JP4283585B2 - Method for measuring the amount of gas contained in coal - Google Patents

Method for measuring the amount of gas contained in coal Download PDF

Info

Publication number
JP4283585B2
JP4283585B2 JP2003110800A JP2003110800A JP4283585B2 JP 4283585 B2 JP4283585 B2 JP 4283585B2 JP 2003110800 A JP2003110800 A JP 2003110800A JP 2003110800 A JP2003110800 A JP 2003110800A JP 4283585 B2 JP4283585 B2 JP 4283585B2
Authority
JP
Japan
Prior art keywords
coal
gas
measurement
container
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003110800A
Other languages
Japanese (ja)
Other versions
JP2004317260A (en
Inventor
寛司 松平
浩昭 下野
勝 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2003110800A priority Critical patent/JP4283585B2/en
Publication of JP2004317260A publication Critical patent/JP2004317260A/en
Application granted granted Critical
Publication of JP4283585B2 publication Critical patent/JP4283585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Coke Industry (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭内包ガス放出量の測定方法に関するものである。
【0002】
【従来の技術】
従来、石炭を粉砕したり、長期に貯蔵しているとメタンガス、水素、二酸化炭素、一酸化炭素などのガスが放出されることが知られている。石炭に内包され、石炭から放出されるガス放出量を精度よく測定することは、石炭を安全に貯蔵し、或いは、運搬する上で極めて重要である。例えば、非特許文献1及び2には、石炭運搬船の船倉内や石炭貯蔵中のサイロに発生するメタンガス濃度が爆発限界濃度に達する可能性があることが示唆されている。
【0003】
【非特許文献1】
福地 信義 外3名、「石炭運搬船における酸化発熱によるメタンガス発生と倉内環境制御について」、日本造船学会論文集、第184号P.653〜P.663、1998年
【非特許文献2】
原田 実 外3名、「石炭サイロの防災技術に関する研究」、鹿島建設技術研究所年報、第31号、P.223〜P.230、1983年
【0004】
【発明が解決しようとする課題】
石炭内部の微細気孔に吸着しているメタンガスなどの石炭内包ガス量を測定するためには、石炭を粉砕して、これらのガスを放出する必要がある。しかし、粉砕する際の粉砕エネルギーが摩擦・衝突熱などに変わり、石炭自体の温度を上昇させ、熱分解が起こって、メタンガスなどを新たに発生させる場合があり、石炭に内包されているガス量のみを精度よく測定する方法は知られていない。
【0005】
本発明は、上記事情に鑑みてなされたものであり、石炭を粉砕し、石炭に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決することのできた本発明の測定方法とは、石炭を粉砕し、石炭内部に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法において、測定容器内の石炭を不活性ガスの液化物を用いて冷却し、該石炭を不活性ガス雰囲気下で粉砕し、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定することを特徴とする。
【0007】
石炭を不活性ガスの液化物を用いて冷却することによって、粉砕エネルギーが熱エネルギーに変換されて、粉砕される石炭が温度上昇するのを抑制し、さらに、不活性雰囲気下にすることで、石炭の酸化反応による発熱も抑制できる。
【0008】
前記石炭の冷却は、例えば、前記測定容器に石炭と不活性ガスの液化物とを投入し、石炭と不活性ガスの液化物とを接触させることにより行うことができる。また、前記測定容器に不活性ガスの液化物を投入した後、さらに不活性ガスを測定容器内に導入して、前記液化物を気化させて該測定容器内を不活性ガス雰囲気下にすることも好ましい態様である。石炭の粉砕は、例えば、測定容器に石炭と鋼球とを装入し、前記測定容器を回転させ、石炭と鋼球とを接触させることにより行うことができる。前記測定容器は円筒型容器であって、該容器はガス導入管とガス排出管とを備え、前記円筒型容器を円周方向に回転させることにより、石炭を粉砕することも好ましい態様である。また、前記ガス導入管の先端部のみが容器内部に挿入している状態で、前記円筒型測定容器を回転させて、石炭を粉砕するようにすれば、前記ガス導入管が石炭、鋼球などと接触して損傷することを防止できる。また、前記ガス導入管の先端部を粉砕された石炭層に挿入して、不活性ガスを導入するようにすれば、粉砕された石炭に内包されているガスを効率よく放出させることができる。前記内包ガス放出量は、例えば、ガスクロマトグラフィー法により測定することができる。
【0009】
【発明の実施の形態】
本発明の測定方法は、石炭を粉砕し、石炭に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法において、測定容器内の石炭を不活性ガスの液化物を用いて冷却し、該石炭を不活性ガス雰囲気下で粉砕し、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定することを特徴とする。
【0010】
まず、本発明の測定方法では、測定容器内の石炭を不活性ガスの液化物を用いて冷却する。石炭を予め冷却しておくことによって、粉砕される石炭の温度上昇を抑制し、石炭が熱分解して、分解ガスを発生するのを防止できる。特に、石炭の温度が約170℃〜190℃以上になると熱分解が始まるが、本発明によれば、石炭粉砕時の温度を約150℃以下に抑制することができる。測定容器内の石炭を冷却する方法は、特に限定されないが、例えば、測定容器に石炭と不活性ガスの液化物とを投入し、石炭と不活性ガスの液化物とを接触させて、石炭を冷却することが好ましい。不活性ガスの液化物は、低温(例えば、沸点が−150℃以下)の液体であるため、直接接触させることにより、石炭を容易に冷却できる。また同時に、測定容器内の環境を不活性雰囲気下にして、石炭の酸化反応による発熱も抑制できる。前記不活性ガスの液化物としては、例えば、窒素、アルゴン、ヘリウムなどの不活性ガスの液化物を使用することができ、好ましくは、液体窒素を使用できる。前記不活性ガスの液化物の使用量は、特に限定されないが、例えば、粉砕する石炭を浸す程度に測定容器に添加すればよい。尚、本発明では、不活性ガスの液化物、石炭、石炭を粉砕するための鋼球を測定容器に投入するが、投入順序は特に限定されず、不活性ガスの液化物、石炭、鋼球の順、或いは、鋼球、不活性ガスの液化物、石炭の順であってもよい。
【0011】
本発明の測定方法で測定する石炭の種類は、特に限定されず、任意の産地の石炭について測定できるが、石炭化度が低い褐炭は粉砕時に発熱しやすいので、本発明の測定方法を好適に適用できる。また、石炭の形状は、特に限定されるものではないが、粒径を1〜5mmの範囲に揃えた石炭を使用することが好ましい。粒径を一定の範囲に揃えることによって、石炭の銘柄による粒径差による影響を除外するためである。また、測定に使用する石炭の使用量は、測定容器の大きさに応じて、適宜設定することができるが、3×10-33〜8×10-33の一定容量の測定容器に対して、300g〜800gの石炭を使用することが好ましい態様であり、例えば、容積4.5×10-33の測定容器に対して、500gの石炭を装入する。
【0012】
石炭が装入される測定容器の形状も、特に限定されるものではないが、例えば、円筒型、円錐型などの形状の容器を使用することが好ましい。
【0013】
測定容器に石炭と不活性ガスの液化物とを投入して、石炭を冷却した後、さらに測定容器内に不活性ガスを導入し、測定容器内の不活性ガスの液化物を気化するとともに、該測定容器内を不活性ガス雰囲気下にすることも好ましい態様である。ここで、不活性ガス雰囲気下とは、実質上不活性ガスの液化物が存在せずに不活性ガスのみが存在する雰囲気下を意味する。後述する石炭の粉砕工程において、石炭や不活性ガスの液化物が投入された測定容器は密閉されるが、密閉される測定容器内に不活性ガスの液化物が残存していると、気化して体積が膨張するので危険だからである。上記不活性ガス雰囲気下にするための不活性ガスとしては、特に限定されず、例えば、窒素、アルゴン、ヘリウムなどを使用でき、不活性ガスの液化物と同一または異なるものを使用できる。測定を簡便に行うという観点から、不活性ガスの液化物で使用したのものと同一の不活性ガスを使用して、測定容器内を不活性ガス雰囲気下にすることが好ましい。
【0014】
前記不活性ガスの導入量は、測定容器の大きさに応じて適宜設定できるが、例えば、3×10-33〜8×10-33の一定容量の測定容器に対して、300ml/分で、7〜18分導入する。
【0015】
本発明では、不活性ガスの液化物を用いて冷却された石炭を不活性ガス雰囲気下で粉砕する。石炭を粉砕する方法は、特に限定されず、ボールミルなどの方法を採用することができ、例えば、測定容器に石炭と鋼球とを装入し、前記測定容器を回転させ、石炭と鋼球とを接触あるいは衝突させることにより石炭を粉砕することが好ましい態様であり、さらに好ましくは、前記測定容器として円筒型容器を用いて、該測定容器内に石炭と鋼球とを投入し、前記円筒型容器を横向きに設置して、円周方向に回転させることにより、石炭を粉砕する。石炭を粉砕するのに使用できる鋼球としては、例えば、表1に示したような鋼球を使用できる。また、石炭の粉砕は、粉砕された石炭から放出されるガス量を定量するために、測定容器を密閉した状態で行うことが好ましい。
【0016】
【表1】

Figure 0004283585
【0017】
本発明では、石炭を粉砕した後、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定する。この際に導入する不活性ガスとしては、特に限定されず、例えば、窒素、アルゴン、ヘリウムなどを使用でき、石炭を冷却する際の不活性ガスの液化物、該液化物を気化するために導入する不活性ガスと同一または異なるものを使用できる。測定を簡便に行うという観点から、不活性ガスの液化物、或いは、該液化物を気化するのに使用した不活性ガスと同一の不活性ガスを使用することが好ましい。また、不活性ガスの導入量は、特に限定されず、測定に使用する石炭の量に応じて適宜設定でき、例えば、測定する石炭500gに対して、290〜310ml/分の流速、より好ましくは295〜305ml/分の流速で、9〜11分間、より好ましくは9.8分〜10.2分間不活性ガスを導入することが好ましい。特に、石炭を粉砕した直後は、測定容器内に微粉が舞っているので、測定容器を静置して、測定容器の下方に微粉状の石炭を堆積させて、測定容器内に不活性ガスを導入することも好ましい態様である。
【0018】
本発明では、放出されたガスのガス量の測定方法は特に限定されず、例えば、ガスクロマトグラフィー法を採用することが好ましい。ガスクロマトグラフィー法によれば、放出されたガスの種類や定量を容易に行うことができるからである。
【0019】
以下、図面を参照しながら、本発明をさらに詳細に説明するが、本発明は図面に記載された発明に限定されるものではない。
【0020】
図1は、本発明で使用する測定容器を例示する説明図であり、前記測定容器1には、蓋3、ガス導入管4、ガス排出管7とが備えられ、ガス導入管4及びガス排出管7には、それぞれコック5およびコック6が設けられている。上述したように、前記測定容器1としては、円筒型測定容器を使用することが好ましく、例えば、内径175〜185mm、長さ170〜180mm、容積4.4×10-33〜4.5×10-33の測定容器を好適に使用でき、特に、市販のボールミル容器を使用することが好ましい態様である。
【0021】
ガス導入管4およびガス排出管7としては、例えば、ガラス製、プラスチック製、または金属製等の管を挙げることができ、蓋3によって、上下方向に移動可能なように保持されている。特に、ガス導入管4として、ステンレス、銅などの金属製の管を使用することが好ましい態様である。蓋3は、ガス導入管4およびガス排出管7を上下に移動させることができるものであれば、特に限定されず、例えば、シリコンゴム、ネオプレンゴム、ブチルゴムなどのゴム栓を挙げることができる。
【0022】
図2は、石炭を粉砕する方法を例示する説明図であり、測定容器1を回転架台8の回転可能な2本のローラー間(図示せず)に横置きに乗せて、測定容器1を円周方向に回転させることにより石炭を粉砕する。石炭を粉砕する際には、ガス導入管4の先端部のみが円筒型測定容器内部に挿入している状態で、前記円筒型測定容器を回転させて、石炭を粉砕することが好ましい態様である。前記導入管4と鋼球や石炭とが接触して、粉砕中に導入管4が損傷するのを防ぐためである。
【0023】
本発明では、石炭を粉砕した後、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させるが、この際、図3に示すようにガス導入管4の先端部分を、粉砕された石炭が堆積した石炭層に挿入しておくことが好ましい。導入管4の先端部を石炭層に挿入しておくことにより、石炭の微細孔に吸着している内包ガスも効率よく放出させることができるからである。尚、図3中、粉砕された石炭は、鋼球2の間に埋もれた状態で存在する。
【0024】
図4は、本発明の測定方法で使用する測定装置の概略を説明するための説明図であり、マスフロー18は、不活性ガスの流量を制御するものであり、不活性ガスの流量は、マスフロー18で制御されて、ガス導入管4から測定容器1内に導入される。サンプリングバック9は、測定容器1からのサンプルガスを一旦取込んでから、ガス量検出手段(図例では、ガスクロマトグラフィー装置17)側へと排出するための容器であり、サンプルガスを導入するためのサンプルガス導入管12と、サンプルガスをガス量検出手段へと排出するサンプルガス排出管13とが備えられ、導入管12と排出管13にはそれぞれ、開閉可能なコック10および11が設けられている。
【0025】
石炭の粉砕後には、マスフロー18と測定容器1のガス導入管4とを、測定容器1のガス排出管7とサンプリングバック9のサンプルガス導入管12とを、それぞれ接続用チューブ14を用いて接続し、コック5、6、10及び11を開放して、測定容器1に不活性ガスを導入することにより、粉砕された石炭に内包されていたガスをサンプリングバック9へ放出させることができる。サンプリングバック9は、ガスクロマトグラフィー装置17と注射器16と、三方コック15を介して接続されており、サンプリングバック9内のサンプルガスは、一旦注射器16に取込まれてから、ガスクロマトグラフィー装置17に排出される。
【0026】
【実施例】
以下、本発明を実施例によって詳細に説明するが、本発明は、下記実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲の変更、実施の態様は、いずれも本発明の範囲内に含まれる。
[石炭の熱分解温度について]
粒子径0.25mm以下に粉砕した石炭A(表3参照)を、昇温速度2℃/分で加熱し、加熱中に発生したガス量を定量した。測定結果を図6より、加熱温度が約190℃を超えるとCOの量が増加してくるのが分かる。このような結果から、石炭に内包されているガス量のみを測定するためには、石炭粉砕時の温度上昇を抑制する必要があり、より具体的には、粉砕される石炭の温度を170℃以下、より好ましくは150℃以下に抑制することが望ましいことが分かる。
【0027】
[石炭内包ガス量の測定]
図5に示す如く、内径180mm、長さ175mm、口径105mmで、容積が約4.5×10-33の円筒型測定容器1内に、表1に示す鋼球2を仕込み、蓋3をセットし、ガス導入管4を最下層の鋼球2に接触するように測定容器内に挿入して、高さ調整を行った。蓋3をはずした後、測定容器1内に不活性ガスの液化物である液体窒素を約200ml投入し、さらに、粒径を1〜5mmに揃えた石炭A〜D500gをそれぞれ測定容器1に装入し、ガス導入管4のコック5およびガス排出管7のコック6を開放して蓋3を測定容器1に装着した。尚、表2には、使用した石炭A〜Dの含水率を示した。
【0028】
【表2】
Figure 0004283585
【0029】
次いで、マスフロー18とガス導入管4とを接続し、不活性ガスとして窒素をマスフロー18で100ml/分に流量制御し10分間測定容器1内に導入して、測定容器1内を不活性ガス雰囲気下にした。その後、ガス導入管4を所定の高さまで引き上げて、ガス導入管4の先端部のみが円筒型測定容器1内に挿入されている状態にし、導入側コック5、排出側コック6の順に、それぞれ閉じて円筒型測定容器1を密閉状態とし、マスフロー18から取り外した。
【0030】
円筒型測定容器1を、図2に示すような回転架台8の2本の回転可能なローラー間に横置きに乗せて、円筒型測定容器1を45rpmで10分間、円周方向に回転させ、石炭を粉砕した。石炭を粉砕した後、円筒型測定容器1内で微粉の舞い上がりを抑制するために、円筒型測定容器1を回転架台8から外し、蓋3を上面にして所定時間静置し、微粉状の石炭を測定容器の下方へ堆積させた。
【0031】
静置後、図4に示すようにマスフロー18と円筒型測定容器1のガス導入管4とを、及び、ガス排出管7とサンプリングバック9のサンプルガス導入管12とを、接続用チューブ14で接続した。この際、サンプリングバック9は、予め、円筒型測定容器1内の不活性ガスと同じ不活性ガスで置換しておき、三方コック15を介して、注射器16およびガスクロマトグラフィー装置17と接続した。
【0032】
不活性ガスの導入経路を接続した後、コック5,6、10、及び、11を開放し、円筒型測定容器1内に不活性ガスである窒素を導入した。前記窒素は、マスフロー18により、300ml/分に制御し、10分間測定容器1内に導入して、石炭に内包されていたガスをサンプリングバック9へと放出させた。また、窒素の導入は、ガス導入管4の先端部が、測定容器の下方に堆積している石炭層に埋没するようにガス導入管4を円筒型測定容器1に押し入れて行った。
【0033】
サンプリング終了後、窒素の流通を止めて、円筒型測定容器1のコック5とコック6、及び、サンプリングバック9のコック10を閉めた。次いで、三方コック15を用いて、サンプリングバック9と注射器16との経路を連通させ、サンプリングバック9から、約300から400mlのサンプルガスを注射器16に吸引し、続けて、三方コック15を回転させて、注射器16とガスクロマトグラフィー装置17との経路を連通させ、前記サンプルガスをガスクロマトグラフィー装置17に注入した。ガスクロマトグラフィー装置17によるガスの検出は、水素の場合はTCD検出器を、一酸化炭素、メタンなどはFID検出器を使用した。測定結果を表3〜表6に示した。尚、石炭を粉砕および冷却することなく、同様の方法により内包ガス量を測定した結果を表3〜6に併せて示した。表中の「静置時間」とは、石炭を粉砕する場合には、粉砕してからガス放出量を測定するまでの静置時間であり、石炭を粉砕しない場合は、石炭を測定容器に入れてから測定するまでの静置時間を示す。
【0034】
【表3】
Figure 0004283585
【0035】
【表4】
Figure 0004283585
【0036】
【表5】
Figure 0004283585
【0037】
【表6】
Figure 0004283585
【0038】
表3〜表6に示したように、本発明の測定方法によれば、石炭の内包ガスが精度よく測定されていることが分かる。また、石炭を粉砕して内包ガスを放出させた測定結果と石炭を粉砕せずに内包ガスを放出させた測定結果とを比較すると、石炭を粉砕し内包ガスを放出させた場合のガス濃度が高いことから、石炭を粉砕することによって、石炭に内包されているガスがよく放出されていることが分かる。
【0039】
【発明の効果】
本発明によれば、石炭を粉砕する際の温度上昇を回避し石炭の熱分解によるガス生成を抑制して、石炭に内包されていたガスのみを分析することができる。また、粉砕された石炭層に不活性ガス導入管の先端部を埋没させることにより、石炭に内包されていたガスを効率よく放出させることができる。
【図面の簡単な説明】
【図1】 本発明で使用する測定容器を例示する説明図である。
【図2】 本発明における石炭粉砕方法を例示する説明図である。
【図3】 本発明における粉砕後の石炭への不活性ガスの導入方法を例示する説明図である。
【図4】 本発明で使用する測定装置の一例の概略説明図である。
【図5】 本発明で使用する測定容器に鋼球を装入した状態を説明する説明図である。
【図6】 石炭の熱分解温度と熱分解ガス発生量の関係を示すグラフ。
【符号の説明】
1:測定容器、2:鋼球、3:蓋、4:ガス導入管、5:コック、6:コック、7:ガス排出管、8:回転架台、9:サンプリングバッグ、10:コック、11:コック、12:サンプルガス導入管、13:サンプルガス排出管、14:接続用チューブ、15:三方コック、16:注射器、17:ガスクロマトグラフィー装置、18:マスフロー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the amount of gas contained in coal.
[0002]
[Prior art]
Conventionally, when coal is pulverized or stored for a long time, it is known that gases such as methane gas, hydrogen, carbon dioxide, and carbon monoxide are released. Accurate measurement of the amount of gas released from coal contained in coal is extremely important for safely storing or transporting coal. For example, Non-Patent Documents 1 and 2 suggest that the concentration of methane gas generated in the hold of a coal carrier or in a silo during coal storage may reach the explosion limit concentration.
[0003]
[Non-Patent Document 1]
Nobuyoshi Fukuchi and three others, “Methane gas generation and kurauchi environment control by oxidation heat generation in coal carriers”, The Shipbuilding Society of Japan, No. 184, p. 653-P. 663, 1998 [Non-Patent Document 2]
Dr. Harada and three others, “Research on disaster prevention technology for coal silos”, Kashima Construction Technology Laboratory Annual Report, No. 31, 223-P. 230, 1983 [0004]
[Problems to be solved by the invention]
In order to measure the amount of coal-containing gas such as methane gas adsorbed in the fine pores inside the coal, it is necessary to pulverize the coal and release these gases. However, the pulverization energy at the time of pulverization changes to friction / impact heat, etc., raising the temperature of the coal itself, causing thermal decomposition and generating new methane gas, etc. The amount of gas contained in the coal There is no known method for accurately measuring only this.
[0005]
The present invention has been made in view of the above circumstances, and provides a method for measuring the amount of gas contained in coal by pulverizing coal, releasing the gas contained in the coal, and measuring the amount of gas released. The purpose is to do.
[0006]
[Means for Solving the Problems]
The measurement method of the present invention that has solved the above problems is a method for measuring the amount of gas contained in coal by measuring the amount of gas released by pulverizing coal and releasing the gas contained in the coal. In this case, the coal in the measurement vessel is cooled using a liquefied product of an inert gas, the coal is pulverized under an inert gas atmosphere, and the inert gas is further introduced into the measurement vessel to be included in the coal. It is characterized in that the gas discharged is discharged and the amount of the released gas is measured.
[0007]
By cooling the coal using an inert gas liquefaction, the pulverization energy is converted into thermal energy, the temperature of the coal to be pulverized is suppressed from rising, and further, under an inert atmosphere, Heat generation due to the oxidation reaction of coal can also be suppressed.
[0008]
The cooling of the coal can be performed, for example, by putting coal and a liquefied product of inert gas into the measurement container and bringing the coal and a liquefied product of inert gas into contact with each other. In addition, after the liquefied product of the inert gas is introduced into the measurement container, an inert gas is further introduced into the measurement container, and the liquefied product is vaporized to bring the measurement container into an inert gas atmosphere. Is also a preferred embodiment. Coal pulverization can be performed, for example, by charging coal and a steel ball into a measurement container, rotating the measurement container, and bringing the coal and the steel ball into contact with each other. The measurement container is a cylindrical container, and the container includes a gas introduction pipe and a gas discharge pipe, and it is also a preferable aspect that the coal is pulverized by rotating the cylindrical container in a circumferential direction. In addition, when the cylindrical measurement container is rotated and only coal is pulverized in a state where only the distal end portion of the gas introduction pipe is inserted into the container, the gas introduction pipe is made of coal, steel ball, etc. Can be prevented from coming into contact with and being damaged. Further, if the inert gas is introduced by inserting the tip of the gas introduction pipe into the pulverized coal layer, the gas contained in the pulverized coal can be efficiently released. The amount of the included gas released can be measured by, for example, a gas chromatography method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The measuring method of the present invention is a method for measuring the amount of gas contained in coal by pulverizing coal, releasing the gas contained in the coal, and measuring the amount of released gas. Cooled with a gas liquefaction, pulverized the coal in an inert gas atmosphere, and further introduced an inert gas into the measurement vessel to release the gas contained in the coal and released It is characterized by measuring the amount of gas.
[0010]
First, in the measurement method of the present invention, the coal in the measurement container is cooled using a liquefied product of an inert gas. By preliminarily cooling the coal, it is possible to suppress an increase in the temperature of the coal to be crushed and to prevent the coal from being thermally decomposed and generating cracked gas. In particular, thermal decomposition starts when the temperature of the coal is about 170 ° C. to 190 ° C. or higher. However, according to the present invention, the temperature during coal pulverization can be suppressed to about 150 ° C. or lower. The method for cooling the coal in the measurement vessel is not particularly limited. For example, coal and an inert gas liquefaction are introduced into the measurement vessel, and the coal and the inert gas liquefaction are brought into contact with each other. It is preferable to cool. Since the liquefied product of the inert gas is a liquid having a low temperature (for example, a boiling point of −150 ° C. or less), the coal can be easily cooled by direct contact. At the same time, the environment in the measurement container is brought to an inert atmosphere, and heat generation due to the oxidation reaction of coal can be suppressed. As the liquefied product of the inert gas, for example, a liquefied product of an inert gas such as nitrogen, argon, or helium can be used. Preferably, liquid nitrogen can be used. Although the usage-amount of the liquefied substance of the said inert gas is not specifically limited, For example, what is necessary is just to add to a measurement container to such an extent that the coal to grind | pulverize is immersed. In the present invention, an inert gas liquefied product, coal, and a steel ball for pulverizing the coal are charged into the measurement vessel, but the order of charging is not particularly limited, and the inert gas liquefied product, coal, and steel ball Or in the order of steel balls, liquefied inert gas, and coal.
[0011]
The type of coal to be measured by the measurement method of the present invention is not particularly limited and can be measured for coal in any production area. However, since brown coal with a low degree of coalification tends to generate heat during pulverization, the measurement method of the present invention is preferably used. Applicable. Moreover, although the shape of coal is not specifically limited, It is preferable to use the coal which aligned the particle size in the range of 1-5 mm. This is to eliminate the influence of the particle size difference due to the brand of coal by aligning the particle size within a certain range. The amount of coal to be used in the measurement, depending on the size of the measuring container, can be set appropriately, the measuring container of a volume of 3 × 10 -3 m 3 ~8 × 10 -3 m 3 On the other hand, it is a preferable aspect to use 300 g to 800 g of coal. For example, 500 g of coal is charged into a measuring container having a volume of 4.5 × 10 −3 m 3 .
[0012]
The shape of the measurement container into which coal is charged is not particularly limited, but it is preferable to use a cylindrical or conical container, for example.
[0013]
After charging coal and inert gas liquefaction into the measurement container and cooling the coal, the inert gas is further introduced into the measurement container to vaporize the inert gas liquefaction in the measurement container, It is also a preferred embodiment that the inside of the measurement container is placed in an inert gas atmosphere. Here, the inert gas atmosphere means an atmosphere in which only the inert gas exists without substantially liquefied inert gas. In the coal pulverization process described later, the measurement container into which coal or an inert gas liquefaction product has been charged is sealed, but if the inert gas liquefaction remains in the sealed measurement vessel, vaporization occurs. It is dangerous because the volume expands. The inert gas for making the inert gas atmosphere is not particularly limited. For example, nitrogen, argon, helium, or the like can be used, and the same or different liquefied product of the inert gas can be used. From the viewpoint of easily performing the measurement, it is preferable to use the same inert gas as that used for the liquefied product of the inert gas to bring the inside of the measurement container into an inert gas atmosphere.
[0014]
The introduction amount of the inert gas can be appropriately set according to the size of the measurement container. For example, 300 ml with respect to a measurement container having a constant capacity of 3 × 10 −3 m 3 to 8 × 10 −3 m 3. Introduce for 7 to 18 minutes.
[0015]
In this invention, the coal cooled using the liquefied substance of the inert gas is pulverized under an inert gas atmosphere. The method for pulverizing coal is not particularly limited, and a method such as a ball mill can be adopted.For example, coal and a steel ball are charged into a measurement vessel, the measurement vessel is rotated, and the coal and the steel ball It is a preferred embodiment to pulverize coal by contacting or colliding with, and more preferably, using a cylindrical container as the measurement container, charging coal and steel balls into the measurement container, The coal is crushed by installing the container sideways and rotating it circumferentially. As a steel ball that can be used for pulverizing coal, for example, steel balls as shown in Table 1 can be used. In addition, the pulverization of coal is preferably performed in a state where the measurement container is sealed in order to quantify the amount of gas released from the pulverized coal.
[0016]
[Table 1]
Figure 0004283585
[0017]
In the present invention, after the coal is pulverized, an inert gas is further introduced into the measurement container to release the gas contained in the coal, and the amount of the released gas is measured. The inert gas introduced at this time is not particularly limited. For example, nitrogen, argon, helium, etc. can be used, and the liquefied product of the inert gas when cooling the coal, introduced to vaporize the liquefied product. The same or different inert gas can be used. From the viewpoint of simple measurement, it is preferable to use an inert gas liquefied product or the same inert gas as the inert gas used to vaporize the liquefied product. Moreover, the introduction amount of the inert gas is not particularly limited, and can be appropriately set according to the amount of coal used for the measurement. For example, a flow rate of 290 to 310 ml / min with respect to 500 g of coal to be measured, more preferably It is preferable to introduce an inert gas at a flow rate of 295 to 305 ml / min for 9 to 11 minutes, more preferably 9.8 to 10.2 minutes. In particular, immediately after pulverizing the coal, fine powder is flying in the measurement container, so leave the measurement container, deposit fine powder coal under the measurement container, and put inert gas in the measurement container. Introducing is also a preferred embodiment.
[0018]
In the present invention, the method for measuring the gas amount of the released gas is not particularly limited. For example, it is preferable to employ a gas chromatography method. This is because according to the gas chromatography method, the type and quantification of the released gas can be easily performed.
[0019]
Hereinafter, the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the invention described in the drawings.
[0020]
FIG. 1 is an explanatory view illustrating a measurement container used in the present invention. The measurement container 1 includes a lid 3, a gas introduction pipe 4, and a gas discharge pipe 7. The pipe 7 is provided with a cock 5 and a cock 6, respectively. As described above, the measurement container 1 is preferably a cylindrical measurement container. For example, the inner diameter is 175 to 185 mm, the length is 170 to 180 mm, and the volume is 4.4 × 10 −3 m 3 to 4.5. A measuring container of × 10 −3 m 3 can be suitably used, and a commercially available ball mill container is particularly preferred.
[0021]
Examples of the gas introduction pipe 4 and the gas discharge pipe 7 include glass, plastic, and metal pipes, and the lid 3 holds the pipe so as to be movable in the vertical direction. In particular, it is preferable to use a metal pipe such as stainless steel or copper as the gas introduction pipe 4. The lid 3 is not particularly limited as long as the gas introduction pipe 4 and the gas discharge pipe 7 can be moved up and down, and examples thereof include rubber plugs such as silicon rubber, neoprene rubber, and butyl rubber.
[0022]
FIG. 2 is an explanatory view illustrating a method of pulverizing coal. The measurement container 1 is placed in a horizontal position between two rotatable rollers (not shown) of the rotary mount 8 so that the measurement container 1 is circular. Coal is pulverized by rotating in the circumferential direction. When pulverizing coal, it is preferable that the cylindrical measurement container is rotated and the coal is pulverized in a state where only the distal end portion of the gas introduction pipe 4 is inserted into the cylindrical measurement container. . This is to prevent the introduction pipe 4 from coming into contact with the steel balls or coal and damaging the introduction pipe 4 during pulverization.
[0023]
In the present invention, after the coal is pulverized, an inert gas is further introduced into the measurement container to release the gas contained in the coal. At this time, as shown in FIG. It is preferable to insert the tip portion into a coal layer on which pulverized coal is deposited. This is because the inclusion gas adsorbed in the fine pores of coal can be efficiently released by inserting the tip of the introduction pipe 4 into the coal layer. In FIG. 3, the pulverized coal is buried between the steel balls 2.
[0024]
FIG. 4 is an explanatory diagram for explaining the outline of the measuring apparatus used in the measuring method of the present invention. The mass flow 18 controls the flow rate of the inert gas, and the flow rate of the inert gas is the mass flow. 18, the gas is introduced from the gas introduction pipe 4 into the measurement container 1. The sampling back 9 is a container for once taking in the sample gas from the measurement container 1 and then discharging it to the gas amount detection means (in the illustrated example, the gas chromatography device 17), and introduces the sample gas. And a sample gas discharge pipe 13 for discharging the sample gas to the gas amount detection means. The introduction pipe 12 and the discharge pipe 13 are provided with cocks 10 and 11 that can be opened and closed, respectively. It has been.
[0025]
After the coal is pulverized, the mass flow 18 and the gas introduction pipe 4 of the measurement container 1 are connected, and the gas discharge pipe 7 of the measurement container 1 and the sample gas introduction pipe 12 of the sampling bag 9 are connected using the connection tubes 14 respectively. Then, by opening the cocks 5, 6, 10 and 11 and introducing an inert gas into the measuring container 1, the gas contained in the pulverized coal can be released to the sampling bag 9. The sampling bag 9 is connected to the gas chromatography device 17 and the syringe 16 via the three-way cock 15, and the sample gas in the sampling bag 9 is once taken into the syringe 16 and then the gas chromatography device 17. To be discharged.
[0026]
【Example】
Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples, and all modifications and embodiments without departing from the gist of the present invention are not limited thereto. Included in range.
[Pyrolysis temperature of coal]
Coal A (see Table 3) pulverized to a particle size of 0.25 mm or less was heated at a heating rate of 2 ° C./min, and the amount of gas generated during heating was quantified. From the measurement results, it can be seen from FIG. 6 that when the heating temperature exceeds about 190 ° C., the amount of CO 2 increases. From these results, in order to measure only the amount of gas contained in the coal, it is necessary to suppress the temperature rise during coal pulverization. More specifically, the temperature of the pulverized coal is set to 170 ° C. Hereinafter, it can be seen that it is desirable to suppress the temperature to 150 ° C. or lower.
[0027]
[Measurement of coal inclusion gas]
As shown in FIG. 5, the inner diameter 180 mm, length 175mm, in diameter 105 mm, a volume of about 4.5 × 10 -3 m 3 of cylindrical measuring container 1, were charged steel balls 2. As shown in Table 1, the lid 3 The gas inlet tube 4 was inserted into the measurement container so as to be in contact with the lowermost steel ball 2, and the height was adjusted. After removing the lid 3, about 200 ml of liquid nitrogen, which is a liquefied inert gas, is put into the measurement container 1, and 500 g of coal A to D having a particle size of 1 to 5 mm are installed in the measurement container 1. The cock 5 of the gas introduction pipe 4 and the cock 6 of the gas discharge pipe 7 were opened, and the lid 3 was attached to the measurement container 1. Table 2 shows the moisture content of the used coals A to D.
[0028]
[Table 2]
Figure 0004283585
[0029]
Next, the mass flow 18 and the gas introduction pipe 4 are connected, nitrogen is controlled as an inert gas at a flow rate of 100 ml / min with the mass flow 18 and introduced into the measurement container 10 for 10 minutes, and the inside of the measurement container 1 is an inert gas atmosphere. Down. Thereafter, the gas introduction pipe 4 is pulled up to a predetermined height so that only the distal end portion of the gas introduction pipe 4 is inserted into the cylindrical measurement container 1, and the introduction side cock 5 and the discharge side cock 6 are sequentially arranged. The cylindrical measurement container 1 was closed to be in a sealed state and removed from the mass flow 18.
[0030]
The cylindrical measurement container 1 is placed horizontally between two rotatable rollers of a rotating base 8 as shown in FIG. 2, and the cylindrical measurement container 1 is rotated in the circumferential direction at 45 rpm for 10 minutes, Coal was crushed. After pulverizing the coal, in order to suppress the rising of the fine powder in the cylindrical measurement container 1, the cylindrical measurement container 1 is removed from the rotary mount 8, and is left to stand for a predetermined time with the lid 3 as an upper surface. Was deposited below the measuring vessel.
[0031]
After standing still, as shown in FIG. 4, the mass flow 18 and the gas introduction pipe 4 of the cylindrical measurement container 1, and the gas discharge pipe 7 and the sample gas introduction pipe 12 of the sampling back 9 are connected by the connection tube 14. Connected. At this time, the sampling bag 9 was previously replaced with the same inert gas as the inert gas in the cylindrical measurement container 1 and connected to the syringe 16 and the gas chromatography device 17 via the three-way cock 15.
[0032]
After connecting the inert gas introduction path, the cocks 5, 6, 10, and 11 were opened, and nitrogen as an inert gas was introduced into the cylindrical measurement container 1. The nitrogen was controlled at 300 ml / min by the mass flow 18 and introduced into the measurement container 1 for 10 minutes to release the gas contained in the coal into the sampling bag 9. Further, nitrogen was introduced by pushing the gas introduction tube 4 into the cylindrical measurement vessel 1 so that the tip of the gas introduction tube 4 was buried in the coal layer deposited below the measurement vessel.
[0033]
After completion of sampling, the flow of nitrogen was stopped, and the cock 5 and cock 6 of the cylindrical measuring container 1 and the cock 10 of the sampling back 9 were closed. Next, the three-way cock 15 is used to communicate the path between the sampling bag 9 and the syringe 16, and about 300 to 400 ml of sample gas is sucked into the syringe 16 from the sampling bag 9, and then the three-way cock 15 is rotated. Then, the path between the syringe 16 and the gas chromatography device 17 was communicated, and the sample gas was injected into the gas chromatography device 17. Gas detection by the gas chromatography device 17 used a TCD detector in the case of hydrogen, and an FID detector in the case of carbon monoxide, methane, and the like. The measurement results are shown in Tables 3 to 6. In addition, the result of having measured the amount of inclusion gas by the same method, without grind | pulverizing and cooling coal was combined with Tables 3-6, and was shown. “Standing time” in the table refers to the standing time from pulverization to measurement of gas release when pulverizing coal, and when coal is not pulverized, put coal in a measurement vessel. The standing time from measurement to measurement is shown.
[0034]
[Table 3]
Figure 0004283585
[0035]
[Table 4]
Figure 0004283585
[0036]
[Table 5]
Figure 0004283585
[0037]
[Table 6]
Figure 0004283585
[0038]
As shown in Tables 3 to 6, it can be seen that according to the measurement method of the present invention, the coal inclusion gas is measured with high accuracy. Moreover, when comparing the measurement result of releasing coal gas by pulverizing coal and the measurement result of releasing gas gas without pulverizing coal, the gas concentration in the case of releasing coal gas by pulverizing coal is as follows. From the fact that it is high, it can be seen that by pulverizing the coal, the gas contained in the coal is often released.
[0039]
【The invention's effect】
According to the present invention, it is possible to analyze only the gas contained in the coal by avoiding the temperature rise when the coal is pulverized and suppressing the gas generation due to the thermal decomposition of the coal. Moreover, the gas contained in the coal can be efficiently released by burying the tip portion of the inert gas introduction pipe in the pulverized coal layer.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating a measurement container used in the present invention.
FIG. 2 is an explanatory diagram illustrating a coal pulverization method according to the present invention.
FIG. 3 is an explanatory diagram illustrating a method for introducing an inert gas into coal after pulverization according to the present invention.
FIG. 4 is a schematic explanatory diagram of an example of a measuring apparatus used in the present invention.
FIG. 5 is an explanatory diagram for explaining a state in which a steel ball is charged in a measurement container used in the present invention.
FIG. 6 is a graph showing the relationship between the pyrolysis temperature of coal and the amount of pyrolysis gas generated.
[Explanation of symbols]
1: measurement container, 2: steel ball, 3: lid, 4: gas introduction pipe, 5: cock, 6: cock, 7: gas discharge pipe, 8: rotating mount, 9: sampling bag, 10: cock, 11: Cock: 12: Sample gas introduction pipe, 13: Sample gas discharge pipe, 14: Connection tube, 15: Three-way cock, 16: Syringe, 17: Gas chromatography device, 18: Mass flow

Claims (8)

石炭を粉砕し、石炭に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法において、
測定容器内の石炭を不活性ガスの液化物を用いて冷却し、該石炭を不活性ガス雰囲気下で粉砕し、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定することを特徴とする石炭内包ガス放出量の測定方法。
In the method for measuring the amount of gas included in coal, the amount of gas released is measured by pulverizing coal, releasing the gas contained in the coal,
The coal in the measurement vessel is cooled using a liquefied product of an inert gas, the coal is pulverized under an inert gas atmosphere, and the inert gas is further introduced into the measurement vessel, and is contained in the coal. A method for measuring the amount of gas contained in coal, wherein gas is discharged and the amount of gas released is measured.
前記測定容器に不活性ガスの液化物と石炭とを投入し、石炭と不活性ガスの液化物とを接触させて、石炭を冷却する請求項1に記載の測定方法。The measurement method according to claim 1, wherein an inert gas liquefied product and coal are charged into the measurement container, and the coal and the inert gas liquefied product are brought into contact with each other to cool the coal. 前記測定容器に不活性ガスの液化物を投入した後、さらに不活性ガスを測定容器内に導入して、前記液化物を気化させて該測定容器内を不活性ガス雰囲気下にする請求項2に記載の測定方法。3. An inert gas liquefied substance is introduced into the measurement container, and then an inert gas is further introduced into the measurement container to vaporize the liquefied substance so that the measurement container is placed in an inert gas atmosphere. The measuring method as described in. 前記測定容器に、石炭と鋼球とを装入し、前記測定容器を回転させて、石炭と鋼球とを接触させることにより石炭を粉砕する請求項1〜3のいずれかに記載の測定方法。The measuring method according to any one of claims 1 to 3, wherein coal is pulverized by charging the measuring container with coal and a steel ball, rotating the measuring container, and bringing the coal and the steel ball into contact with each other. . 前記測定容器は円筒型容器であって、該容器はガス導入管とガス排出管とを備え、前記円筒型容器を円周方向に回転させることにより、石炭を粉砕する請求項4に記載の測定方法。The measurement according to claim 4, wherein the measurement container is a cylindrical container, and the container includes a gas introduction pipe and a gas discharge pipe, and the coal is pulverized by rotating the cylindrical container in a circumferential direction. Method. 前記ガス導入管の先端部のみが容器内部に挿入している状態で、前記円筒型測定容器を回転させて、石炭を粉砕する請求項5に記載の測定方法。The measurement method according to claim 5, wherein the cylindrical measurement container is rotated to pulverize coal in a state where only the distal end portion of the gas introduction pipe is inserted into the container. 前記ガス導入管の先端部を粉砕された石炭層に挿入して、不活性ガスを導入し、石炭に内包されているガスを放出させる請求項5又は6に記載の測定方法。The measurement method according to claim 5 or 6, wherein a tip portion of the gas introduction pipe is inserted into a pulverized coal bed, an inert gas is introduced, and a gas contained in the coal is released. 前記内包ガス放出量をガスクロマトグラフィー法により測定する請求項1〜7のいずれかに記載の測定方法。The measurement method according to any one of claims 1 to 7, wherein the amount of the included gas released is measured by a gas chromatography method.
JP2003110800A 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal Expired - Fee Related JP4283585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110800A JP4283585B2 (en) 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110800A JP4283585B2 (en) 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal

Publications (2)

Publication Number Publication Date
JP2004317260A JP2004317260A (en) 2004-11-11
JP4283585B2 true JP4283585B2 (en) 2009-06-24

Family

ID=33471553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110800A Expired - Fee Related JP4283585B2 (en) 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal

Country Status (1)

Country Link
JP (1) JP4283585B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242000A (en) * 2015-10-29 2016-01-13 广东电网有限责任公司电力科学研究院 Method for accurate measurement of carbon emission from coal-fired power plant

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096256A (en) 2006-10-11 2008-04-24 Onsui:Kk Analysis method of gas component, separation device of gas component, and discrimination method
JP5290036B2 (en) * 2009-04-20 2013-09-18 太平洋セメント株式会社 Method for selecting or managing coal for fuel
CN102998390B (en) * 2012-11-28 2014-04-02 四川省煤炭产业集团有限责任公司 Method for analyzing carbon monoxide gas in coal under anaerobic condition
KR101341444B1 (en) * 2012-12-07 2013-12-13 한국지질자원연구원 Coal bed methane residual quantity measurement system
CN108805339B (en) * 2018-05-24 2021-12-28 中国神华能源股份有限公司 Coal mine working face gas emission quantity prediction method, storage medium and electronic equipment
CN109443859A (en) * 2018-12-25 2019-03-08 西安科技大学 A kind of negative pressure low temperature coal seam gas-bearing capacity measurement sampler
CN109975171B (en) * 2019-04-24 2024-04-19 吕梁学院 Gas survey device and use method
CN113310778B (en) * 2021-05-06 2022-05-17 安徽汽车职业技术学院 Dynamic CO detection device for coal powder preparation
CN114527032B (en) * 2022-02-18 2024-03-12 中煤科工集团重庆研究院有限公司 Efficient crushing device for granular coal and gas analysis amount measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242000A (en) * 2015-10-29 2016-01-13 广东电网有限责任公司电力科学研究院 Method for accurate measurement of carbon emission from coal-fired power plant

Also Published As

Publication number Publication date
JP2004317260A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4283585B2 (en) Method for measuring the amount of gas contained in coal
CN104749218B (en) Flammable gas explosion characteristic test device and method under ultralow temperature
CN109270111A (en) Lithium ion battery thermal runaway product collection and test method
Liang et al. Characteristics of coal re-oxidation based on microstructural and spectral observation
CN110454105B (en) In-situ test system and method for gas content of coal mine underground coal seam while drilling
JP4862542B2 (en) Safety evaluation method for test apparatus and power storage and supply device
JP7152551B2 (en) Mobile cryogenic workbench
JP2014190704A (en) Combustion/explosion test device
GB781631A (en) Method and apparatus for storing liquified gases
CN109827865A (en) Materials pyrolysis on-line analysis device under a kind of more atmosphere hyperbaric environments
Tian et al. Experimental study of accidental release behavior of high-pressurized CO2 vessel
Merzlikin et al. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals
Wang et al. Influence of scale and atmosphere on the pyrolysis properties of large-scale bituminous coal
JP2019066296A (en) Evaluation apparatus and evaluation method of coal natural heat generating property
CN107954090A (en) A kind of food safety detection food sampling storing unit
CN106383165A (en) Method for continuously measuring reaction speed of carbon-containing solid substances such as coal
JP2014112045A (en) Composition analysis method of cryogenic liquid
Khvostikova et al. Novel experimental methods for assessment of hydrogen storage capacity and modelling of sorption in Cu-BTC
Rong et al. Experimental study on gas production characteristics of electrolyte of lithium-ion battery under pyrolysis conditions
CN205691301U (en) A kind of air-tight test gas collecting apparatus
CN113075334B (en) Sample heating and post-cooling device for detecting propellant powder decomposition gas
WO2020065135A1 (en) Arrangement and method for thermal desorption measurement
Starzewski et al. DSC-TG studies of coal structure modification by the inert gas helium
CN218594947U (en) Food safety short-term test case with portable function
CN220448455U (en) Sample storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Ref document number: 4283585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees