JP4288024B2 - Abrasion resistant film and sliding member having the film - Google Patents
Abrasion resistant film and sliding member having the film Download PDFInfo
- Publication number
- JP4288024B2 JP4288024B2 JP2001249090A JP2001249090A JP4288024B2 JP 4288024 B2 JP4288024 B2 JP 4288024B2 JP 2001249090 A JP2001249090 A JP 2001249090A JP 2001249090 A JP2001249090 A JP 2001249090A JP 4288024 B2 JP4288024 B2 JP 4288024B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- ion plating
- atomic
- crn
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は耐摩耗性皮膜に関するものであり、さらに詳しく述べるならばCr-N系イオンプレーティング皮膜及び摺動部材に関するものである。
【0002】
【従来の技術】
近年、内燃機関の高出力化や、低燃費化、排ガス対策等のために、内燃機関の摺動部材には高い耐摩耗性、低い摩擦力、高い耐食性などが求められている。そのため、従来から用いられてきた硬質クロムめっき皮膜や窒化処理皮膜に替わり得る新しい表面改質技術及び皮膜が研究開発されてきた。
【0003】
特開昭61−87950号には、イオンプレーティングによる窒素及びクロムよりなる各種結晶相の皮膜が開示されており、ピストンリングに適用された場合は、いずれの皮膜も硬質クロムめっき皮膜や窒化処理皮膜以上の摺動性能を有する。イオンプレーティング法による窒化クロム皮膜は成膜速度が高く、且つ、他のイオンプレーティング皮膜に比較して密着性に優れるため、厚膜での使用が可能であり、ピストンリング等内燃機関の摺動部材用表面皮膜としては好適なものであった。その結果、多くのイオンプレーティング窒化クロム皮膜に関する特許出願がなされるに至った。
【0004】
特開平6−293954号は結晶粒を皮膜表面に向かって柱状結晶相で、且つ、ポーラスな窒化クロム皮膜とすることによって、特開昭61−87950号等のイオンプレーティング窒化クロム皮膜の欠点である「皮膜の欠け易さ」を改良したものである。
【0005】
また、特開平6−330348号は皮膜をクロムとチタン、バナジウム、ジルコニウム、ニオブ、モリブデン、ハフニウム、タンタル、タングステン及びアルミニウムとの複合膜とすることにより、窒化クロム皮膜以上の耐摩耗性、耐焼付性及び初期馴染み性を得たものである。すなわち、Cr及びVは窒素ガスと結合し基体表面に窒化物となって析出すると説明されている(段落番号0015)。
【0006】
しかしながら、今日、ディーゼルエンジンにおいては、更なる排気ガス対策の必要性から、大量のEGRを行うようになってきた。この大量EGRを採用すると燃焼により生成したススや硫黄酸化物、窒素酸化物がエンジン内に従来以上の量で戻されることになるので、固体燃焼生成物によるアブレシブ摩耗やエンジンの低温作動時にシリンダ内に発生する硫酸や硝酸による腐食摩耗が従来以上に顕著になってきた。即ち、燃焼室回りで摺動が問題となるピストンリング、ライナー、ピストンリング溝等では、このような腐食環境においても従来のイオンプレーティング窒化クロム以上の高い摺動特性が求められるようになってきており、従来のイオンプレーティング窒化クロム皮膜に代わる皮膜が求められている。
【0007】
【発明が解決しようとする課題】
窒化物が複合した皮膜の腐食摩耗は各種窒化物の腐食性により影響される。窒化物の腐食は金属が窒素から遊離する過程と金属が酸中でイオン化する過程を伴うと考えられる。窒化クロム自体は化学的には非常に安定ではあるが、以上のような従来技術で成膜された従来のイオンプレーティングCr―N皮膜は硫酸及び硝酸等の腐食摩耗環境では意外に腐食摩耗を起こし易いことが分かった。したがって、腐食摩耗環境下での摺動性能を改善したイオンプレーティング皮膜を提供することが本発明の課題である。
【0008】
【課題を解決するための手段】
Cr−M(金属)−N系イオンプレーティング皮膜の成膜においてはCrもMも窒素ガスと接触しているが、M元素は必ずしも窒化物として皮膜中に存在するのではなく金属形態で存在することが分かった。但し、X線回析により金属相は同定されずCrN窒化物のみが固定される。このような金属成分すなわちWは腐食摩耗条件でのCrNの腐食性を著しく改善することが分かった。
【0009】
上述の新たな知見に基づく本発明においては、少なくともその摺動面に、クロム、タングステン及び窒素を主な構成元素するイオンプレーティング皮膜であって、皮膜結晶相が3−20原子%のタングステンを固溶するCrN型窒化クロム皮膜であるイオンプレーティング皮膜を有する摺動部材とすることで課題を解決することが出来る。
【0010】
【作用】
本発明に係る皮膜の結晶相はX線回折法によりCrN型窒化クロムと同定できる。Wは、X線回折では同定できず、X線マイクロアナライザー等によりその存在量を確認することができる。また、Wが3原子%以下ではCrN皮膜の耐食性は向上せず、また、20原子%以上では成膜速度が遅くなるので得策ではない。最適な、W成分範囲は5から15原子%である。
CrN結晶相中に固溶したWはCrN皮膜の耐食性を向上させる。成膜速度上の問題はあるが、固溶限を超えてWが含まれる皮膜も耐食性は良好であるので、W自体がCrNイオンプレーティング皮膜より耐食性に優れていることが分かった。
【0011】
皮膜形成法はPVDの一種であるイオンプレーティング法を用いる。スパッタリング法等も用いることは出来るが、密着性が劣ることや成膜速度か遅いことから、CrN皮膜のメリットを生かせない。従って、イオンプレーティング法が望ましい。各種のイオンプレーティング方法の中でも特にアークイオンプレーティング法が最も望ましい。これは合金ターゲットを用いることで、安定した組成比の皮膜を得ることが出来るからである。
上述のように、特開平6−330348号においては、クロムとクロム以外の金属も窒素と反応すると考えられていたが、30原子%以下のW含有範囲ではタングステン窒化物はX線回折により同定されない。
以下、実施例に基づき説明する。
【0012】
【実施例】
焼結法にてCr−5原子%W、Cr−10原子%W、Cr−20原子%W、Cr−25原子%W、Cr−30原子%Wの各ターゲット1(陰極)を作成し成膜を行った。図1は成膜に用いたアークイオンプレーティング装置を示す。SUS440B相当材の先端部が10Rの5×5×10mm摺動試験用テストピースを用意した。摺動用テストピース2のR面に皮膜が形成されるようにセットし成膜を行った。成膜前に、Arガス10mTorr、バイアス電圧―750Vで10分間ボンバード処理を行った後、引き続きヒーター8により成膜温度を700℃にセットし、バイアス電源7によりバイアス電圧―10Vとした。さらに、ガス入口6から窒素ガスを流入し、排気ポンプにより排気量を調整することにより窒素圧を10mTorrに調整した。アーク電源4により陽極3と陰極1の間にアーク電流200Aを発生し、処理時間240分の条件で成膜処理を行った。
また、比較例としてCr100%のターゲットを用い実施例の条件で成膜したものも用意した。
【0013】
尚、Wが30原子%固溶しているターゲットについても成膜を行ったが、アーク放電が安定しないので皮膜形成を途中で中止した。以上の皮膜を成膜した後、R表面をRz0.4μm以下に研磨により仕上げ、摺動用テストピースとし腐食摩耗試験を行った。
【0014】
まず最初に、X線回折により各皮膜の結晶相を調査した。その結果、いずれの皮膜もCrN型窒化クロムであった。ついで、X線マイクロアナライザーによりW量を求めた。これら結果を表1に示す。
【0015】
【表1】
【0016】
次に、各皮膜の腐食摩耗試験を図2に示すようなピン−ドラム摩耗試験機で行った。図において、12は支点、13はシャフト、14は荷重、15は摩耗テストピース、16バランス、17は回転軸、18はドラム、19は潤滑水(硫酸水溶液)である。
円筒状の相手材(18)FC250の外周面に摺動用テストピース15のR面を周速0.25m/秒、荷重40Nで押しつけ、潤滑として pH=2の硫酸水溶液を0.5cc/分で滴下し、摺動時間6時間の条件で摩耗試験を行った。試験後の10R面の当たり幅を摩耗量の目安とした。その結果を表2示す。
【0017】
【表2】
【0018】
表2から解るように、本発明に係る窒化クロム結晶中にWを固溶させた皮膜は腐食環境下の摩耗性能に優れ、約5原子%以上のWを固溶すればCrNを以上の性能であることが解る。尚、Wが30原子%のターゲットを用いたイオンプレーティングでは皮膜の作成が出来なかった。
【0019】
【発明の効果】
以上のように、本発明による皮膜を有する摺動部材は、耐硫酸及び硝酸腐食特性と摺動特性の両方が同時に要求される、エンジン用部品、特に、ピストンリング、シリンダーライナー、バルブリフター等で良好な摺動性能を示すことが期待される。
【図面の簡単な説明】
【図1】 アークイオンプレーティング装置を示す図面である。
【図2】 ピン−ドラム腐食摩耗試験機を示す図面である。
【符号の説明】
1.陰極
2.基板
3.陽極
4.アーク電源
5.真空チャンバー
6.窒素ガス導入口
7.バイアス電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an abrasion-resistant film, and more particularly to a Cr—N ion plating film and a sliding member.
[0002]
[Prior art]
In recent years, high wear resistance, low frictional force, high corrosion resistance, and the like are required for sliding members of an internal combustion engine in order to increase the output of the internal combustion engine, reduce fuel consumption, and take measures against exhaust gas. Therefore, new surface modification techniques and coatings that can replace conventional hard chrome plating coatings and nitriding coatings have been researched and developed.
[0003]
JP-A-61-87950 discloses coatings of various crystal phases composed of nitrogen and chromium by ion plating, and when applied to a piston ring, both coatings are hard chrome plating coatings or nitriding treatments. The sliding performance is better than the film. The chromium nitride film by the ion plating method has a high film formation rate and excellent adhesion compared to other ion plating films, so it can be used in a thick film, and can be used for internal combustion engines such as piston rings. It was suitable as a surface film for a moving member. As a result, many patent applications relating to ion-plated chromium nitride films have been filed.
[0004]
Japanese Patent Laid-Open No. 6-293954 is a disadvantage of the ion plating chromium nitride film of Japanese Patent Laid-Open No. 61-87950 by making the crystal grains into a columnar crystal phase and a porous chromium nitride film toward the film surface. This is an improvement of a certain “easiness of chipping of the film”.
[0005]
JP-A-6-330348 discloses that the film is a composite film of chromium and titanium, vanadium, zirconium, niobium, molybdenum, hafnium, tantalum, tungsten and aluminum, so that the wear resistance and seizure resistance are higher than those of the chromium nitride film. And initial familiarity. That is, it is described that Cr and V combine with nitrogen gas and precipitate as nitrides on the substrate surface (paragraph 0015).
[0006]
However, today, diesel engines have come to perform a large amount of EGR because of the need for further measures against exhaust gas. When this large amount of EGR is used, soot, sulfur oxides, and nitrogen oxides generated by combustion are returned to the engine in a higher amount than before. Therefore, when the abrasive wear due to solid combustion products or when the engine is operated at low temperatures, Corrosion and abrasion due to sulfuric acid and nitric acid generated in the steel has become more prominent than before. In other words, piston rings, liners, piston ring grooves, etc., where sliding around the combustion chamber is a problem, are required to have higher sliding characteristics than conventional ion-plated chromium nitride even in such corrosive environments. Therefore, there is a need for a film that replaces the conventional ion plating chromium nitride film.
[0007]
[Problems to be solved by the invention]
The corrosion wear of the nitride composite film is affected by the corrosiveness of various nitrides. Nitride corrosion is thought to involve a process in which metal is liberated from nitrogen and a process in which metal is ionized in acid. Chromium nitride itself is chemically very stable, but the conventional ion-plated Cr-N film formed by the conventional technology as described above is unexpectedly corroded in a corrosive wear environment such as sulfuric acid and nitric acid. I found it easy to wake up. Accordingly, it is an object of the present invention to provide an ion plating film with improved sliding performance in a corrosive wear environment.
[0008]
[Means for Solving the Problems]
In film formation of Cr-M (metal) -N-based ion plating film, both Cr and M are in contact with nitrogen gas, but M element is not necessarily present in the film as a nitride but in a metal form. I found out that However, the metal phase is not identified by X-ray diffraction, and only CrN nitride is fixed. Such a metal component, ie W, has been found to significantly improve the corrosivity of CrN under corrosive wear conditions.
[0009]
In the present invention based on the above-mentioned new findings, at least the sliding surface is an ion plating film containing chromium, tungsten and nitrogen as main constituent elements, and the film crystal phase is 3-20 atomic% of tungsten. The problem can be solved by using a sliding member having an ion plating film that is a CrN-type chromium nitride film that dissolves.
[0010]
[Action]
The crystal phase of the film according to the present invention can be identified as CrN type chromium nitride by X-ray diffraction. W cannot be identified by X-ray diffraction, and its abundance can be confirmed by an X-ray microanalyzer or the like. On the other hand, if W is 3 atomic% or less, the corrosion resistance of the CrN film is not improved, and if it is 20 atomic% or more, the film formation rate is slow, which is not a good idea. The optimum W component range is 5 to 15 atomic%.
W dissolved in the CrN crystal phase improves the corrosion resistance of the CrN film. Although there is a problem in the film formation speed, the film containing W beyond the solid solubility limit also has good corrosion resistance. Therefore, it was found that W itself has better corrosion resistance than the CrN ion plating film.
[0011]
The film forming method uses an ion plating method which is a kind of PVD. A sputtering method or the like can also be used, but the merit of the CrN film cannot be utilized because the adhesion is inferior and the film forming speed is slow. Therefore, the ion plating method is desirable. Among various ion plating methods, the arc ion plating method is the most desirable. This is because a film having a stable composition ratio can be obtained by using an alloy target.
As described above, in JP-A-6-330348, it was considered that chromium and metals other than chromium react with nitrogen, but tungsten nitride is not identified by X-ray diffraction in a W-containing range of 30 atomic% or less. .
Hereinafter, description will be made based on examples.
[0012]
【Example】
Each target 1 (cathode) of Cr-5 atomic% W, Cr-10 atomic% W, Cr-20 atomic% W, Cr-25 atomic% W, Cr-30 atomic% W was prepared by sintering. Membrane was performed. FIG. 1 shows an arc ion plating apparatus used for film formation. A test piece for a 5 × 5 × 10 mm sliding test having a tip portion of SUS440B equivalent material of 10R was prepared. The film was formed by setting so that a film was formed on the R surface of the
As a comparative example, a film formed under the conditions of the example using a Cr 100% target was also prepared.
[0013]
In addition, although the film formation was performed also about the target in which W is dissolved at 30 atomic%, since the arc discharge is not stable, the film formation was stopped halfway. After the above film was formed, the R surface was finished by polishing to Rz 0.4 μm or less, and a corrosion wear test was performed using a sliding test piece.
[0014]
First, the crystal phase of each film was investigated by X-ray diffraction. As a result, all the films were CrN type chromium nitride. Subsequently, the amount of W was determined by an X-ray microanalyzer. These results are shown in Table 1.
[0015]
[Table 1]
[0016]
Next, the corrosion wear test of each film was conducted with a pin-drum wear tester as shown in FIG. In the figure, 12 is a fulcrum, 13 is a shaft, 14 is a load, 15 is a wear test piece, 16 balance, 17 is a rotating shaft, 18 is a drum, and 19 is lubricating water (aqueous sulfuric acid solution).
Cylindrical mating material (18) The R surface of the sliding
[0017]
[Table 2]
[0018]
As can be seen from Table 2, the film in which W is solid-solved in the chromium nitride crystal according to the present invention has excellent wear performance in a corrosive environment. It turns out that it is. Note that a film could not be formed by ion plating using a target having W of 30 atomic%.
[0019]
【The invention's effect】
As described above, the sliding member having the coating according to the present invention is used for engine parts, particularly piston rings, cylinder liners, valve lifters, etc., which are required to have both sulfuric acid and nitric acid corrosion resistance and sliding characteristics at the same time. It is expected to show good sliding performance.
[Brief description of the drawings]
FIG. 1 is a view showing an arc ion plating apparatus.
FIG. 2 is a drawing showing a pin-drum corrosion wear tester.
[Explanation of symbols]
1.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001249090A JP4288024B2 (en) | 2001-08-20 | 2001-08-20 | Abrasion resistant film and sliding member having the film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001249090A JP4288024B2 (en) | 2001-08-20 | 2001-08-20 | Abrasion resistant film and sliding member having the film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003064469A JP2003064469A (en) | 2003-03-05 |
JP4288024B2 true JP4288024B2 (en) | 2009-07-01 |
Family
ID=19078144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001249090A Expired - Fee Related JP4288024B2 (en) | 2001-08-20 | 2001-08-20 | Abrasion resistant film and sliding member having the film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4288024B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4704970B2 (en) * | 2006-07-19 | 2011-06-22 | 株式会社神戸製鋼所 | Hard film with excellent film removal |
JP5498572B2 (en) * | 2010-03-31 | 2014-05-21 | 日立ツール株式会社 | Method for producing coated article excellent in corrosion resistance and coated article |
-
2001
- 2001-08-20 JP JP2001249090A patent/JP4288024B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003064469A (en) | 2003-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3221892B2 (en) | Piston ring and its manufacturing method | |
JP5036232B2 (en) | Piston ring for internal combustion engine | |
JP2000120870A (en) | Piston ring | |
EP2162561B1 (en) | Piston ring with a sulphonitriding treatment | |
JP4334354B2 (en) | Piston ring with PVD coating layer | |
JP4320605B2 (en) | A pair of sliding members | |
JP2017502219A (en) | Sliding combination | |
WO2018002072A1 (en) | Sliding element for internal combustion engines | |
JP7284700B2 (en) | sliding mechanism | |
JP2001335878A (en) | Sliding member | |
JP4288024B2 (en) | Abrasion resistant film and sliding member having the film | |
JP2007132423A (en) | Piston ring | |
US9777239B2 (en) | Element comprising at least one sliding surface having a coating for use in an internal combustion engine or a compressor | |
JP3266439B2 (en) | Piston ring and method of manufacturing the same | |
JP2809984B2 (en) | Piston ring and method of manufacturing the same | |
JP4374160B2 (en) | piston ring | |
JP2006207691A (en) | Hard film coated sliding member | |
JPH0727228A (en) | Sliding member and crn film coating method | |
JP2534566Y2 (en) | piston ring | |
James et al. | Surface treatments in engine component technology | |
JPH10227360A (en) | Sliding material, piston ring, and manufacture of sliding material | |
JP3687682B2 (en) | Sliding material, piston ring and manufacturing method thereof | |
JP2002332565A (en) | Wear resistant ion plating film and formation method therefor | |
JP2002003976A (en) | Sliding member | |
JP3305651B2 (en) | Vane for compressor and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090330 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150403 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |