JP2004317260A - Method for measuring quantity of discharge of gas included in coal - Google Patents

Method for measuring quantity of discharge of gas included in coal Download PDF

Info

Publication number
JP2004317260A
JP2004317260A JP2003110800A JP2003110800A JP2004317260A JP 2004317260 A JP2004317260 A JP 2004317260A JP 2003110800 A JP2003110800 A JP 2003110800A JP 2003110800 A JP2003110800 A JP 2003110800A JP 2004317260 A JP2004317260 A JP 2004317260A
Authority
JP
Japan
Prior art keywords
coal
gas
measuring
container
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003110800A
Other languages
Japanese (ja)
Other versions
JP4283585B2 (en
Inventor
Kanji Matsudaira
寛司 松平
Hiroaki Shimono
浩昭 下野
Masaru Nishimura
勝 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2003110800A priority Critical patent/JP4283585B2/en
Publication of JP2004317260A publication Critical patent/JP2004317260A/en
Application granted granted Critical
Publication of JP4283585B2 publication Critical patent/JP4283585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the quantity of a discharge of a gas included in coal which crushes the coal, makes the coal discharge the gas included in the coal and measures the quantity of the discharged gas. <P>SOLUTION: In the method for measuring the quantity of the discharge of the gas included in the coal which crushes the coal, makes the coal discharge the gas included in the coal and measures the quantity of the discharged gas, the coal in a measurement vessel is refrigerated by a liquefied material of an inert gas, the coal is crushed in an inert gas ambience, the inert gas is introduced into the measurement vessel, the gas included in the coal is discharged, and the quantity of the discharged gas is measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、石炭内包ガス放出量の測定方法に関するものである。
【0002】
【従来の技術】
従来、石炭を粉砕したり、長期に貯蔵しているとメタンガス、水素、二酸化炭素、一酸化炭素などのガスが放出されることが知られている。石炭に内包され、石炭から放出されるガス放出量を精度よく測定することは、石炭を安全に貯蔵し、或いは、運搬する上で極めて重要である。例えば、非特許文献1及び2には、石炭運搬船の船倉内や石炭貯蔵中のサイロに発生するメタンガス濃度が爆発限界濃度に達する可能性があることが示唆されている。
【0003】
【非特許文献1】福地 信義 外3名、「石炭運搬船における酸化発熱によるメタンガス発生と倉内環境制御について」、日本造船学会論文集、第184号P.653〜P.663、1998年
【非特許文献2】原田 実 外3名、「石炭サイロの防災技術に関する研究」、鹿島建設技術研究所年報、第31号、P.223〜P.230、1983年
【0004】
【発明が解決しようとする課題】
石炭内部の微細気孔に吸着しているメタンガスなどの石炭内包ガス量を測定するためには、石炭を粉砕して、これらのガスを放出する必要がある。しかし、粉砕する際の粉砕エネルギーが摩擦・衝突熱などに変わり、石炭自体の温度を上昇させ、熱分解が起こって、メタンガスなどを新たに発生させる場合があり、石炭に内包されているガス量のみを精度よく測定する方法は知られていない。
【0005】
本発明は、上記事情に鑑みてなされたものであり、石炭を粉砕し、石炭に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決することのできた本発明の測定方法とは、石炭を粉砕し、石炭内部に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法において、測定容器内の石炭を不活性ガスの液化物を用いて冷却し、該石炭を不活性ガス雰囲気下で粉砕し、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定することを特徴とする。
【0007】
石炭を不活性ガスの液化物を用いて冷却することによって、粉砕エネルギーが熱エネルギーに変換されて、粉砕される石炭が温度上昇するのを抑制し、さらに、不活性雰囲気下にすることで、石炭の酸化反応による発熱も抑制できる。
【0008】
前記石炭の冷却は、例えば、前記測定容器に石炭と不活性ガスの液化物とを投入し、石炭と不活性ガスの液化物とを接触させることにより行うことができる。また、前記測定容器に不活性ガスの液化物を投入した後、さらに不活性ガスを測定容器内に導入して、前記液化物を気化させて該測定容器内を不活性ガス雰囲気下にすることも好ましい態様である。石炭の粉砕は、例えば、測定容器に石炭と鋼球とを装入し、前記測定容器を回転させ、石炭と鋼球とを接触させることにより行うことができる。前記測定容器は円筒型容器であって、該容器はガス導入管とガス排出管とを備え、前記円筒型容器を円周方向に回転させることにより、石炭を粉砕することも好ましい態様である。また、前記ガス導入管の先端部のみが容器内部に挿入している状態で、前記円筒型測定容器を回転させて、石炭を粉砕するようにすれば、前記ガス導入管が石炭、鋼球などと接触して損傷することを防止できる。また、前記ガス導入管の先端部を粉砕された石炭層に挿入して、不活性ガスを導入するようにすれば、粉砕された石炭に内包されているガスを効率よく放出させることができる。前記内包ガス放出量は、例えば、ガスクロマトグラフィー法により測定することができる。
【0009】
【発明の実施の形態】
本発明の測定方法は、石炭を粉砕し、石炭に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法において、測定容器内の石炭を不活性ガスの液化物を用いて冷却し、該石炭を不活性ガス雰囲気下で粉砕し、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定することを特徴とする。
【0010】
まず、本発明の測定方法では、測定容器内の石炭を不活性ガスの液化物を用いて冷却する。石炭を予め冷却しておくことによって、粉砕される石炭の温度上昇を抑制し、石炭が熱分解して、分解ガスを発生するのを防止できる。特に、石炭の温度が約170℃〜190℃以上になると熱分解が始まるが、本発明によれば、石炭粉砕時の温度を約150℃以下に抑制することができる。測定容器内の石炭を冷却する方法は、特に限定されないが、例えば、測定容器に石炭と不活性ガスの液化物とを投入し、石炭と不活性ガスの液化物とを接触させて、石炭を冷却することが好ましい。不活性ガスの液化物は、低温(例えば、沸点が−150℃以下)の液体であるため、直接接触させることにより、石炭を容易に冷却できる。また同時に、測定容器内の環境を不活性雰囲気下にして、石炭の酸化反応による発熱も抑制できる。前記不活性ガスの液化物としては、例えば、窒素、アルゴン、ヘリウムなどの不活性ガスの液化物を使用することができ、好ましくは、液体窒素を使用できる。前記不活性ガスの液化物の使用量は、特に限定されないが、例えば、粉砕する石炭を浸す程度に測定容器に添加すればよい。尚、本発明では、不活性ガスの液化物、石炭、石炭を粉砕するための鋼球を測定容器に投入するが、投入順序は特に限定されず、不活性ガスの液化物、石炭、鋼球の順、或いは、鋼球、不活性ガスの液化物、石炭の順であってもよい。
【0011】
本発明の測定方法で測定する石炭の種類は、特に限定されず、任意の産地の石炭について測定できるが、石炭化度が低い褐炭は粉砕時に発熱しやすいので、本発明の測定方法を好適に適用できる。また、石炭の形状は、特に限定されるものではないが、粒径を1〜5mmの範囲に揃えた石炭を使用することが好ましい。粒径を一定の範囲に揃えることによって、石炭の銘柄による粒径差による影響を除外するためである。また、測定に使用する石炭の使用量は、測定容器の大きさに応じて、適宜設定することができるが、3×10−3〜8×10−3の一定容量の測定容器に対して、300g〜800gの石炭を使用することが好ましい態様であり、例えば、容積4.5×10−3の測定容器に対して、500gの石炭を装入する。
【0012】
石炭が装入される測定容器の形状も、特に限定されるものではないが、例えば、円筒型、円錐型などの形状の容器を使用することが好ましい。
【0013】
測定容器に石炭と不活性ガスの液化物とを投入して、石炭を冷却した後、さらに測定容器内に不活性ガスを導入し、測定容器内の不活性ガスの液化物を気化するとともに、該測定容器内を不活性ガス雰囲気下にすることも好ましい態様である。ここで、不活性ガス雰囲気下とは、実質上不活性ガスの液化物が存在せずに不活性ガスのみが存在する雰囲気下を意味する。後述する石炭の粉砕工程において、石炭や不活性ガスの液化物が投入された測定容器は密閉されるが、密閉される測定容器内に不活性ガスの液化物が残存していると、気化して体積が膨張するので危険だからである。上記不活性ガス雰囲気下にするための不活性ガスとしては、特に限定されず、例えば、窒素、アルゴン、ヘリウムなどを使用でき、不活性ガスの液化物と同一または異なるものを使用できる。測定を簡便に行うという観点から、不活性ガスの液化物で使用したのものと同一の不活性ガスを使用して、測定容器内を不活性ガス雰囲気下にすることが好ましい。
【0014】
前記不活性ガスの導入量は、測定容器の大きさに応じて適宜設定できるが、例えば、3×10−3〜8×10−3の一定容量の測定容器に対して、300ml/分で、7〜18分導入する。
【0015】
本発明では、不活性ガスの液化物を用いて冷却された石炭を不活性ガス雰囲気下で粉砕する。石炭を粉砕する方法は、特に限定されず、ボールミルなどの方法を採用することができ、例えば、測定容器に石炭と鋼球とを装入し、前記測定容器を回転させ、石炭と鋼球とを接触あるいは衝突させることにより石炭を粉砕することが好ましい態様であり、さらに好ましくは、前記測定容器として円筒型容器を用いて、該測定容器内に石炭と鋼球とを投入し、前記円筒型容器を横向きに設置して、円周方向に回転させることにより、石炭を粉砕する。石炭を粉砕するのに使用できる鋼球としては、例えば、表1に示したような鋼球を使用できる。また、石炭の粉砕は、粉砕された石炭から放出されるガス量を定量するために、測定容器を密閉した状態で行うことが好ましい。
【0016】
【表1】

Figure 2004317260
【0017】
本発明では、石炭を粉砕した後、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定する。この際に導入する不活性ガスとしては、特に限定されず、例えば、窒素、アルゴン、ヘリウムなどを使用でき、石炭を冷却する際の不活性ガスの液化物、該液化物を気化するために導入する不活性ガスと同一または異なるものを使用できる。測定を簡便に行うという観点から、不活性ガスの液化物、或いは、該液化物を気化するのに使用した不活性ガスと同一の不活性ガスを使用することが好ましい。また、不活性ガスの導入量は、特に限定されず、測定に使用する石炭の量に応じて適宜設定でき、例えば、測定する石炭500gに対して、290〜310ml/分の流速、より好ましくは295〜305ml/分の流速で、9〜11分間、より好ましくは9.8分〜10.2分間不活性ガスを導入することが好ましい。特に、石炭を粉砕した直後は、測定容器内に微粉が舞っているので、測定容器を静置して、測定容器の下方に微粉状の石炭を堆積させて、測定容器内に不活性ガスを導入することも好ましい態様である。
【0018】
本発明では、放出されたガスのガス量の測定方法は特に限定されず、例えば、ガスクロマトグラフィー法を採用することが好ましい。ガスクロマトグラフィー法によれば、放出されたガスの種類や定量を容易に行うことができるからである。
【0019】
以下、図面を参照しながら、本発明をさらに詳細に説明するが、本発明は図面に記載された発明に限定されるものではない。
【0020】
図1は、本発明で使用する測定容器を例示する説明図であり、前記測定容器1には、蓋3、ガス導入管4、ガス排出管7とが備えられ、ガス導入管4及びガス排出管7には、それぞれコック5およびコック6が設けられている。上述したように、前記測定容器1としては、円筒型測定容器を使用することが好ましく、例えば、内径175〜185mm、長さ170〜180mm、容積4.4×10−3〜4.5×10−3の測定容器を好適に使用でき、特に、市販のボールミル容器を使用することが好ましい態様である。
【0021】
ガス導入管4およびガス排出管7としては、例えば、ガラス製、プラスチック製、または金属製等の管を挙げることができ、蓋3によって、上下方向に移動可能なように保持されている。特に、ガス導入管4として、ステンレス、銅などの金属製の管を使用することが好ましい態様である。蓋3は、ガス導入管4およびガス排出管7を上下に移動させることができるものであれば、特に限定されず、例えば、シリコンゴム、ネオプレンゴム、ブチルゴムなどのゴム栓を挙げることができる。
【0022】
図2は、石炭を粉砕する方法を例示する説明図であり、測定容器1を回転架台8の回転可能な2本のローラー間(図示せず)に横置きに乗せて、測定容器1を円周方向に回転させることにより石炭を粉砕する。石炭を粉砕する際には、ガス導入管4の先端部のみが円筒型測定容器内部に挿入している状態で、前記円筒型測定容器を回転させて、石炭を粉砕することが好ましい態様である。前記導入管4と鋼球や石炭とが接触して、粉砕中に導入管4が損傷するのを防ぐためである。
【0023】
本発明では、石炭を粉砕した後、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させるが、この際、図3に示すようにガス導入管4の先端部分を、粉砕された石炭が堆積した石炭層に挿入しておくことが好ましい。導入管4の先端部を石炭層に挿入しておくことにより、石炭の微細孔に吸着している内包ガスも効率よく放出させることができるからである。尚、図3中、粉砕された石炭は、鋼球2の間に埋もれた状態で存在する。
【0024】
図4は、本発明の測定方法で使用する測定装置の概略を説明するための説明図であり、マスフロー18は、不活性ガスの流量を制御するものであり、不活性ガスの流量は、マスフロー18で制御されて、ガス導入管4から測定容器1内に導入される。サンプリングバック9は、測定容器1からのサンプルガスを一旦取込んでから、ガス量検出手段(図例では、ガスクロマトグラフィー装置17)側へと排出するための容器であり、サンプルガスを導入するためのサンプルガス導入管12と、サンプルガスをガス量検出手段へと排出するサンプルガス排出管13とが備えられ、導入管12と排出管13にはそれぞれ、開閉可能なコック10および11が設けられている。
【0025】
石炭の粉砕後には、マスフロー18と測定容器1のガス導入管4とを、測定容器1のガス排出管7とサンプリングバック9のサンプルガス導入管12とを、それぞれ接続用チューブ14を用いて接続し、コック5、6、10及び11を開放して、測定容器1に不活性ガスを導入することにより、粉砕された石炭に内包されていたガスをサンプリングバック9へ放出させることができる。サンプリングバック9は、ガスクロマトグラフィー装置17と注射器16と、三方コック15を介して接続されており、サンプリングバック9内のサンプルガスは、一旦注射器16に取込まれてから、ガスクロマトグラフィー装置17に排出される。
【0026】
【実施例】
以下、本発明を実施例によって詳細に説明するが、本発明は、下記実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲の変更、実施の態様は、いずれも本発明の範囲内に含まれる。
[石炭の熱分解温度について]
粒子径0.25mm以下に粉砕した石炭A(表2参照)を、昇温速度2℃/分で加熱し、加熱中に発生したガス量を定量した。測定結果を図6に示した。図6より、加熱温度が約190℃を超えるとCOの量が増加してくるのが分かる。このような結果から、石炭に内包されているガス量のみを測定するためには、石炭粉砕時の温度上昇を抑制する必要があり、より具体的には、粉砕される石炭の温度を170℃以下、より好ましくは150℃以下に抑制することが望ましいことが分かる。
【0027】
[石炭内包ガス量の測定]
図5に示す如く、内径180mm、長さ175mm、口径105mmで、容積が約4.5×10−3の円筒型測定容器1内に、表1に示す鋼球2を仕込み、蓋3をセットし、ガス導入管4を最下層の鋼球2に接触するように測定容器内に挿入して、高さ調整を行った。蓋3をはずした後、測定容器1内に不活性ガスの液化物である液体窒素を約200ml投入し、さらに、粒径を1〜5mmに揃えた石炭A〜D500gをそれぞれ測定容器1に装入し、ガス導入管4のコック5およびガス排出管7のコック6を開放して蓋3を測定容器1に装着した。尚、表2には、使用した石炭A〜Dの含水率を示した。
【0028】
【表2】
Figure 2004317260
【0029】
次いで、マスフロー18とガス導入管4とを接続し、不活性ガスとして窒素をマスフロー18で100ml/分に流量制御し10分間測定容器1内に導入して、測定容器1内を不活性ガス雰囲気下にした。その後、ガス導入管4を所定の高さまで引き上げて、ガス導入管4の先端部のみが円筒型測定容器1内に挿入されている状態にし、導入側コック5、排出側コック6の順に、それぞれ閉じて円筒型測定容器1を密閉状態とし、マスフロー18から取り外した。
【0030】
円筒型測定容器1を、図2に示すような回転架台8の2本の回転可能なローラー間に横置きに乗せて、円筒型測定容器1を45rpmで10分間、円周方向に回転させ、石炭を粉砕した。石炭を粉砕した後、円筒型測定容器1内で微粉の舞い上がりを抑制するために、円筒型測定容器1を回転架台8から外し、蓋3を上面にして所定時間静置し、微粉状の石炭を測定容器の下方へ堆積させた。
【0031】
静置後、図4に示すようにマスフロー18と円筒型測定容器1のガス導入管4とを、及び、ガス排出管7とサンプリングバック9のサンプルガス導入管12とを、接続用チューブ14で接続した。この際、サンプリングバック9は、予め、円筒型測定容器1内の不活性ガスと同じ不活性ガスで置換しておき、三方コック15を介して、注射器16およびガスクロマトグラフィー装置17と接続した。
【0032】
不活性ガスの導入経路を接続した後、コック5,6、10、及び、11を開放し、円筒型測定容器1内に不活性ガスである窒素を導入した。前記窒素は、マスフロー18により、300ml/分に制御し、10分間測定容器1内に導入して、石炭に内包されていたガスをサンプリングバック9へと放出させた。また、窒素の導入は、ガス導入管4の先端部が、測定容器の下方に堆積している石炭層に埋没するようにガス導入管4を円筒型測定容器1に押し入れて行った。
【0033】
サンプリング終了後、窒素の流通を止めて、円筒型測定容器1のコック5とコック6、及び、サンプリングバック9のコック10を閉めた。次いで、三方コック15を用いて、サンプリングバック9と注射器16との経路を連通させ、サンプリングバック9から、約300から400mlのサンプルガスを注射器16に吸引し、続けて、三方コック15を回転させて、注射器16とガスクロマトグラフィー装置17との経路を連通させ、前記サンプルガスをガスクロマトグラフィー装置17に注入した。ガスクロマトグラフィー装置17によるガスの検出は、水素の場合はTCD検出器を、一酸化炭素、メタンなどはFID検出器を使用した。測定結果を表3〜表6に示した。尚、石炭を粉砕および冷却することなく、同様の方法により内包ガス量を測定した結果を表3〜6に併せて示した。表中の「静置時間」とは、石炭を粉砕する場合には、粉砕してからガス放出量を測定するまでの静置時間であり、石炭を粉砕しない場合は、石炭を測定容器に入れてから測定するまでの静置時間を示す。
【0034】
【表3】
Figure 2004317260
【0035】
【表4】
Figure 2004317260
【0036】
【表5】
Figure 2004317260
【0037】
【表6】
Figure 2004317260
【0038】
表3〜表6に示したように、本発明の測定方法によれば、石炭の内包ガスが精度よく測定されていることが分かる。また、石炭を粉砕して内包ガスを放出させた測定結果と石炭を粉砕せずに内包ガスを放出させた測定結果とを比較すると、石炭を粉砕し内包ガスを放出させた場合のガス濃度が高いことから、石炭を粉砕することによって、石炭に内包されているガスがよく放出されていることが分かる。
【0039】
【発明の効果】
本発明によれば、石炭を粉砕する際の温度上昇を回避し石炭の熱分解によるガス生成を抑制して、石炭に内包されていたガスのみを分析することができる。また、粉砕された石炭層に不活性ガス導入管の先端部を埋没させることにより、石炭に内包されていたガスを効率よく放出させることができる。
【図面の簡単な説明】
【図1】本発明で使用する測定容器を例示する説明図である。
【図2】本発明における石炭粉砕方法を例示する説明図である。
【図3】本発明における粉砕後の石炭への不活性ガスの導入方法を例示する説明図である。
【図4】本発明で使用する測定装置の一例の概略説明図である。
【図5】本発明で使用する測定容器に鋼球を装入した状態を説明する説明図である。
【図6】石炭の熱分解温度と熱分解ガス発生量の関係を示すグラフ。
【符号の説明】
1:測定容器、2:鋼球、3:蓋、4:ガス導入管、5:コック、6:コック、7:ガス排出管、8:回転架台、9:サンプリングバッグ、10:コック、11:コック、12:サンプルガス導入管、13:サンプルガス排出管、14:接続用チューブ、15:三方コック、16:注射器、17:ガスクロマトグラフィー装置、18:マスフロー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the amount of coal-containing gas released.
[0002]
[Prior art]
Conventionally, it has been known that when coal is pulverized or stored for a long time, gases such as methane gas, hydrogen, carbon dioxide, and carbon monoxide are released. It is extremely important to accurately measure the amount of gas released from and contained in coal in order to safely store or transport the coal. For example, Non-Patent Documents 1 and 2 suggest that the concentration of methane gas generated in silos in the hold of a coal carrier or during storage of coal may reach the explosive limit concentration.
[0003]
[Non-Patent Document 1] Nobuyoshi Fukuchi and three others, "On generation of methane gas due to oxidative heat generation in coal carriers and environmental control in the warehouse", Transactions of the Shipbuilding Society of Japan, No. 184, p. 653-P. 663, 1998 [Non-Patent Document 2] Minoru Harada and three others, "Research on Disaster Prevention Technology for Coal Silos", Kashima Institute of Construction Technology Annual Report, No. 31, 223-P. 230, 1983
[Problems to be solved by the invention]
In order to measure the amount of coal-containing gas such as methane gas adsorbed on the fine pores inside the coal, it is necessary to pulverize the coal and release these gases. However, the pulverization energy at the time of pulverization changes to friction, collision heat, etc., raising the temperature of the coal itself, causing thermal decomposition and generating new methane gas, etc., and the amount of gas contained in the coal There is no known method for accurately measuring only.
[0005]
The present invention has been made in view of the above circumstances, and provides a method for measuring the amount of coal-containing gas released by crushing coal, releasing gas contained in coal, and measuring the amount of released gas. The purpose is to do.
[0006]
[Means for Solving the Problems]
The measuring method of the present invention that can solve the above-described problem is a method of measuring the amount of coal-containing gas released by crushing coal, releasing gas contained in the coal, and measuring the amount of released gas. In, the coal in the measurement vessel is cooled using a liquefied substance of an inert gas, the coal is pulverized under an inert gas atmosphere, and further, an inert gas is introduced into the measurement vessel to be included in the coal. And releasing the released gas and measuring the amount of the released gas.
[0007]
By cooling the coal using a liquefied gas of an inert gas, the grinding energy is converted into thermal energy, suppressing the rise in the temperature of the coal to be ground, and furthermore, under an inert atmosphere, Heat generation due to the oxidation reaction of coal can also be suppressed.
[0008]
The cooling of the coal can be performed, for example, by charging coal and a liquefied inert gas into the measurement container and bringing the coal into contact with the liquefied inert gas. Further, after the liquefied substance of the inert gas is introduced into the measurement container, an inert gas is further introduced into the measurement container to vaporize the liquefied substance and to set the inside of the measurement container under an inert gas atmosphere. Is also a preferred embodiment. The pulverization of coal can be performed, for example, by charging coal and steel balls into a measuring vessel, rotating the measuring vessel, and bringing the coal and steel balls into contact. It is also a preferable embodiment that the measurement container is a cylindrical container, the container includes a gas introduction pipe and a gas exhaust pipe, and the coal is pulverized by rotating the cylindrical container in a circumferential direction. In addition, in a state where only the distal end portion of the gas introduction pipe is inserted into the inside of the vessel, the cylindrical measurement vessel is rotated to pulverize coal, so that the gas introduction pipe is made of coal, steel ball, or the like. Can be prevented from being damaged by contact. Further, by inserting the tip of the gas introduction pipe into the pulverized coal layer to introduce an inert gas, the gas contained in the pulverized coal can be efficiently discharged. The contained gas release amount can be measured, for example, by a gas chromatography method.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The measuring method of the present invention is a method for measuring the amount of released gas including crushing coal and releasing gas contained in coal, and measuring the amount of released gas. Cooling using a liquefied gas, pulverizing the coal under an inert gas atmosphere, further introducing an inert gas into the measuring vessel, releasing the gas contained in the coal, and releasing It is characterized by measuring the amount of gas that has flowed.
[0010]
First, in the measuring method of the present invention, the coal in the measuring container is cooled using a liquefied inert gas. By preliminarily cooling the coal, it is possible to suppress an increase in the temperature of the pulverized coal and prevent the coal from being thermally decomposed to generate a decomposition gas. In particular, thermal decomposition starts when the temperature of the coal reaches about 170 ° C. to 190 ° C. or higher. However, according to the present invention, the temperature at the time of coal pulverization can be suppressed to about 150 ° C. or lower. The method of cooling the coal in the measurement container is not particularly limited, for example, charging the coal and a liquefied inert gas into the measurement container, contacting the coal with the liquefied inert gas, and coal Cooling is preferred. Since the liquefied product of the inert gas is a liquid having a low temperature (for example, a boiling point of −150 ° C. or less), coal can be easily cooled by directly contacting the liquid. At the same time, the environment inside the measurement container is set to an inert atmosphere, so that heat generation due to the oxidation reaction of coal can be suppressed. As the liquefied product of the inert gas, for example, a liquefied product of an inert gas such as nitrogen, argon, and helium can be used, and preferably, liquid nitrogen can be used. The amount of the liquefied inert gas used is not particularly limited, but may be, for example, added to the measuring container to the extent that the coal to be pulverized is dipped. In the present invention, the liquefied inert gas, coal, and steel balls for pulverizing the coal are charged into the measuring container, but the order of charging is not particularly limited, and the liquefied inert gas, coal, and steel balls are not limited. Or the order of steel balls, liquefied inert gas, and coal.
[0011]
The type of coal to be measured by the measurement method of the present invention is not particularly limited, and can be measured for coal of any production area.However, lignite having a low degree of coalification easily generates heat during pulverization. Applicable. In addition, the shape of the coal is not particularly limited, but it is preferable to use coal having a particle size in the range of 1 to 5 mm. This is because by adjusting the particle size to a certain range, the influence of the particle size difference depending on the brand of coal is excluded. In addition, the amount of coal used for measurement can be appropriately set according to the size of the measurement container, but the measurement container having a constant capacity of 3 × 10 −3 m 3 to 8 × 10 −3 m 3. In a preferred embodiment, 300 g to 800 g of coal is used. For example, 500 g of coal is charged into a measurement container having a volume of 4.5 × 10 −3 m 3 .
[0012]
The shape of the measuring container into which the coal is charged is not particularly limited, either. For example, it is preferable to use a cylindrical or conical container.
[0013]
After charging the coal and the liquefied substance of the inert gas into the measurement vessel, and cooling the coal, further introducing an inert gas into the measurement vessel, and vaporizing the liquefied substance of the inert gas in the measurement vessel, It is also a preferable embodiment that the inside of the measurement container is placed under an inert gas atmosphere. Here, the term "inert gas atmosphere" means an atmosphere in which only inert gas is present, substantially without liquefied inert gas. In the coal pulverization process described later, the measurement container into which the liquefied material of coal and the inert gas is charged is sealed, but if the liquefied material of the inert gas remains in the sealed measurement container, vaporization occurs. This is dangerous because the volume expands. The inert gas used for the inert gas atmosphere is not particularly limited. For example, nitrogen, argon, helium, or the like can be used, and the same or different inert gas liquefied material can be used. From the viewpoint of performing the measurement simply, it is preferable to use the same inert gas as that used for the liquefied inert gas and to bring the inside of the measurement container into an inert gas atmosphere.
[0014]
The introduction amount of the inert gas can be appropriately set according to the size of the measurement container. For example, 300 ml for a measurement container having a constant volume of 3 × 10 −3 m 3 to 8 × 10 −3 m 3. At a rate of 7 to 18 minutes per minute.
[0015]
In the present invention, coal cooled using a liquefied inert gas is pulverized under an inert gas atmosphere. The method of pulverizing coal is not particularly limited, and a method such as a ball mill can be adopted.For example, charging coal and steel balls into a measurement container, rotating the measurement container, and using coal and steel balls. It is a preferred embodiment to pulverize the coal by contacting or colliding, more preferably, using a cylindrical container as the measurement container, charging coal and steel balls into the measurement container, the cylindrical type The coal is pulverized by placing the container sideways and rotating it circumferentially. As steel balls that can be used to pulverize coal, for example, steel balls as shown in Table 1 can be used. Further, it is preferable that the pulverization of the coal is performed in a state where the measurement container is closed in order to determine the amount of gas released from the pulverized coal.
[0016]
[Table 1]
Figure 2004317260
[0017]
In the present invention, after pulverizing the coal, an inert gas is further introduced into the measurement container to release the gas contained in the coal, and the amount of the released gas is measured. The inert gas to be introduced at this time is not particularly limited. For example, nitrogen, argon, helium, or the like can be used, and a liquefied substance of the inert gas when cooling coal is introduced to vaporize the liquefied substance. The same or different inert gas can be used. From the viewpoint of performing the measurement easily, it is preferable to use a liquefied inert gas or the same inert gas used to vaporize the liquefied gas. The amount of the inert gas introduced is not particularly limited and can be appropriately set according to the amount of coal used for measurement. For example, the flow rate is 290 to 310 ml / min, more preferably 500 g of coal to be measured. It is preferable to introduce an inert gas at a flow rate of 295 to 305 ml / min for 9 to 11 minutes, more preferably 9.8 to 10.2 minutes. In particular, immediately after pulverizing the coal, fine powder is flying in the measurement container.Therefore, the measurement container is allowed to stand still, and pulverized coal is deposited below the measurement container, and inert gas is discharged into the measurement container. It is also a preferred embodiment to introduce.
[0018]
In the present invention, the method for measuring the amount of released gas is not particularly limited, and for example, it is preferable to employ a gas chromatography method. This is because the type and the amount of the released gas can be easily determined by the gas chromatography method.
[0019]
Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited to the inventions described in the drawings.
[0020]
FIG. 1 is an explanatory view illustrating a measurement container used in the present invention. The measurement container 1 includes a lid 3, a gas introduction pipe 4, and a gas exhaust pipe 7, and includes a gas introduction pipe 4, a gas exhaust pipe The pipe 7 is provided with a cock 5 and a cock 6, respectively. As described above, it is preferable to use a cylindrical measurement container as the measurement container 1, for example, an inner diameter of 175 to 185 mm, a length of 170 to 180 mm, and a volume of 4.4 × 10 −3 m 3 to 4.5. A measurement container of × 10 −3 m 3 can be suitably used, and in particular, it is a preferable embodiment to use a commercially available ball mill container.
[0021]
Examples of the gas introduction pipe 4 and the gas discharge pipe 7 include pipes made of glass, plastic, metal, or the like, and are held by the lid 3 so as to be vertically movable. In particular, in a preferred embodiment, a metal pipe such as stainless steel or copper is used as the gas introduction pipe 4. The lid 3 is not particularly limited as long as it can move the gas introduction pipe 4 and the gas discharge pipe 7 up and down. For example, a rubber stopper such as silicone rubber, neoprene rubber, or butyl rubber can be used.
[0022]
FIG. 2 is an explanatory view exemplifying a method of pulverizing coal. The measuring container 1 is placed horizontally between two rotatable rollers (not shown) of a rotating gantry 8 so that the measuring container 1 is circular. The coal is crushed by rotating in the circumferential direction. When pulverizing coal, it is a preferred embodiment that the cylindrical measurement container is rotated to pulverize the coal while only the distal end of the gas introduction pipe 4 is inserted inside the cylindrical measurement container. . This is to prevent the introduction tube 4 from being damaged during the pulverization due to contact between the introduction tube 4 and steel balls or coal.
[0023]
In the present invention, after the coal is pulverized, an inert gas is further introduced into the measurement container to release the gas contained in the coal. At this time, as shown in FIG. It is preferable that the tip portion is inserted into a coal layer where the pulverized coal is deposited. This is because the inclusion gas adsorbed in the fine pores of the coal can be efficiently released by inserting the tip of the introduction pipe 4 into the coal layer. In FIG. 3, the pulverized coal is buried between the steel balls 2.
[0024]
FIG. 4 is an explanatory diagram for explaining the outline of a measuring apparatus used in the measuring method of the present invention. The mass flow 18 controls the flow rate of the inert gas. Controlled by 18, the gas is introduced from the gas introduction pipe 4 into the measurement container 1. The sampling bag 9 is a container for once taking in the sample gas from the measurement container 1 and then discharging the sample gas to the gas amount detecting means (gas chromatography device 17 in the illustrated example). Gas inlet pipe 12 for discharging the sample gas to the gas amount detecting means, and a cock 10 and 11 which can be opened and closed, respectively, are provided in the inlet pipe 12 and the outlet pipe 13 respectively. Have been.
[0025]
After the pulverization of the coal, the mass flow 18 is connected to the gas introduction pipe 4 of the measurement container 1, and the gas discharge pipe 7 of the measurement container 1 and the sample gas introduction pipe 12 of the sampling bag 9 are connected using the connection tube 14. Then, by opening the cocks 5, 6, 10 and 11, and introducing an inert gas into the measurement container 1, the gas contained in the pulverized coal can be discharged to the sampling bag 9. The sampling bag 9 is connected to the gas chromatography device 17, the syringe 16, and the three-way cock 15. The sample gas in the sampling bag 9 is once taken into the syringe 16, Is discharged.
[0026]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and changes in a range that does not depart from the gist of the present invention and all of the embodiments are described below. Included in the range.
[About the thermal decomposition temperature of coal]
Coal A (see Table 2) pulverized to a particle size of 0.25 mm or less was heated at a heating rate of 2 ° C./min, and the amount of gas generated during heating was quantified. The measurement results are shown in FIG. FIG. 6 shows that when the heating temperature exceeds about 190 ° C., the amount of CO 2 increases. From these results, in order to measure only the amount of gas contained in coal, it is necessary to suppress a rise in temperature during coal pulverization. More specifically, the temperature of pulverized coal is set to 170 ° C. It is understood that it is desirable to suppress the temperature to 150 ° C. or less.
[0027]
[Measurement of gas content in coal]
As shown in FIG. 5, a steel ball 2 shown in Table 1 is charged into a cylindrical measuring container 1 having an inner diameter of 180 mm, a length of 175 mm, a diameter of 105 mm and a volume of about 4.5 × 10 −3 m 3 , and a lid 3. Was set, and the gas introduction pipe 4 was inserted into the measurement container so as to be in contact with the lowermost steel ball 2 to adjust the height. After removing the lid 3, about 200 ml of liquid nitrogen, which is a liquefied substance of an inert gas, is put into the measuring container 1, and 500 g of coals A to D having a particle size of 1 to 5 mm are mounted on the measuring container 1. The cock 5 of the gas introduction pipe 4 and the cock 6 of the gas exhaust pipe 7 were opened, and the lid 3 was attached to the measurement container 1. Table 2 shows the water content of the coals A to D used.
[0028]
[Table 2]
Figure 2004317260
[0029]
Next, the mass flow 18 and the gas introduction pipe 4 are connected to each other. Nitrogen as an inert gas is controlled at a flow rate of 100 ml / min by the mass flow 18 and introduced into the measurement container 1 for 10 minutes. I took it down. Thereafter, the gas introduction pipe 4 is pulled up to a predetermined height so that only the distal end of the gas introduction pipe 4 is inserted into the cylindrical measuring container 1. The introduction cock 5 and the discharge cock 6 are arranged in this order. The cylindrical measuring container 1 was closed to make it hermetically closed, and was removed from the mass flow 18.
[0030]
The cylindrical measuring container 1 is placed horizontally between two rotatable rollers of a rotating base 8 as shown in FIG. 2, and the cylindrical measuring container 1 is rotated in the circumferential direction at 45 rpm for 10 minutes, The coal was pulverized. After pulverizing the coal, the cylindrical measuring container 1 is detached from the rotating gantry 8 and the lid 3 is placed on the upper surface for a predetermined period of time in order to suppress the soaring of the fine powder in the cylindrical measuring container 1. Was deposited below the measuring vessel.
[0031]
After standing still, as shown in FIG. 4, the mass flow 18 and the gas introduction pipe 4 of the cylindrical measurement container 1, and the gas discharge pipe 7 and the sample gas introduction pipe 12 of the sampling bag 9 are connected by the connection tube 14. Connected. At this time, the sampling bag 9 was replaced with the same inert gas as the inert gas in the cylindrical measurement container 1 in advance, and connected to the syringe 16 and the gas chromatography device 17 via the three-way cock 15.
[0032]
After connecting the introduction path of the inert gas, the cocks 5, 6, 10, and 11 were opened, and nitrogen as an inert gas was introduced into the cylindrical measurement container 1. The nitrogen was controlled at 300 ml / min by the mass flow 18 and introduced into the measuring container 1 for 10 minutes to discharge the gas contained in the coal into the sampling bag 9. Nitrogen was introduced by pushing the gas introduction pipe 4 into the cylindrical measurement vessel 1 so that the tip of the gas introduction pipe 4 was buried in the coal layer deposited below the measurement vessel.
[0033]
After the end of the sampling, the flow of nitrogen was stopped, and the cocks 5 and 6 of the cylindrical measuring container 1 and the cock 10 of the sampling bag 9 were closed. Next, the path between the sampling bag 9 and the syringe 16 is communicated with the three-way cock 15, and about 300 to 400 ml of sample gas is sucked into the syringe 16 from the sampling bag 9, and then the three-way cock 15 is rotated. Then, the path between the syringe 16 and the gas chromatography device 17 was communicated, and the sample gas was injected into the gas chromatography device 17. For gas detection by the gas chromatography device 17, a TCD detector was used in the case of hydrogen, and an FID detector was used in the case of carbon monoxide and methane. The measurement results are shown in Tables 3 to 6. In addition, the result of having measured the included gas amount by the same method without pulverizing and cooling the coal was shown in Tables 3-6. `` Standing time '' in the table means the standing time from comminution to measurement of gas emission amount when pulverizing coal, and when coal is not pulverized, put the coal in a measuring vessel. This shows the standing time from measurement to measurement.
[0034]
[Table 3]
Figure 2004317260
[0035]
[Table 4]
Figure 2004317260
[0036]
[Table 5]
Figure 2004317260
[0037]
[Table 6]
Figure 2004317260
[0038]
As shown in Tables 3 to 6, it can be seen that according to the measurement method of the present invention, the gas contained in coal is measured with high accuracy. Also, comparing the measurement result of crushing coal to release the included gas and the measurement result of crushing coal to release the included gas without crushing the coal, the gas concentration when the coal was crushed and the included gas was released was found. From the high value, it can be seen that the gas contained in the coal is well released by crushing the coal.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it can avoid the temperature rise at the time of grinding | pulverizing coal, suppress gas production by the thermal decomposition of coal, and can analyze only the gas contained in the coal. Further, by burying the tip of the inert gas introduction pipe in the pulverized coal layer, the gas contained in the coal can be efficiently discharged.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating a measurement container used in the present invention.
FIG. 2 is an explanatory view illustrating a coal grinding method in the present invention.
FIG. 3 is an explanatory view illustrating a method of introducing an inert gas into pulverized coal in the present invention.
FIG. 4 is a schematic explanatory view of an example of a measuring device used in the present invention.
FIG. 5 is an explanatory diagram illustrating a state in which steel balls are inserted into a measurement container used in the present invention.
FIG. 6 is a graph showing the relationship between the pyrolysis temperature of coal and the amount of generated pyrolysis gas.
[Explanation of symbols]
1: measurement container, 2: steel ball, 3: lid, 4: gas inlet tube, 5: cock, 6: cock, 7: gas exhaust tube, 8: rotating frame, 9: sampling bag, 10: cock, 11: Cock, 12: sample gas inlet tube, 13: sample gas outlet tube, 14: connection tube, 15: three-way cock, 16: syringe, 17: gas chromatography device, 18: mass flow

Claims (8)

石炭を粉砕し、石炭に内包されているガスを放出させて、放出されたガス量を測定する石炭内包ガス放出量の測定方法において、
測定容器内の石炭を不活性ガスの液化物を用いて冷却し、該石炭を不活性ガス雰囲気下で粉砕し、さらに、測定容器内に不活性ガスを導入して、石炭に内包されているガスを放出させて、放出されたガス量を測定することを特徴とする石炭内包ガス放出量の測定方法。
In the method of measuring the amount of coal-containing gas released by crushing the coal, releasing the gas contained in the coal, and measuring the amount of released gas,
The coal in the measurement container is cooled using a liquefied substance of an inert gas, the coal is pulverized under an inert gas atmosphere, and an inert gas is introduced into the measurement container to be included in the coal. A method for measuring the amount of coal-containing gas released, comprising discharging gas and measuring the amount of released gas.
前記測定容器に不活性ガスの液化物と石炭とを投入し、石炭と不活性ガスの液化物とを接触させて、石炭を冷却する請求項1に記載の測定方法。The measuring method according to claim 1, wherein a liquefied substance of an inert gas and coal are charged into the measuring container, and the coal is brought into contact with the liquefied substance of the inert gas to cool the coal. 前記測定容器に不活性ガスの液化物を投入した後、さらに不活性ガスを測定容器内に導入して、前記液化物を気化させて該測定容器内を不活性ガス雰囲気下にする請求項2に記載の測定方法。3. After the liquefied substance of the inert gas is introduced into the measuring container, an inert gas is further introduced into the measuring container to vaporize the liquefied substance, thereby bringing the inside of the measuring container into an inert gas atmosphere. Measurement method described in 1. 前記測定容器に、石炭と鋼球とを装入し、前記測定容器を回転させて、石炭と鋼球とを接触させることにより石炭を粉砕する請求項1〜3のいずれかに記載の測定方法。The measuring method according to any one of claims 1 to 3, wherein the measuring vessel is charged with coal and steel balls, the measuring vessel is rotated, and the coal is pulverized by bringing the coal and steel balls into contact. . 前記測定容器は円筒型容器であって、該容器はガス導入管とガス排出管とを備え、前記円筒型容器を円周方向に回転させることにより、石炭を粉砕する請求項4に記載の測定方法。The measurement according to claim 4, wherein the measurement container is a cylindrical container, the container includes a gas introduction pipe and a gas discharge pipe, and the coal is pulverized by rotating the cylindrical container in a circumferential direction. Method. 前記ガス導入管の先端部のみが容器内部に挿入している状態で、前記円筒型測定容器を回転させて、石炭を粉砕する請求項5に記載の測定方法。The measuring method according to claim 5, wherein the cylindrical measurement container is rotated to pulverize the coal while only the tip of the gas introduction pipe is inserted into the container. 前記ガス導入管の先端部を粉砕された石炭層に挿入して、不活性ガスを導入し、石炭に内包されているガスを放出させる請求項5又は6に記載の測定方法。The measuring method according to claim 5 or 6, wherein a tip portion of the gas introduction pipe is inserted into the pulverized coal layer to introduce an inert gas and discharge a gas contained in the coal. 前記内包ガス放出量をガスクロマトグラフィー法により測定する請求項1〜7のいずれかに記載の測定方法。The measuring method according to any one of claims 1 to 7, wherein the amount of the contained gas released is measured by a gas chromatography method.
JP2003110800A 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal Expired - Fee Related JP4283585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110800A JP4283585B2 (en) 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110800A JP4283585B2 (en) 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal

Publications (2)

Publication Number Publication Date
JP2004317260A true JP2004317260A (en) 2004-11-11
JP4283585B2 JP4283585B2 (en) 2009-06-24

Family

ID=33471553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110800A Expired - Fee Related JP4283585B2 (en) 2003-04-15 2003-04-15 Method for measuring the amount of gas contained in coal

Country Status (1)

Country Link
JP (1) JP4283585B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677081B2 (en) 2006-10-11 2010-03-16 Kabushiki Kaisha Onsui Method for analyzing gas components, apparatus for separating gas components and method for identifying the same
JP2010248047A (en) * 2009-04-20 2010-11-04 Taiheiyo Cement Corp Method for selecting or administrating fuel coal
CN102998390A (en) * 2012-11-28 2013-03-27 四川省煤炭产业集团有限责任公司 Method for analyzing carbon monoxide gas in coal under anaerobic condition
WO2014088194A1 (en) * 2012-12-07 2014-06-12 한국지질자원연구원 System for measuring amount of residual coal bed methane
CN108805339A (en) * 2018-05-24 2018-11-13 中国神华能源股份有限公司 Coal mine work area Forecast of Gas Emission method, storage medium and electronic equipment
CN109443859A (en) * 2018-12-25 2019-03-08 西安科技大学 A kind of negative pressure low temperature coal seam gas-bearing capacity measurement sampler
CN109975171A (en) * 2019-04-24 2019-07-05 吕梁学院 A kind of gas surveying device and application method
CN113310778A (en) * 2021-05-06 2021-08-27 安徽汽车职业技术学院 Dynamic CO detection device for coal powder preparation
CN114527032A (en) * 2022-02-18 2022-05-24 中煤科工集团重庆研究院有限公司 Efficient granular coal crushing device and gas analysis amount measuring method
CN109975171B (en) * 2019-04-24 2024-04-19 吕梁学院 Gas survey device and use method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242000A (en) * 2015-10-29 2016-01-13 广东电网有限责任公司电力科学研究院 Method for accurate measurement of carbon emission from coal-fired power plant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677081B2 (en) 2006-10-11 2010-03-16 Kabushiki Kaisha Onsui Method for analyzing gas components, apparatus for separating gas components and method for identifying the same
JP2010248047A (en) * 2009-04-20 2010-11-04 Taiheiyo Cement Corp Method for selecting or administrating fuel coal
CN102998390A (en) * 2012-11-28 2013-03-27 四川省煤炭产业集团有限责任公司 Method for analyzing carbon monoxide gas in coal under anaerobic condition
WO2014088194A1 (en) * 2012-12-07 2014-06-12 한국지질자원연구원 System for measuring amount of residual coal bed methane
CN108805339A (en) * 2018-05-24 2018-11-13 中国神华能源股份有限公司 Coal mine work area Forecast of Gas Emission method, storage medium and electronic equipment
CN109443859A (en) * 2018-12-25 2019-03-08 西安科技大学 A kind of negative pressure low temperature coal seam gas-bearing capacity measurement sampler
CN109975171A (en) * 2019-04-24 2019-07-05 吕梁学院 A kind of gas surveying device and application method
CN109975171B (en) * 2019-04-24 2024-04-19 吕梁学院 Gas survey device and use method
CN113310778A (en) * 2021-05-06 2021-08-27 安徽汽车职业技术学院 Dynamic CO detection device for coal powder preparation
CN113310778B (en) * 2021-05-06 2022-05-17 安徽汽车职业技术学院 Dynamic CO detection device for coal powder preparation
CN114527032A (en) * 2022-02-18 2022-05-24 中煤科工集团重庆研究院有限公司 Efficient granular coal crushing device and gas analysis amount measuring method
CN114527032B (en) * 2022-02-18 2024-03-12 中煤科工集团重庆研究院有限公司 Efficient crushing device for granular coal and gas analysis amount measuring method

Also Published As

Publication number Publication date
JP4283585B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP2004317260A (en) Method for measuring quantity of discharge of gas included in coal
Lee et al. CH4-CO2 replacement occurring in sII natural gas hydrates for CH4 recovery and CO2 sequestration
CN104749218B (en) Flammable gas explosion characteristic test device and method under ultralow temperature
Xu et al. Micro-structure of crushed coal with different metamorphic degrees and its low-temperature oxidation
CN110454105B (en) In-situ test system and method for gas content of coal mine underground coal seam while drilling
Dufaud et al. Explosions of vapour/dust hybrid mixtures: a particular class
Liang et al. Characteristics of coal re-oxidation based on microstructural and spectral observation
GB781631A (en) Method and apparatus for storing liquified gases
Diener et al. Anaerobic preparation and solvent-free separation of uranium endohedral metallofullerenes
CN112629098A (en) Movable low-temperature working table
US9943854B1 (en) Cryomill system
Wang et al. Influence of scale and atmosphere on the pyrolysis properties of large-scale bituminous coal
JP2019066296A (en) Evaluation apparatus and evaluation method of coal natural heat generating property
Carter et al. ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite
KR20110009245A (en) Gas charge container, atom probe apparatus, and method for analyzing hydrogen position in material
Narehood et al. Diffusion of H 2 adsorbed on single-walled carbon nanotubes
AlQaydi et al. Effect of sand and moisture on molten salt properties for open direct absorption solar receiver/storage system
Wang et al. Effect of CaO content on hydration rates of Ca-based sorbents at high temperature
Forester Mössbauer search for ferric oxide phases in lunar materials and simulated lunar materials
Genberg et al. Development of graphitization of μg-sized samples at Lund University
Akimov et al. Purification of liquid xenon with the spark discharge technique for use in two-phase emission detectors
Prelas et al. Neutron emission from cryogenically cooled metals under thermal shock
Ignasiak et al. Direct determination in oxygen in coal
Shea Jr et al. Self-heating of carbonaceous materials
Miyake et al. Influence of atmospheric conditions on the spontaneous ignition behaviour of activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Ref document number: 4283585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees