3008552B2 (en) Method for producing high quality tetrabromobisphenol A
JP2002030044A (en) Method for producing tetraalkylammonium halide
CN113816882B (en) Method for preparing 2-alkyl thiobenzonitrile
JPS627198B2 (en)
EP0429059A2 (en) Process for producing hexabromocyclododecane
JPS6316396B2 (en)
US4074052A (en) Process for preparation of isocyanuric acid triesters
JP2002534495A (en) Process for producing azoimino ether and azocarboxylic acid ester and novel mixed azocarboxylic acid ester
JPS5939849A (en) Fluorine-containing aliphatic group-substituted alkylated or alkenylated malonic ester or its derivative

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees