JP4283814B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP4283814B2
JP4283814B2 JP2006007815A JP2006007815A JP4283814B2 JP 4283814 B2 JP4283814 B2 JP 4283814B2 JP 2006007815 A JP2006007815 A JP 2006007815A JP 2006007815 A JP2006007815 A JP 2006007815A JP 4283814 B2 JP4283814 B2 JP 4283814B2
Authority
JP
Japan
Prior art keywords
blast furnace
sintered ore
ore
mass
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006007815A
Other languages
Japanese (ja)
Other versions
JP2006161165A (en
Inventor
陽三 細谷
謙一 樋口
隆 折本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006007815A priority Critical patent/JP4283814B2/en
Publication of JP2006161165A publication Critical patent/JP2006161165A/en
Application granted granted Critical
Publication of JP4283814B2 publication Critical patent/JP4283814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、高Al2 O3 鉱石の多量使用と高炉スラグ比を低減する高炉操業方法、特に微粉炭多量吹き込み時の高炉の安定操業に関する。   The present invention relates to a method of operating a blast furnace in which a large amount of high Al2 O3 ore is used and a blast furnace slag ratio is reduced, and more particularly to a stable operation of a blast furnace when a large amount of pulverized coal is injected.

豪州、インドの鉄鉱石のAl2 O3 量は2.0mass%以上が主体であり、ブラジルなどの低Al2 O3 鉱石に対してAl2 O3 量は倍以上もある。高炉操業では高炉スラグ中のAl2 O3 量を14.0〜15.5%に管理しており、鉱石のAl2 O3 量が上昇することは好ましくない。しかし日本は地理的に豪州とインドに近く、輸送費を下げるためにもこれらの地域の高Al2 O3 鉱石をより多く使用することが求められている。 In Australia and India, the iron ore has an Al2 O3 content of 2.0 mass% or more, and the Al2 O3 content is more than double that of low Al2 O3 ores such as Brazil. In blast furnace operation, the amount of Al2 O3 in the blast furnace slag is controlled to 14.0 to 15.5%, and it is not preferable that the amount of Al2 O3 in the ore increases. However, Japan is geographically close to Australia and India and is required to use more of the high Al2 O3 ore in these areas to reduce transportation costs.

また、高炉に装入するコークスを代替し、溶銑原価の低減を目的として高炉羽口から微粉炭を吹込む技術はコークス炉の老朽化対策としても重要であり、日本国内ではほぼ全高炉に採用され、微粉炭吹込み量は150kg/t−p以上の例も報告されている。   In addition, the technology to inject pulverized coal from the blast furnace tuyere to replace the coke charged to the blast furnace and reduce the hot metal cost is also important as a countermeasure for aging of the coke oven, and is adopted in almost all blast furnaces in Japan. An example in which the amount of pulverized coal injection is 150 kg / tp or more has been reported.

例えば、非特許文献1には、コークスDIの向上と高酸素富化操業、低Al2 O3 ・高被還元性焼結鉱の使用、局所的な高O/C(鉱石/コークス比)部を形成させない装入物分布制御により、1週間の微粉炭比200kg/t−pの操業試験が達成できたと報告されている。これは融着体厚み増加を装入物の低Al2 O3 化で抑制したと考えられる。   For example, Non-Patent Document 1 includes the improvement of coke DI and high oxygen enrichment operation, the use of low Al2 O3 and highly reducible sintered ore, and a local high O / C (ore / coke ratio) part. It has been reported that an operation test with a pulverized coal ratio of 200 kg / tp for one week could be achieved by controlling the charge distribution not to occur. This is thought to be due to the suppression of the increase in the thickness of the melted body by reducing the Al2 O3 content of the charge.

また、非特許文献2には炉下部通気・通液性の改善のためにスラグ比を低下(320→280kg/t−p)させ、HPS鉱の全面使用による塊成鉱の高RI(被還元性)化、コークス強度向上を実施し、月間微粉炭比218kg/t−pの操業結果が得られたことが報告されている。HPS鉱が低SiO2 ・低Al2 O3 鉱であるのはよく知られているので、融着帯厚み増加を装入物の低SiO2 化と低Al2 O3 化で抑制したと考えられる。   In Non-Patent Document 2, the slag ratio is reduced (320 → 280 kg / tp) to improve the ventilation and liquid permeability in the lower part of the furnace, and the high RI (reducible reduction) of agglomerated ore by using the entire surface of HPS ore. It has been reported that an operation result of 218 kg / tp per month of pulverized coal ratio was obtained. Since it is well known that the HPS ore is a low SiO2 and low Al2 O3 ore, it is considered that the increase in the cohesive zone thickness was suppressed by lowering the SiO2 and low Al2 O3 of the charge.

特許文献1には、高炉操業において焼結鉱塩基度(C/S)を2以上とし、高炉スラグの目標塩基度より上昇分は高炉にてSiO2 源副原料の装入により調整し、軟化融着帯レベルを下降させることにより溶銑中Si濃度を低下させることを特徴とする高炉操業方法が記載されている。   In Patent Document 1, the basicity of sinter ore (C / S) is set to 2 or more in blast furnace operation, and the amount of increase from the target basicity of blast furnace slag is adjusted by charging SiO2 source auxiliary material in the blast furnace, and softening and melting are performed. A blast furnace operating method is described in which the Si concentration in the hot metal is lowered by lowering the landing level.

特開昭61−56211号公報JP-A 61-56211 「材料とプロセス」7(1994),p126“Materials and Processes” 7 (1994), p126 「材料とプロセス」8(1995),p.319“Materials and Processes” 8 (1995), p. 319

高Al2 O3 鉱石はブラジルの低Al2 O3 鉱石などより安価であるので、今後は高Al2 O3 焼結鉱の使用技術の確立が高炉操業の重要課題の一つになると考えられる。しかし、高炉操業においては高炉スラグ中のAl2 O3 量を管理値以下に押さえる必要があり、高Al2 O3 鉱石を多量に配合するとカルシウムフェライト融液の融点上昇により融液生成量が減少するため、焼結鉱の製造歩留り低下や品質(特に強度とRDI)の悪化が問題となるので、従来は高Al2 O3鉱石の配合量を増加させることは困難であった。   Since high Al2 O3 ore is cheaper than Brazil's low Al2 O3 ore, the establishment of technology for using high Al2 O3 sintered ore will be one of the important issues in blast furnace operation. However, in blast furnace operation, it is necessary to keep the amount of Al2O3 in the blast furnace slag below the control value. When a large amount of high Al2O3 ore is added, the amount of melt produced decreases due to the melting point of the calcium ferrite melt increasing. Conventionally, it has been difficult to increase the blending amount of high Al2 O3 ore because the production yield of the ore is reduced and the quality (especially strength and RDI) deteriorates.

高炉の安定操業のためには高炉炉下部の通気性・通液性の改善が必要であり、特に高炉羽口から微粉炭を150kg/t−p以上吹き込む際には微粉炭比増加により炉頂から装入するコークス量が減少(コークススリットの縮小)するので、高炉内のO/Cが高くなり、融着帯厚み増加とそれ以下の炉芯部を含む炉下部の通気性の悪化が問題となる。炉下部の通気性改善のためには、高炉スラグ比の低減が必要である。   For stable operation of the blast furnace, it is necessary to improve the air permeability and liquid permeability at the bottom of the blast furnace. Especially when pulverized coal is blown at 150 kg / tp or more from the blast furnace tuyere, the top of the furnace is increased by increasing the pulverized coal ratio. As the amount of coke charged from the inside decreases (reduction of coke slits), the O / C in the blast furnace increases, increasing the thickness of the cohesive zone and lowering the air permeability of the lower part of the furnace including the furnace core less than that It becomes. In order to improve the permeability of the lower part of the furnace, it is necessary to reduce the blast furnace slag ratio.

そこで、高炉スラグ比を低減するため、焼結鉱のSiO2 成分の低減が検討されてきた。しかし、高炉操業においては高炉スラグ中のAl2 O3 量を高炉操業の管理値以下にする必要があり、低SiO2 の鉱石を多量に配合すると高炉スラグ中のAl2 O3 量が高炉操業の管理値以上になり、スラグ粘性が上昇してスラグ流動性が悪化することが問題となっている。   Therefore, in order to reduce the blast furnace slag ratio, reduction of the SiO2 component of the sintered ore has been studied. However, in blast furnace operation, the amount of Al2 O3 in the blast furnace slag must be less than the control value for blast furnace operation. If a large amount of low SiO2 ore is added, the amount of Al2 O3 in the blast furnace slag will exceed the control value for blast furnace operation. Thus, the slag viscosity increases and the slag fluidity deteriorates.

特許文献1の方法は、塩基度上昇で焼結鉱高温性状を改善して軟化融着帯の収縮率や通気抵抗を改善しているが、塩基度を上昇させると高炉スラグ量を増加させる欠点があるので、炉下部の通気性改善が必要な微粉炭多量吹き込み操業への適用は困難である。   The method of Patent Document 1 improves the high-temperature properties of the sinter by improving the basicity, thereby improving the shrinkage rate and the ventilation resistance of the softened cohesive zone. However, if the basicity is increased, the amount of blast furnace slag increases. Therefore, it is difficult to apply it to a large amount of pulverized coal injection that requires improvement of the air permeability at the bottom of the furnace.

本発明法は、上記の問題点を解決するためになされたもので、高炉での高Al2 O3 鉱石の多量使用を可能にし、特に微粉炭多量吹き込み時における高炉スラグ比を低下して炉下部の通気性・通液性が改善できる高炉操業を提供することを目的とする。   The method of the present invention was made in order to solve the above-mentioned problems, and enables a large amount of high Al2 O3 ore to be used in a blast furnace, and particularly reduces the blast furnace slag ratio when a large amount of pulverized coal is blown to reduce the bottom of the furnace. It aims to provide blast furnace operation that can improve air permeability and liquid permeability.

上記の課題を解決するために、本発明は以下を要旨とする。
(1) SiO2 を3.9〜4.9mass%、MgOを0.5〜1.2mass%含有し、C/Sを2.0〜2.8とした高C/S焼結鉱、およびSiO2 を4.5〜6.0mass%、MgOを1.3〜2.5mass%含有し、C/Sを0.5〜1.2とした低C/S焼結鉱を製造し、高炉スラグ比が高炉の操業管理値以下となるように前記高C/S焼結鉱と低C/S焼結鉱を配合し、高炉に装入することを特徴とする。
In order to solve the above problems, the present invention has the following gist.
(1) High C / S sintered ore containing 3.9 to 4.9 mass% of SiO2, 0.5 to 1.2 mass% of MgO, and C / S of 2.0 to 2.8, and SiO2 Of 4.5 to 6.0 mass%, 1.3 to 2.5 mass% of MgO, and C / S of 0.5 to 1.2 to produce a low C / S sintered ore with a blast furnace slag ratio Is characterized in that the high C / S sintered ore and the low C / S sintered ore are mixed and charged into the blast furnace so as to be less than the operation control value of the blast furnace.

(2) 高炉羽口から150kg/t−p以上の微粉炭を吹き込む高炉操業において、上記(1)に記載の操業を行うことを特徴とする。
ここで、高炉スラグ比は銑鉄1t当りに生成するスラグ量を示し、C/SはCaO/SiO2 で表せる塩基度である。なお、高炉スラグ中にはCaO,SiO2 ,Al2 O3 ,MgOの他に0.2%程度のFeOやアルカリ成分が含まれる。
(2) In the blast furnace operation in which pulverized coal of 150 kg / tp or more is blown from the blast furnace tuyere, the operation described in the above (1) is performed.
Here, the blast furnace slag ratio indicates the amount of slag produced per 1 ton of pig iron, and C / S is the basicity expressed by CaO / SiO2. The blast furnace slag contains about 0.2% FeO and alkali components in addition to CaO, SiO2, Al2 O3 and MgO.

以上のように、微粉炭吹き込み量を150kg/t−p以上に増加させても、本発明法により炉内全圧損値を増加させることなく、高炉安定操業を長期に継続することができた。本発明法は、高Al2 O3 焼結鉱の多量使用や高炉スラグ量の低減を可能にし、特に微粉炭多量吹き込み時の高炉の安定操業を可能にする。   As described above, even if the amount of pulverized coal injection was increased to 150 kg / tp or more, the blast furnace stable operation could be continued for a long time without increasing the total pressure loss value in the furnace by the method of the present invention. The method of the present invention makes it possible to use a large amount of high Al2 O3 sintered ore and reduce the amount of blast furnace slag, and in particular, to enable stable operation of the blast furnace when a large amount of pulverized coal is injected.

本発明は、高Al2 O3 焼結鉱の多量使用を可能にし、高炉スラグ量を低減して、特に高微粉炭比操業における高炉操業を安定化するものである。
まず、本発明法1の方法を以下に説明する。
従来、焼結鉱中のAl2 O3 量が2.0mass%以上となると、融液生成量の減少、還元粉化しやすい「ヘマタイト+柱状カルシウムフェライト」共存組織が増加し、また還元時に生成する高FeO融液の融点を逆に下げて軟化しやすくするため、焼結鉱の強度、RDI(還元粉化性)、高温還元・軟化溶融性状が悪化する問題があった。
The present invention makes it possible to use a large amount of high Al2 O3 sintered ore, reduce the amount of blast furnace slag, and stabilize the blast furnace operation particularly in the operation with high pulverized coal ratio.
First, the method 1 of the present invention will be described below.
Conventionally, when the amount of Al2O3 in the sintered ore is 2.0 mass% or more, the amount of melt produced decreases, the coexistence structure of "hematite + columnar calcium ferrite" that tends to be reduced to powder increases, and high FeO produced during reduction However, since the melting point of the melt is lowered to make it easy to soften, there is a problem that strength of sintered ore, RDI (reducible powdering property), high temperature reduction / softening melt properties deteriorate.

そこで、高Al2 O3 鉱石を多量に配合しても優れた品質の焼結鉱を製造できる焼結原料の配合条件を種々検討した結果、焼結鉱中のSiO2 が3.9〜4.9mass%、MgOが0.5〜1.2mass%、Al2 O3 が2.0〜3.0mass%となるように高Al2 O3 鉱石と他の鉱石、副原料を配合して高Al2 O3 焼結鉱とすることにより、優れた強度、RDI(還元粉化性)、JIS−RI(被還元性)、高温還元・軟化溶融性状の焼結鉱が得られることを見出した。さらにSiO2 が4.5〜6.0mass%、MgOが0.8〜2.5mass%、Al2 O3 が1.0〜1.7mass%である低Al2 O3 焼結鉱を前記高Al2 O3 焼結鉱と配合し、高炉に装入することにより高炉スラグの粘性に大きな影響を及ぼす高炉スラグ中のAl2 O3 量を容易に高炉操業の管理値以下に調整できることを見出し、本発明に至った。   Therefore, as a result of various investigations on the blending conditions of the sintering raw material that can produce a sintered ore of excellent quality even if a large amount of high Al2 O3 ore is blended, the SiO2 in the sintered ore is 3.9 to 4.9 mass%. , High Al2 O3 ore and other ores and auxiliary materials are blended so that MgO is 0.5 to 1.2 mass% and Al2 O3 is 2.0 to 3.0 mass% to obtain a high Al2 O3 sintered ore. As a result, it has been found that a sintered ore having excellent strength, RDI (reducible powdering property), JIS-RI (reducible property), high temperature reduction / softening melting property can be obtained. Furthermore, the low Al2 O3 sintered ore having SiO2 of 4.5 to 6.0 mass%, MgO of 0.8 to 2.5 mass% and Al2 O3 of 1.0 to 1.7 mass% is referred to as the high Al2 O3 sintered ore. It was found that the amount of Al2 O3 in the blast furnace slag, which has a great influence on the viscosity of the blast furnace slag, can be easily adjusted below the control value of the blast furnace operation.

ここで、高Al2 O3 焼結鉱中のSiO2 を3.9〜4.9mass%、MgOを0.5〜1.2mass%の範囲と規定したのは、Al2 O3 量が2.0〜3.0mass%と高い場合はSiO2 を4.9mass%以下、MgOを1.2mass%以下に同時に低減することにより、焼結鉱の強度に悪影響を及ぼすMgO量を低減することにより、強度を維持しながらトータルのスラグ量を低減することができる。また、焼結層内の熱量は一定の条件下であるため、スラグ量が低減すると焼結層温度が上昇してマグネタイトが増加し、気孔率も増加して還元性が改善されるため、焼結鉱のRDI(還元粉化性)、JIS−RI(被還元性)、高温還元・軟化溶融性状が改善できる。ただし、SiO2 を3.9mass%未満、MgOを0.5mass%未満まで低下させると焼結鉱の強度とRDIが悪化するため好ましくない。この場合、Al2 O3 量が通常焼結鉱より高いので、コークス配合比も通常焼結鉱の場合より増加させるとRDIが向上し、MgOが低い値であるので被還元性に悪影響を及ぼすFeOも大幅には増加しない。   Here, SiO2 in the high Al2 O3 sintered ore is defined as 3.9 to 4.9 mass% and MgO in the range of 0.5 to 1.2 mass%. The amount of Al2 O3 is 2.0 to 3. When the mass is as high as 0 mass%, SiO2 is reduced to 4.9 mass% or less and MgO is reduced to 1.2 mass% or less simultaneously, thereby reducing the amount of MgO that adversely affects the strength of the sintered ore while maintaining the strength. The total amount of slag can be reduced. In addition, since the amount of heat in the sintered layer is constant, if the amount of slag is reduced, the temperature of the sintered layer rises and magnetite increases, the porosity increases and the reducibility is improved. The RDI (reducible powdering property), JIS-RI (reducible property), high temperature reduction / softening melt properties of the ore can be improved. However, if SiO2 is reduced to less than 3.9 mass% and MgO to less than 0.5 mass%, the strength and RDI of the sintered ore are deteriorated, which is not preferable. In this case, since the amount of Al2 O3 is higher than that of the ordinary sinter, the RDI is improved when the coke blending ratio is increased as compared with the case of the ordinary sinter. Does not increase significantly.

高炉スラグの粘性を一定に保つため、スラグ中のAl2 O3 量は通常14.0〜15.5%に管理する必要がある。そこで、上記の高Al2 O3 焼結鉱を高炉に多量に装入する場合、Al2 O3 を1.0〜1.7mass%に規定した低Al2O3 焼結鉱と混合して高炉に装入することにより、高炉スラグ中のAl2 O3 量を操業管理値以下に調整する。さらに低Al2 O3 焼結鉱中のSiO2 を4.5〜6.0mass%、MgOを0.8〜2.5mass%と高い値に規定するのは上記の高Al2 O3 焼結鉱を装入する場合にスラグ中のSiO2 、MgO量を調節するためである。   In order to keep the viscosity of the blast furnace slag constant, the amount of Al2 O3 in the slag must be controlled to 14.0 to 15.5%. Therefore, when a large amount of the above high Al2 O3 sintered ore is charged into the blast furnace, the Al2 O3 is mixed with the low Al2 O3 sintered ore specified to 1.0 to 1.7 mass% and charged into the blast furnace. The amount of Al2O3 in the blast furnace slag is adjusted below the operation control value. Further, the high Al2 O3 sintered ore is charged in order to regulate the SiO2 in the low Al2 O3 sintered ore to 4.5 to 6.0 mass% and MgO to 0.8 to 2.5 mass%. This is to adjust the amount of SiO2 and MgO in the slag.

低Al2 O3 焼結鉱は品質が安定しており、SiO2 、MgOを上記の値に規定しても焼結鉱品質上は問題ない。この場合、Al2 O3 が1.0〜1.7mass%と低レベルであるので、コークス配合比は通常焼結鉱の場合より低くすることができる。
なお、前記高Al2 O3 焼結鉱と低Al2 O3 焼結鉱を混合する方法としては、別々の鉱石槽からそれぞれの焼結鉱を設定した割合で輸送ベルト上に切り出す方法が最も簡便で良い。
The quality of the low Al2 O3 sintered ore is stable, and there is no problem in terms of the quality of the sintered ore even if SiO2 and MgO are regulated to the above values. In this case, since Al2 O3 is at a low level of 1.0 to 1.7 mass%, the coke blending ratio can be made lower than that in the case of ordinary sintered ore.
As a method of mixing the high Al2 O3 sintered ore and the low Al2 O3 sintered ore, a method of cutting out on the transport belt at a set ratio of each sintered ore from separate ore tanks may be the simplest.

次に、本発明法2の高炉スラグ量を低減して操業を安定化する方法を以下に説明する。従来、焼結鉱中のSiO2 を4.9%以下にすると強度やRDI(還元粉化性)が悪化する問題があった。そこで、品質の優れた低SiO2 焼結鉱を製造できる焼結原料の配合条件を種々検討した結果、焼結鉱成分のSiO2 を3.9〜4.9mass%、MgOを0.5〜1.2mass%、C/Sを2.0〜2.8となるように鉱石、副原料を配合して高C/S焼結鉱とすることにより、優れたRDI(還元粉化性)、JIS−RI(被還元性)、高温還元・軟化溶融性状の焼結鉱が得られることを見出した。さらに、SiO2 を4.5〜6.0mass%、MgOを1.3〜2.5mass%、C/Sを0.5〜1.2とした低C/S焼結鉱を製造し、高炉スラグ比が高炉の操業管理値以下となるように前記高C/S焼結鉱と低C/S焼結鉱を配合して高炉に装入すれば高炉スラグ量を低減して炉下部の通気性・通液性の改善が可能になることを見出し、本発明に至った。   Next, a method for stabilizing the operation by reducing the amount of blast furnace slag in Method 2 of the present invention will be described below. Conventionally, when SiO2 in sintered ore is 4.9% or less, there is a problem that strength and RDI (reducible powdering property) deteriorate. Accordingly, as a result of various investigations on the blending conditions of the sintering raw material capable of producing a low-quality SiO2 sintered ore with excellent quality, 3.9 to 4.9 mass% of the SiO2 component and 0.5 to 1. Excellent RDI (reducible powdering property), JIS- by blending ores and auxiliary materials so as to be 2 mass%, C / S 2.0 to 2.8 to make high C / S sintered ore It has been found that sintered ore with RI (reducibility), high temperature reduction / softening melt properties can be obtained. Furthermore, a low C / S sintered ore with SiO2 of 4.5 to 6.0 mass%, MgO of 1.3 to 2.5 mass% and C / S of 0.5 to 1.2 is manufactured, and blast furnace slag is produced. If the high C / S sintered ore and low C / S sintered ore are mixed and charged into the blast furnace so that the ratio is less than the operation control value of the blast furnace, the blast furnace slag amount is reduced and the air permeability of the lower part of the furnace is reduced. -It has been found that liquid permeability can be improved, and the present invention has been achieved.

ここで、焼結鉱中のMgOを0.5〜1.2mass%、C/Sを2.0〜2.8の範囲に規定したのは、焼結鉱中のSiO2 が3.9〜4.9mass%と低い場合は、MgOを1.2mass%以下に低減し、C/Sを2.0以上に増加させることにより、焼結鉱のRDI(還元粉化性)、JIS−RI(被還元性)、高温還元・軟化溶融性状が改善できる。ただし、MgOが0.5mass%未満、C/Sが2.8超になると焼結鉱品質が悪化するため好ましくない。   Here, MgO in the sintered ore was defined in the range of 0.5 to 1.2 mass% and C / S in the range of 2.0 to 2.8 because the SiO2 in the sintered ore was 3.9 to 4 When it is as low as 9 mass%, MgO is reduced to 1.2 mass% or less, and C / S is increased to 2.0 or more, so that RDI (reducible powdering property) of sinter, JIS-RI (covered) Reducing property), high temperature reduction / softening melt properties can be improved. However, when MgO is less than 0.5 mass% and C / S exceeds 2.8, the quality of sintered ore is deteriorated, which is not preferable.

高炉のスラグ比を操業管理値以下にするためには、通常、スラグ中のMgOを6.0〜8.0%、C/Sを1.2〜1.3に管理する必要がある。したがって上記の高C/S焼結鉱を高炉に多量に装入する場合、C/Sを0.5〜1.2に規定した低C/S焼結鉱と上記高C/S焼結鉱とを混合して高炉に装入することにより、高炉スラグ中のC/Sを操業管理値範囲に調整することができる。C/Sが0.5〜1.2の低C/S焼結鉱の場合は、SiO2 とMgO量は高い方が好ましく、SiO2 は4.5〜6.0mass%、MgOは1.3〜2.5mass%が適正である。ここで、SiO2 が6.0mass%超ではJIS−RIと高温還元・軟化溶融性状が悪化し、MgOが2.5mass%超では強度が低下するため好ましくない。なお、この場合の焼結鉱のコークス配合比は通常の焼結鉱レベルの配合で良い。   In order to make the slag ratio of the blast furnace below the operation control value, it is usually necessary to manage MgO in the slag at 6.0 to 8.0% and C / S at 1.2 to 1.3. Therefore, when a large amount of the above high C / S sintered ore is charged into a blast furnace, the low C / S sintered ore having C / S defined as 0.5 to 1.2 and the above high C / S sintered ore. Is mixed and charged into the blast furnace, C / S in the blast furnace slag can be adjusted to the operation control value range. In the case of a low C / S sintered ore having a C / S of 0.5 to 1.2, it is preferable that the amount of SiO2 and MgO is high, SiO2 is 4.5 to 6.0 mass%, and MgO is 1.3 to 2.5 mass% is appropriate. Here, when SiO2 exceeds 6.0 mass%, JIS-RI and high-temperature reduction / softening melt properties deteriorate, and when MgO exceeds 2.5 mass%, the strength decreases. In this case, the coke mixing ratio of the sintered ore may be an ordinary sinter ore mixing ratio.

次に、本発明法3の方法を説明する。
安価原燃料多量使用操業を志向して、高炉羽口から150kg/t−p以上の微粉炭を吹き込む場合、粉率の上昇により高炉炉下部の通気性・通液性の改善が従来にも増して顕在化してきたため、炉下部の通気性に大きな影響を及ぼすスラグ成分の管理及び焼結鉱品質が特に重要になってきた。
Next, the method 3 of the present invention will be described.
When aiming for operation using a large amount of low-cost raw fuel, when blowing pulverized coal of 150 kg / tp or more from the blast furnace tuyere, the improvement of the air permeability and liquid permeability at the bottom of the blast furnace is increased due to the increase in the powder rate. As a result, the management of slag components and the quality of sintered ore that have a great influence on the air permeability of the lower part of the furnace have become particularly important.

燃料比が500kg/t−pの前提で微粉炭比が150kg/t−p(コークス比は350kg/t−p)に増加すると、鉱石/コークス比(O/C)は4.5レベルに上昇する。微粉炭比が200kg/t−p(コークス比は300kg/t−p)になると、O/Cは5.5まで上昇する。通常操業のO/Cは4.0未満であるので、微粉炭比150kg/t−p以上では鉱石層厚が大幅に増加することになり、融着帯形状が肥大化することになる。   If the pulverized coal ratio increases to 150 kg / tp (coke ratio is 350 kg / tp) on the assumption that the fuel ratio is 500 kg / tp, the ore / coke ratio (O / C) rises to 4.5 level. To do. When the pulverized coal ratio reaches 200 kg / tp (the coke ratio is 300 kg / tp), the O / C increases to 5.5. Since O / C of normal operation is less than 4.0, if the pulverized coal ratio is 150 kg / tp or more, the ore layer thickness will be greatly increased, and the cohesive zone shape will be enlarged.

図1に微粉炭比60、200kg/t−p吹き込み操業でのシミュレーション結果に基づく炉内融着帯形状の変化を示す。微粉炭比が増加すると融着帯が肥大化しているのが分かる。この融着帯の肥大化を抑制できれば炉内通気性が改善される。   FIG. 1 shows changes in the shape of the in-furnace cohesive zone based on the simulation results in the pulverized coal ratio of 60 and 200 kg / tp blowing operation. It can be seen that the cohesive zone is enlarged as the pulverized coal ratio increases. If the enlargement of the cohesive zone can be suppressed, the air permeability in the furnace can be improved.

本発明法1の方法と微粉炭多量吹込み技術との組み合わせは、安価な高Al2O3 鉱石を多量に使用しても焼結鉱の高温還元性と軟化溶融性状が大幅に改善できるので融着帯の肥大化を抑制して安定操業を実現できるとともに、溶銑製造コストの低減効果が大きい。また、本発明法2の方法との組み合わせでは特に高炉スラグ比の低減効果が大きく、溶銑製造コストの低減にも貢献できる。   The combination of the method of the present invention method 1 and the pulverized coal large quantity injection technology can greatly improve the high temperature reduction and softening properties of sintered ore even if a large amount of inexpensive high Al2O3 ore is used. Stable operation can be realized by suppressing the enlargement of hot metal, and the effect of reducing hot metal production cost is great. Further, in combination with the method 2 of the present invention, the effect of reducing the blast furnace slag ratio is particularly great, and it can contribute to the reduction of the hot metal production cost.

微粉炭吹き込み量の少ない通常操業時に、本発明法の「高Al2 O3 焼結鉱と低Al2 O3 焼結鉱」または「高C/S焼結鉱と低C/S焼結鉱」を混合して装入した場合、第3表の期間D,Eに示すように、従来法(比較例3)に比較しても高炉操業上問題なく、スラグ比の低減効果が見られた。本発明法は特に微粉炭多量吹き込み操業の場合に効果が大きいため、以下の実施例では微粉炭多量吹込みの例で説明する。
(実施例1)
まず、本発明法1の高Al2 O3 焼結鉱と低Al2 O3 焼結鉱の焼結鉱品質について述べる。焼結鉱は450m2 の焼結機で製造した。従来法と実施例1の焼結鉱を比較して、焼結鉱の成分及びRDIとJIS−RIの測定結果を表1に、高温還元・軟化溶融性状測定結果を図2に示す。本発明法で使用する焼結鉱は、RDIとJIS−RIに加えて高温還元性と軟化溶融性状が大幅に改善されているのが分かる。本発明法1では、高Al2 O3 鉄鉱石(低SiO2 、低MgO)と、低Al2 O3 鉄鉱石(高SiO2 、高MgO)の2種類の焼結鉱を製造し、これらを高炉スラグ中のAl2 O3 成分が15.5%以下、MgO成分が6.0%以上となるように混合して高炉に装入して使用することにより、高Al2 O3 焼結鉱の多量使用(焼結鉱比で40%)が可能となった。これらの焼結鉱を製造する方法として、複数の焼結機で造り分ける方法または同一の焼結機で時間帯を分けて造り分ける方法のいずれかを選択することができる。
During normal operation with a small amount of pulverized coal injection, the “high Al2 O3 sintered ore and low Al2 O3 sintered ore” or “high C / S sintered ore and low C / S sintered ore” of the present invention is mixed. As shown in periods D and E of Table 3, there was no problem in blast furnace operation even when compared with the conventional method (Comparative Example 3), and an effect of reducing the slag ratio was observed. Since the method of the present invention is particularly effective in the case of a large amount of pulverized coal blowing operation, the following example will be described with an example of pulverized coal large amount blowing.
Example 1
First, the sinter quality of the high Al2 O3 sintered ore and low Al2 O3 sintered ore according to Method 1 of the present invention will be described. The sintered ore was produced with a 450 m @ 2 sintering machine. The conventional method and the sintered ore of Example 1 are compared, the components of the sintered ore and the measurement results of RDI and JIS-RI are shown in Table 1, and the high temperature reduction / softening melt property measurement results are shown in FIG. It can be seen that the sintered ore used in the method of the present invention is greatly improved in high temperature reducing property and softening and melting property in addition to RDI and JIS-RI. In the method 1 of the present invention, two kinds of sintered ores of high Al2 O3 iron ore (low SiO2, low MgO) and low Al2 O3 iron ore (high SiO2, high MgO) are produced, and these are produced as Al2 in blast furnace slag. A large amount of high Al2 O3 sintered ore is used (by the ratio of sintered ore) by mixing it so that the O3 component is 15.5% or less and the MgO component is 6.0% or more. 40%) is possible. As a method for producing these sinters, either a method of separately making a plurality of sintering machines or a method of separately making a time zone using the same sintering machine can be selected.

(実施例2)
次に、本発明法2の高C/S焼結鉱と低C/S焼結鉱の焼結鉱品質について述べる。実施例1と同様に、焼結鉱は450m2 の焼結機で製造した。従来法と実施例2の焼結鉱を比較して、焼結鉱の成分及びRDIとJIS−RIの測定結果を表1に、高温還元・軟化溶融性状測定結果を図2に示す。実施例2で使用する焼結鉱も、RDIとJIS−RIに加えて高温還元性と軟化溶融性状が大幅に改善されているのが分かる。
実施例2では、高C/S鉄鉱石(低SiO2 、低MgO)と、低C/S鉄鉱石(高SiO2 、高MgO)の2種類の焼結鉱を製造し、これらを混合して高炉に装入して使用することにより、高炉スラグ中のAl2 O3 成分を15.5%以下、MgO成分を6.0%以上に調整しながら、高炉スラグ比を280kg/t−p以下に低減することが可能になった。これらの焼結鉱を製造する方法は実施例1と同様に、複数の焼結機で造り分ける方法または同一の焼結機で時間帯を分けて造り分ける方法のいずれかを選択することができる。
(Example 2)
Next, the quality of the sintered ore of the high C / S sintered ore and the low C / S sintered ore of the method 2 of the present invention will be described. As in Example 1, the sintered ore was produced on a 450 m @ 2 sintering machine. The conventional method and the sintered ore of Example 2 are compared, the components of the sintered ore and the measurement results of RDI and JIS-RI are shown in Table 1, and the high temperature reduction / softening melt property measurement results are shown in FIG. It can be seen that the sintered ore used in Example 2 also has greatly improved high-temperature reducing properties and softening and melting properties in addition to RDI and JIS-RI.
In Example 2, two types of sintered ores of high C / S iron ore (low SiO 2, low MgO) and low C / S iron ore (high SiO 2, high MgO) are produced and mixed to produce a blast furnace. The blast furnace slag ratio is reduced to 280 kg / tp or less while adjusting the Al2 O3 component in the blast furnace slag to 15.5% or less and the MgO component to 6.0% or more. It became possible. As in Example 1, the method for producing these sintered ores can be selected from either a method in which a plurality of sintering machines are used or a method in which a time zone is divided using the same sintering machine. .

(実施例3)
実施例1または2の焼結鉱を使用して、微粉炭吹き込み量を180kg/t−pに増加させたA高炉(内容積3800m3 )での実施例を説明する。本発明法を従来法と比較して表2の期間B〜Cにまとめた。
従来法では、微粉炭比130kg/t−pの操業レベル(比較例1)から微粉炭比180kg/t−p操業(期間A、比較例2)に多量使用する過程で通気抵抗が増大し、スリップ頻度が増し、炉体放散熱も増えた。これは、微粉炭比の増加によりO/Cが上昇し、炉内全圧損が大きくなったためで、特に170kg/t−p以上でその傾向が顕著であった。
(Example 3)
An example in the A blast furnace (internal volume 3800 m @ 3) in which the amount of pulverized coal injection was increased to 180 kg / tp using the sintered ore of Example 1 or 2 will be described. The method of the present invention was compared with the conventional method in the periods B to C in Table 2.
In the conventional method, the ventilation resistance increases in the process of using a large amount from the operation level (comparative example 1) of the pulverized coal ratio 130 kg / tp to the pulverized coal ratio 180 kg / tp operation (period A, comparative example 2), Slip frequency increased and furnace body heat dissipation increased. This is because O / C increased due to an increase in the pulverized coal ratio, and the total pressure loss in the furnace increased, and this tendency was particularly remarkable at 170 kg / tp or more.

一方、複数の焼結鉱をほぼ均等割合の混合して同時に使用する本発明法1、2に切り換えると、微粉炭吹き込み量が180kg/t−pでもむしろ炉内全圧損値と炉体放散熱量は低下し、スリップ発生回数は激減した。これはRDI値低下による炉上部の通気性改善に加え、シャフト部での被還元性が向上し、さらに通気抵抗を悪化させることを懸念した融着帯根部の肥大化も高温性状の改善により防止したためであり、炉下部の異常も全く見られなかった。   On the other hand, when switching to methods 1 and 2 of the present invention where a plurality of sintered ores are mixed and used at the same time, even if the amount of pulverized coal injection is 180 kg / tp, the total pressure loss value in the furnace and the amount of heat dissipated in the furnace Fell and the number of slips dropped dramatically. In addition to improving the air permeability at the top of the furnace due to a decrease in the RDI value, the reducibility at the shaft is improved, and the enlargement of the root of the cohesive zone that is concerned about worsening the air resistance is prevented by improving the high temperature properties This is because there was no abnormality at the bottom of the furnace.

高炉内融着帯をシミュレーションした図Simulation of cohesive zone in blast furnace 本発明法の焼結鉱の高温性状測定結果Result of high temperature property measurement of sintered ore by the method of the present invention

Claims (2)

SiO2 を3.9〜4.9mass%、MgOを0.5〜1.2mass%含有し、C/Sを2.0〜2.8とした高C/S焼結鉱、およびSiO2を4.5〜6.0mass%、MgOを1.3〜2.5mass%含有し、C/Sを0.5〜1.2とした低C/S焼結鉱を製造し、高炉スラグ比が高炉の操業管理値以下となるように前記高C/S焼結鉱と低C/S焼結鉱を配合し、高炉に装入することを特徴とする高炉操業方法。 High C / S sintered ore containing 3.9 to 4.9 mass% of SiO2, 0.5 to 1.2 mass% of MgO, and C / S of 2.0 to 2.8, and SiO2 of 4. A low C / S sintered ore containing 5-6.0 mass%, MgO 1.3-2.5 mass% and C / S 0.5-1.2 is manufactured, and the blast furnace slag ratio is the blast furnace A method for operating a blast furnace, comprising mixing the high C / S sintered ore and the low C / S sintered ore so as to be equal to or less than an operation control value and charging the blast furnace. 高炉羽口から150kg/t−p以上の微粉炭を吹き込む高炉操業において、請求項1に記載の操業を行うことを特徴とする高炉操業方法。 In the blast furnace operation which inject | pours 150 kg / tp or more pulverized coal from a blast furnace tuyere, the operation of Claim 1 is performed, The blast furnace operation method characterized by the above-mentioned.
JP2006007815A 2006-01-16 2006-01-16 Blast furnace operation method Expired - Lifetime JP4283814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007815A JP4283814B2 (en) 2006-01-16 2006-01-16 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007815A JP4283814B2 (en) 2006-01-16 2006-01-16 Blast furnace operation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20418896A Division JP3874313B2 (en) 1996-07-16 1996-07-16 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2006161165A JP2006161165A (en) 2006-06-22
JP4283814B2 true JP4283814B2 (en) 2009-06-24

Family

ID=36663504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007815A Expired - Lifetime JP4283814B2 (en) 2006-01-16 2006-01-16 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4283814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023139A (en) * 2010-06-01 2011-04-20 无锡市金义博仪器科技有限公司 Optical fiber transmission device of infrared carbon and sulphur analysis meter

Also Published As

Publication number Publication date
JP2006161165A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
CN104152676B (en) A kind of Iron Ore Matching in Sintering method of red soil nickel ore
JP4283814B2 (en) Blast furnace operation method
JP4899726B2 (en) Blast furnace operation method
JP4792797B2 (en) Method of charging ores containing high crystal water into a bell-less blast furnace
JP3874313B2 (en) Blast furnace operation method
JP4598204B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP5426997B2 (en) Blast furnace operation method
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP3815234B2 (en) Operation method for mass injection of pulverized coal into blast furnace
JP5012138B2 (en) Blast furnace operation method
JP2005298923A (en) High ore/reducing material ratio operation method in blast furnace
JP2015178660A (en) Method of charging raw material for blast furnace
JP2020084241A (en) Manufacturing method of sintered ore
JP4661077B2 (en) Method for producing sintered ore
JPH03291313A (en) Method for operating blast furnace
JPH11131151A (en) Production of sintered ore and operation of blast furnace in injecting a large quantity of pulverized fine coal.
JP3705243B2 (en) Blast furnace operation method
JP4155225B2 (en) Blast furnace operation method
JP2002060809A (en) Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition
JP5074043B2 (en) Method for producing sintered ore
KR100466499B1 (en) Method for manufacturing the sintering ore having excellent anti-reduction
JPH1161211A (en) Operation of blast furnace
JP3283739B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP4784140B2 (en) Blast furnace operation method
KR101167371B1 (en) A method of improving a movable slag in iron making process

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

EXPY Cancellation because of completion of term