JP4286432B2 - Method for producing aluminum alloy piping material for heat exchanger - Google Patents

Method for producing aluminum alloy piping material for heat exchanger Download PDF

Info

Publication number
JP4286432B2
JP4286432B2 JP2000165044A JP2000165044A JP4286432B2 JP 4286432 B2 JP4286432 B2 JP 4286432B2 JP 2000165044 A JP2000165044 A JP 2000165044A JP 2000165044 A JP2000165044 A JP 2000165044A JP 4286432 B2 JP4286432 B2 JP 4286432B2
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
piping material
heat exchanger
alloy piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000165044A
Other languages
Japanese (ja)
Other versions
JP2001342531A (en
Inventor
時伯 恩田
吉章 荻原
宜行 柴田
哲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2000165044A priority Critical patent/JP4286432B2/en
Publication of JP2001342531A publication Critical patent/JP2001342531A/en
Application granted granted Critical
Publication of JP4286432B2 publication Critical patent/JP4286432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用エアコン、オイルクーラー、ラジエーターなどの熱交換器の配管に適した耐食性に優れる、加工性の良好なアルミニウム合金配管材に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば、自動車用エアコンは、図1に示すようにアルミニウム合金製熱交換器からなるコンデンサー1とエバポレーター2をアルミニウム配管3で連結し、その間にフロンのような冷媒を圧縮するコンプレッサー4またはレシーバー5を設けて構成されている。
前記アルミニウム配管3には、JIS3003(Al−Mn系)合金またはJIS1100(純Al系)合金、JIS6000系合金(Al−Mg−Si系)を素管に押し出し加工し、この素管を連続抽伸加工した外径8〜16mm(肉厚1〜2mm)程度の配管材が用いられ、またラジエーター等の出入口にも前記合金の外径8〜34mm程度の配管材が用いられている。例えば、JIS6000系合金では、特開昭58−110653号公報には、Mgを0.35〜1.5wt%、Siを0.2〜0.8wt%、Znを0.1〜0.3wt%含有し、さらにSnを0.02〜0.1wt%、Cuを0.15〜0.4wt%含有することを特徴とする耐粒界腐食性および耐孔食性に優れたアルミニウム合金が提示されている。
しかしながら、配管が環境劣悪な自動車のエンジンルーム内で使用される場合や、東南アジアなどの高温多湿の環境で使用される場合には、貫通腐食が生じることがあり、配管に1点でも貫通腐食が生じると配管内の冷媒(冷却水)が漏れて、エアコンでは冷却機能が失われ、ラジエーターではエンジンが焼き付いたりする。
そのために、従来の腐食防止法のうち、配管の外面にAl−Zn合金をクラッドする方法は最も効果的であるが、製造に手間がかかりコストアップは避けられない。また、塗装法は簡便で低コストであるが、十分な効果が得られず、近頃は塗装すらコストダウンの要求から省略される傾向にある。
尚、配管内を流れる冷媒や冷却水には防錆材(インヒビター)が添加されているため配管内側からの腐食はほとんどおきず、腐食は主に配管外側から進行する。そのために、クラッドや塗装することなく、単層で従来合金よりも耐食性が良い材料の開発が必要とされてきた。
また配管材については、それを製造する際の押し出し加工や熱交換器を組み立てる際に曲げ加工などの上から良好な成形性、加工性を有することが要求されることは言うまでもない。しかし、従来の配管材はこれらの耐食性と成形性及び加工性を全て具備するという点で必ずしも十分とは言えない。
【0003】
【課題を解決するための手段】
本発明の上記の課題は下記の手段によって達成された。
すなわち本発明は、0.1wt%を越え0.5wt%以下のCu、0.6wt%を越え0.85wt%以下のMn、0.1wt%を越え0.3wt%以下のCrを含有し、不可避的不純物としてのSiを0.2wt%以下、Feを0.6wt%以下に規制し、残部がAlと不可避的不純物からなる熱交換器用アルミニウム合金配管材を製造するに当り、焼鈍処理を330℃を越え、450℃以下の温度で1〜10時間加熱し、冷却速度を100℃/時間以上の条件で行うことを特徴とする熱交換器用アルミニウム合金配管材の製造方法を提供するものである。
【0004】
【発明の実施の形態】
以下に本発明に係るアルミニウム合金配管材の合金元素について説明する。
Cu;Cuは面腐食を助長して孔食の発生を抑制し、また粒界腐食感受性を鈍らせて耐食性を改善する。また更に強度向上にも寄与する。
Cuの含有量を0.1wt%を越え、0.5wt%以下に規定する理由は、0.1wt%未満ではその効果が十分に得られず、0.5wt%を越えると自己腐食の劣化を促進し、また押し出し加工性を阻害してしまう。Cuの含有量は好ましくは0.1〜0.3wt%である。
Mn;MnはFeと結合してAl(MnFe)化合物を生成し、これによりカソードとして孔食の起点となるAlFe、AlFeなどの化合物の析出を低減して孔食の発生起点を少なくする。
Mnの含有量を0.6wt%を越え、0.85wt%以下と規定した理由は0.6wt%未満ではその効果と機械的強度が不足し、0.85wt%を越えると押し出し加工性および成形性が損なわれてしまうからである。Mnの含有量は好ましくは0.6〜0.8wt%である。
Cr;Crは耐孔食性および強度を向上させる。Crの含有量を0.1wt%を越え、0.3wt%以下と規定した理由は0.1wt%未満ではその効果が十分に得られず、0.3wt%を越えると粗大な化合物が晶出して冷間抽伸加工性および製品の押し出し加工性などの成形性が低下する為である。Crの含有量は好ましくは0.1〜0.2wt%である。
本発明では不可避不純物のSiを0.2wt%以下、Feは0.6wt%以下に規定する。その理由はいずれが本発明例を越えても孔食が発生しやすくなる為である。Siの含有量は好ましくは0.1wt%以下、Feの含有量は好ましくは0.5wt%以下である。
尚、本発明合金に鋳造組織を微細化して製品加工性を改善する目的でTiを0.15wt%以下の範囲で適宜微量添加すると良い。尚、0.15wt%を越えると、Tiの粗大な化合物が生成し、成形加工性を低下させる。
本発明の配管材の製造工程は常法に従って行うことができる。これを例示すると次の通りである。
アルミニウム合金の溶解鋳造→均質化処理
→熱間押し出し→連続抽伸加工→焼鈍
次に、本発明において、焼鈍処理を330℃を越え、450℃以下の温度で1〜10時間加熱し、冷却速度を100℃/時間以上の条件で行うことを特徴とするアルミニウム合金配管材の製造方法の理由について説明する。
熱処理温度が330℃未満の場合には、材料の伸びが低下して、曲げ加工性などの成形加工性に劣ってしまう。また焼鈍処理温度が450℃を越える場合には、粒界にAl−Mn系の析出物が優先析出し、粒界腐食を促進し耐食性を損ねてしまう。また、冷却速度が100℃/時間未満の場合においては、粒界に析出するAl−Mn系の析出を促進し、粒界腐食を促進し耐食性を損ねてしまうからである。
【0005】
【実施例】
次に、本発明を実施例に基づきさらに詳細に説明する
【0007】
2に示すアルミニウム合金に示す本発明組成のアルミニウム合金と本発明成分を外れる比較例合金を溶解鋳造して断面円形形状の鋳塊とし、この鋳塊を610℃で4時間の均質化処理後、長さ1000mmに切断して押し出しビレットとし、これを500℃に再加熱して、外径50mmの素管に熱間押し出しし、その後連続抽伸加工を冷間で複数回行って外径8.0mm、肉厚1.0mmの管材に仕上げた。その後表3に示す人工時効処理を行い、表3に示す冷却速度にて供試材を冷却し、試験片を得た。
これらの供試材をJISH8601に基づくCASS試験を400時間行った後に、腐食生成物を除去し、光学顕微鏡を用いて、孔食深さを測定し、最大孔食深さを求めた。
また、この管材製造時の押し出し加工性は、押し出す際の押し出し力と押し出し速度及び十分な形状が得られているかを総合的に判断し、良好と不良で評価した。
曲げ加工性は、抽伸、焼鈍後の素管を、実際の曲げ加工で使用される引っ張り曲げ(ストレッチベンド)法により評価した。曲げ条件は曲げ半径30mmФ、曲げ角度60°とした。曲げ加工後に異常の無い管は良好、折れたり肌荒れした管は不良と判断した。
表3に結果を示す。本発明例は、比較例と比較して良好な耐食性、押し出し加工性、曲げ加工性を具備し、優れることがわかる。
【0008】
【表2】

Figure 0004286432
【0009】
【表3】
Figure 0004286432
【0010】
【発明の効果】
この様に本発明によれば、自動車用熱交換器のアルミニウム合金配管材としてクラッド材ではなく、単層のベア材であっても、製造時の加工性と優れた耐食性および曲げ加工性の全てを具備した熱交換器配管材が得られ、熱交換器のコストダウンが図れる等、工業的に顕著な効果が得られる。
【図面の簡単な説明】
【図1】自動車用エアコンのシステム説明図である。
【符号の説明】
1 コンデンサー
2 エバポレーター
3 配管
4 コンプレッサー
5 レシーバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy pipe material having excellent workability and excellent corrosion resistance suitable for pipes of heat exchangers such as automobile air conditioners, oil coolers, and radiators.
[0002]
[Prior art and problems to be solved by the invention]
For example, in an automobile air conditioner, as shown in FIG. 1, a condenser 1 made of an aluminum alloy heat exchanger and an evaporator 2 are connected by an aluminum pipe 3, and a compressor 4 or a receiver 5 that compresses a refrigerant such as Freon is interposed therebetween. It is provided and configured.
The aluminum pipe 3 is formed by extruding a JIS3003 (Al-Mn-based) alloy, JIS1100 (pure Al-based) alloy, or JIS6000-based alloy (Al-Mg-Si based) into a raw pipe, and continuously drawing the raw pipe. The piping material having an outer diameter of 8 to 16 mm (wall thickness of 1 to 2 mm) is used, and the piping material having an outer diameter of 8 to 34 mm of the alloy is also used at the entrance and exit of a radiator or the like. For example, in a JIS 6000 series alloy, Japanese Patent Laid-Open No. 58-110653 discloses that Mg is 0.35 to 1.5 wt%, Si is 0.2 to 0.8 wt%, and Zn is 0.1 to 0.3 wt%. An aluminum alloy excellent in intergranular corrosion resistance and pitting corrosion resistance characterized by containing 0.02 to 0.1 wt% of Sn and 0.15 to 0.4 wt% of Cu is presented. Yes.
However, when the piping is used in an engine room of a car with a poor environment, or when it is used in a hot and humid environment such as Southeast Asia, penetration corrosion may occur. If it occurs, the refrigerant (cooling water) in the piping leaks, the cooling function is lost in the air conditioner, and the engine is burned in the radiator.
For this reason, among the conventional corrosion prevention methods, the method of cladding an Al—Zn alloy on the outer surface of the pipe is the most effective, but it takes time and effort to increase the cost. In addition, the coating method is simple and low-cost, but sufficient effects cannot be obtained, and even recently, even coating tends to be omitted due to the demand for cost reduction.
In addition, since the rust preventive material (inhibitor) is added to the refrigerant | coolant and cooling water which flow through the inside of a pipe, there is almost no corrosion from the inside of a pipe, and corrosion progresses mainly from the outside of a pipe. Therefore, it has been necessary to develop a material having a single layer and better corrosion resistance than a conventional alloy without cladding or painting.
Moreover, it goes without saying that the piping material is required to have good formability and workability from the viewpoint of the bending process or the like when assembling the extrusion process or heat exchanger when manufacturing it. However, conventional piping materials are not necessarily sufficient in that they have all of these corrosion resistance, formability, and workability.
[0003]
[Means for Solving the Problems]
The above object of the present invention has been achieved by the following means.
That is , the present invention relates to 0 . Containing 1 wt% to 0.5 wt% or less of Cu, 0.6 wt% to 0.85 wt% or less of Mn, 0.1 wt% to 0.3 wt% or less of Cr, and Si as an inevitable impurity 0.2 wt% or less, to restrict the Fe below 0.6 wt%, the balance per the to produce a heat exchanger aluminum alloy piping material ing of Al and unavoidable impurities, exceed 330 ° C. the annealing treatment, 450 ° C. The present invention provides a method for producing an aluminum alloy piping material for a heat exchanger , which is heated at the following temperature for 1 to 10 hours and performed at a cooling rate of 100 ° C./hour or more.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
It will be described alloying elements of the aluminum alloy piping material according to the present invention below.
Cu; Cu promotes surface corrosion and suppresses the occurrence of pitting corrosion, and dulls intergranular corrosion sensitivity to improve corrosion resistance. Furthermore, it contributes to strength improvement.
The reason why the content of Cu exceeds 0.1 wt% and is 0.5 wt% or less is that the effect cannot be sufficiently obtained if it is less than 0.1 wt%, and if it exceeds 0.5 wt%, the self-corrosion is deteriorated. Promotes and impedes extrusion processability. The content of Cu is preferably 0.1 to 0.3 wt%.
Mn; Mn combines with Fe to produce an Al 6 (MnFe) compound, thereby reducing the precipitation of compounds such as Al 3 Fe and Al 6 Fe that become the starting point of pitting corrosion as a cathode, and the starting point of pitting corrosion Reduce.
The reason why the Mn content exceeds 0.6 wt% and is 0.85 wt% or less is that the effect and mechanical strength are insufficient when the content is less than 0.6 wt%, and the extrusion processability and molding when the content exceeds 0.85 wt%. This is because the nature is impaired. The Mn content is preferably 0.6 to 0.8 wt%.
Cr; Cr improves pitting corrosion resistance and strength. The reason why the Cr content exceeds 0.1 wt% and is 0.3 wt% or less is that the effect cannot be obtained sufficiently if it is less than 0.1 wt%, and if it exceeds 0.3 wt%, a coarse compound crystallizes out. This is because moldability such as cold drawing processability and product extrusion processability is deteriorated. The content of Cr is preferably 0.1 to 0.2 wt%.
In the present invention, unavoidable Si is defined as 0.2 wt% or less, and Fe is defined as 0.6 wt% or less. The reason is that pitting corrosion is likely to occur regardless of which of the examples of the present invention. The Si content is preferably 0.1 wt% or less, and the Fe content is preferably 0.5 wt% or less.
Incidentally, it is preferable to add a small amount of Ti in the range of 0.15 wt% or less in order to refine the cast structure and improve the workability of the product to the alloy of the present invention. In addition, when it exceeds 0.15 wt%, a coarse compound of Ti is generated, and moldability is lowered.
The manufacturing process of the piping material of this invention can be performed in accordance with a conventional method. This is illustrated as follows.
Aluminum alloy melt casting → homogenization
→ Hot extrusion → Continuous drawing process → Annealing Next, in the present invention, the annealing treatment is performed at a temperature exceeding 330 ° C. and at a temperature of 450 ° C. or lower for 1 to 10 hours, and a cooling rate is performed at 100 ° C./hour or more. The reason for the manufacturing method of the aluminum alloy piping material will be described.
When the heat treatment temperature is lower than 330 ° C., the elongation of the material is lowered and the molding processability such as bending processability is deteriorated. On the other hand, when the annealing temperature exceeds 450 ° C., Al—Mn-based precipitates preferentially precipitate at the grain boundaries, thereby promoting intergranular corrosion and impairing the corrosion resistance. In addition, when the cooling rate is less than 100 ° C./hour, the precipitation of Al—Mn system precipitated at the grain boundary is promoted, the intergranular corrosion is promoted, and the corrosion resistance is impaired.
[0005]
【Example】
Next, the present invention will be described in more detail based on examples .
[0007]
An aluminum alloy having the composition of the present invention shown in Table 2 and a comparative alloy that deviates from the components of the present invention are melt cast to form an ingot having a circular cross section, and this ingot is subjected to homogenization treatment at 610 ° C. for 4 hours. Then, it is cut into a length of 1000 mm to form an extruded billet, which is reheated to 500 ° C. and hot-extruded into a blank tube having an outer diameter of 50 mm, and then subjected to continuous drawing multiple times in the cold to obtain an outer diameter of 8. The tube was finished to 0 mm and a wall thickness of 1.0 mm. Thereafter, artificial aging treatment shown in Table 3 was performed, and the specimen was cooled at a cooling rate shown in Table 3 to obtain a test piece.
After performing a CASS test based on JISH8601 for 400 hours for these specimens, the corrosion products were removed, and the pitting depth was measured using an optical microscope to obtain the maximum pitting depth.
Moreover, the extrusion workability at the time of producing the pipe material was evaluated based on whether it was good or bad by comprehensively judging whether or not the extrusion force, extrusion speed and sufficient shape at the time of extrusion were obtained.
The bending workability was evaluated by the tensile bending (stretch bend) method used for the actual bending process for the raw pipe after drawing and annealing. The bending conditions were a bending radius of 30 mmФ and a bending angle of 60 °. It was judged that the tube without abnormality after bending was good, and the tube that was broken or rough was bad.
Table 3 shows the results. It can be seen that the examples of the present invention have excellent corrosion resistance, extrusion workability and bending workability as compared with the comparative examples.
[0008]
[Table 2]
Figure 0004286432
[0009]
[Table 3]
Figure 0004286432
[0010]
【The invention's effect】
As described above, according to the present invention, not only the clad material but the single layer bare material as the aluminum alloy piping material of the automotive heat exchanger, all of the workability at the time of manufacture and the excellent corrosion resistance and bending workability are obtained. The heat exchanger piping material provided with the above can be obtained, and the industrially significant effects can be obtained, such as cost reduction of the heat exchanger.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a system for an air conditioner for automobiles.
[Explanation of symbols]
1 Condenser 2 Evaporator 3 Piping 4 Compressor 5 Receiver

Claims (1)

0.1wt%を越え0.5wt%以下のCu、0.6wt%を越え0.85wt%以下のMn、0.1wt%を越え0.3wt%以下のCrを含有し、不可避的不純物としてのSiを0.2wt%以下、Feを0.6wt%以下に規制し、残部がAlと不可避的不純物からなる熱交換器用アルミニウム合金配管材を製造するに当り、焼鈍処理を330℃を越え、450℃以下の温度で1〜10時間加熱し、冷却速度を100℃/時間以上の条件で行うことを特徴とする熱交換器用アルミニウム合金配管材の製造方法。 Containing 0.1 wt% to 0.5 wt% or less Cu, 0.6 wt% to 0.85 wt% or less Mn, 0.1 wt% to 0.3 wt% or less Cr, as inevitable impurities Si less 0.2 wt%, to restrict the Fe below 0.6 wt%, the balance per the to produce a heat exchanger aluminum alloy piping material ing of Al and unavoidable impurities, exceed 330 ° C. the annealing process, The manufacturing method of the aluminum alloy piping material for heat exchangers characterized by heating at the temperature of 450 degrees C or less for 1 to 10 hours, and performing a cooling rate on the conditions of 100 degrees C / hour or more.
JP2000165044A 2000-06-01 2000-06-01 Method for producing aluminum alloy piping material for heat exchanger Expired - Lifetime JP4286432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165044A JP4286432B2 (en) 2000-06-01 2000-06-01 Method for producing aluminum alloy piping material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165044A JP4286432B2 (en) 2000-06-01 2000-06-01 Method for producing aluminum alloy piping material for heat exchanger

Publications (2)

Publication Number Publication Date
JP2001342531A JP2001342531A (en) 2001-12-14
JP4286432B2 true JP4286432B2 (en) 2009-07-01

Family

ID=18668578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165044A Expired - Lifetime JP4286432B2 (en) 2000-06-01 2000-06-01 Method for producing aluminum alloy piping material for heat exchanger

Country Status (1)

Country Link
JP (1) JP4286432B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049536B2 (en) * 2006-08-24 2012-10-17 古河スカイ株式会社 Aluminum piping material for automotive heat exchangers
JP5710946B2 (en) * 2010-11-25 2015-04-30 三菱アルミニウム株式会社 Flat tubes and heat exchangers for heat exchangers

Also Published As

Publication number Publication date
JP2001342531A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP5049536B2 (en) Aluminum piping material for automotive heat exchangers
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
EP1564307A1 (en) Aluminium alloy extruded product for heat exchangers and method of manufacturing the same
JP3878640B2 (en) Heat resistant copper alloy material
JPH11172388A (en) Aluminum alloy extruded pipe material for air conditioner piping and its production
JP2005060790A (en) Aluminum alloy brazing fin material for heat exchanger
US6896749B2 (en) Rolled or extruded aluminium Al-Mn alloy products with improved corrosion resistance
JP2004124166A (en) Aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability, and production method therefor
JP4846124B2 (en) Method for producing aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability
JP4286432B2 (en) Method for producing aluminum alloy piping material for heat exchanger
JP4286431B2 (en) Manufacturing method of aluminum alloy piping material
JP2857282B2 (en) Aluminum alloy extruded material excellent in bending workability and shock absorption and method for producing the same
AU2017269097B2 (en) High strength and corrosion resistant alloy for use in HVAC&R systems
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
EP1254965A1 (en) High strength aluminium tube material
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JPS61194144A (en) Pitting resistance aluminum alloy
JP2001105173A (en) Aluminum alloy compound material for heat exchanger and its manufacturing method
JPH08218143A (en) Aluminum alloy extruded material for heat exchanger connector and production thereof
JPH076045B2 (en) Method for producing high strength aluminum alloy fin material for heat exchanger
JP3253823B2 (en) Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger
JP3243479B2 (en) Copper base alloy for heat exchanger
JP2000169925A (en) Aluminum piping material for heat exchanger
JP2002038232A (en) Aluminum alloy piping material for heat exchanger
KR102261090B1 (en) High corrosion-resistant heat exchanger tube and method for preparing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150403

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250