JP4282188B2 - Method and device for confirming impact of sand hammer device - Google Patents

Method and device for confirming impact of sand hammer device Download PDF

Info

Publication number
JP4282188B2
JP4282188B2 JP34649899A JP34649899A JP4282188B2 JP 4282188 B2 JP4282188 B2 JP 4282188B2 JP 34649899 A JP34649899 A JP 34649899A JP 34649899 A JP34649899 A JP 34649899A JP 4282188 B2 JP4282188 B2 JP 4282188B2
Authority
JP
Japan
Prior art keywords
chisel
hammer
striking
force
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34649899A
Other languages
Japanese (ja)
Other versions
JP2001162364A (en
Inventor
幸 佐藤
英夫 丹羽
Original Assignee
菱栄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菱栄エンジニアリング株式会社 filed Critical 菱栄エンジニアリング株式会社
Priority to JP34649899A priority Critical patent/JP4282188B2/en
Publication of JP2001162364A publication Critical patent/JP2001162364A/en
Application granted granted Critical
Publication of JP4282188B2 publication Critical patent/JP4282188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Percussive Tools And Related Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鋳造品内に残る中子砂を除去する際に用いられる砂落しハンマ装置の打撃確認装置に関するものである。
【0002】
【従来の技術】
従来、鋳造品内に残る中子砂は鋳造品の表面をハンマ装置により打撃することにより破砕して剥離除去するものであるが、この鋳造品の中子砂を破砕除去する際に必要とする打撃力や打撃周期および処理時間は鋳造品の大きさや形状から経験的に決定されており、所定周期で所定の打撃力で所定時間行われれば砂落しは完了したものとされる。しかし、ハンマ装置に取り付けられた多数のハンマ機構に供給されるエアは直列に接続されるエア配管により行われるため、近接されたハンマ機構のエア消費量が増大したり、減少したり、あるいは配管用のホースの損傷によりエア圧が変化すると、一部または全部のハンマ機構の打撃力や打撃周期が低下し鋳造品の砂落し不良が発生するという問題があった。しかも、一部のハンマ機構の打撃力や打撃周期が低下したことを発見することは難しく、作業終了後に行われる目視検査で砂落ち不良が発見されるまで、砂落し作業は行われるので砂落ち不良の鋳造品が連続的に発生するという問題があった。さらに、多数のハンマ機構から打撃周期や打撃力が低下しているハンマ機構を発見するにはハンマ装置を停止させてハンマ機構をひとつずつチェックする必要があり、点検作業に時間がかかり生産性を低下させるという問題があった。そこで、チゼルやハンマ等に加速度センサや歪ゲージ等を取り付けて打撃周期や打撃力を検出する方法も提案されているが、チゼルの振動により加速度センサや歪ゲージは短期間で破損するうえに、周囲の衝撃を検出してしまうため正確な打撃周期や打撃力を検出できないという問題があった。また、ハンマの往復運動によりエア供給口のエア圧力が脈動することから、その圧力を検出して打撃周期や打撃力を検出する方法も提案されているが、隣接するハンマ機構のハンマの動きに影響されて圧力が変動するうえに、エア配管の状態が変ると脈動の大きさも変り正しい圧力を検出できなかった。しかも、被加工物の座りの悪さによって生じる打撃力の変化を検出することはできないという問題もあった。
【0003】
【発明が解決しようとする課題】
本発明はハンマ機構の打撃状態を高い信頼性で検知できる砂落しハンマ装置の打撃確認方法およびその装置を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は前述の目的を達成するため、チゼルガイドに案内されて被加工物に打撃力を加えるチゼルを用いた砂落しハンマ装置の打撃確認方法であって、チゼルガイドの外周面に、内部にコイルが収納された断面略C字状のヨークを取り付け、該ヨークの下部をチゼルの外周面に臨ませて、該ヨークの空隙からチゼルとチゼルガイドに向かう磁束ループを形成する磁気回路を構成し、打撃によりチゼルとチゼルガイドの突合せ面に生じるギャップにより、磁気回路のコイルに逆起電力を発生させ、該磁気回路のコイルに発生した逆起電力周期から打撃周期を検出するとともに、ギャップの形成状態に基づく逆起電力量から打撃力を検出する砂落しハンマ装置の打撃確認方法を請求項1の発明とし、チゼルガイドに案内されて被加工物に打撃力を加えるチゼルを用いた砂落しハンマ装置の打撃確認装置であって、チゼルガイドの外周面に、内部にコイルが収納された断面略C字状のヨークを取り付け、該ヨークの下部をチゼルの外周面に臨ませて、該ヨークの空隙からチゼルとチゼルガイドに向かう磁束ループを形成する磁気回路を構成し、打撃によりチゼルとチゼルガイドの突合せ面に生じるギャップにより、磁気回路のコイルに逆起電力を発生させる検出部と、磁気回路のコイルに発生した逆起電力周期から打撃周期を検出するとともに、ギャップの形成状態に基づく逆起電力量から打撃力を検出する検出信号処理部とを設けた砂落しハンマ装置の打撃確認装置を請求項2の発明とし、請求項2の発明において、検出部と検出信号処理部とが分離配置される砂落しハンマ装置の打撃確認装置を請求項3の発明とし、請求項2または3の発明おいて、検出信号処理部に、検出された打撃周期と打撃力を閾値と比較する判定回路が設けられている砂落しハンマ装置の打撃確認装置を請求項4の発明とし、請求項2から4の発明において、検出信号処理部が集中管理される砂落しハンマ装置の打撃確認装置を請求項5の発明とし、請求項2から5の発明において、供給エア圧を検出する圧力センサが検出信号処理部と接続される砂落しハンマ装置の打撃確認装置を請求項6とするものである。
【0005】
【発明の実施の形態】
次に、本発明の好ましい実施の形態を図に基づいて詳細に説明する。
1は枠状フレームであり、該枠状フレーム1は被加工物の載置台2と、砂落しを行う複数のハンマ機構3を垂設する上部取付板4と、載置台2と上部取付板4とを連結する支柱5とからなる。そして、枠状フレーム1の上部取付板4に取り付けられる前記ハンマ機構3は、外部シリンダ6と、外部シリンダ6に昇降動自在に嵌挿される内部シリンダ7と、内部シリンダ7の先方部に形成された磁性体(焼き入れされた鋼)よりなるチゼルガイド7aに装着される磁性体(焼き入れされた鋼)よりなるチゼル8と、内部シリンダ7内に装着されてチゼル8の後端面を反復打撃するハンマ9とよりなるものである。
【0006】
10はハンマ機構3による打撃周期と打撃力を検出する検出手段であり、該検出手段10はヨーク12とコイル14とからなる磁気回路の検出部10aと、該検出部10aと分離された検出信号処理部10bとからなるものである。検出部10aの磁気回路は磁性体よりなるハンマ機構3の突合わせ面11に向けて磁束ループを形成するとともに、突合わせ面11にギャップが形成された際、電磁誘導作用により磁気回路のコイル14に逆起電力を発生させるものである。また、前記検出信号処理部10bは検出部10aにより検出された逆起電力周期や逆起電力量からハンマ機構3の打撃周期や打撃力を検出する電子回路である。
【0007】
前記検出部10aを図2に基づいて詳しく説明すれば、ハンマ機構3のチゼル8とチゼルガイド7aの突合わせ面11に空隙を位置させた磁性体よりなる断面C字状のヨーク12は、チゼルガイド7aの周囲に装着される環状の上ヨーク12aと、該環状の上ヨーク12aと組み合せられてチゼル8の周囲に配置される下ヨーク12bとからなるもので、ヨーク12内に設けられた環状のコイル14により磁気回路が構成されるものである。また、下ヨーク12bとチゼル8間には0.1〜0.2mm程の隙間が設けられて相互が接触しないようになっている。この隙間はチゼル8とチゼルガイド7a間に生じる動きを邪魔しないようにするためのものである。そして、コイル14に通電することにより、磁気回路によりヨーク12の空隙からチゼル8、チゼルガイド7aに向かう磁束ループが突合わせ面11を挟んで形成されることとなる。そして、打撃作用により突合わせ面11にギャップが形成されると、磁束の経路が長くなり磁気抵抗が僅かに増加して磁束が減少する。この磁束の減少により電磁誘導作用が起こり、ギャップの形成状態に基づいた逆起電力がコイル14に発生することとなる。このようにして発生した逆起電力のピーク電圧(パルス)の大きさはギャップが形成される速度に比例し、ピーク電圧時間(パルス幅)はギャップが形成されている時間(ギャップの大きさ)に関係すると思われる。このため、ピーク電圧(パルス)の大きさ、あるいはピーク電圧時間(パルス幅)の大きさから打撃力を算出することができる。さらに、ピーク電圧時間(パルス幅)が大きすぎる場合には、被加工物の座りが悪かったり、割れが発生していることなどを検知することが可能となる。
【0008】
また、検出信号処理部10bは図3に示されるように、検出部10aの磁気回路のコイル14に生じた逆起電力を増幅する増幅回路13と、増幅した逆起電力からピーク電圧とピーク電圧の周期を抽出するフィルタ回路14と、抽出されたピーク電圧とその周期をディジタル信号に変換するA/D変換回路15と、検出されたピーク電圧のパルス周期から得られた打撃周期とピーク電圧のパルスの大きさ、あるいはピーク電圧時間のパルス幅から算出される打撃力とを閾値となる打撃周期と打撃力とから比較して打撃状態の良否を判断する判定回路16と、良否表示あるいはピーク電圧とその周期数値を表示する表示部17とからなるものである。次に、打撃状態の良否判定の基準となるエア圧力とピーク電圧、周期(打撃周期)、打撃力との関係を図4のグラフに示す。このグラフから分かるように、エア圧力が高くなれば、ピーク電圧と打撃力は上がって周期は下がり、エア圧力が低くなれば、ピーク電圧と打撃力は下がって周期は上がる。このことから、エア圧力とピーク電圧または周期、打撃力との間には相関関係があり、この相関関係からピーク電圧または周期、打撃力からエア圧力の異常を予測でき、逆にエア圧力からピーク電圧すなわち打撃力や打撃周期の異常を予測することができる。また、前記判定回路16はCPU16aと該CPU16aに接続されるROM16bとRAM16cとからなるものであり、ROM16bにはピーク電圧データまたは打撃力データと打撃周期データの閾値が記憶され、RAM16cには検出部10aにより検出されたピーク電圧またはピーク電圧から算出された打撃力データと打撃周期データが記憶される。そして、ROM16bのデータとRAM16cのデータとをCPU16aにより比較することにより検出部10aにより検出されたデータ、すなわち打撃周期や打撃力が正常か否かを判定することができる。
【0009】
20は内部シリンダ7を下降動させる圧力エアを外部シリンダ6に供給するためのエア供給口、21は下降した内部シリンダ7を上昇させる復帰ばね、22は内部シリンダ7を下降させるとき、内部シリンダ7の下方側にある外部シリンダ6内の空気を排出するための排気口、23はハンマ9を往復動させるエア切換機構、24はヨーク12に取り付けられるOリングであり、該Oリング24はチゼル8がチゼルガイド7aから脱落することを防止するためのものである。25はコイル14を被覆するボビン、26は上ヨーク12aと下ヨーク12bを連結する取付ボルト、27はヨーク12をチゼルガイド7aに固定するためのストップリング、28はヨーク12を空隙を埋めるシール材、29は検出部10aと検出信号処理部10bとを接続するリード線、30は載置台2に設けられる被加工物用のガイドである。
【0010】
このように構成されたものは、先ず、圧力エア供給口20へのエア供給を停止して内部シリンダ7を復帰ばね21により上昇させた状態とする。内部シリンダ7の上昇によりチゼル8も上方に移動して載置台2上は開放されるので、載置台2に中子を用いて鋳造を行った鋳造品(被加工物)を載置する。このとき、載置台2のガイド30内に被加工物を位置させる。次いで、圧力エア供給口20に圧力エアを供給すれば、内部シリンダ7は下降してチゼルガイド7aに支持されているチゼル8の先端は被加工物に当接して被加工物を押さえ付けることとなる。これにより、圧力が上昇してハンマ9は往復運動を開始することとなる。
【0011】
ハンマ9の往復運動はチゼル8の上端と当接していたハンマ9の下部にエア圧が加えられることにより上昇し、ハンマ9が所定位置まで上昇するとエア切換機構23はエアの供給を切り換えてハンマ9の上部にエア圧を加えるので、ハンマ9は下降しチゼル8の上端を打撃することとなる。そして、チゼル8上のハンマ9にエア圧が加えられ再びハンマ9は上昇するという作用を繰り返すものである。この往復運動により下降したときハンマ9はチゼル8の上端を激しく叩き、チゼル8に衝撃を加えることとなる。この衝撃はチゼル8と当接している被加工物に伝えられこととなり、被加工物の中子砂は破砕され、破砕された砂は図示しない側面の孔より排出されて行くものである。
【0012】
また、ハンマ9によりチゼル8を打撃した際、その打撃により磁性体よりなるチゼル8とチゼルガイド7aとの突合わせ面11に一瞬ギャップが形成されることとなる。チゼル8とチゼルガイド7aとの突合わせ面11にギャップが形成されると、チゼル8とチゼルガイド7aの突合わせ面11を挟んで形成される磁気回路の磁束の経路が長くなり、磁気抵抗は僅かに増加して磁束が減少する。これが瞬時に起こるので、検出部10aのコイル14には磁束変化を抑える方向に逆起電力が発生する。この逆起電力はリード線29を介して検出信号処理部10bの増幅回路13に入力されて増幅される。そして、増幅された逆起電力はフィルタ回路14に入力されてピーク電圧とその周期パターンが抽出され、抽出されたピーク電圧とその周期はA/D変換回路15によりディジタルデータに変換される。
【0013】
このとき抽出されたピーク電圧(パルス)の大きさはギャップの形成状態、すなわち磁束変化の速さに比例し、ピーク電圧時間(パルス幅)はギャップが形成されている時間すなわちギャップ距離と関係するので、判定回路16のCPU16aに入力されたパルスの大きさ、あるいはパルス幅から打撃力が算出され、パルス周期から打撃周期が算出されることとなる。そして、算出された打撃力と打撃周期は判定回路16のCPU16aに入力されてRAM16bに書き込まれて、CPU16aのROM16cに書き込まれている基準となる打撃力と打撃周期と比較され、基準値と検出値に基づく打撃力と打撃周期が閾値内にあれば正常な打撃力と打撃周期で打撃が行われた判定し、検出値が閾値を越えたり満たなかった場合は正常な打撃が行われなかったと判定し、表示部17にOK表示あるいはNG表示を行うか、検出したピーク電圧やその周期(周波数)を表示することとなる。そして、正常な打撃力や打撃周期が得られなかった場合には、装置を停止させて鋳造品(被加工物)の送り出しを停止するとともに、異常のあるハンマ機構3の点検修理を行えばよく、このようにすれば砂落し不良の鋳造品を発生させることを確実に防止できることとなる。また、異常の度合いによっては、装置を停止させず、打撃時間を延長して被加工物の砂落しを完了させてから装置を停止させて点検を行うようにしても良い。
【0014】
なお、前記好ましい実施の形態では、ハンマ機構3に各検出信号処理部10bを付帯させたものとしているが、各検出信号処理部10bを別設の制御盤等に取り付けて集中管理すれば、どのハンマ機構3が異常となったかを少ない保守要員で瞬時に確認することができることとなる。この場合には、表示部17にハンマ機構3の識別番号等を表示してどのハンマ機構3が異常となったかを識別できるようにする必要がある。また、前記好ましい実施の形態では、供給エア圧の検出を行っていないが、供給エア圧を圧力センサで検出して、該検出データを検出信号処理部10bに入力することにより、打撃力と打撃周期および供給エア圧の変動とによって砂落し状況をより正確に把握することが可能となる。このように正確に打撃状態が確認できれば、判定回路16のCPU16aが打撃力および打撃周期の不足分を演算して打撃時間の延長や短縮を行い、装置の異常時にも被加工物の砂落し不良が発生しないようにすることができることとなる。
【0015】
【発明の効果】
本発明は前記説明によって明らかなように、磁性体部位の突合わせ面に磁束を形成し、突合わせ面に生じるギャップの形成状態に基づく逆起電力周期と逆起電力量からハンマ機構の打撃周期と打撃力を確実に検出することができるから、近接するハンマ機構によるエア消費量の増大や、エア配管の損傷等によりエア圧が下がったことを打撃力の低下や打撃周期の上昇から瞬時に検知できるので、ハンマ機構の打撃異常を確実に検知できるので鋳造品の砂落ち不良を確実に防止できるうえに、ギャップの形成状態に基づく逆起電力量、すなわちピーク電圧時間のパルス幅が大きすぎることが検出されると、鋳造品の座りが悪かったり、割れが発生していることなどを検知することができる。しかも、ハンマ機構に取り付けられる検出部の構造は単純なため、激しい衝撃によっても破損されることがなく長期間耐用できる。さらに、チゼルとチゼルガイドの突合わせ面に検出部を取り付けることにより、従来のハンマ装置にも取り付けることができるので、新たな設備投資をすることなく砂落しを確実に行うことができる。また、請求項3のように、検出部と検出信号処理部とを分離配置し、検出信号処理部をハンマ機構から離すことにより、衝撃に弱い電子回路が損傷を受けることを確実に防止し、検出の信頼性を高めることができる。請求項4のように、検出信号処理部に打撃周期と打撃力を基準値と比較する判定回路を設けたものとすることにより、異常のあるハンマ装置を直ちに検知でき、砂落し不良の発生をより確実に防止できる。請求項のように、検出信号処理部を集中管理するものとすることにより、多数のハンマ機構から異常のあるものを瞬時に見つけ出すことができるので、砂落し不良品を発生させることがない。また、請求項のように、供給エア圧を検出する圧力センサを検出信号処理部と接続することにより、より正確に打撃状態が把握できるので、打撃時間を延長したり、短縮してハンマ機構の異常時にも砂落し不良が発生しないようにすることができる等種々の利点を有するものである。
従って、本発明は従来の問題点を解消した砂落しハンマ装置の打撃確認方法およびその装置として業界の発展に寄与するところ大なものである。
【図面の簡単な説明】
【図1】本発明の好ましい実施の形態を示す一部切欠正面図である。
【図2】本発明の好ましい実施の形態の要部を示す一部切欠正面図である。
【図3】本発明の好ましい実施の形態の検出手段を示すブロック図である。
【図4】本発明における供給エア圧とパルス電圧の周期あるいはパルス電圧との関係を示すグラフである。
【符号の説明】
3 ハンマ機構
7 チゼルガイド
8 チゼル
10a 検出部
10b 検出信号処理部
11 突合わせ面
12 ヨーク
14 コイル
16 判定回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impact confirmation device for a sand dropping hammer device used when removing core sand remaining in a cast product.
[0002]
[Prior art]
Conventionally, the core sand remaining in the cast product is to be crushed and removed by hitting the surface of the cast product with a hammer device. This is necessary for crushing and removing the core sand of the cast product. The striking force, striking cycle, and processing time are determined empirically from the size and shape of the cast product. If the striking force is performed with a predetermined striking force at a predetermined cycle for a predetermined time, the sand removal is completed. However, since air supplied to a number of hammer mechanisms attached to the hammer device is performed by air pipes connected in series, the air consumption of adjacent hammer mechanisms increases, decreases, or pipes When the air pressure changes due to damage to the hose, the hammering force and the hammering cycle of some or all of the hammer mechanisms are reduced, and there is a problem in that the cast product has a sand removal defect. Moreover, it is difficult to detect that the hammering force and the hammering cycle of some hammer mechanisms have decreased, and the sand removal work will be carried out until a sand removal failure is found by visual inspection after the work is completed. There was a problem that defective castings occurred continuously. Furthermore, it is necessary to stop the hammer device and check the hammer mechanisms one by one in order to find a hammer mechanism with a reduced striking cycle and impact force from a large number of hammer mechanisms, which requires time for inspection and increases productivity. There was a problem of lowering. Therefore, a method of detecting an impact cycle and impact force by attaching an acceleration sensor or strain gauge to a chisel or hammer has been proposed, but the acceleration sensor and strain gauge are damaged in a short period due to the vibration of the chisel. There is a problem that an accurate impact cycle and impact force cannot be detected because the surrounding impact is detected. In addition, since the air pressure at the air supply port pulsates due to the reciprocating movement of the hammer, a method of detecting the striking cycle and the striking force by detecting the pressure has been proposed, but the movement of the hammer of the adjacent hammer mechanism is also proposed. In addition, the pressure fluctuated, and when the air piping changed, the pulsation changed and the correct pressure could not be detected. In addition, there has been a problem that it is impossible to detect a change in striking force caused by the poor sitting of the workpiece.
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for confirming the hitting of a sand dropping hammer device and a device thereof that can detect the hit state of a hammer mechanism with high reliability.
[0004]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention is a method for confirming the impact of a sand removal hammer device using a chisel that is guided by a chisel guide and applies a striking force to a workpiece. A magnetic circuit that forms a magnetic flux loop from the gap of the yoke to the chisel and the chisel guide is formed by attaching a yoke having a substantially C-shaped cross section in which the coil is housed and with the lower portion of the yoke facing the outer peripheral surface of the chisel. A back electromotive force is generated in the coil of the magnetic circuit by a gap generated in the abutting surface of the chisel and the chisel guide by the impact, and the impact period is detected from the back electromotive force period generated in the coil of the magnetic circuit, and a gap is formed. striking confirmation method shakeout hammer device for detecting the impact force from the counter electromotive force based on the state and the invention of claim 1, the striking force to the workpiece being guided by the chisel guide A hammer check device for a sand hammer using a chisel, wherein a yoke having a substantially C-shaped cross section in which a coil is housed is attached to the outer peripheral surface of the chisel guide, and the lower portion of the yoke is connected to the outer peripheral surface of the chisel The magnetic circuit that forms a magnetic flux loop from the gap of the yoke to the chisel and the chisel guide is formed. Sand provided with a detection unit for generating and a detection signal processing unit for detecting a striking force from a back electromotive force amount based on a gap formation state while detecting a striking cycle from a back electromotive force cycle generated in a coil of a magnetic circuit A hammer checking device for a dropping hammer device is claimed in claim 2, and the hammer of the sand dropping hammer device in which the detection portion and the detection signal processing portion are separately arranged in the invention of claim 2 The certification apparatus and the invention of claim 3, keep the invention of claim 2 or 3, the detection signal processing section, the detected striking period and striking force shakeout hammer device judging circuit is provided for comparing with a threshold The invention of claim 4 is the invention of claim 4, and in the inventions of claims 2 to 4, the invention of claim 5 is the hammer confirmation device of the sand removal hammer device in which the detection signal processing unit is centrally managed. in 5 of the invention, it is shall be a striking confirmation apparatus shakeout hammer device pressure sensor for detecting the supply air pressure is connected to the detection signal processor as defined in claim 6.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
Reference numeral 1 denotes a frame-shaped frame. The frame-shaped frame 1 includes a work table 2, an upper mounting plate 4 for hanging a plurality of hammer mechanisms 3 for sand removal, a mounting table 2, and an upper mounting plate 4. And a support column 5 connecting the two. The hammer mechanism 3 attached to the upper mounting plate 4 of the frame-like frame 1 is formed at an outer cylinder 6, an inner cylinder 7 that is inserted into the outer cylinder 6 so as to be movable up and down, and a tip portion of the inner cylinder 7. A chisel 8 made of magnetic material (hardened steel) attached to a chisel guide 7a made of magnetic material (hardened steel) and a rear end surface of the chisel 8 attached to the inner cylinder 7 are repeatedly hit. It consists of a hammer 9 to do.
[0006]
Reference numeral 10 denotes detection means for detecting the striking cycle and striking force of the hammer mechanism 3, and the detection means 10 is a magnetic circuit detection unit 10a comprising a yoke 12 and a coil 14, and a detection signal separated from the detection unit 10a. It consists of the processing part 10b. The magnetic circuit of the detection unit 10a forms a magnetic flux loop toward the abutting surface 11 of the hammer mechanism 3 made of a magnetic material. When a gap is formed in the abutting surface 11, the coil 14 of the magnetic circuit is caused by electromagnetic induction. To generate back electromotive force. The detection signal processing unit 10b is an electronic circuit that detects the striking cycle and striking force of the hammer mechanism 3 from the back electromotive force cycle and the amount of back electromotive force detected by the detecting unit 10a.
[0007]
The detection unit 10a will be described in detail with reference to FIG. 2. A yoke 12 having a C-shaped cross section made of a magnetic material having a gap positioned on the abutting surface 11 of the chisel 8 and the chisel guide 7a of the hammer mechanism 3 includes a chisel. An annular upper yoke 12a mounted around the guide 7a and a lower yoke 12b disposed around the chisel 8 in combination with the annular upper yoke 12a. The coil 14 constitutes a magnetic circuit. Further, a gap of about 0.1 to 0.2 mm is provided between the lower yoke 12b and the chisel 8 so that they do not contact each other. This gap is provided so as not to obstruct the movement generated between the chisel 8 and the chisel guide 7a. When the coil 14 is energized, a magnetic flux loop from the air gap of the yoke 12 toward the chisel 8 and the chisel guide 7a is formed with the butting surface 11 sandwiched by the magnetic circuit. And if a gap is formed in the butt | matching surface 11 by a hit | damage effect | action, the path | route of magnetic flux will become long, magnetic resistance will increase slightly, and magnetic flux will reduce. Due to the decrease in the magnetic flux, an electromagnetic induction action occurs, and a counter electromotive force based on the gap formation state is generated in the coil 14. The magnitude of the peak voltage (pulse) of the back electromotive force generated in this way is proportional to the speed at which the gap is formed, and the peak voltage time (pulse width) is the time at which the gap is formed (gap size). It seems to be related to. Therefore, the striking force can be calculated from the magnitude of the peak voltage (pulse) or the magnitude of the peak voltage time (pulse width). Furthermore, when the peak voltage time (pulse width) is too large, it is possible to detect that the workpiece is not satisfactorily or that a crack has occurred.
[0008]
Further, as shown in FIG. 3, the detection signal processing unit 10b includes an amplification circuit 13 for amplifying the counter electromotive force generated in the coil 14 of the magnetic circuit of the detection unit 10a, and a peak voltage and a peak voltage from the amplified counter electromotive force. Filter circuit 14 for extracting the period of the current, A / D conversion circuit 15 for converting the extracted peak voltage and its period into a digital signal, and the striking period and peak voltage obtained from the pulse period of the detected peak voltage. A judgment circuit 16 for judging the quality of the striking state by comparing the striking force calculated from the magnitude of the pulse or the pulse width of the peak voltage time with the striking cycle and the striking force as a threshold, and a good / bad display or peak voltage And a display unit 17 for displaying the period numerical value. Next, the graph of FIG. 4 shows the relationship between the air pressure, the peak voltage, the cycle (blow cycle), and the blow force, which are the criteria for determining whether or not the hit state is good. As can be seen from this graph, when the air pressure increases, the peak voltage and impact force increase and the period decreases, and when the air pressure decreases, the peak voltage and impact force decrease and the period increases. Therefore, there is a correlation between the air pressure and the peak voltage or period, and the striking force. From this correlation, the air pressure abnormality can be predicted from the peak voltage, period, and striking force, and conversely the peak from the air pressure. Abnormalities in voltage, that is, striking force and striking cycle can be predicted. The determination circuit 16 includes a CPU 16a and a ROM 16b and a RAM 16c connected to the CPU 16a. The ROM 16b stores threshold values of peak voltage data or striking force data and striking cycle data, and the RAM 16c has a detection unit. The hitting force data calculated from the peak voltage detected by 10a or the peak voltage and the hitting cycle data are stored. Then, by comparing the data in the ROM 16b and the data in the RAM 16c by the CPU 16a, it is possible to determine whether or not the data detected by the detection unit 10a, that is, the striking cycle and the striking force are normal.
[0009]
20 is an air supply port for supplying pressure air for lowering the internal cylinder 7 to the external cylinder 6, 21 is a return spring for raising the lowered internal cylinder 7, and 22 is an internal cylinder 7 for lowering the internal cylinder 7. , 23 is an air switching mechanism for reciprocating the hammer 9, 24 is an O-ring attached to the yoke 12, and the O-ring 24 is a chisel 8. Is to prevent falling from the chisel guide 7a. 25 is a bobbin that covers the coil 14, 26 is a mounting bolt that connects the upper yoke 12a and the lower yoke 12b, 27 is a stop ring for fixing the yoke 12 to the chisel guide 7a, and 28 is a sealing material that fills the gap in the yoke 12. , 29 is a lead wire for connecting the detection unit 10a and the detection signal processing unit 10b, and 30 is a guide for a workpiece provided on the mounting table 2.
[0010]
In this configuration, first, the air supply to the pressure air supply port 20 is stopped and the internal cylinder 7 is raised by the return spring 21. As the internal cylinder 7 is raised, the chisel 8 is also moved upward and the mounting table 2 is opened, so that a cast product (workpiece) cast using the core is mounted on the mounting table 2. At this time, the workpiece is positioned in the guide 30 of the mounting table 2. Next, if the pressure air is supplied to the pressure air supply port 20, the inner cylinder 7 is lowered and the tip of the chisel 8 supported by the chisel guide 7a comes into contact with the workpiece to press the workpiece. Become. As a result, the pressure rises and the hammer 9 starts reciprocating motion.
[0011]
The reciprocating motion of the hammer 9 rises when air pressure is applied to the lower part of the hammer 9 that is in contact with the upper end of the chisel 8, and when the hammer 9 rises to a predetermined position, the air switching mechanism 23 switches the supply of air to change the hammer. Since the air pressure is applied to the upper part of 9, the hammer 9 descends and hits the upper end of the chisel 8. Then, the air pressure is applied to the hammer 9 on the chisel 8 and the hammer 9 is raised again. When the hammer 9 is lowered by this reciprocating motion, the hammer 9 strikes the upper end of the chisel 8 violently and applies an impact to the chisel 8. This impact is transmitted to the workpiece that is in contact with the chisel 8, and the core sand of the workpiece is crushed, and the crushed sand is discharged from a side hole (not shown).
[0012]
Further, when the chisel 8 is hit with the hammer 9, a gap is momentarily formed on the abutting surface 11 between the chisel 8 made of a magnetic material and the chisel guide 7a. When a gap is formed in the abutting surface 11 of the chisel 8 and the chisel guide 7a, the magnetic flux path of the magnetic circuit formed between the abutting surface 11 of the chisel 8 and the chisel guide 7a becomes long, and the magnetic resistance is It increases slightly and the magnetic flux decreases. Since this occurs instantaneously, a counter electromotive force is generated in the coil 14 of the detection unit 10a in a direction to suppress a change in magnetic flux. The back electromotive force is input to the amplification circuit 13 of the detection signal processing unit 10b via the lead wire 29 and amplified. The amplified back electromotive force is input to the filter circuit 14 to extract the peak voltage and its periodic pattern, and the extracted peak voltage and its period are converted into digital data by the A / D conversion circuit 15.
[0013]
The magnitude of the peak voltage (pulse) extracted at this time is proportional to the gap formation state, that is, the speed of magnetic flux change, and the peak voltage time (pulse width) is related to the time during which the gap is formed, that is, the gap distance. Therefore, the striking force is calculated from the magnitude or pulse width of the pulse input to the CPU 16a of the determination circuit 16, and the striking period is calculated from the pulse period. The calculated striking force and striking cycle are input to the CPU 16a of the determination circuit 16 and written to the RAM 16b, and compared with the striking force and striking cycle as a reference written in the ROM 16c of the CPU 16a, and the reference value is detected. If the batting force based on the value and the batting cycle are within the threshold, it is determined that the batting was performed with the normal batting force and the batting cycle, and if the detected value exceeds or does not satisfy the threshold, the normal batting is not performed. The display unit 17 performs OK display or NG display, or displays the detected peak voltage and its period (frequency). If normal striking force or striking cycle cannot be obtained, the apparatus is stopped to stop the casting product (workpiece) from being sent out, and the abnormal hammer mechanism 3 may be inspected and repaired. In this way, it is possible to reliably prevent generation of a cast product having a falling sand. Further, depending on the degree of abnormality, the apparatus may be stopped and inspection may be performed after the impact time is extended and sand removal of the workpiece is completed without stopping the apparatus.
[0014]
In the preferred embodiment, each detection signal processing unit 10b is attached to the hammer mechanism 3. However, if each detection signal processing unit 10b is attached to a separate control panel or the like and centrally managed, Whether or not the hammer mechanism 3 has become abnormal can be confirmed instantaneously with a small number of maintenance personnel. In this case, it is necessary to display the identification number of the hammer mechanism 3 on the display unit 17 so that it can be identified which hammer mechanism 3 is abnormal. In the preferred embodiment, the supply air pressure is not detected, but the supply air pressure is detected by the pressure sensor, and the detection data is input to the detection signal processing unit 10b. It is possible to grasp the sandfall situation more accurately by the cycle and the fluctuation of the supply air pressure. If the striking state can be confirmed accurately in this way, the CPU 16a of the determination circuit 16 calculates the striking force and the shortage of the striking cycle to extend or shorten the striking time. Can be prevented from occurring.
[0015]
【The invention's effect】
As is apparent from the above description, the present invention forms a magnetic flux on the abutting surface of the magnetic body part, and strikes the hammer mechanism from the counter electromotive force period and the amount of counter electromotive force based on the formation state of the gap generated on the abutting surface. The impact force can be detected with certainty, and the fact that the air pressure has fallen due to increased air consumption by the nearby hammer mechanism or damage to the air piping, etc., can be instantaneously determined from the decrease in impact force or the increase in impact cycle. Since it is possible to detect the hammering mechanism abnormalities reliably, it is possible to reliably prevent the casting from dropping sand, and the back electromotive force based on the gap formation state, that is, the pulse width of the peak voltage time is too large. When this is detected, it is possible to detect that the cast product is poorly seated or cracked. In addition, since the structure of the detection unit attached to the hammer mechanism is simple, it can be used for a long time without being damaged by a severe impact. Further, by attaching the detection portion to the abutting surfaces of the chisel and the chisel guide, it can be attached to a conventional hammer device, so that it is possible to perform sand removal without making a new capital investment. Further, as described in claim 3, by separating the detection unit and the detection signal processing unit and separating the detection signal processing unit from the hammer mechanism, it is possible to reliably prevent damage to an electronic circuit that is vulnerable to impact, The reliability of detection can be increased. As in claim 4, by those in which a judgment circuit for comparing a reference value blow period and the striking force to the detection signal processing section, can immediately detect the hammer device with abnormalities, the shakeout failure Can be prevented more reliably. As in claim 5, by which shall be centralized detection signal processing unit, it is possible to find instantly what abnormality from a number of hammer mechanisms, never generate a shakeout defective. In addition, since the striking state can be grasped more accurately by connecting the pressure sensor for detecting the supply air pressure to the detection signal processing section as in claim 6 , the hammering mechanism can be extended or shortened to reduce the hammering mechanism. The present invention has various advantages such as being able to prevent sand dropping from occurring even when there is an abnormality.
Therefore, the present invention greatly contributes to the development of the industry as a method for confirming hitting of a sand dropping hammer device that has solved the conventional problems.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing a preferred embodiment of the present invention.
FIG. 2 is a partially cutaway front view showing a main part of a preferred embodiment of the present invention.
FIG. 3 is a block diagram showing detection means according to a preferred embodiment of the present invention.
FIG. 4 is a graph showing the relationship between supply air pressure and pulse voltage period or pulse voltage in the present invention.
[Explanation of symbols]
3 Hammer mechanism 7 Chisel guide 8 Chisel
10a Detector
10b Detection signal processor
11 Butting surface
12 York
14 coils
16 Judgment circuit

Claims (6)

チゼルガイドに案内されて被加工物に打撃力を加えるチゼルを用いた砂落しハンマ装置の打撃確認方法であって、チゼルガイドの外周面に、内部にコイルが収納された断面略C字状のヨークを取り付け、該ヨークの下部をチゼルの外周面に臨ませて、該ヨークの空隙からチゼルとチゼルガイドに向かう磁束ループを形成する磁気回路を構成し、打撃によりチゼルとチゼルガイドの突合せ面に生じるギャップにより、磁気回路のコイルに逆起電力を発生させ、該磁気回路のコイルに発生した逆起電力周期から打撃周期を検出するとともに、ギャップの形成状態に基づく逆起電力量から打撃力を検出することを特徴とする砂落しハンマ装置の打撃確認方法。 A method for confirming the impact of a sand removal hammer device using a chisel that is guided by a chisel guide and applies a striking force to a workpiece, and has a substantially C-shaped cross section in which a coil is housed on the outer peripheral surface of the chisel guide. A yoke is attached, and the lower part of the yoke faces the outer peripheral surface of the chisel to form a magnetic circuit that forms a magnetic flux loop from the gap of the yoke to the chisel and the chisel guide. Due to the generated gap , a counter electromotive force is generated in the coil of the magnetic circuit, the striking period is detected from the counter electromotive force period generated in the coil of the magnetic circuit, and the striking force is calculated from the amount of counter electromotive force based on the formation state of the gap. A method for confirming a hit of a sand removal hammer device, characterized by detecting. チゼルガイドに案内されて被加工物に打撃力を加えるチゼルを用いた砂落しハンマ装置の打撃確認装置であって、チゼルガイドの外周面に、内部にコイルが収納された断面略C字状のヨークを取り付け、該ヨークの下部をチゼルの外周面に臨ませて、該ヨークの空隙からチゼルとチゼルガイドに向かう磁束ループを形成する磁気回路を構成し、打撃によりチゼルとチゼルガイドの突合せ面に生じるギャップにより、磁気回路のコイルに逆起電力を発生させる検出部と、磁気回路のコイルに発生した逆起電力周期から打撃周期を検出するとともに、ギャップの形成状態に基づく逆起電力量から打撃力を検出する検出信号処理部とを設けたことを特徴とする砂落しハンマ装置の打撃確認装置。 An impact confirmation device for a sand removal hammer device using a chisel that is guided by a chisel guide and applies a striking force to a workpiece, and has a substantially C-shaped cross section in which a coil is housed on the outer peripheral surface of the chisel guide. A yoke is attached, and the lower part of the yoke faces the outer peripheral surface of the chisel to form a magnetic circuit that forms a magnetic flux loop from the gap of the yoke to the chisel and the chisel guide. The detection unit that generates a counter electromotive force in the coil of the magnetic circuit by the gap that is generated, and the striking period are detected from the counter electromotive force cycle that is generated in the coil of the magnetic circuit, and the striking is performed from the amount of the counter electromotive force based on the gap formation state. A hitting confirmation device for a sand dropping hammer device, characterized in that a detection signal processing unit for detecting force is provided. 検出部と検出信号処理部とが分離配置される請求項2に記載の砂落しハンマ装置の打撃確認装置。  The hammer check device for a sand drop hammer device according to claim 2, wherein the detection unit and the detection signal processing unit are separately disposed. 検出信号処理部に、検出された打撃周期と打撃力を閾値と比較する判定回路が設けられている請求項2または3に記載の砂落しハンマ装置の打撃確認装置。4. The hit confirmation device for a sand removal hammer device according to claim 2, wherein the detection signal processing unit is provided with a determination circuit for comparing the detected hitting period and hitting force with a threshold value . 検出信号処理部が集中管理される請求項2から4のいずれかに記載の砂落しハンマ装置の打撃確認装置。 The hammer check device for a sand hammer device according to any one of claims 2 to 4 , wherein the detection signal processing unit is centrally managed . 供給エア圧を検出する圧力センサが検出信号処理部と接続される請求項2から5のいずれかに記載の砂落しハンマ装置の打撃確認装置。6. The impact check device for a sand removal hammer device according to claim 2, wherein a pressure sensor for detecting a supply air pressure is connected to the detection signal processing unit .
JP34649899A 1999-12-06 1999-12-06 Method and device for confirming impact of sand hammer device Expired - Fee Related JP4282188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34649899A JP4282188B2 (en) 1999-12-06 1999-12-06 Method and device for confirming impact of sand hammer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34649899A JP4282188B2 (en) 1999-12-06 1999-12-06 Method and device for confirming impact of sand hammer device

Publications (2)

Publication Number Publication Date
JP2001162364A JP2001162364A (en) 2001-06-19
JP4282188B2 true JP4282188B2 (en) 2009-06-17

Family

ID=18383842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34649899A Expired - Fee Related JP4282188B2 (en) 1999-12-06 1999-12-06 Method and device for confirming impact of sand hammer device

Country Status (1)

Country Link
JP (1) JP4282188B2 (en)

Also Published As

Publication number Publication date
JP2001162364A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
US20100264125A1 (en) Welding lower electrode device
JP4282188B2 (en) Method and device for confirming impact of sand hammer device
JP3084331B2 (en) Impact force control device
CN208083739U (en) Pressure sensitive collet
JPH11267532A (en) Detector for detecting necessity of maintenance of hydraulic crusher
CN201069422Y (en) Online detection device for high-pressure water squama removing effect
US7054789B2 (en) Abnormality determination and estimation method for product of plastic working, and an abnormality determination and estimation device
JP6398413B2 (en) Slag outflow detection method from ladle and slag outflow suppression method
CN115684800A (en) Reactor state diagnosis method based on vibration analysis
JP4874200B2 (en) Detection method of crack occurrence position during press forming
KR101332950B1 (en) Method of diagnosing roll
JP5207515B2 (en) System for preventing defects in press equipment
JP2005305541A (en) Method and apparatus for monitoring/controlling die machining
JPH03155445A (en) Method and instrument for detecting abnormality in die clamping
KR100905631B1 (en) An apparatus for measuring spring tension and assembling the spring
JP4816922B2 (en) Mold throttle inflow measuring device
JP5720423B2 (en) Method to prevent converter skirt collision with converter furnace port
JP6379759B2 (en) Casting apparatus and product quality judgment method
KR100929017B1 (en) Plate Break Prediction Method and Apparatus Using Plate Break Prediction Parameters in Cold Rolling Mill
JP4212419B2 (en) Mold crack initiation prediction system
CN213481959U (en) Rotatory camera lens collision device of brinell hardness tester
KR101989229B1 (en) Apparatus for controlling rolling of strip and method thereof
Lieftucht et al. Online prediction of longitudinal facial cracks in thin slab casting using principal component analysis
KR101969749B1 (en) Device for detecting cracks on the die surface
JP3384140B2 (en) Material testing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees