JP4281165B2 - Welding resin composition and welded resin molded body - Google Patents

Welding resin composition and welded resin molded body Download PDF

Info

Publication number
JP4281165B2
JP4281165B2 JP24440099A JP24440099A JP4281165B2 JP 4281165 B2 JP4281165 B2 JP 4281165B2 JP 24440099 A JP24440099 A JP 24440099A JP 24440099 A JP24440099 A JP 24440099A JP 4281165 B2 JP4281165 B2 JP 4281165B2
Authority
JP
Japan
Prior art keywords
welding
nylon
resin composition
resin
shear rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24440099A
Other languages
Japanese (ja)
Other versions
JP2001011307A (en
Inventor
英夫 松岡
茂 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP24440099A priority Critical patent/JP4281165B2/en
Publication of JP2001011307A publication Critical patent/JP2001011307A/en
Application granted granted Critical
Publication of JP4281165B2 publication Critical patent/JP4281165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、成形品表面外観、寸法安定性、溶着性が均衡して優れた溶着樹脂成形体を得るための溶着用樹脂組成物に関するものである。特に、2つ以上の溶融成形品を溶着することにより中空成形体を製造するために好適な溶着用ナイロン樹脂組成物に関するものである。
【0002】
【従来の技術】
ナイロン樹脂は、その優れた成形性、耐熱性、強靱性、耐オイル・ガソリン性、耐摩耗性などを利用して、自動車、機械部品の分野で広範に使用されている。この分野でのナイロン樹脂の開発経緯は基本的には金属材料からの代替が主体であり、軽量化、防錆化などの利点の多い部品から実用化が進んできた。更に最近はナイロン樹脂材料の高性能化および成形加工技術の進展に伴って、大型且つ複雑形状で従来技術では樹脂化が困難とされてきた部品へのナイロン樹脂の適用が検討されるようになってきている。
【0003】
このような難度の高い部品を樹脂化するためには射出成形や押し出し成形、ブロー成形などの単独成形技術だけでは不十分であり、切削、接着、溶着などの後加工技術を組み合わせることが必要となる。しかし、従来のナイロン樹脂材料の組成設計はかかる後加工への適用性までをも考慮したものではない。例えば、2つ以上のパーツからなるガラス繊維強化ナイロン樹脂成形品を振動溶着法や射出溶着法などによって溶着させて所定の部品形状とする場合、溶着面での強度を所望水準にすることは難しく、特に大型部品の場合には溶着部分の強度が不十分であるためにその使用が制限されていた。
【0004】
【発明が解決しようとする課題】
そこで本発明は、上述したナイロン樹脂成形品を溶着させてなる樹脂成形体の溶着強度不足の問題を改善することを主な目的とする。そして、溶着面に曲面がある複雑な溶着面形状の場合のように、溶着強度を高めることが難しい場合でも、安定して高い溶着強度を発現できる溶着用ナイロン樹脂組成物を提供することを目的とする。更に、成形性、耐熱性、強靱性、耐オイル・ガソリン性、耐摩耗性、成形品表面平滑性などのナイロン樹脂本来の特性に優れ、かつ溶着強度の高い溶着樹脂成形体を得ることができる溶着用ナイロン樹脂組成物を提供することを別の目的とする。
【0005】
【課題を解決するための手段】
本発明者らは上記の目的を達成すべく検討した結果、ガラス繊維強化ナイロン樹脂組成物においてポリオレフィン系樹脂の配合が樹脂組成物の溶融粘度挙動に好ましい影響を与え上記目的達成に特に有効であることを見出し本発明をなすに至った。
本発明は、次のとおりである。
【0006】
(A)ナイロン樹脂100重量部に対して、(B)ポリオレフィン系樹脂0.1〜50重量部、及び(C)ガラス繊維10〜150重量部を配合してなり、ナイロン樹脂(複数種使用の場合は配合の多い方のナイロン樹脂)の融点よりも20℃高い温度における溶融粘度の剪断速度依存係数が1.05以上であることを特徴とする溶着用樹脂組成物。
剪断速度依存係数=[低剪断速度時の溶融粘度増加率]÷[高剪断速度時の溶融粘度増加率]
ただし、[低剪断速度時の溶融粘度増加率]=[溶着用樹脂組成物の低剪断速度時の溶融粘度]÷[(B)成分のみを含有しない上記溶着用樹脂組成物の低剪断速度時の溶融粘度]、また、[高剪断速度時の溶融粘度増加率]=[溶着用樹脂組成物の高剪断速度時の溶融粘度]÷[(B)成分のみ含有しない上記溶着用樹脂組成物の高剪断速度時の溶融粘度]を表す。ここで、低剪断速度は60(sec -1 )、高剪断速度は6000(sec -1 )である。
【0007】
前記の溶着用樹脂組成物からなる溶着用樹脂成形品。
前記の溶着用樹脂組成物からなる樹脂成形品の複数を溶着させることにより得られる樹脂成形体。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
本発明において「重量」とは「質量」を意味する。
【0009】
本発明において溶着とは、2個以上の樹脂成形品の接触面を溶融させ、この溶融面どうしを接着することを意味する。かかる溶着を実現する具体的な方法としては、例えば、振動溶着法、超音波溶着法、スピン(回転)溶着法、射出溶着法、マイクロ波溶着(高周波誘導加熱溶着)法、熱板溶着法、熱風溶着法などが挙げられる。これら溶着方法で好ましいものとしては、振動溶着法、射出溶着法(ダイスライド成形、ダイ回転成形も含む)、超音波溶着法、マイクロ波溶着法が挙げられ、なかでも振動溶着法が溶着加工性の良さと溶着強度の高さとのバランスがとれている点から実用上好適である。
【0010】
本発明で用いる(A)ナイロン樹脂は、アミノ酸、ラクタム、あるいはジアミンとジカルボン酸を主たる構成成分とするポリアミドである。
【0011】
その主要構成成分の代表例としては、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε−カプロラクタム、ω−ラウロラクタムなどのラクタム、テトラメチレンジアミン、ヘキサメチレンジアミン、2−メチルペンタメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられる。本発明においては、これらの原料から誘導されるナイロン単独重合体または共重合体のいずれかを各々単独で用いてもよいし、また、いずれかの複数種を混合して用いてもよい。
【0012】
本発明においては、耐熱性や強度に優れるという点から、200℃以上の融点を有するナイロン樹脂が特に有用である。その具体的な例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ナイロン6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンテレフタルアミド/ポリ(2−メチルペンタメチレン)テレフタルアミドコポリマー(ナイロン6T/M5T)、ポリキシリレンアジパミド(ナイロンXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)、およびこれらの混合物ないしは共重合体などが挙げられる。
【0013】
好ましいものとしては、ナイロン6、ナイロン66、ナイロン6/66コポリマー、ナイロン6又はナイロン66を主成分とする他の共重合ナイロン、ナイロン610、またナイロン6T/66コポリマー、ナイロン6T/6Iコポリマー、ナイロン6T/6コポリマーなどのヘキサメチレテレフタラミド単位を有する共重合体を挙げることができる。とりわけ好ましいものとしては、ナイロン6、ナイロン66、およびそれらを主成分とする共重合ナイロンを挙げることができる。
【0014】
更にこれらナイロン樹脂を混合物として用いることは、成形性、耐熱性、溶着性などの特性改善を図る点から実用上好適である。
混合物として用いる場合、(a)ナイロン66、ナイロン6およびそれらを主成分とする共重合ナイロンの中から選ばれる少なくとも1種のナイロン樹脂99〜50重量%、及び、(b)前記(a)以外のナイロン樹脂(例えば、ナイロン610、ナイロン612などの高級ナイロンおよびナイロン6T/6、ナイロン6T/12、ナイロン6T/66、ナイロン66/6I、ナイロン66/6T/6I、ナイロン6T/6I、ナイロン6T/M5Tなどの半芳香族ナイロンの中から選ばれる少なくとも1種のナイロン樹脂)1〜50重量%、好ましくは1.5〜30重量%からなる混合物として用いることが溶着性向上の点から好ましい。
【0015】
これらナイロン樹脂の重合度は特に制限ないが、通常は、ポリマ濃度1%の98%濃硫酸溶液中、25℃で測定した相対粘度が、1.5〜5.0の範囲のものが好ましく、特に2.0〜4.0の範囲のものが好ましい。
【0016】
本発明において用いる(B)ポリオレフィン系樹脂は、主鎖にポリオレフィン骨格を有する樹脂であって、生成する樹脂組成物の溶融粘度挙動を好ましく変化せしめる機能を発揮するものである。その機能が発揮できるものであれば、結晶性ポリオレフィン系樹脂でも非晶性ポリオレフィン系樹脂でもよく、それらの混合物であってもよい。また、不飽和モノマーの単独重合体であっても2種以上のモノマーからなる共重合体であってもよく、両者の混合物であってもよい。また共重合体の場合にはランダム共重合体であってもブロック共重合体であってもよく、両者の混合物であってもよい。
【0017】
この(B)ポリオレフィン系樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリ1−ブテン、ポリ1−ペンテン、ポリメチルペンテンなどの単独重合体;エチレン/α−オレフィン共重合体;ビニルアルコールエステル単独重合体;ビニルアルコールエステル単独重合体の少なくとも一部を加水分解して得られる重合体;[(エチレン及び/又はプロピレン)とビニルアルコールエステルとの共重合体の少なくとも一部を加水分解して得られる重合体];エチレン/(メタ)アクリル酸共重合体、エチレン/(メタ)アクリル酸/(メタ)アクリル酸エステル共重合体などの[(エチレン及び/又はプロピレン)と(不飽和カルボン酸及び/又は不飽和カルボン酸エステル)との共重合体];エチレン/(メタ)アクリル酸共重合体のカルボキシル基の少なくとも一部が金属塩化した共重合体、エチレン/(メタ)アクリル酸/(メタ)アクリル酸エステル共重合体のカルボキシル基の少なくとも一部分が金属塩化した共重合体などの[(エチレン及び/又はプロピレン)と(不飽和カルボン酸及び/又は不飽和カルボン酸エステル)との共重合体のカルボキシル基の少なくとも一部を金属塩化して得られる共重合体];共役ジエンとビニル芳香族炭化水素とのブロック共重合体;そのブロック共重合体の水素化物などが挙げられる。
【0018】
なかでも、ポリエチレン、ポリプロピレン、ポリアクリル酸エステル、ポリメタクリル酸エステル、エチレン/α−オレフィン共重合体、 [(エチレン及び/又はプロピレン)と(不飽和カルボン酸及び/又は不飽和カルボン酸エステル)との共重合体のカルボキシル基の少なくとも一部を金属塩化した共重合体]、共役ジエンとビニル芳香族炭化水素とのブロック共重合体、そのブロック共重合体の水素化物、が好ましい。特に、ポリエチレン、エチレン/α−オレフィン共重合体が好ましい。
ここでいうエチレン/α−オレフィン共重合体は、機械強度の向上、改質効果の一層の向上の点から、エチレンと炭素原子数3〜20のα−オレフィンの少なくとも1種以上との共重合体が好ましく、さらに、エチレンと炭素数3〜12のα−オレフィンを用いた共重合体が好ましい。
【0019】
炭素数3〜20のα−オレフィンとしては、具体的にはプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセンおよびこれらの組み合わせが挙げられる。
このエチレン/α−オレフィン系共重合体は、α−オレフィン共重合量が好ましくは1〜30モル%、より好ましくは2〜25モル%、さらに好ましくは3〜20モル%である。また、更に1,4−ヘキサジエン、ジシクロペンタジエン、2,5−ノルボルナジエン、5−エチリデンノルボルネン、5−エチル−2,5−ノルボルナジエン、5−(1′−プロペニル)−2−ノルボルネンなどの非共役ジエンの少なくとも1種が共重合されていてもよい。
【0020】
また、[(エチレン及び/又はプロピレン)と(不飽和カルボン酸及び/又は不飽和カルボン酸エステル)との共重合体]において用いられる不飽和カルボン酸は、アクリル酸、メタクリル酸のいずれかあるいはその混合物であり、不飽和カルボン酸エステルとしてはこれら不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等、あるいはこれらの混合物が挙げられるが、特にエチレンとメタクリル酸との共重合体、エチレン、メタクリル酸及びアクリル酸エステルとの共重合体が好ましい。
【0021】
[(エチレン及び/又はプロピレン)と(不飽和カルボン酸及び/又は不飽和カルボン酸エステル)との共重合体のカルボキシル基の少なくとも一部を金属塩化した共重合体]における金属種については特に制限はないが、Li、Na、K、Mg、Ca、Sr、Baなどのアルカリ金属、アルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cdなどが用いられ、特にZnが好ましく用いられる。
【0022】
また、共役ジエンとビニル系芳香族炭化水素とのブロック共重合体とは、A−B型またはA−B−A′型のブロック共重合弾性体であり、末端ブロックAおよびA′は同一でも異なってもよく、かつ芳香族部分が単環でも多環でもよいビニル系芳香族炭化水素から誘導された熱可塑性単独重合体または共重合体が挙げられる。かかるビニル系芳香族炭化水素の例としては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルキシレン、エチルビニルキシレン、ビニルナフタレンおよびそれらの混合物などが挙げられる。中間重合体ブロックBは共役ジエン系炭化水素からなり、例えば、1,3−ブタジエン、2,3−ジメチルブタジエン、イソプレン、1,3−ペンタジエンおよびそれらの混合物から誘導された重合体などが挙げられる。さらに、上記ブロック共重合体の中間重合体ブロックBが水添処理を受けたもの(水素化物)でもよい。
【0023】
また、本発明において(B)ポリオレフィン系樹脂は、上記したポリオレフィン系樹脂の類を、不飽和カルボン酸及びその誘導体から選ばれる少なくとも1種類の化合物で変性した変性ポリオレフィン系樹脂で用いることが好ましい。このように変性した変性ポリオレフィン系樹脂は、相溶性が向上し、少量の添加量でも溶着強度の向上に極めて優れるという特長を示すことができる。
変性剤として使用される不飽和カルボン酸誘導体としては、不飽和カルボン酸の金属塩、エステル、イミド、酸無水物が挙げられる。
【0024】
この不飽和カルボン酸及びその誘導体としては、例を挙げると、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メチルマレイン酸、メチルフマル酸、メサコン酸、シトラコン酸、グルタコン酸およびこれらカルボン酸の金属塩、マレイン酸水素メチル、イタコン酸水素メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸メチル、メタクリル酸2−エチルヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチル、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ−(2,2,1)−5−ヘプテン−2,3−ジカルボン酸、エンドビシクロ−(2,2,1)−5−ヘプテン−2,3−ジカルボン酸無水物、マレイミド、N−エチルマレイミド、N−ブチルマレイミド、N−フェニルマレイミド、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル、および5−ノルボルネン−2,3−ジカルボン酸などがある。これらの中でも、不飽和ジカルボン酸およびその酸無水物が好適であり、特にマレイン酸または無水マレイン酸が好適である。
【0025】
これらの官能基含有成分をオレフィン化合物に導入する方法は特に制限なく、予め主成分であるオレフィン化合物と官能基含有オレフィン化合物を共重合せしめたり、未変性ポリオレフィンに官能基含有オレフィン化合物をラジカル開始剤を用いてグラフト導入するなどの方法を用いることができる。官能基含有成分の導入量は変性ポリオレフィン中のオレフィンモノマ全体に対して好ましくは0.001〜40モル%、より好ましくは0.01〜35モル%の範囲内であることが適当である。
【0026】
本発明で用いる(B)ポリオレフィン系樹脂の製造方法については特に制限はなく、ラジカル重合、チーグラー・ナッタ触媒を用いた配位重合、アニオン重合、メタロセン触媒を用いた配位重合などいずれの方法でも用いることができる。
【0027】
かかる(B)ポリオレフィン系樹脂の配合量は、(A)ナイロン樹脂100重量部に対し、(B)ポリオレフィン系樹脂0.1〜50重量部の範囲が選択され、好ましくは0.1〜30重量部、特に好ましくは0.5〜30重量部である。ポリオレフィン系樹脂の配合量が0.1重量部未満では、得られる樹脂組成物の溶着性が不十分であり、また50重量部を越えると溶融成形時の流動性の低下や耐熱性、機械強度の低下などの悪影響が顕在化するので所期の目的達成が困難である。
【0028】
本発明で(C)成分として用いるガラス繊維としては、一般に樹脂強化用に用いられる物を用いることができ、例えば、長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。繊維径についても特に制限はないが繊維径5〜15μmの範囲のものが好適に用いられる。これらのガラス繊維はエチレン/酢酸ビニル共重合体や熱硬化性樹脂などで被覆あるいは集束されていてもよく、なかでも、シラン系、チタネート系カップリング剤、その他の表面処理剤で処理されているものが特に好適である。本発明の樹脂組成物中のガラス繊維含有量はナイロン樹脂100重量部に対して通常10〜150重量部の範囲であり、好ましくは20〜80重量部、特に好ましくは20〜60重量部の範囲である。
【0029】
本発明で用いる(D)成分の銅化合物は、具体例として、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅、ヨウ化第二銅、硫酸第二銅、硝酸第二銅、リン酸銅、酢酸第一銅、酢酸第二銅、サリチル酸第二銅、ステアリン酸第二銅、安息香酸第二銅および前記無機ハロゲン化銅とキシリレンジアミン、2−メルカプトベンズイミダゾール、ベンズイミダゾールなどとの錯化合物などが挙げられる。なかでも1価の銅化合物とりわけハロゲン化第1銅が好ましく、酢酸第1銅、ヨウ化第1銅などが特に好適である。
【0030】
銅化合物の添加は、成形品どうしを溶着させて得られた溶着成形体をアニーリングする際の溶着部強度保持率を向上させるために有効であり、その添加量は、ナイロン樹脂100重量部に対して3重量部以下、例えば0.01〜3重量部であればよい。好ましくは0.015〜2重量部、特に好ましくは0.02〜2重量部の範囲である。銅化合物の添加量が0.01重量部未満ではアニーリング時の溶着部強度保持率の向上効果が不十分であり、逆に3重量部を越える量の添加では溶融成形時に金属銅の遊離が起こり、着色により製品の価値を減ずることになる。
【0031】
本発明では銅化合物と併用する形でハロゲン化アルカリ化合物を添加することも可能である。このハロゲン化アルカリ化合物の例としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、臭化ナトリウムおよびヨウ化ナトリウムなどを挙げることができ、ヨウ化カリウム、ヨウ化ナトリウムが特に好ましい。これには通常ナイロン樹脂100重量部に対して5重量部以下、例えば0.01〜5重量部の範囲であることが好ましく、さらに0.05〜3重量部の範囲であることが特に好ましい。
【0032】
本発明で用いる(E)成分のシリコーン系化合物とは、シロキサン結合を骨格とし、そのケイ素に有機基などが直接結合した有機ケイ素化合物である。ケイ素に直接結合した有機基としては、メチル基、エチル基、フェニル基、ビニル基、トリフルオロプロピル基およびそれらの併用などが知られているが、これら公知のシリコーン系化合物一般が使用できる。また有機基の一部がエポキシ基、アミノ基、ポリエーテル基、カルボキシル基、メルカプト基、エステル基、クロロアルキル基、炭素数3個以上のアルキル基、ヒドロキシル基などを有する置換基で置換されたシリコーンも使用可能である。
【0033】
シリコーン系化合物はその架橋の程度などからシリコーンオイル、シリコーンエラストマ、シリコーンレジンに分類され(「シリコーン材料ハンドブック」(東レ・ダウコーニング・シリコーン(株)発行・編集、1993年8月発行)参照)、本発明で用いるシリコーン系化合物はそのいずれでもよい。
【0034】
好ましいシリコーン系化合物の具体例としては、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、アルキル変性シリコーンオイル、フロロシリコーンオイル、ポリエーテル変性シリコーンオイル、脂肪族エステル変性シリコーンオイル、アミノ変性シリコーンオイル、カルボン酸変性シリコーンオイル、カルビノール変性シリコーンオイル、エポキシ変性シリコーンオイル、メルカプト変性シリコーンオイルなどのシリコーンオイル類が挙げられる。また更に、ポリエチレングリコール変性シリコーンオイル、ポリプロリレングリコール変性シリコーンオイルが溶着強度向上のために特に好ましい。更にこれら(E)シリコーン系化合物は2種類以上併用することも可能である。
【0035】
かかる(E)シリコーン系化合物の配合量は、(A)ナイロン樹脂100重量部に対し、5重量部以下、例えば、0.1〜5重量部の範囲が好ましく、特に1〜3重量部の範囲が好ましい。
【0036】
本発明においては上記の特定のガラス繊維以外にも繊維状/非繊維状無機強化材を添加併用することも可能である。それらの繊維状/非繊維状無機強化剤の具体例としては、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、硼酸アルミウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填剤、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素およびシリカなどの非繊維状充填剤が挙げられる。これらは中空であってもよく、さらにはこれら充填剤を2種類以上併用することも可能である。また、これら繊維状/非繊維状充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で予備処理して使用することは、より優れた機械的強度を得る点から好ましい。
【0037】
さらに、本発明のナイロン樹脂組成物には、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、次亜リン酸塩などの着色防止剤、ヒンダードフェノール、ヒンダードアミンなどの酸化防止剤、ポリアルキレングリコールなどの滑剤、熱安定剤、紫外線防止剤、着色剤などの添加剤を添加することもできる。
【0038】
本発明のナイロン樹脂組成物の調製方法は特に限定されないが、具体的かつ効率的な調整方法の例としては、原料のナイロン樹脂、ポリオレフィン系樹脂、ガラス繊維、さらに必要に応じて配合される銅化合物やシリコーン系化合物等を混合し、単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーおよびミキシングロールなどの公知の溶融混練機に供給して、ナイロン樹脂の融点に応じて選択される温度、例えば220〜330℃で溶融混練する方法、又は、ポリオレフィン系樹脂以外の成分の全部を混合し上記同様に溶融混練して樹脂組成物とした後、ポリオレフィン系樹脂を、ペレット混合(いわゆる外添)などにより混練する方法を挙げることができる。
【0039】
このようにして得られる本発明の溶着用樹脂組成物は、その溶融粘度の剪断速度依存係数を1.05以上とすることができ、優れた溶着性を発揮することができる。
【0040】
ここで、剪断速度依存係数は、[低剪断速度時の溶融粘度増加率]÷[高剪断速度時の溶融粘度増加率]の値であり、[低剪断速度時の溶融粘度増加率]は、[溶着用樹脂組成物の低剪断速度時の溶融粘度]÷[(B)成分のみを含有しない上記溶着用樹脂組成物の低剪断速度時の溶融粘度]の値で、また、[高剪断速度時の溶融粘度増加率]は、[溶着用樹脂組成物の高剪断速度時の溶融粘度]÷[(B)成分のみ含有しない上記溶着用樹脂組成物の高剪断速度時の溶融粘度]の値である。ここで、低剪断速度は60(sec-1)、高剪断速度は6000(sec-1)であり、それら溶融粘度(Poise)は次の条件で測定される。
【0041】
測定機器: 東洋精機社製キャピログラフB1
測定温度: ナイロン樹脂(複数種使用の場合は配合量の多い方のナイロン樹脂)の融点よりも20℃高い温度
滞留時間: 5分
キャピラリー: 長さ10mm×直径1mm
ピストンスピード: 5mm/min(剪断速度60sec-1の場合)、又は、500mm/min(剪断速度6000sec-1の場合)
【0042】
なお、[(B)成分のみを含有しない上記溶着用樹脂組成物]は、(B)成分及び(C)成分、さらに他の任意配合成分をも配合させてなる本発明の樹脂組成物(即ち、溶融粘度増加率の算出式における分子の溶融粘度値の測定対象の樹脂組成物)から(B)成分のみを除外した樹脂組成を有する樹脂組成物を意味する。
【0043】
溶融粘度の剪断速度依存係数が大きいほど、射出成形過程において通常採用される高剪断速度時に良流動性となるので成形性が良好であり、さらに、溶着する過程における低剪断速度時には高粘性となるので高い溶着強度を発現できるのである。この点から、剪断速度依存係数が1.05以上で樹脂組成物が、溶着性に優れ実用上溶着用として好適であり、さらに1.08以上が好ましく、特に1.10以上が好ましい。
【0044】
本発明の溶着用ナイロン樹脂組成物からは、射出成形、押出し成形、ブロー成形などの通常の成形手段、成形条件によって溶着用成形品が製造される。この溶着用成形品はその複数を溶着により接合させることによって所望の成形樹脂成形体となるような形状を有する部分成形品である。振動溶着、超音波溶着、マイクロ波溶着のためにはその接合面にリブが設けられていてもよい。
【0045】
溶着用成形品の接合面どうしを溶着する工程は、例えば、次のようにして行なうことができる。
振動溶着法の場合、複数の成形品の接合面どうしを上下に圧接させた状態とし、この状態で横方向に振動を与えて発生する摩擦熱によって溶着させる。この際の振動条件としては通常の条件をとればよく、例えば、振動数100〜300Hz、振幅0.5〜2.0mmを採用することができる。
【0046】
射出溶着法の場合、成形品を金型内にインサートし、又は金型内で位置変更した後に、その接合部に連続して新たな成形品が形成されるように樹脂組成物を射出して成形する。ここで金型内で位置変更して行なう方法は、ダイスライド成形や、ダイ回転成形ともいわれる。
超音波溶着法の場合、複数の成形品の接合面どうしを上下に圧接させた状態とし、この状態で、超音波により接合面に縦方向の振動を発生させその摩擦熱によって溶着させる。
マイクロ波溶着法の場合、複数の成形品の接合面どうしを圧接させた状態とし、この状態で、高周波電界による分子相互間の摩擦による損失(誘電損失)を生じさせ、その発熱により溶着させる。
【0047】
このような溶着方法によって本発明の樹脂組成物から製造される溶着成形体は、耐熱性、表面外観、寸法安定性、溶着性が均衡して優れたものであり、特に溶着強度を安定して高くすることができる。この利点を生かして、溶着成形体として、例えば、自動車のインテークマニホールドなどの吸気系部品、ウォーターインレット、ウォーターアウトレットなどの冷却系部品、フューエルインジェクション、フューエルデリバリーパイプなどの燃料系部品、オイルタンクなどの容器類のような中空形状部品を製造することができ、これらナイロン樹脂部品を製造するために有効である。
【0048】
【実施例】
以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。また、実施例及び比較例中に示された配合割合は全て重量部である。
また、以下の実施例において、材料強度の測定、流動性、溶着強度の評価は、次の方法により行った。
【0049】
(1)材料強度
引張強度: ASTM D638記載の方法による。
曲げ弾性率: ASTM D790記載の方法による。
(2)流動性
幅10mm、厚さ2mm、全長600mmの渦巻き形状を有するスパイラルフロー測定金型を用い、射出成形温度をナイロン樹脂(配合量の多い種類)の融点よりも20℃高い温度とし、射出成形圧力を30kgf/cm2Gとし、金型温度を80℃とする条件下で材料を射出成形し、その射出成形時に金型内を樹脂が流れた距離を測定して流動性の指標とした。流動長が長いほど流動性が良好であることを示す。
【0050】
(3)振動溶着成形体の溶着性
振動溶着強度評価用に、図1に示す形状の試験片(接合面には幅1.5mm、高さ2.5mmのリブ1が設けてある)、及び、図2に示す形状の試験片を通常の射出成形条件によって射出成形して作成した。ブランソン社製2850型振動溶着装置を用い、両試験片の接合面の溶着を次の条件で行なった。この溶着の際、摩擦によりリブが溶融して接合され、図3に示す形状の溶着中空成形体が製造された。
加圧力: 100kgf
振動数: 240Hz
振幅: 1.5mm
溶着代: 1.5mm
溶着して得られた溶着中空成形体の中に水を充填し、水槽中にてその中空成形体に内圧をかけ、破裂時の圧力を振動溶着強度とした。
また、得られた溶着中空成形体を加熱オーブン中で150℃/10時間処理し、その後の溶着部強度を上記と同様に測定し、その強度保持率を算出した。
【0051】
(4)射出溶着成形体の溶着性
射出溶着強度評価用に、図4に示す形状で厚さ10mmの試験片を通常の射出成形条件によって射出成形して作成した。この試験片を曲げ疲労試験片作成用金型にインサートし、同じ樹脂組成物を射出成形して残りの部分を形成し、図5の辺aが接合部となる図5の形状の射出溶着成形体を作成した。得られた射出溶着成形体を、スパン間50mm、引張速度5mm/secの条件で引張試験して辺aの接合部が破断する強度を求め、射出溶着強度とした。
【0052】
実施例及び比較例では、ナイロン樹脂およびポリオレフィン系樹脂として以下の樹脂を用いた。
<ナイロン樹脂>
(N6): 融点225℃、相対粘度2.70のナイロン6樹脂、
(N6/66): 融点217℃、相対粘度2.65のナイロン6/66共重合体(共重合モル比97/3)
(N66): 融点265℃、相対粘度2.90のナイロン66樹脂、
(N610): 融点225℃、相対粘度2.70のナイロン610樹脂、
(6T/12): 融点300℃、相対粘度2.50のナイロン6T/12共重合体(共重合モル比60/40)
【0053】
<ポリオレフィン系樹脂>
(B−1): ポリプロピレン(MFR=1.5)、
(B−2): 上記(B−1)100部、無水マレイン酸1部、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン0.1部を混合し、2軸押出機を用いてシリンダー温度220℃で溶融押出して得られた変性ポリプロピレン、
(B−3): エチレン/メタクリル酸共重合体のカルボン酸部分の一部が亜鉛塩となったアイオノマー、
(B−4): エチレン/1−ブテン共重合体100部、無水マレイン酸1部、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン0.1部を混合し、2軸押出機を用いてシリンダー温度230℃で溶融押出して得られた変性エチレン/1−ブテン共重合体、
(B−5): 密度0.905のメタロセン系触媒によって製造された低密度ポリエチレン(エチレン/ヘキセン共重合体)100部、無水マレイン酸1部、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン0.1部を混合し、2軸押出機を用いてシリンダー温度230℃で溶融押出して得られた変性低密度ポリエチレン。
【0054】
[実施例1〜15及び比較例1〜4]
ナイロン樹脂、ポリオレフィン系樹脂、ガラス繊維(繊維径13μm)および銅化合物を表1〜5に示す組成で混合し、日本製鋼所製TEX30型2軸押出機を用いてシリンダー温度250〜280℃、スクリュー回転数150rpmで溶融混練を行ないペレットを製造した。得られたペレットを乾燥後、射出成形(金型温度80℃)により各種試験片を調製した。各々のペレットや試験片について、溶融粘度特性、流動性、材料強度を測定し、さらに、振動溶着させた中空成形品の溶着強度などを測定した。その結果は表1〜5に示すとおりであった。なお、比較例2で配合したMAH−PPEは無水マレイン酸変性ポリフェニレンエーテル樹脂である。また、耐熱材として用いた銅化合物の種類は、CuI=ヨウ化第1銅、KI=ヨウ化カリウムであり、シリコーン系化合物としてはポリプロピレングリコール変性シリコーンオイルを用いた。
【0055】
実施例1〜15のとおり、本発明の溶着用樹脂組成物は、流動性、材料強度のバランスが良く、溶融粘度の剪断速度依存係数が高く、振動溶着により優れた振動溶着強度の中空成形品を得ることができた。これに対し、ポリオレフィン系樹脂を配合しなかった比較例1〜4の場合は、溶着強度が低く、アニーリング後の強度保持率も低いものであった。
【0056】
【表1】

Figure 0004281165
【0057】
【表2】
Figure 0004281165
【0058】
【表3】
Figure 0004281165
【0059】
【表4】
Figure 0004281165
【0060】
【表5】
Figure 0004281165
【0061】
[実施例16、17、比較例5、6]
表6に示す組成で、ナイロン樹脂、ポリオレフィン系樹脂又は他の樹脂、ガラス繊維(繊維径13μm)を混合した以外は、上記実施例と同様にして溶融混練しペレットを製造し、各種試験片を調製した。各々のペレットや試験片について、溶融粘度特性、流動性、材料強度を測定し、さらに、射出溶着させた成形品の溶着強度などを測定した。その結果は表6に示すとおりであった。
なお、比較例6で配合したMAH−PPEは無水マレイン酸変性ポリフェニレンエーテル樹脂である。実施例16、17のとおり、本発明の溶着用樹脂組成物は、流動性、材料強度のバランスが良く、溶融粘度の剪断速度依存係数が高く、射出溶着によっても優れた溶着強度の成形品とすることができた。これに対し、ポリオレフィン系樹脂を配合しなかった比較例5、6の場合は、溶着強度が低いものであった。
【0062】
【表6】
Figure 0004281165
【0063】
【発明の効果】
本発明の溶着用ナイロン樹脂組成物は、耐熱性、流動性、寸法安定性、溶着性が均衡して優れたものであり、射出成形などにより成形した成形品を振動溶着法などの溶着方法によって製造される溶着成形体は、耐熱性、表面外観、寸法安定性、溶着性が均衡して優れたものであり、特に溶着強度を安定して高くすることができる。この利点を生かして、自動車用の各種ナイロン樹脂部品、特に中空を有するナイロン樹脂部品を製造するために好適である。
【図面の簡単な説明】
【図1】 実施例において振動溶着強度評価用に作成した試験片の1つの形状を示す図であって、Aは平面図、Bは正面図、Cは右側面図、Dは底面図である。
【図2】 実施例において振動溶着強度評価用に作成した試験片の他の1つの形状を示す図であって、Aは平面図、Bは正面図、Cは右側面図である。
【図3】 図1に示す試験片と図2に示す試験片とを振動溶着することにより得られた中空成形品の形状を示す図であって、Aは平面図、Bは正面図、Cは右側面図である。
【図4】 実施例において射出溶着強度評価用に作成した試験片の形状を示す平面図である。
【図5】 実施例において図4に示す試験片を用い射出溶着させて作成した射出溶着強度評価用の射出溶着成形体の形状を示す平面図である。
【符号の説明】
1:リブ
a:溶着された接合部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welding resin composition for obtaining an excellent welded resin molded body in which heat resistance, molded product surface appearance, dimensional stability, and weldability are balanced. In particular, the present invention relates to a welding nylon resin composition suitable for producing a hollow molded body by welding two or more melt-molded articles.
[0002]
[Prior art]
Nylon resins are widely used in the fields of automobiles and mechanical parts by utilizing their excellent moldability, heat resistance, toughness, oil / gasoline resistance, wear resistance, and the like. The development process of nylon resin in this field is basically the replacement of metal material, and its practical application has progressed from parts with many advantages such as weight reduction and rust prevention. Recently, with the improvement in performance of nylon resin materials and the development of molding technology, the application of nylon resin to parts that have been difficult to be converted into resin by conventional technology with large and complex shapes has been studied. It is coming.
[0003]
In order to convert such difficult parts into resin, single molding techniques such as injection molding, extrusion molding, and blow molding are not sufficient, and it is necessary to combine post-processing techniques such as cutting, adhesion, and welding. Become. However, the conventional composition design of the nylon resin material does not consider even the applicability to such post-processing. For example, when a glass fiber reinforced nylon resin molded product composed of two or more parts is welded by a vibration welding method or an injection welding method to form a predetermined part shape, it is difficult to achieve a desired level of strength on the welding surface. In particular, in the case of large parts, the strength of the welded portion is insufficient, and its use has been limited.
[0004]
[Problems to be solved by the invention]
Therefore, the main object of the present invention is to improve the problem of insufficient welding strength of a resin molded product obtained by welding the above-mentioned nylon resin molded product. An object of the present invention is to provide a welding nylon resin composition that can stably exhibit high welding strength even when it is difficult to increase the welding strength as in the case of a complicated welding surface shape having a curved surface on the welding surface. And Furthermore, it is possible to obtain a welded resin molded article having excellent original properties of nylon resin such as moldability, heat resistance, toughness, oil / gasoline resistance, wear resistance, and molded article surface smoothness, and high weld strength. Another object is to provide a nylon resin composition for welding.
[0005]
[Means for Solving the Problems]
As a result of studies conducted by the present inventors to achieve the above object, the compounding of the polyolefin resin in the glass fiber reinforced nylon resin composition has a favorable effect on the melt viscosity behavior of the resin composition and is particularly effective in achieving the above object. As a result, the present invention has been made.
The present invention is as follows.
[0006]
  (A) 100 parts by weight of nylon resin, (B) 0.1 to 50 parts by weight of polyolefin resin, and (C) 10 to 150 parts by weight of glass fiber,The shear rate dependence coefficient of the melt viscosity at a temperature 20 ° C. higher than the melting point of nylon resin (the nylon resin having a higher blending when multiple types are used) is 1.05 or more.A resin composition for welding, which is characterized by the following.
Shear rate dependence coefficient = [Increase rate of melt viscosity at low shear rate] ÷ [Increase rate of melt viscosity at high shear rate]
However, [Increase rate of melt viscosity at low shear rate] = [Melt viscosity at low shear rate of welding resin composition] / [Low shear rate of the above-mentioned welding resin composition not containing only component (B) Melt viscosity at high shear rate] = [melt viscosity at high shear rate of welding resin composition] ÷ [(B) of the above-mentioned welding resin composition not containing only component (B) Melt viscosity at high shear rate]. Here, the low shear rate is 60 (sec. -1 ), High shear rate is 6000 (sec -1 ).
[0007]
  A welded resin molded article comprising the above-mentioned welded resin composition.
  By welding a plurality of resin molded articles made of the above-mentioned welding resin compositionObtained resin molding.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
In the present invention, “weight” means “mass”.
[0009]
In the present invention, welding means melting the contact surfaces of two or more resin molded products and bonding the molten surfaces. As specific methods for realizing such welding, for example, vibration welding method, ultrasonic welding method, spin (rotary) welding method, injection welding method, microwave welding (high frequency induction heating welding) method, hot plate welding method, Hot air welding method etc. are mentioned. Among these welding methods, preferred are vibration welding method, injection welding method (including die slide molding and die rotation molding), ultrasonic welding method, and microwave welding method. Among them, vibration welding method is a welding processability. This is practically preferable because it has a good balance between goodness and high welding strength.
[0010]
The (A) nylon resin used in the present invention is a polyamide mainly composed of amino acids, lactams, or diamines and dicarboxylic acids.
[0011]
Representative examples of the main constituents include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactams such as ε-caprolactam and ω-laurolactam, and tetramethylenediamine. , Hexamethylenediamine, 2-methylpentamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, Metaxylylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, Bis (4-aminosi Chlohexyl) methane, bis (3-methyl-4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethylpiperazine, aliphatic, alicyclic, aromatic Diamines, and adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid Aliphatic, alicyclic and aromatic dicarboxylic acids such as acid, hexahydroterephthalic acid, hexahydroisophthalic acid and the like can be mentioned. In the present invention, either a nylon homopolymer or a copolymer derived from these raw materials may be used alone, or any of a plurality of types may be mixed and used.
[0012]
In the present invention, a nylon resin having a melting point of 200 ° C. or higher is particularly useful from the viewpoint of excellent heat resistance and strength. Specific examples thereof include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipamide copolymer (nylon 6/66), polytetramethylene adipa Midon (nylon 46), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyhexamethylene terephthalamide / polycaproamide copolymer (nylon 6T / 6), polyhexamethylene adipamide / Polyhexamethylene terephthalamide copolymer (nylon 66 / 6T), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I), polyhexamethylene adipamide / polyhexamethylene terephthalamide Polyhexamethylene isophthalamide copolymer (nylon 66 / 6T / 6I), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 6T / 6I), polyhexamethylene terephthalamide / polydodecanamide copolymer (nylon 6T / 12) Polyhexamethylene terephthalamide / poly (2-methylpentamethylene) terephthalamide copolymer (nylon 6T / M5T), polyxylylene adipamide (nylon XD6), polynonamethylene terephthalamide (nylon 9T), and mixtures thereof Or a copolymer etc. are mentioned.
[0013]
Preferred are nylon 6, nylon 66, nylon 6/66 copolymer, nylon 6 or other copolymer nylon based on nylon 66, nylon 610, nylon 6T / 66 copolymer, nylon 6T / 6I copolymer, nylon Mention may be made of copolymers having hexamethyl terephthalamide units such as 6T / 6 copolymers. Particularly preferable examples include nylon 6, nylon 66, and copolymer nylon based on them.
[0014]
Furthermore, it is practically preferable to use these nylon resins as a mixture from the viewpoint of improving characteristics such as moldability, heat resistance and weldability.
When used as a mixture, (a) 99 to 50% by weight of at least one nylon resin selected from nylon 66, nylon 6 and copolymer nylon containing them as a main component, and (b) other than the above (a) Nylon resins (for example, high-grade nylon such as nylon 610 and nylon 612 and nylon 6T / 6, nylon 6T / 12, nylon 6T / 66, nylon 66 / 6I, nylon 66 / 6T / 6I, nylon 6T / 6I, nylon 6T / At least one nylon resin selected from semi-aromatic nylons such as M5T) is preferably used as a mixture of 1 to 50% by weight, preferably 1.5 to 30% by weight, from the viewpoint of improving weldability.
[0015]
The degree of polymerization of these nylon resins is not particularly limited, but usually, those having a relative viscosity measured at 25 ° C. in a 98% concentrated sulfuric acid solution having a polymer concentration of 1% are preferably in the range of 1.5 to 5.0, The thing of the range of 2.0-4.0 especially is preferable.
[0016]
The (B) polyolefin resin used in the present invention is a resin having a polyolefin skeleton in the main chain, and exhibits a function of preferably changing the melt viscosity behavior of the resin composition to be produced. A crystalline polyolefin resin, an amorphous polyolefin resin, or a mixture thereof may be used as long as the function can be exhibited. Moreover, it may be a homopolymer of unsaturated monomers, a copolymer composed of two or more monomers, or a mixture of both. In the case of a copolymer, it may be a random copolymer, a block copolymer, or a mixture of both.
[0017]
Examples of the (B) polyolefin-based resin include homopolymers such as polyethylene, polypropylene, polystyrene, polyacrylic acid ester, polymethacrylic acid ester, poly 1-butene, poly 1-pentene, and polymethyl pentene; ethylene / α -Olefin copolymer; Vinyl alcohol ester homopolymer; Polymer obtained by hydrolyzing at least a part of vinyl alcohol ester homopolymer; [Copolymer of (ethylene and / or propylene) and vinyl alcohol ester Polymer obtained by hydrolyzing at least a part of]; ethylene / (meth) acrylic acid copolymer, ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer, etc. [(ethylene and / Or propylene) and (unsaturated carboxylic acid and / or unsaturated carbo) A copolymer with an acid ester)]; a copolymer in which at least a part of the carboxyl group of the ethylene / (meth) acrylic acid copolymer is metallated, an ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer At least part of the carboxyl group of the copolymer of [(ethylene and / or propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester)] such as a copolymer in which at least a part of the carboxyl group of the polymer is metallated A copolymer obtained by partially metallizing]; a block copolymer of a conjugated diene and a vinyl aromatic hydrocarbon; a hydride of the block copolymer, and the like.
[0018]
Among them, polyethylene, polypropylene, polyacrylic acid ester, polymethacrylic acid ester, ethylene / α-olefin copolymer, [(ethylene and / or propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) A copolymer in which at least a part of the carboxyl group of the copolymer is metallated], a block copolymer of a conjugated diene and a vinyl aromatic hydrocarbon, and a hydride of the block copolymer. In particular, polyethylene and ethylene / α-olefin copolymers are preferable.
The ethylene / α-olefin copolymer here is a copolymer of ethylene and at least one of α-olefins having 3 to 20 carbon atoms from the viewpoint of improving mechanical strength and further improving the reforming effect. A coalescence is preferable, and a copolymer using ethylene and an α-olefin having 3 to 12 carbon atoms is more preferable.
[0019]
Specific examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1- Pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl- 1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-ethyl-1-tetradecene and combinations thereof Align, and the like.
The ethylene / α-olefin copolymer has an α-olefin copolymer amount of preferably 1 to 30 mol%, more preferably 2 to 25 mol%, and further preferably 3 to 20 mol%. Further, non-conjugated such as 1,4-hexadiene, dicyclopentadiene, 2,5-norbornadiene, 5-ethylidene norbornene, 5-ethyl-2,5-norbornadiene, 5- (1'-propenyl) -2-norbornene, etc. At least one of the dienes may be copolymerized.
[0020]
In addition, the unsaturated carboxylic acid used in [(copolymer of (ethylene and / or propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester)] is either acrylic acid or methacrylic acid or its Unsaturated carboxylic acid esters such as methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, nonyl ester, decyl ester, etc. Among them, a copolymer of ethylene and methacrylic acid, and a copolymer of ethylene, methacrylic acid and acrylic acid ester are particularly preferable.
[0021]
The metal species in [a copolymer obtained by metallizing at least a part of the carboxyl group of a copolymer of (ethylene and / or propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester)] is particularly limited In addition to alkali metals and alkaline earth metals such as Li, Na, K, Mg, Ca, Sr and Ba, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc. In particular, Zn is preferably used.
[0022]
The block copolymer of conjugated diene and vinyl aromatic hydrocarbon is an AB type or AB-A 'type block copolymer elastic body, and the end blocks A and A' are the same. And thermoplastic homopolymers or copolymers derived from vinyl-based aromatic hydrocarbons which may be different and the aromatic moiety may be monocyclic or polycyclic. Examples of such vinyl aromatic hydrocarbons include styrene, α-methylstyrene, vinyl toluene, vinyl xylene, ethyl vinyl xylene, vinyl naphthalene, and mixtures thereof. The intermediate polymer block B is composed of a conjugated diene hydrocarbon, and examples thereof include polymers derived from 1,3-butadiene, 2,3-dimethylbutadiene, isoprene, 1,3-pentadiene, and mixtures thereof. . Furthermore, the intermediate polymer block B of the block copolymer may be a hydrogenated product (hydride).
[0023]
In the present invention, the (B) polyolefin resin is preferably used as a modified polyolefin resin obtained by modifying the above-described polyolefin resin with at least one compound selected from unsaturated carboxylic acids and derivatives thereof. The modified polyolefin resin modified in this way can exhibit the characteristics that the compatibility is improved and the welding strength is extremely improved even with a small amount of addition.
Examples of unsaturated carboxylic acid derivatives used as modifiers include metal salts, esters, imides, and acid anhydrides of unsaturated carboxylic acids.
[0024]
Examples of this unsaturated carboxylic acid and its derivatives include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, methylmaleic acid, methylfumaric acid, mesaconic acid, citraconic acid, glutaconic acid and Metal salts of these carboxylic acids, methyl hydrogen maleate, methyl itaconic acid methyl, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, Hydroxyethyl methacrylate, aminoethyl methacrylate, dimethyl maleate, dimethyl itaconate, maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic acid Acid, endobici Rho- (2,2,1) -5-heptene-2,3-dicarboxylic anhydride, maleimide, N-ethylmaleimide, N-butylmaleimide, N-phenylmaleimide, glycidyl acrylate, glycidyl methacrylate, ethacrylic acid Examples include glycidyl, glycidyl itaconate, glycidyl citraconic acid, and 5-norbornene-2,3-dicarboxylic acid. Among these, unsaturated dicarboxylic acids and acid anhydrides thereof are preferable, and maleic acid or maleic anhydride is particularly preferable.
[0025]
The method for introducing these functional group-containing components into the olefin compound is not particularly limited, and the olefin compound, which is the main component, and the functional group-containing olefin compound are copolymerized in advance, or the functional group-containing olefin compound is added to the unmodified polyolefin as a radical initiator. A method such as grafting using can be used. The amount of the functional group-containing component introduced is preferably 0.001 to 40 mol%, more preferably 0.01 to 35 mol%, based on the entire olefin monomer in the modified polyolefin.
[0026]
The method for producing the (B) polyolefin resin used in the present invention is not particularly limited, and any method such as radical polymerization, coordination polymerization using a Ziegler-Natta catalyst, anionic polymerization, or coordination polymerization using a metallocene catalyst may be used. Can be used.
[0027]
The blending amount of the (B) polyolefin resin is selected in the range of 0.1 to 50 parts by weight, preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the (A) nylon resin. Parts, particularly preferably 0.5 to 30 parts by weight. When the blending amount of the polyolefin resin is less than 0.1 parts by weight, the weldability of the resulting resin composition is insufficient, and when it exceeds 50 parts by weight, the fluidity is reduced during melt molding, heat resistance, and mechanical strength. It is difficult to achieve the intended purpose because adverse effects such as lowering of the exposure become obvious.
[0028]
As the glass fiber used as the component (C) in the present invention, those generally used for resin reinforcement can be used, for example, selected from long fiber type, short fiber type chopped strand, milled fiber, etc. Can do. Although there is no restriction | limiting in particular also about a fiber diameter, The thing of the range of fiber diameters 5-15 micrometers is used suitably. These glass fibers may be coated or bundled with an ethylene / vinyl acetate copolymer or a thermosetting resin, and are treated with a silane-based, titanate-based coupling agent or other surface treatment agent. Those are particularly preferred. The glass fiber content in the resin composition of the present invention is usually in the range of 10 to 150 parts by weight, preferably in the range of 20 to 80 parts by weight, particularly preferably in the range of 20 to 60 parts by weight with respect to 100 parts by weight of the nylon resin. It is.
[0029]
Specific examples of the copper compound (D) used in the present invention include cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, cupric iodide. , Cupric sulfate, cupric nitrate, copper phosphate, cuprous acetate, cupric acetate, cupric salicylate, cupric stearate, cupric benzoate and the inorganic copper halide and xylylene diene Examples include complex compounds with amines, 2-mercaptobenzimidazole, benzimidazole, and the like. Among these, monovalent copper compounds, particularly cuprous halides are preferable, and cuprous acetate, cuprous iodide, and the like are particularly preferable.
[0030]
The addition of the copper compound is effective for improving the welded portion strength retention rate when annealing the welded molded body obtained by welding the molded products, and the amount added is 100 parts by weight of the nylon resin. 3 parts by weight or less, for example, 0.01 to 3 parts by weight. Preferably it is 0.015-2 weight part, Most preferably, it is the range of 0.02-2 weight part. If the added amount of the copper compound is less than 0.01 parts by weight, the effect of improving the strength retention ratio of the welded part during annealing is insufficient. Conversely, if the added amount exceeds 3 parts by weight, the metal copper is liberated during melt forming. Coloring will reduce the value of the product.
[0031]
In the present invention, an alkali halide compound can be added in combination with a copper compound. Examples of the alkali halide compound include lithium chloride, lithium bromide, lithium iodide, potassium chloride, potassium bromide, potassium iodide, sodium bromide and sodium iodide. Sodium iodide is particularly preferred. In general, the amount is preferably 5 parts by weight or less, for example, 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, based on 100 parts by weight of the nylon resin.
[0032]
The silicone compound of the component (E) used in the present invention is an organosilicon compound having a siloxane bond as a skeleton and an organic group or the like directly bonded to the silicon. As an organic group directly bonded to silicon, a methyl group, an ethyl group, a phenyl group, a vinyl group, a trifluoropropyl group, and a combination thereof are known, and these known silicone compounds in general can be used. Some organic groups were substituted with substituents having epoxy groups, amino groups, polyether groups, carboxyl groups, mercapto groups, ester groups, chloroalkyl groups, alkyl groups having 3 or more carbon atoms, hydroxyl groups, and the like. Silicone can also be used.
[0033]
Silicone compounds are classified into silicone oils, silicone elastomers, and silicone resins based on the degree of crosslinking (see “Silicone Material Handbook” (published and edited by Toray Dow Corning Silicone Co., Ltd., published in August 1993)). Any of the silicone compounds used in the present invention may be used.
[0034]
Specific examples of preferred silicone compounds include dimethyl silicone oil, phenylmethyl silicone oil, alkyl-modified silicone oil, fluorosilicone oil, polyether-modified silicone oil, aliphatic ester-modified silicone oil, amino-modified silicone oil, and carboxylic acid-modified silicone. Examples thereof include silicone oils such as oil, carbinol-modified silicone oil, epoxy-modified silicone oil, and mercapto-modified silicone oil. Furthermore, polyethylene glycol-modified silicone oil and polypropylene glycol-modified silicone oil are particularly preferred for improving the welding strength. Further, two or more of these (E) silicone compounds can be used in combination.
[0035]
The blending amount of the (E) silicone compound is preferably 5 parts by weight or less, for example, 0.1 to 5 parts by weight, particularly 1 to 3 parts by weight, based on 100 parts by weight of the (A) nylon resin. Is preferred.
[0036]
In the present invention, a fibrous / non-fibrous inorganic reinforcing material can be added and used in addition to the specific glass fiber. Specific examples of these fibrous / non-fibrous inorganic reinforcing agents include carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, and stone powder. Fibers, fibrous fillers such as metal fibers, wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, silicates such as alumina silicate, alumina, silicon oxide, magnesium oxide, Metal compounds such as zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, hydroxides such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide Objects, glass beads, se Mick beads, boron nitride, non-fibrous fillers such as silicon carbide and silica. These may be hollow, and two or more of these fillers can be used in combination. In addition, it is better to use these fibrous / non-fibrous fillers after pretreatment with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound. From the viewpoint of obtaining high mechanical strength.
[0037]
Furthermore, the nylon resin composition of the present invention includes nucleating agents such as talc, kaolin, organophosphorus compounds, polyether ether ketone, anti-coloring agents such as hypophosphite, antioxidants such as hindered phenols and hindered amines. Additives such as a lubricant, a lubricant such as polyalkylene glycol, a heat stabilizer, an ultraviolet light inhibitor and a colorant can also be added.
[0038]
The method for preparing the nylon resin composition of the present invention is not particularly limited, but examples of specific and efficient adjustment methods include raw material nylon resin, polyolefin resin, glass fiber, and copper blended as necessary. Compound or silicone compound is mixed and supplied to a known melt kneader such as a single screw or twin screw extruder, Banbury mixer, kneader and mixing roll, and a temperature selected according to the melting point of the nylon resin, For example, a method of melt-kneading at 220 to 330 ° C., or mixing all components other than the polyolefin-based resin and melt-kneading in the same manner as described above to obtain a resin composition, and then mixing the polyolefin-based resin with pellets (so-called external addition) A method of kneading can be exemplified.
[0039]
Thus, the welding resin composition of this invention obtained can make the shear rate dependence coefficient of the melt viscosity 1.05 or more, and can exhibit the outstanding weldability.
[0040]
Here, the shear rate dependence coefficient is a value of [melt viscosity increase rate at low shear rate] / [melt viscosity increase rate at high shear rate], and [melt viscosity increase rate at low shear rate] is: [Melt viscosity at low shear rate of welding resin composition] ÷ [melt viscosity at low shear rate of the above-mentioned welding resin composition not containing only component (B)], and [high shear rate] The rate of increase in melt viscosity at the time] is the value of [melt viscosity at high shear rate of welding resin composition] / [melt viscosity at high shear rate of the above-mentioned welding resin composition not containing only component (B)] It is. Here, the low shear rate is 60 (sec.-1), High shear rate is 6000 (sec-1The melt viscosity (Poise) is measured under the following conditions.
[0041]
Measuring instrument: Toyo Seiki Capillograph B1
Measurement temperature: A temperature 20 ° C. higher than the melting point of the nylon resin (the nylon resin with the larger blending amount when using multiple types)
Residence time: 5 minutes
Capillary: 10mm length x 1mm diameter
Piston speed: 5 mm / min (shear speed 60 sec-1) Or 500 mm / min (shear rate 6000 sec)-1in the case of)
[0042]
In addition, [the above-mentioned welding resin composition not containing only the component (B)] is a resin composition of the present invention obtained by blending the component (B), the component (C), and other optional compounding components (that is, The resin composition having a resin composition in which only the component (B) is excluded from the measurement target resin composition of the melt viscosity value of the molecule in the formula for calculating the increase rate of the melt viscosity.
[0043]
The greater the shear rate dependency coefficient of melt viscosity, the better the flowability at the high shear rate normally employed in the injection molding process, the better the moldability, and the higher the viscosity at the low shear rate in the welding process. Therefore, high welding strength can be expressed. From this point, the shear rate dependence coefficient is 1.05 or more, and the resin composition is excellent in weldability and practically suitable for welding, more preferably 1.08 or more, and particularly preferably 1.10 or more.
[0044]
From the welding nylon resin composition of the present invention, a welded molded article is produced by ordinary molding means such as injection molding, extrusion molding, blow molding, and molding conditions. The welded molded product is a partially molded product having a shape that forms a desired molded resin molded body by joining a plurality of the molded products by welding. For vibration welding, ultrasonic welding, and microwave welding, ribs may be provided on the joint surfaces.
[0045]
The step of welding the joint surfaces of the welded molded product can be performed, for example, as follows.
In the case of the vibration welding method, the joint surfaces of a plurality of molded products are brought into a state where they are pressed upward and downward, and in this state, welding is performed by frictional heat generated by applying vibration in the lateral direction. The vibration conditions at this time may be normal conditions. For example, a vibration frequency of 100 to 300 Hz and an amplitude of 0.5 to 2.0 mm can be employed.
[0046]
In the case of the injection welding method, after inserting the molded product into the mold or changing the position in the mold, the resin composition is injected so that a new molded product is continuously formed at the joint. Mold. Here, the method of changing the position in the mold is also called die slide molding or die rotation molding.
In the case of the ultrasonic welding method, the joint surfaces of a plurality of molded products are brought into a state where they are pressed upward and downward, and in this state, longitudinal vibrations are generated on the joint surfaces by ultrasonic waves and are welded by the frictional heat.
In the case of the microwave welding method, the joint surfaces of a plurality of molded products are brought into a pressure-welded state, and in this state, a loss (dielectric loss) due to friction between molecules due to a high-frequency electric field is generated, and the heat is welded.
[0047]
The welded molded body produced from the resin composition of the present invention by such a welding method has an excellent balance of heat resistance, surface appearance, dimensional stability, and weldability, and particularly has stable welding strength. Can be high. Taking advantage of this advantage, as a welded molded body, for example, intake system parts such as an intake manifold of an automobile, cooling system parts such as a water inlet and a water outlet, fuel system parts such as a fuel injection and a fuel delivery pipe, an oil tank, etc. Hollow shaped parts such as containers can be manufactured, which is effective for manufacturing these nylon resin parts.
[0048]
【Example】
Examples Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of these examples. Moreover, all the mixture ratios shown in the Examples and Comparative Examples are parts by weight.
In the following examples, measurement of material strength, fluidity, and evaluation of weld strength were performed by the following methods.
[0049]
(1) Material strength
Tensile strength: According to the method described in ASTM D638.
Flexural modulus: According to the method described in ASTM D790.
(2) Fluidity
Using a spiral flow measuring mold having a spiral shape with a width of 10 mm, a thickness of 2 mm, and a total length of 600 mm, the injection molding temperature is set to 20 ° C. higher than the melting point of nylon resin (a type with a large amount of blending), and the injection molding pressure is 30 kgf. / Cm2The material was injection-molded under the condition of G and the mold temperature was 80 ° C., and the distance that the resin flowed through the mold during the injection molding was measured as a fluidity index. The longer the flow length, the better the fluidity.
[0050]
(3) Weldability of vibration welded compact
For the evaluation of vibration welding strength, a test piece having the shape shown in FIG. 1 (ribs 1 having a width of 1.5 mm and a height of 2.5 mm are provided on the joint surface) and a test piece having the shape shown in FIG. It was created by injection molding under normal injection molding conditions. Using a Branson 2850 type vibration welding apparatus, the welded surfaces of both test pieces were welded under the following conditions. At the time of this welding, the ribs were melted and joined by friction, and a welded hollow molded body having the shape shown in FIG. 3 was produced.
Applied pressure: 100kgf
Frequency: 240Hz
Amplitude: 1.5mm
Welding allowance: 1.5mm
The welded hollow molded body obtained by welding was filled with water, an internal pressure was applied to the hollow molded body in a water tank, and the pressure at the time of rupture was defined as the vibration welding strength.
Moreover, the obtained welded hollow molded body was treated in a heating oven at 150 ° C./10 hours, and the strength of the welded portion thereafter was measured in the same manner as described above, and the strength retention rate was calculated.
[0051]
(4) Weldability of injection welded molded product
For injection welding strength evaluation, a test piece having a shape shown in FIG. 4 and a thickness of 10 mm was formed by injection molding under normal injection molding conditions. This test piece is inserted into a bending fatigue test piece making mold, the same resin composition is injection-molded to form the remaining portion, and injection welding molding of the shape of FIG. Created the body. The obtained injection-welded molded body was subjected to a tensile test under the conditions of a span of 50 mm and a tensile speed of 5 mm / sec to determine the strength at which the joint at side a was broken, and was defined as the injection weld strength.
[0052]
In Examples and Comparative Examples, the following resins were used as nylon resins and polyolefin resins.
<Nylon resin>
(N6): nylon 6 resin having a melting point of 225 ° C. and a relative viscosity of 2.70,
(N6 / 66): Nylon 6/66 copolymer having a melting point of 217 ° C. and a relative viscosity of 2.65 (copolymerization molar ratio 97/3)
(N66): Nylon 66 resin having a melting point of 265 ° C. and a relative viscosity of 2.90,
(N610): Nylon 610 resin having a melting point of 225 ° C. and a relative viscosity of 2.70,
(6T / 12): Nylon 6T / 12 copolymer having a melting point of 300 ° C. and a relative viscosity of 2.50 (copolymerization molar ratio 60/40)
[0053]
<Polyolefin resin>
(B-1): Polypropylene (MFR = 1.5),
(B-2): 100 parts of the above (B-1), 1 part of maleic anhydride, 0.1 part of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane were mixed and biaxial Modified polypropylene obtained by melt extrusion at a cylinder temperature of 220 ° C. using an extruder,
(B-3): an ionomer in which a part of the carboxylic acid portion of the ethylene / methacrylic acid copolymer is a zinc salt;
(B-4): 100 parts of ethylene / 1-butene copolymer, 1 part of maleic anhydride, 0.1 part of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane were mixed, A modified ethylene / 1-butene copolymer obtained by melt extrusion at a cylinder temperature of 230 ° C. using a twin-screw extruder,
(B-5): 100 parts of low density polyethylene (ethylene / hexene copolymer) produced by a metallocene catalyst having a density of 0.905, 1 part of maleic anhydride, 2,5-dimethyl-2,5-di ( (tert-Butylperoxy) Modified low density polyethylene obtained by mixing 0.1 part of hexane and melt-extruding it at a cylinder temperature of 230 ° C. using a twin screw extruder.
[0054]
  [Examples 1 to15And Comparative Examples 1 to 4]
  Nylon resin, polyolefin resin, glass fiber (fiber diameter 13 μm) and copper compound are mixed in the composition shown in Tables 1 to 5, and cylinder temperature 250 to 280 ° C., screw using Nippon Steel Works TEX30 type twin screw extruder. Melt kneading was performed at a rotation speed of 150 rpm to produce pellets. After drying the obtained pellets, various test pieces were prepared by injection molding (mold temperature 80 ° C.). With respect to each pellet and test piece, melt viscosity characteristics, fluidity, and material strength were measured, and further, the welding strength of a hollow molded product that was vibration welded was measured. The results were as shown in Tables 1-5. Note that MAH-PPE blended in Comparative Example 2 is a maleic anhydride-modified polyphenylene ether resin. Moreover, the kind of copper compound used as a heat-resistant material was CuI = cuprous iodide and KI = potassium iodide, and polypropylene glycol-modified silicone oil was used as the silicone compound.
[0055]
  Example 115As described above, the welding resin composition of the present invention has a good balance between fluidity and material strength, has a high shear rate dependence coefficient of melt viscosity, and can obtain a hollow molded article having excellent vibration welding strength by vibration welding. It was. On the other hand, in Comparative Examples 1 to 4 in which no polyolefin resin was blended, the welding strength was low and the strength retention after annealing was also low.
[0056]
[Table 1]
Figure 0004281165
[0057]
[Table 2]
Figure 0004281165
[0058]
[Table 3]
Figure 0004281165
[0059]
[Table 4]
Figure 0004281165
[0060]
[Table 5]
Figure 0004281165
[0061]
  [Example16, 17Comparative Examples 5 and 6]
  Except for mixing nylon resin, polyolefin resin or other resin, and glass fiber (fiber diameter 13 μm), the composition shown in Table 6 was melt-kneaded in the same manner as in the above example to produce pellets. Prepared. For each pellet and test piece, melt viscosity characteristics, fluidity, and material strength were measured, and further, the weld strength of the injection-molded molded product was measured. The results are shown in Table 6.
  Note that MAH-PPE blended in Comparative Example 6 is a maleic anhydride-modified polyphenylene ether resin. Example16, 17As described above, the welding resin composition of the present invention has a good balance between fluidity and material strength, a high shear rate dependence coefficient of melt viscosity, and was able to be a molded product having excellent welding strength even by injection welding. . On the other hand, in Comparative Examples 5 and 6 in which no polyolefin resin was blended, the welding strength was low.
[0062]
[Table 6]
Figure 0004281165
[0063]
【The invention's effect】
The welding nylon resin composition of the present invention is excellent in balance of heat resistance, fluidity, dimensional stability and weldability, and a molded product molded by injection molding or the like is subjected to a welding method such as a vibration welding method. The produced welded molded body has excellent balance of heat resistance, surface appearance, dimensional stability, and weldability, and in particular, the welding strength can be stably increased. Taking advantage of this advantage, it is suitable for manufacturing various types of nylon resin parts for automobiles, particularly nylon resin parts having a hollow.
[Brief description of the drawings]
FIG. 1 is a diagram showing one shape of a test piece prepared for evaluation of vibration welding strength in an example, wherein A is a plan view, B is a front view, C is a right side view, and D is a bottom view. .
FIGS. 2A and 2B are diagrams showing another shape of a test piece prepared for evaluation of vibration welding strength in Examples, wherein A is a plan view, B is a front view, and C is a right side view.
3 is a view showing the shape of a hollow molded article obtained by vibration welding the test piece shown in FIG. 1 and the test piece shown in FIG. 2, wherein A is a plan view, B is a front view, Is a right side view.
FIG. 4 is a plan view showing the shape of a test piece prepared for evaluation of injection weld strength in Examples.
5 is a plan view showing the shape of an injection-welded molded body for injection-welding strength evaluation prepared by injection welding using the test piece shown in FIG. 4 in an example. FIG.
[Explanation of symbols]
1: Rib
a: welded joint

Claims (17)

(A)ナイロン樹脂100重量部に対して、(B)ポリオレフィン系樹脂0.1〜50重量部、及び(C)ガラス繊維10〜150重量部を配合してなり、ナイロン樹脂(複数種使用の場合は配合の多い方のナイロン樹脂)の融点よりも20℃高い温度における溶融粘度の剪断速度依存係数が1.05以上であることを特徴とする溶着用樹脂組成物。
剪断速度依存係数=[低剪断速度時の溶融粘度増加率]÷[高剪断速度時の溶融粘度増加率]
ただし、[低剪断速度時の溶融粘度増加率]=[溶着用樹脂組成物の低剪断速度時の溶融粘度]÷[(B)成分のみを含有しない上記溶着用樹脂組成物の低剪断速度時の溶融粘度]、また、[高剪断速度時の溶融粘度増加率]=[溶着用樹脂組成物の高剪断速度時の溶融粘度]÷[(B)成分のみ含有しない上記溶着用樹脂組成物の高剪断速度時の溶融粘度]を表す。ここで、低剪断速度は60(sec -1 )、高剪断速度は6000(sec -1 )である。
(A) 100 parts by weight of nylon resin is blended with 0.1 to 50 parts by weight of (B) polyolefin resin and (C) 10 to 150 parts by weight of glass fiber . In this case , the welding resin composition is characterized in that the shear rate dependence coefficient of the melt viscosity at a temperature 20 ° C. higher than the melting point of the nylon resin having a higher content is 1.05 or more .
Shear rate dependence coefficient = [Increase rate of melt viscosity at low shear rate] ÷ [Increase rate of melt viscosity at high shear rate]
However, [Increase rate of melt viscosity at low shear rate] = [Melt viscosity at low shear rate of welding resin composition] / [Low shear rate of the above-mentioned welding resin composition not containing only component (B) Melt viscosity at high shear rate] = [melt viscosity at high shear rate of welding resin composition] ÷ [(B) of the above-mentioned welding resin composition not containing only component (B) Melt viscosity at high shear rate]. Here, the low shear rate is 60 (sec −1 ), and the high shear rate is 6000 (sec −1 ).
溶着方法が、振動溶着法、射出溶着法、超音波溶着法、マイクロ波溶着法のうちのいずれかであることを特徴とする請求項1記載の溶着用樹脂組成物。 The welding resin composition according to claim 1, wherein the welding method is any one of a vibration welding method, an injection welding method, an ultrasonic welding method, and a microwave welding method. 溶着方法が振動溶着法であることを特徴とする請求項1記載の溶着用樹脂組成物。 The welding resin composition according to claim 1, wherein the welding method is a vibration welding method. (B)成分のポリオレフィン系樹脂が、ポリエチレン、ポリプロピレン、ポリアクリル酸エステル、ポリメタクリル酸エステル、エチレン/α−オレフィン共重合体、[(エチレン及び/又はプロピレン)と(不飽和カルボン酸及び/又は不飽和カルボン酸エステル)との共重合体のカルボキシル基の少なくとも一部を金属塩化した共重合体]、共役ジエンとビニル芳香族炭化水素とのブロック共重合体、及び、そのブロック共重合体の水素化物から選ばれる少なくとも1種であることを特徴とする請求項1〜のいずれかに記載の溶着用樹脂組成物。The component (B) polyolefin resin is polyethylene, polypropylene, polyacrylate, polymethacrylate, ethylene / α-olefin copolymer, [(ethylene and / or propylene) and (unsaturated carboxylic acid and / or A copolymer obtained by metallizing at least a part of a carboxyl group of a copolymer with an unsaturated carboxylic acid ester], a block copolymer of a conjugated diene and a vinyl aromatic hydrocarbon, and a block copolymer of the block copolymer It is at least 1 sort (s) chosen from hydride, The welding resin composition in any one of Claims 1-3 characterized by the above-mentioned. (B)成分のポリオレフィン系樹脂が、ポリエチレン及び/又はエチレン/α−オレフィン系共重合体であることを特徴とする請求項1〜4のいずれかに記載の溶着用樹脂組成物。 The resin composition for welding according to any one of claims 1 to 4, wherein the polyolefin resin as the component (B) is polyethylene and / or an ethylene / α-olefin copolymer. 前記エチレン/α−オレフィン系共重合体のα−オレフィンが炭素原子数3〜20のα−オレフィンから選ばれる少なくとも1種であり、その共重合量が1〜30モル%であることを特徴とする請求項4または5記載の溶着用樹脂組成物。The α-olefin of the ethylene / α-olefin copolymer is at least one selected from α-olefins having 3 to 20 carbon atoms, and the copolymerization amount is 1 to 30 mol%. The welding resin composition according to claim 4 or 5 . (B)成分のポリオレフィン系樹脂が、不飽和カルボン酸及びその誘導体から選ばれる少なくとも1種の化合物によって変性された変性ポリオレフィン系樹脂であることを特徴とする請求項1〜のいずれかに記載の溶着用樹脂組成物。(B) component of the polyolefin resin, according to any one of claims 1 to 6, characterized in that at least one modified polyolefin resin modified by a compound selected from unsaturated carboxylic acids and their derivatives A resin composition for welding. 変性ポリオレフィン系樹脂が、不飽和カルボン酸、その金属塩、エステル、イミド、酸無水物から選ばれる少なくとも1種の化合物によって変性されていることを特徴とする請求項記載の溶着用樹脂組成物。8. The welding resin composition according to claim 7 , wherein the modified polyolefin resin is modified with at least one compound selected from an unsaturated carboxylic acid, a metal salt thereof, an ester, an imide, and an acid anhydride. . ナイロン樹脂100重量部に対して、(D)銅化合物0.01〜3重量部をさらに配合してなることを特徴とする請求項1〜のいずれかに記載の溶着用樹脂組成物。Against nylon resin 100 parts by weight, (D) a copper compound 0.01-3 welding resin composition according to any one of claims 1 to 8, characterized by being further compounded by weight. 銅化合物が1価の銅化合物であることを特徴とする請求項記載の溶着用樹脂組成物。The welding resin composition according to claim 9 , wherein the copper compound is a monovalent copper compound. 1価の銅化合物がハロゲン化第1銅であることを特徴とする請求項10記載の溶着用樹脂組成物。11. The welding resin composition according to claim 10, wherein the monovalent copper compound is cuprous halide. ナイロン樹脂100重量部に対して、(E)シリコーン系化合物0.1〜5重量部をさらに配合してなることを特徴とする請求項1〜11のいずれかに記載の溶着用樹脂組成物。The welding resin composition according to any one of claims 1 to 11 , wherein 0.1 to 5 parts by weight of (E) silicone compound is further blended with 100 parts by weight of the nylon resin. ナイロン樹脂がナイロン66、ナイロン6およびそれらを主成分とする共重合ナイロンの中から選ばれた少なくとも1種であることを特徴とする請求項1〜12のいずれかに記載の溶着用樹脂組成物。The welding resin composition according to any one of claims 1 to 12 , wherein the nylon resin is at least one selected from nylon 66, nylon 6, and copolymer nylon containing them as a main component. . (A)成分のナイロン樹脂が、(a)ナイロン66、ナイロン6およびそれらを主成分とする共重合ナイロンの中から選ばれた少なくとも1種のナイロン樹脂99〜50重量%、及び、(b)前記(a)以外のナイロンの中から選ばれた少なくとも1種のナイロン樹脂1〜50重量%からなることを特徴とする請求項13記載の溶着用樹脂組成物。 (A) Nylon resin as component is (a) 99 to 50% by weight of at least one nylon resin selected from nylon 66, nylon 6 and copolymer nylon based on them, and (b) 14. The welding resin composition according to claim 13, comprising 1 to 50% by weight of at least one nylon resin selected from nylons other than (a). 請求項1〜14のいずれかに記載の溶着用樹脂組成物からなることを特徴とする溶着用樹脂成形品。Claim 1-14 welding for a resin molded article characterized by comprising the welding the resin composition according to any one of. 請求項1〜14のいずれかに記載の溶着用樹脂組成物からなる樹脂成形品の複数を溶着させることにより得られる溶着樹脂成形体。A welded resin molded body obtained by welding a plurality of resin molded articles made of the welding resin composition according to claim 1. 溶着樹脂成形体が中空を有することを特徴とする請求項16記載の溶着樹脂成形Welding resin molded body according to claim 16, wherein the welded resin molded body and having a hollow.
JP24440099A 1998-10-26 1999-08-31 Welding resin composition and welded resin molded body Expired - Fee Related JP4281165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24440099A JP4281165B2 (en) 1998-10-26 1999-08-31 Welding resin composition and welded resin molded body

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30454498 1998-10-26
JP10-304544 1998-10-26
JP11-121897 1999-04-28
JP12189799 1999-04-28
JP24440099A JP4281165B2 (en) 1998-10-26 1999-08-31 Welding resin composition and welded resin molded body

Publications (2)

Publication Number Publication Date
JP2001011307A JP2001011307A (en) 2001-01-16
JP4281165B2 true JP4281165B2 (en) 2009-06-17

Family

ID=27314341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24440099A Expired - Fee Related JP4281165B2 (en) 1998-10-26 1999-08-31 Welding resin composition and welded resin molded body

Country Status (1)

Country Link
JP (1) JP4281165B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338803A (en) * 2001-03-16 2002-11-27 Ube Ind Ltd Polyamide resin composition excellent in fuel resistance at welded section and fuel member using the same
JP4900579B2 (en) * 2001-03-16 2012-03-21 宇部興産株式会社 Polyamide resin composition excellent in fuel resistance of welded part, parts using the same, and method for producing molded product
JP2007084747A (en) * 2005-09-26 2007-04-05 Nippon Polypenco Ltd Heat-resistant and dimensionally stable monomer-cast nylon molded form
JP4781219B2 (en) * 2006-10-02 2011-09-28 三菱エンジニアリングプラスチックス株式会社 Polyamide resin injection welded molding
WO2008110327A1 (en) * 2007-03-15 2008-09-18 Dsm Ip Assets B.V. Process for welding of two polyamide parts
DE602008003529D1 (en) * 2007-03-19 2010-12-30 Du Pont Polyamide resin compositions
JP4827997B1 (en) * 2010-09-17 2011-11-30 ユニチカ株式会社 Separation method of silicone resin layer
FR3010090B1 (en) * 2013-09-05 2016-09-02 Arkema France FITTINGS FOR TUBES BASED ON A POLYAMIDE COMPOSITION
DE102013218964A1 (en) * 2013-09-20 2015-03-26 Evonik Industries Ag Molding composition based on a partly aromatic copolyamide
EP2878630B1 (en) * 2013-11-28 2019-11-20 LANXESS Deutschland GmbH Polyamide compositions
CN111138849A (en) * 2019-12-31 2020-05-12 浙江普利特新材料有限公司 Color-selectable nylon composite material for laser welding and preparation method thereof
CN112172179B (en) * 2020-09-18 2022-12-06 沈阳航空航天大学 Ultrasonic-resistance hybrid welding method for resin-based composite material
CN112940495A (en) * 2020-12-31 2021-06-11 华南理工大学 Nylon dielectric composite material with high resistance stability and preparation method and application thereof

Also Published As

Publication number Publication date
JP2001011307A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
KR100640714B1 (en) Weldable resin composition, production thereof, and molded product thereof
EP1241221B1 (en) Resin-molded article and process for producing it
JP4281165B2 (en) Welding resin composition and welded resin molded body
KR100626120B1 (en) Resin structure and use thereof
TWI500697B (en) Polyamide moulding composition and use thereof
JP5391509B2 (en) Polyamide resin composition
JPWO2009069725A1 (en) Polyamide resin composition and molded article
JP4078823B2 (en) Barrier multilayer hollow container and method for producing the same
JP2003128846A (en) Resin structure
JPH11335553A (en) Thermoplastic resin composition and molded article
JP4165055B2 (en) Barrier multilayer hollow container and method for producing the same
JP2005067107A (en) Resin-made composite part for automobile
JP2003128056A (en) Multi-layer hollow container with barrier property and its manufacturing method
JP4253946B2 (en) Vibration welding resin composition and molded article
JP2019035042A (en) Polyamide resin composition for vibration welding
JP4003432B2 (en) Barrier multilayer hollow container and method for producing the same
JP2006104222A (en) Polyphenylene sulfide resin composition
JP4387712B2 (en) Containers or accessories for transporting or storing chemicals and / or gases
JP4238382B2 (en) Conductive polyamide resin composition for automobile fuel-based welded parts and conductive molded article
CN114008138B (en) Resin composition and resin molded article formed from the same
JP2007211116A (en) Injection molded canister
WO2021187616A1 (en) Polyamide resin composition
WO2021153123A1 (en) Energy-absorbing member
JP4158224B2 (en) Vibration welding resin composition and molded article
JP2009029903A (en) Polyamide resin composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees