JP4282629B2 - Method for producing a boron nitride fired body - Google Patents

Method for producing a boron nitride fired body Download PDF

Info

Publication number
JP4282629B2
JP4282629B2 JP2005108285A JP2005108285A JP4282629B2 JP 4282629 B2 JP4282629 B2 JP 4282629B2 JP 2005108285 A JP2005108285 A JP 2005108285A JP 2005108285 A JP2005108285 A JP 2005108285A JP 4282629 B2 JP4282629 B2 JP 4282629B2
Authority
JP
Japan
Prior art keywords
cip
boron nitride
pressure
powder
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005108285A
Other languages
Japanese (ja)
Other versions
JP2006282485A (en
Inventor
康人 伏井
勲 杉本
政嗣 原
稔男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005108285A priority Critical patent/JP4282629B2/en
Publication of JP2006282485A publication Critical patent/JP2006282485A/en
Application granted granted Critical
Publication of JP4282629B2 publication Critical patent/JP4282629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description


本発明は、窒化ホウ素焼成体の製造方法に関するものである。

The present invention relates to a method for manufacturing a boron nitride fired body.

窒化ホウ素焼成体は、六方晶窒化ホウ素粉を含む成形体を例えばホットプレス、ホットアイソスタティックプレス(HIP)等の加熱加圧焼成法か、又は六方晶窒化ホウ素粉を含む一軸加圧成形体を冷間等方圧加圧処理した後、常圧下で焼成する常圧焼成法で製造されている。いずれの方法にあっても、例えばB、Y、Al、CaF、MgO、Si、CaB、MgB等の焼結助剤が必要に応じて用いられている。 The boron nitride fired body is formed by subjecting a molded body containing hexagonal boron nitride powder to a heating and pressing method such as hot pressing or hot isostatic press (HIP), or a uniaxial pressure molded body containing hexagonal boron nitride powder. It is manufactured by a normal pressure firing method in which a cold isotropic pressure is applied and then fired under normal pressure. In any method, sintering aids such as B 2 O 3 , Y 2 O 3 , Al 2 O 3 , CaF 2 , MgO, Si, CaB 6 , and MgB x are used as necessary. Yes.

窒化ホウ素焼成体の主要な用途の一つに、シリコンウェハ等の半導体製品や、窒化アルミニウム材を焼成する際のセッターがある。近年、これらの大型化にともない、セッターに対してもそれに適応できる大型化と、大型化するに際しての加工端材の発生が少ない窒化ホウ素焼成体の製造法の開発が待たれている。加熱加圧焼成法ではこのような大型化にはもはや対応はできず、常圧焼成法によるしかないと考えられる現状において、常圧焼成法による量産化技術では、密度が1.3〜1.6g/cm、相対密度が60〜70%程度の六方晶窒化ホウ素焼成体しか得ることができていない。 One of the main uses of the boron nitride fired body is a semiconductor product such as a silicon wafer and a setter for firing an aluminum nitride material. In recent years, with these increases in size, development of a method of manufacturing a boron nitride fired body that can be applied to a setter and that generates less processing scrap when the size is increased is awaited. In the present situation where the heating and pressure firing method can no longer cope with such an increase in size, and it is considered that there is only the atmospheric pressure firing method, the density is 1.3 to 1. Only a hexagonal boron nitride fired body of 6 g / cm 3 and a relative density of about 60 to 70% can be obtained.

特許第2005945号公報には、常圧焼成法によって、曲げ強度が5kgf/mm(49MPa)の六方晶窒化ホウ素焼成体を得られたことが記載されているが、これは50×50×10mmの小片である。容積が3000cm以上の大型品にして25MPaの曲げ強度を保証したものではなく、多くは12〜18MPaである。これを改善するため、例えばアルカリ土類金属や炭化ホウ素等の焼結助剤を用いること(特許文献1)や、常圧焼成条件を最適化すること(特許文献2)などの提案があるが、焼結助剤が残留することの問題の他に、強度改善効果がまだ不十分であった。
特公平07−42169号公報 特開2000−44349号公報
In Japanese Patent No. 2005945, it is described that a hexagonal boron nitride fired body having a bending strength of 5 kgf / mm 2 (49 MPa) was obtained by a normal pressure firing method, which is 50 × 50 × 10 mm. It is a small piece. It does not guarantee a bending strength of 25 MPa for a large-sized product having a volume of 3000 cm 3 or more, and most of them are 12 to 18 MPa. In order to improve this, there are proposals such as using sintering aids such as alkaline earth metals and boron carbide (Patent Document 1) and optimizing the normal pressure firing conditions (Patent Document 2). Besides the problem that the sintering aid remains, the effect of improving the strength is still insufficient.
Japanese Patent Publication No. 07-42169 JP 2000-44349 A

本発明の目的は、例えば容積が3000cm以上の大形品にして30MPaの曲げ強度を有する窒化ホウ素焼結体を、焼結助剤を用いなくても、容易に製造することができる方法を提供することである。 An object of the present invention is to provide a method capable of easily producing a boron nitride sintered body having a bending strength of 30 MPa, for example, having a volume of 3000 cm 3 or more without using a sintering aid. Is to provide.

本発明は、六方晶窒化ホウ素粉を含むセラミックス粉末を、4〜15MPaの圧力で一軸加圧成形してから、最初に行うCIP(以下、「第1のCIP」ともいう。)と、その後に行うCIP(以下、「第2のCIP」ともいう。)の少なくとも2回の冷間等方圧加圧処理を行った後、焼成する方法であって、第2のCIP圧力を第1のCIP圧力よりも高くすることを特徴とする窒化ホウ素焼成体の製造方法である。 In the present invention, ceramic powder containing hexagonal boron nitride powder is uniaxially pressed at a pressure of 4 to 15 MPa, and then CIP performed first (hereinafter also referred to as “first CIP”), and thereafter. performing CIP (hereinafter, also referred to as "second CIP".) of at least twice after Tsu rows isostatic pressing process cold, a method of baking, the second CIP pressure first a method for producing a boron nitride sintered body, characterized that you higher than CIP pressure.

本発明においては、以下の実施態様から得ばれた少なくとも一つを有していることが好ましい。
(1)第2のCIP圧力が、第1のCIP圧力の1.5〜5倍であること。
(2)第1のCIP圧力が、50〜120MPaであること。
(3)冷間等方圧加圧処理成形体を焼成する前に熱処理を行い、120℃における加熱減量分を0.1質量%以下に減じておくこと。
(4)冷間等方圧加圧処理成形体の焼成を、非酸化性雰囲気下、昇温速度を150℃/hr以下、最高温度を1800〜2200℃、この温度範囲における保持時間を5時間以上にして行うこと。
(5)一軸加圧成形体のセラミックス原料末中、六方晶窒化ホウ素粉の含有率が20質量%以上(100%を含む)であり、しかもその六方晶窒化ホウ素粉中、黒鉛化指数が4以上の低結晶性六方晶窒化ホウ素粉の割合が30〜80質量%であること。
In this invention, it is preferable to have at least one obtained from the following embodiments.
(1) The second CIP pressure is 1.5 to 5 times the first CIP pressure.
(2) The first CIP pressure is 50 to 120 MPa.
(3) A heat treatment is performed before firing the cold isostatic pressing molded body, and the heat loss at 120 ° C. is reduced to 0.1% by mass or less.
(4) Calcination of the cold isostatic press treatment molded body is performed in a non-oxidizing atmosphere at a heating rate of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time in this temperature range of 5 hours. Do this.
(5) The content of the hexagonal boron nitride powder is 20% by mass or more (including 100%) in the ceramic raw material powder of the uniaxial pressure formed body, and the graphitization index is 4 in the hexagonal boron nitride powder. The ratio of the above low crystalline hexagonal boron nitride powder is 30 to 80% by mass.

本発明によれば、例えば体積が3000cm以上で厚さが40mm以上の大型品にして三点曲げ強度が30MPa以上、密度が1.7g/cm以上の窒化ホウ素焼成体を常圧焼成で容易に製造することができる。 According to the present invention, for example, a boron nitride fired body having a three-point bending strength of 30 MPa or more and a density of 1.7 g / cm 3 or more in a large product having a volume of 3000 cm 3 or more and a thickness of 40 mm or more is obtained by atmospheric pressure firing. It can be manufactured easily.

本発明で用いるセラミックス原料粉は、六方晶窒化ホウ素粉の含有率が20質量%以上(100%を含む)を含むセラミックス粉末であることが好ましい。それを例示すれば、六方晶窒化ホウ素粉単独、又は六方晶窒化ホウ素粉と例えば窒化ケイ素粉、窒化アルミニウム粉、アルミナ粉、炭化ホウ素粉、炭化ケイ素粉等の六方晶窒化ホウ素粉以外のセラミックス粉との混合粉であり、いずれも必要に応じて焼結助剤を存在させたものである。焼結助剤としては、例えばB、Y、Al、CaF、MgO、Si、CaB、MgB等を成分とする粉末を用いることができる。セラミックス原料粉の調整に際しては、混合媒体も含め、不純物の混入には十分注意がいる。鉄をはじめとした重金属やアルカリ金属、ハロゲンの混入は、極力避けなければならない。適切な混合機器を例示すれば、ボールミル、振動ミル、アトライターミル、ヘンシェルミキサー、バンバリミキサー、パワフルミキサーなどである。 The ceramic raw material powder used in the present invention is preferably a ceramic powder containing a hexagonal boron nitride powder content of 20% by mass or more (including 100%). For example, hexagonal boron nitride powder alone or ceramic powder other than hexagonal boron nitride powder such as silicon nitride powder, aluminum nitride powder, alumina powder, boron carbide powder, silicon carbide powder, etc. In any case, a sintering aid is present if necessary. As the sintering aid, for example, powders containing B 2 O 3 , Y 2 O 3 , Al 2 O 3 , CaF 2 , MgO, Si, CaB 6 , MgB x and the like can be used. When preparing the ceramic raw material powder, attention should be paid to the mixing of impurities including the mixed medium. Mixing of heavy metals such as iron, alkali metals and halogens should be avoided as much as possible. Examples of suitable mixing equipment include a ball mill, a vibration mill, an attritor mill, a Henschel mixer, a Banbury mixer, and a powerful mixer.

六方晶窒化ホウ素粉としては、特に制約はないが、低結晶性の窒化ホウ素粉と高結晶性の窒化ホウ素粉を組み合わせて用いることが好ましい。これによって、一方を単独で用いる場合に比べて窒化ホウ素焼成体の曲げ強度が大きくなり、しかも焼成時に発生するガス量が著しく少なくなるので、クラックやラミネーションの欠陥が生じにくい窒化ホウ素焼成体となる。低結晶性の窒化ホウ素粉と高結晶性の窒化ホウ素粉の割合は、両者の合計粉中、低結晶性の窒化ホウ素粉が30〜80質量%、特に40〜70質量%であることが好ましい。   Although there is no restriction | limiting in particular as a hexagonal boron nitride powder, It is preferable to use combining a low crystalline boron nitride powder and a highly crystalline boron nitride powder. This increases the bending strength of the boron nitride fired body as compared with the case where one of them is used alone, and the amount of gas generated during firing is significantly reduced, resulting in a boron nitride fired body that is less prone to cracks and lamination defects. . The ratio of the low crystalline boron nitride powder and the high crystalline boron nitride powder is preferably 30 to 80% by mass, particularly 40 to 70% by mass of the low crystalline boron nitride powder in the total powder of both. .

本発明において、低結晶性の窒化ホウ素粉とは黒鉛化指数が4以上の窒化ホウ素粉であり、高結晶性の窒化ホウ素粉とは黒鉛化指数が4未満の窒化ホウ素粉であると定義する。黒鉛化指数は、粉末X線回折で、(100)、(101)、(102)の各面の回折線強度I100、I101、I102を測定し、式、(黒鉛化指数)=(I100+I101)/(I102)、によって算出される。 In the present invention, the low crystalline boron nitride powder is a boron nitride powder having a graphitization index of 4 or more, and the high crystalline boron nitride powder is defined as a boron nitride powder having a graphitization index of less than 4. . The graphitization index is measured by powder X-ray diffraction, and the diffraction line intensities I 100 , I 101 , and I 102 of (100), (101), and (102) are measured, and the formula (graphitization index) = ( I 100 + I 101 ) / (I 102 ).

一軸加圧成形体は、セラミックス原料粉を型に詰め、一軸加圧成形をすることによって製造することができる。加圧はエア抜きをしながらゆっくり行うことが好ましい。エア抜きが不十分であると、エアボイドが残留することがあり、エア抜きが早過ぎると、エア抜け時にチャネリングを生じてエアの抜け跡が欠陥になる場合がある。エア抜きをよくするために、セラミックス原料粉の造粒粉を用いるか、脱気をしながら加圧することは好ましいことである。なお、造粒粉を用いたときには、焼成前に造粒バインダーを除いておく。   The uniaxial pressure-formed body can be produced by filling ceramic raw material powder in a mold and performing uniaxial pressure forming. The pressurization is preferably performed slowly while releasing air. If air venting is insufficient, air voids may remain, and if air venting is too early, channeling may occur when air escapes, resulting in defects in air escape. In order to improve air bleeding, it is preferable to use granulated powder of ceramic raw material powder or pressurize while deaeration. When granulated powder is used, the granulated binder is removed before firing.

冷間等方圧加圧処理(以下、「CIP」ともいう。)時の変形を小さくするために、一軸加圧成形圧力は高い方が好ましいが、あまり高いとクラックやラミネーションが発生するので、本発明では3〜20MPaとする。好ましくは4〜15MPaとする。これによって、セラミックス原料粉はCIP時のハンドリングが容易となり、またCIP時の収縮が小さくなるために変形が少なくなりクラックやラミネーションの発生を著しく抑制することができる。一軸加圧成形機としては、特にこれを限定するものではなく、通常の油圧式のプレス機で行うことができる。   In order to reduce deformation during cold isostatic pressing (hereinafter also referred to as “CIP”), it is preferable that the uniaxial pressing pressure is high, but if it is too high, cracks and lamination occur. In the present invention, the pressure is set to 3 to 20 MPa. The pressure is preferably 4 to 15 MPa. As a result, the ceramic raw material powder can be easily handled at the time of CIP, and since the shrinkage at the time of CIP is reduced, the deformation is reduced and the occurrence of cracks and lamination can be remarkably suppressed. The uniaxial pressure molding machine is not particularly limited, and can be performed with a normal hydraulic press.

ついで、一軸加圧成形体は少なくとも2回のCIPが施される。すなわち、本発明においては、最初に行うCIP(第1のCIP)と、その後に行うCIP(第2のCIP)の少なくとも2回のCIPが施されるが、第2のCIP圧力は第1のCIP圧力よりも高めて行われることが特徴である。CIPは、例えばビニール製、ゴム製等の袋に被処理物を入れてから脱気後密封し、市販のCIP装置を用い、例えば水、グリセリン等の圧力媒体を用いて行うことができる。 Subsequently, the uniaxial pressure-molded body is subjected to at least two CIPs. That is, in the present invention, the first CIP ( first CIP ) and the subsequent CIP ( second CIP ) are performed at least twice, but the second CIP pressure is the first CIP. It is characterized by being performed at a pressure higher than the CIP pressure. CIP can be performed using a commercially available CIP device, for example, a pressure medium such as water or glycerin, after putting the object to be processed in a bag made of vinyl, rubber or the like and then degassing and sealing.

第1のCIP圧力は、50〜120MPa、特に80〜120MPaであることが好ましく、第2のCIP圧力は第1のCIP圧力の1.5〜5倍、特に2〜4倍であることが好ましい。第2のCIP圧力は150〜300MPaであることが好ましい。いずれのCIPにおいても、低圧過ぎると、高密度品が得られ難く、高圧過ぎるとクラックやラミネーションの発生の原因となる。   The first CIP pressure is preferably 50 to 120 MPa, particularly preferably 80 to 120 MPa, and the second CIP pressure is preferably 1.5 to 5 times, particularly 2 to 4 times the first CIP pressure. . The second CIP pressure is preferably 150 to 300 MPa. In any CIP, if the pressure is too low, it is difficult to obtain a high-density product. If the pressure is too high, cracks and lamination may occur.

CIP成形体は、次いで焼成される。焼成する前に、CIP成形体を熱処理し、120℃における加熱減量分を0.1質量%以下、特に0.05質量%以下に減じておくことが好ましい。これによって、より高密度の窒化ホウ素成形体を製造することが可能となる。熱処理方法の一例を示せば、120〜180℃の乾燥機中で、数時間から数十時間放置することである。   The CIP compact is then fired. Before firing, it is preferable to heat-treat the CIP compact and reduce the heat loss at 120 ° C. to 0.1% by mass or less, particularly 0.05% by mass or less. This makes it possible to produce a higher density boron nitride molded body. An example of the heat treatment method is to leave it in a dryer at 120 to 180 ° C. for several hours to several tens of hours.

CIP成形体の焼成は、非酸化性雰囲気下、昇温速度を150℃/hr以下、最高温度を1800〜2200℃、この温度範囲における保持時間を5時間以上にして行うことが好ましい。非酸化性雰囲気としては、例えば窒素、アンモニア等の窒化性ガス雰囲気であることが好ましい。これらの条件にあても、高密度のCIP成形体ほど昇温速度を遅くすることが好ましいが、あまり遅いと生産性が低下するので、50〜130℃/hrが好ましい。   The CIP molded body is preferably fired in a non-oxidizing atmosphere at a rate of temperature increase of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time in this temperature range of 5 hours or more. The non-oxidizing atmosphere is preferably a nitriding gas atmosphere such as nitrogen or ammonia. Even under these conditions, it is preferable to lower the rate of temperature rise as the density of the CIP compact is increased. However, if it is too slow, the productivity is lowered, so 50 to 130 ° C./hr is preferable.

最高温度と保持時間は、CIP成形体の種類、特にセラミックス原料粉によって異なる。窒化ホウ素単独の場合は、最高温度が1900〜2100℃、保持時間が5〜12時間であることが好ましい。また、窒化ホウ素と窒化アルミニウムの複合系では、最高温度が1850〜2050℃、保持時間が5〜10時間、窒化ホウ素と窒化ケイ素との複合系では、最高温度が1800〜1900℃、保持時間が5〜8時間、更には窒化ホウ素とホウ化チタンの複合系では、最高温度が1950〜2200℃、保持時間が5〜15時間であることが好ましい。   The maximum temperature and holding time vary depending on the type of CIP compact, particularly the ceramic raw material powder. In the case of boron nitride alone, the maximum temperature is preferably 1900 to 2100 ° C. and the holding time is preferably 5 to 12 hours. Further, in the composite system of boron nitride and aluminum nitride, the maximum temperature is 1850 to 2050 ° C. and the holding time is 5 to 10 hours, and in the composite system of boron nitride and silicon nitride, the maximum temperature is 1800 to 1900 ° C. and the holding time. For a composite system of boron nitride and titanium boride for 5 to 8 hours, the maximum temperature is preferably 1950 to 2200 ° C. and the holding time is preferably 5 to 15 hours.

実施例1〜7 比較例1〜3
市販の六方晶窒化ホウ素粉末A(黒鉛化指数1.5)、市販の六方晶窒化ホウ素粉末B(黒鉛化指数5.2)及び市販の窒化アルミニウム粉末(純度99質量%以上、平均粒径1.5μm)を、表1に示す所定の割合に混合した。混合は、アルミナ製のボール混合媒体とするボールミルで8時間行った。得られたセラミックス原料粉を金型に充填し一軸加圧成形体(200×300×90mm)を製造した。その際、セラミックス原料粉は、まずその1kgを金型に充填してから、約4分かけてエア抜きをしながら0.5MPaまで加圧した後、更に残りの全量(約1kg)を充填し、4〜5分かけてエア抜きをしながら0表1に示す圧力まで加圧した。
Examples 1-7 Comparative Examples 1-3
Commercial hexagonal boron nitride powder A (graphitization index 1.5), commercial hexagonal boron nitride powder B (graphitization index 5.2) and commercial aluminum nitride powder (purity 99% by mass or more, average particle size 1) 0.5 μm) was mixed in the predetermined proportions shown in Table 1. The mixing was performed for 8 hours by a ball mill using an alumina ball mixing medium. The obtained ceramic raw material powder was filled into a mold to produce a uniaxial pressure-formed body (200 × 300 × 90 mm). At that time, 1 kg of the ceramic raw material powder is first filled in the mold, and after pressurizing to 0.5 MPa while releasing air over about 4 minutes, the remaining whole amount (about 1 kg) is further filled. The pressure was increased to 0 shown in Table 1 while venting air over 4 to 5 minutes.

ついで、一軸加圧成形体をゴム製の袋に入れ、脱気・密封して表1に示す条件で2回又は3回のCIPを施した。CIP成形体の外観観察を行った後、外寸と質量を測定してCIP成形体密度を求めた。その結果を表1に示す。CIP成形体は、各2個を製造した。   Subsequently, the uniaxial pressure-molded body was put in a rubber bag, deaerated and sealed, and subjected to CIP twice or three times under the conditions shown in Table 1. After the appearance of the CIP compact was observed, the outer dimensions and mass were measured to determine the CIP compact density. The results are shown in Table 1. Two CIP compacts were produced.

CIP成形体を温度140℃の乾燥機に入れ、表2に示される時間熱処理をした後、質量変化を測定した。その後、各々1個のCIP成形体は、温度120℃で36時間放置し、120℃における加熱減量分を測定した。ついで、これらの熱処理物を表2に示す条件で焼成して窒化ホウ素焼成体を製造し、サンプルを切り出して、密度、ショア硬度、三点曲げ強度を測定した。それらの結果を表2に示す。   The CIP compact was put into a dryer at a temperature of 140 ° C., subjected to heat treatment for the time shown in Table 2, and then the mass change was measured. Thereafter, each CIP compact was allowed to stand for 36 hours at a temperature of 120 ° C., and the amount of heat loss at 120 ° C. was measured. Subsequently, these heat-treated products were fired under the conditions shown in Table 2 to produce a boron nitride fired body, a sample was cut out, and the density, Shore hardness, and three-point bending strength were measured. The results are shown in Table 2.

表から明らかなように、本発明の実施例では、いずれも体積が3000cm以上で厚さが40mm以上の大型品にして、三点曲げ強度が30MPa以上、密度が1.7g/cm以上で、クラックやラミネーションのない窒化ホウ素焼成体が得られたのに対し、比較例では強度、密度、外観のいずれにも劣った。 As is apparent from the table, in the examples of the present invention, each of the large-sized products having a volume of 3000 cm 3 or more and a thickness of 40 mm or more has a three-point bending strength of 30 MPa or more and a density of 1.7 g / cm 3 or more. Thus, while a boron nitride fired body without cracks or lamination was obtained, the comparative example was inferior in all of strength, density, and appearance.

本発明によって製造された窒化ホウ素焼成体は、半導体用の大型治具をはじめ、従来から知られている各種用途に広く適用することができる。   The boron nitride fired body produced by the present invention can be widely applied to various conventionally known applications including large jigs for semiconductors.

Claims (6)

六方晶窒化ホウ素粉を含むセラミックス粉末を、4〜15MPaの圧力で一軸加圧成形してから、最初に行うCIP(「第1のCIP」)と、その後に行うCIP(「第2のCIP」)の少なくとも2回の冷間等方圧加圧処理を行った後、焼成する方法であって、第2のCIP圧力を第1のCIP圧力よりも高くすることを特徴とする窒化ホウ素焼成体の製造方法。 A ceramic powder containing hexagonal boron nitride powder is uniaxially pressed at a pressure of 4 to 15 MPa, and then the first CIP (“first CIP”) and the subsequent CIP (“second CIP”). after) was Tsu line at least two cold isostatic pressing process, a method of baking, boron nitride, characterized that you the second CIP pressure higher than the first CIP pressure A method for producing a fired body. 第2のCIP圧力が、第1のCIP圧力の1.5〜5倍であることを特徴とする請求項1に記載の製造方法。 The method according to claim 1, wherein the second CIP pressure is 1.5 to 5 times the first CIP pressure. 第1のCIP圧力が、50〜120MPaであることを特徴とする請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1, wherein the first CIP pressure is 50 to 120 MPa. 冷間等方圧加圧処理成形体を焼成する前に熱処理を行い、120℃における加熱減量分を0.1質量%以下に減じておくことを特徴とする請求項1〜3のいずれかに記載の製造方法。 Subjected to heat treatment before baking the cold isostatic pressing compacts, loss on heat content at 120 ° C. to claim 1, characterized in that to keep reduced to 0.1 wt% The manufacturing method as described. 冷間等方圧加圧処理成形体の焼成を、非酸化性雰囲気下、昇温速度を150℃/hr以下、最高温度を1800〜2200℃、この温度範囲における保持時間を5時間以上にして行うことを特徴とする請求項1〜4のいずれかに記載の製造方法。 Calcination of the cold isostatic pressure-treated molded body is performed in a non-oxidizing atmosphere with a temperature increase rate of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time in this temperature range of 5 hours or more. The manufacturing method according to claim 1 , wherein the manufacturing method is performed. 一軸加圧成形体におけるセラミックス原料粉中、六方晶窒化ホウ素粉の含有率が20質量%以上(100%を含む)であり、しかもその六方晶窒化ホウ素粉中、黒鉛化指数が4以上の低結晶性六方晶窒化ホウ素粉の割合が30〜80質量%であることを特徴とする請求項1〜5のいずれかに記載の製造方法。 The content of hexagonal boron nitride powder is 20% by mass or more (including 100%) in the ceramic raw material powder in the uniaxial pressure-formed body, and the graphitization index is 4 or less in the hexagonal boron nitride powder. The production method according to claim 1 , wherein the ratio of the crystalline hexagonal boron nitride powder is 30 to 80% by mass.
JP2005108285A 2005-04-05 2005-04-05 Method for producing a boron nitride fired body Active JP4282629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108285A JP4282629B2 (en) 2005-04-05 2005-04-05 Method for producing a boron nitride fired body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108285A JP4282629B2 (en) 2005-04-05 2005-04-05 Method for producing a boron nitride fired body

Publications (2)

Publication Number Publication Date
JP2006282485A JP2006282485A (en) 2006-10-19
JP4282629B2 true JP4282629B2 (en) 2009-06-24

Family

ID=37404780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108285A Active JP4282629B2 (en) 2005-04-05 2005-04-05 Method for producing a boron nitride fired body

Country Status (1)

Country Link
JP (1) JP4282629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773039A (en) * 2022-06-20 2022-07-22 杭州恒影科技有限公司 Spinel ball cover isostatic pressing forming method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2913054B2 (en) * 1989-11-10 1999-06-28 東ソー株式会社 Manufacturing method of cylindrical ITO target
JP3521178B2 (en) * 1997-07-09 2004-04-19 電気化学工業株式会社 Hexagonal boron nitride powder and applications
JP3618211B2 (en) * 1997-12-19 2005-02-09 電気化学工業株式会社 Method for producing hexagonal boron nitride sintered body
JP2002114575A (en) * 2000-10-04 2002-04-16 Denki Kagaku Kogyo Kk Hexagonal boron nitride plate, method for manufacturing the same and application of the same
JP4253565B2 (en) * 2003-11-12 2009-04-15 電気化学工業株式会社 Hexagonal boron nitride molded body, production method and use thereof

Also Published As

Publication number Publication date
JP2006282485A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4955936B2 (en) High thermal conductivity and high strength silicon nitride ceramics and method for producing the same
KR101751531B1 (en) Method for producing silicon nitride substrate
JP5060092B2 (en) Semiconductor device heat sink
TWI464133B (en) Polycrystalline MgO sintered body and its manufacturing method and MgO target for sputtering
WO2017030360A1 (en) Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
JPH0925166A (en) Aluminum nitride sintered compact and its production
CN113526960B (en) Silicon carbide ceramic and hot isostatic pressing sintering process thereof
JP5397753B2 (en) Silicon carbide sintered body and manufacturing method thereof
JP5330518B2 (en) Method for manufacturing ceramic parts
JP4282629B2 (en) Method for producing a boron nitride fired body
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JPH07172921A (en) Aluminum nitride sintered material and its production
JP5687090B2 (en) Silicon nitride sintered body
JP5717466B2 (en) Silicon nitride sintered body
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP3688022B2 (en) Hexagonal boron nitride sintered body
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP2005145737A (en) Hexagonal boron nitride compact, and its manufacturing method and use
JP2006240947A (en) Method for producing boron nitride-based sintered compact
JP2001019550A (en) Crystallite granule silicon carbide sintered compact having superplasticity and its production
JPH0379308B2 (en)
JPH0782032A (en) Silicon nitride sintered compact and its production
JPS6350368A (en) Manufacture of titanium diborate sintered body
JPH08157262A (en) Aluminum nitride sintered compact and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Ref document number: 4282629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250