JP4281141B2 - Float glass manufacturing method and apparatus - Google Patents

Float glass manufacturing method and apparatus Download PDF

Info

Publication number
JP4281141B2
JP4281141B2 JP04549899A JP4549899A JP4281141B2 JP 4281141 B2 JP4281141 B2 JP 4281141B2 JP 04549899 A JP04549899 A JP 04549899A JP 4549899 A JP4549899 A JP 4549899A JP 4281141 B2 JP4281141 B2 JP 4281141B2
Authority
JP
Japan
Prior art keywords
tin
molten
bath
molten tin
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04549899A
Other languages
Japanese (ja)
Other versions
JP2000247658A (en
JP2000247658A5 (en
Inventor
泰夫 林
隆司 向井
史朗 谷井
徹 上堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP04549899A priority Critical patent/JP4281141B2/en
Publication of JP2000247658A publication Critical patent/JP2000247658A/en
Publication of JP2000247658A5 publication Critical patent/JP2000247658A5/ja
Application granted granted Critical
Publication of JP4281141B2 publication Critical patent/JP4281141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化錫欠点などの、金属酸化物に由来する欠点を低減させる、フロートガラスの製造方法およびその装置に関する。
【0002】
【従来の技術】
フロートガラスの製造においては、錫浴内の溶融錫への酸素の溶解を削減することが重要である。その理由の一つは、溶融錫中に溶解した酸素が、フロートガラスの下面または上面に付着して製品欠点となる酸化錫の生成原因となるからである。
【0003】
従来、錫浴内の溶融錫と酸素の接触を防止するために、錫浴はできるだけ密閉構造とされ、空気の侵入を防ぐために保護用雰囲気ガスとして高純度の窒素ガスが吹き込まれ、それでもなお侵入する微量の空気中の酸素を除去するために若干の水素ガスが同時に吹き込まれている。なお、空気中の酸素の侵入を防止するために、錫浴内の保護用雰囲気ガスの圧力は錫浴外部の大気圧よりも若干高目に設定されている。
【0004】
【発明が解決しようとする課題】
近年、製造歩留り向上のために、より一層の酸化錫欠点低減が求められている。この要求に応えるためには、溶融錫へ溶解してしまった酸素そのものを除去して錫浴内の溶融錫中の酸素濃度を低下させる直接的な方法をとる必要がある。
【0005】
従来より行われているフロートガラスの製造方法にあっては、錫浴内の溶融錫上部の酸素濃度を低下させることにより、溶融錫への酸素の溶解の削減を図っていた。しかし、いったん溶融錫へ溶解してしまった酸素の濃度を低下させる方法としてはこの方法は間接的であり、効果は限定的である。
本発明は、以上の課題を解決するフロートガラスの製造方法およびその装置の提供を目的とする。
【0006】
本発明は、浴内の溶融の上に溶融ガラスを浮かせて板ガラスを製造するフロートガラスの製造方法において、錫浴内の溶融錫の一部を錫浴から抜き出し、抜き出した溶融錫を錫浴内の溶融錫の最低温度未満であり溶融錫の凝固点よりも高い温度に冷却し、次に、抜き出した溶融錫の中または表面に存在する酸化錫を、酸化錫と反応して気化しうる反応生成物を生成させる物質と反応させて前記反応生成物を生成させ、気化した当該反応生成物を抜き出した溶融錫から除去し、その後、抜き出した溶融錫を錫浴内に戻すことを特徴とするフロートガラスの製造方法およびその装置を提供する。
【0007】
【発明の実施の形態】
フロートガラスの製造においては、通常は溶融金属として溶融錫が用いられ、また製品欠点として問題になる金属酸化物は酸化錫である。以下では、溶融金属として溶融錫を用い、製品欠点として問題になる金属酸化物が酸化錫である場合について述べる。なお、本発明における溶融金属浴または錫浴は概ね密閉構造の槽である。
【0008】
本発明では、錫浴内の溶融錫中の酸素濃度を、錫浴内のすべての場所において、溶融錫に対する酸素の飽和溶解度未満にする。これにより錫浴のいかなる場所においても酸素は過飽和状態になりえない。したがって、過飽和酸素が溶融錫と反応して生成する酸化錫の発生を防止できる。
【0009】
なお、溶融錫に対する酸素の飽和溶解度は温度低下とともに減少し、Trans.Faraday Soc.,61(1965)451頁の(4)式に基づく下式から求められる。下式において、cは原子%表示の酸素の飽和溶解度、Tは絶対温度表示の温度である。
【0010】
【数1】

Figure 0004281141
【0011】
錫浴内の溶融錫中の酸素濃度を、錫浴内のすべての場所において飽和溶解度未満にするためには、錫浴内の溶融錫を一部錫浴から抜き出して、溶融錫に溶解している酸素を溶融錫外に排出して、次に溶融錫を錫浴に戻すことが好ましい。溶融錫の全体ではなく一部を対象とすることにより、溶融錫中の酸素濃度を効率的に低減できる。
【0012】
本発明において、錫浴内の溶融錫中の酸素濃度を、錫浴内のすべての場所において飽和溶解度未満にする方法、すなわち、溶融錫に対する酸素の飽和溶解度が温度低下とともに減少することを利用する方法を以下に説明する。
この方法は、錫浴内の溶融錫を抜き出して、錫浴内の溶融錫の最低温度未満であり錫の融点よりも高い温度に冷却し、次に溶融錫中または溶融錫表面に存在する酸化錫を除去し、次に抜き出した溶融錫を錫浴内に戻すものである。
【0013】
この際、抜き出した溶融錫を錫浴内の溶融錫の最低温度未満であり錫の融点よりも高い温度に冷却することにより、錫浴内の溶融錫の最低温度に対する飽和溶解度以上に溶解している酸素は錫と反応して酸化錫になり、この酸化錫を除去する。その結果、錫浴内に戻された溶融錫の酸素濃度は錫浴内において飽和溶解度未満となる。
酸化錫を除去する方法としては、化学反応を用いる方法が挙げられる。
【0018】
化学反応を用いる方法は、酸化錫と反応して気化する物質と酸化錫とを反応させ、その反応生成物を外部に排出するものである。
酸化錫と反応し、その反応生成物が気体となる物質としては、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、塩化水素、臭化水素およびヨウ化水素が知られており、酸化錫と反応させる物質としてはこれらの群より選ばれる1以上の物質を用いることが好ましい。なかでも、塩化アンモニウムは、酸化錫との反応性、安定性および費用の観点から、より好ましい物質である。
塩化アンモニウムと酸化錫との反応は、反応速度を充分に大きくするために350℃以上で実施することが好ましい。
【0019】
化学反応を用いる方法の有効性を調べるために以下に述べるような実験を行った。
アルミナ坩堝に、酸素濃度が700ppm(1000℃での溶融錫に対する酸素の飽和溶解度)となるように金属錫と酸化錫を秤量のうえ、混合して入れた。合計重量は400gとした。これを窒素雰囲気中で1000℃に加熱し、酸素濃度が700ppmの溶融錫を作製した。その後、1000℃から700℃、600℃、500℃の各温度までゆっくり冷した。その結果、溶融錫表面に酸化錫が生成浮上した。次いで、生成浮上した酸化錫に塩化アンモニウムを反応させて塩化錫にし、気体状態の塩化錫を除去した。
【0020】
溶融錫中の酸素濃度を測定した結果、700℃まで冷したサンプルでは30ppm、600℃まで冷したサンプルでは6ppm、500℃まで冷したサンプルでは0.7ppmであった。これらの値はいずれも各温度における溶融錫に対する酸素の飽和溶解度の値と一致した。
【0021】
フロートガラス製造プラントの錫浴の溶融錫の温度は、通常は錫浴出口で最低となり、その温度は約600℃である。したがって、溶融錫を500℃まで冷却し、その結果生成した酸化錫を塩化アンモニウムにより塩化錫として除去することにより、溶融錫中の酸素濃度を錫浴出口の飽和溶解度(6ppm)より著しく小さい0.7ppmとなしうる。
【0022】
なお、溶融錫中の酸素濃度は二次イオン質量分析法(SIMS)により定量した。SIMSの測定は、溶融錫を急速に冷却して固化させた錫サンプルにCs+ 一次イオンビームを照射し、二次イオンとして発生したO- イオンを検出するものである。定量に用いる標準試料は、イオン注入法により作製した。
【0023】
方法Bを、図1および図2を用いて説明する。図1は本発明の実施形態の一例を示す平面図であり、図2はそのA−A断面図である。
錫浴1には錫循環設備2が設置され、その中を矢印で示すように溶融錫が循環する。
【0024】
錫浴1内の溶融錫の上に浮かせて板状に成形したガラスリボン11を引き出す錫浴出口10付近に溶融錫抜出し口8を設け、そこから溶融錫を抜き出し、酸化錫除去槽3で溶融錫中または溶融錫表面に存在する酸化錫を除去後、溶融錫戻し口9をとおして錫浴1内に戻す。
【0025】
酸化錫除去槽3の溶融錫12の温度は、水冷された冷却板4により、溶融錫抜出し口8における錫温度よりも低く、錫の融点よりも高い温度となるようにする。酸化錫除去槽3の溶融錫12の好ましい温度は、溶融錫抜出し口8における錫温度よりも50℃低い温度である。酸化錫除去槽3を出た溶融錫は電気加熱による加熱板5を用いて昇温された後、溶融錫戻し口9に達する。
【0026】
酸化錫除去槽3においては、溶融錫12の上部空間の窒素雰囲気13中に、矢印で示すように気体導入管6をとおして塩化アンモニウムガスを導入し、酸化錫と反応させる。この反応によって生成した塩化錫ガスは排気管7により、矢印で示すように酸化錫除去槽3の外部に排出される。なお、塩化アンモニウムガスは溶融錫12と同じ温度に加熱された状態で酸化錫除去槽3内部に導入されることが好ましい。
【0027】
通常は錫浴1の最低温度部である錫浴出口10において酸化錫が生成しやすい。したがって、酸化錫をより効率的に除去するためには、図1に示すように溶融錫抜出し口8を錫浴出口10に設けることが好ましい。また、酸化錫が除去された溶融錫を直ちに再度抜き出すことを防止するために、溶融錫戻し口9は溶融錫抜出し口8から離れた場所に設けることが好ましい。具体的には図1に示すように、溶融錫は錫浴下流から抜き出し、錫浴上流に戻すことが好ましい。
【0028】
図3は、フロートガラス製造プラントにおける、錫浴出口での溶融錫の酸素濃度と酸化錫欠点数(酸素濃度が8.1ppmのときの酸化錫欠点数を1とする)をプロットしたものである。錫浴出口の溶融錫の温度は600℃であり、通常は錫浴内における最低温度である。また、600℃における酸素の飽和溶解度は6ppmである。
【0029】
したがって図3から、錫浴出口での溶融錫の酸素濃度を、錫浴内の溶融錫の最低温度(錫浴出口温度である600℃)における飽和溶解度(6ppm)未満にすることにより、酸化錫欠点数が急減することがわかる。
【0030】
【発明の効果】
本発明によれば、酸化錫欠点を削減できるフロートガラスの製造方法およびその装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す断面図。
【図2】図1のA−A断面図。
【図3】錫浴出口での溶融錫の酸素濃度と酸化錫欠点数(酸素濃度が8.1ppmのときの酸化錫欠点数を1とする)の関係を示すグラフ。
【符号の説明】
1:錫浴
2:錫循環設備
3:酸化錫除去槽
4:冷却板
5:加熱板
6:気体導入管
7:排気管
8:溶融錫抜出し口
9:溶融錫戻し口
10:錫浴出口
11:ガラスリボン
12:溶融錫
13:窒素雰囲気[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a float glass manufacturing method and apparatus for reducing defects derived from metal oxides such as tin oxide defects.
[0002]
[Prior art]
In the production of float glass, it is important to reduce the dissolution of oxygen in the molten tin in the tin bath. One reason for this is that oxygen dissolved in the molten tin adheres to the lower or upper surface of the float glass and causes the production of tin oxide that becomes a product defect.
[0003]
Conventionally, in order to prevent contact between molten tin and oxygen in the tin bath, the tin bath has a sealed structure as much as possible, and high-purity nitrogen gas is blown in as a protective atmosphere gas to prevent air from entering, but still intrusions. In order to remove a small amount of oxygen in the air, some hydrogen gas is simultaneously blown. In order to prevent intrusion of oxygen in the air, the pressure of the protective atmosphere gas in the tin bath is set slightly higher than the atmospheric pressure outside the tin bath.
[0004]
[Problems to be solved by the invention]
In recent years, there has been a demand for further reduction of tin oxide defects in order to improve production yield. In order to meet this requirement, it is necessary to take a direct method of removing the oxygen itself dissolved in the molten tin and reducing the oxygen concentration in the molten tin in the tin bath.
[0005]
In the conventional float glass manufacturing method, the oxygen concentration in the upper part of the molten tin in the tin bath is reduced to reduce the dissolution of oxygen in the molten tin. However, this method is indirect as a method for reducing the concentration of oxygen once dissolved in molten tin, and its effect is limited.
An object of this invention is to provide the manufacturing method and apparatus of the float glass which solve the above subject.
[0006]
The present invention relates to a float glass manufacturing method in which molten glass is floated on molten tin in a tin bath to produce plate glass, and a part of the molten tin in the tin bath is extracted from the tin bath, and the extracted molten tin is Cooling to a temperature below the minimum temperature of the molten tin in the bath and above the freezing point of the molten tin, then tin oxide present in or on the extracted molten tin can react with the tin oxide and vaporize It reacts with the substance which produces | generates a reaction product, the said reaction product is produced | generated, the said vaporized reaction product is removed from the extracted molten tin, and the extracted molten tin is returned in a tin bath after that, It is characterized by the above-mentioned. the method of manufacturing float glass, and provides the device.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the production of float glass, molten tin is usually used as a molten metal, and a metal oxide that is a problem as a product defect is tin oxide. In the following, a case where molten tin is used as the molten metal and the metal oxide which is a problem as a product defect is tin oxide will be described. The molten metal bath or tin bath in the present invention is a generally closed tank.
[0008]
In the present invention, the oxygen concentration in the molten tin in the tin bath is less than the saturation solubility of oxygen in the molten tin at all locations in the tin bath. This prevents oxygen from becoming supersaturated anywhere in the tin bath. Accordingly, it is possible to prevent the generation of tin oxide produced by supersaturated oxygen reacting with molten tin.
[0009]
Note that the saturation solubility of oxygen in molten tin decreases with a decrease in temperature. Faraday Soc. , 61 (1965), page 451, the following formula based on formula (4). In the following formula, c is the saturation solubility of oxygen expressed in atomic%, and T is the temperature expressed in absolute temperature.
[0010]
[Expression 1]
Figure 0004281141
[0011]
In order to make the oxygen concentration in the molten tin in the tin bath less than the saturation solubility at all locations in the tin bath, the molten tin in the tin bath is partially extracted from the tin bath and dissolved in the molten tin. It is preferred that the oxygen present be discharged out of the molten tin and then the molten tin is returned to the tin bath. By targeting a part rather than the entire molten tin, the oxygen concentration in the molten tin can be efficiently reduced.
[0012]
The present invention utilizes a method in which the oxygen concentration in the molten tin in the tin bath is made less than the saturation solubility at all locations in the tin bath, that is, the fact that the saturation solubility of oxygen in the molten tin decreases with decreasing temperature. The method will be described below.
This method involves extracting the molten tin in the tin bath and cooling it to a temperature below the minimum temperature of the molten tin in the tin bath and above the melting point of the tin, and then the oxidation present in or on the molten tin surface. The tin is removed, and then the extracted molten tin is returned to the tin bath.
[0013]
At this time, the extracted molten tin is cooled to a temperature lower than the minimum temperature of the molten tin in the tin bath and higher than the melting point of the tin, so that the molten tin is dissolved at a temperature higher than the saturation solubility of the minimum temperature of the molten tin in the tin bath. The oxygen present reacts with tin to form tin oxide, which is removed. As a result, the oxygen concentration in the molten tin back into the tin bath becomes Oite saturated solubility than in the tin bath.
Examples of the method for removing tin oxide include a method using a chemical reaction.
[0018]
In the method using a chemical reaction, a substance that reacts with tin oxide and vaporizes is reacted with tin oxide, and the reaction product is discharged to the outside.
As substances that react with tin oxide and the reaction product becomes a gas, ammonium chloride, ammonium bromide, ammonium iodide, hydrogen chloride, hydrogen bromide, and hydrogen iodide are known and reacted with tin oxide. As the substance, it is preferable to use one or more substances selected from these groups. Among these, ammonium chloride is a more preferable substance from the viewpoints of reactivity with tin oxide, stability, and cost.
The reaction between ammonium chloride and tin oxide is preferably carried out at 350 ° C. or higher in order to sufficiently increase the reaction rate.
[0019]
In order to examine the effectiveness of the method using chemical reaction , the following experiment was conducted.
Metal tin and tin oxide were weighed and mixed in an alumina crucible so that the oxygen concentration was 700 ppm (saturated solubility of oxygen with respect to molten tin at 1000 ° C.). The total weight was 400 g. This was heated to 1000 ° C. in a nitrogen atmosphere to produce molten tin having an oxygen concentration of 700 ppm. Then, it cooled slowly from 1000 degreeC to each temperature of 700 degreeC, 600 degreeC, and 500 degreeC. As a result, tin oxide was generated and floated on the surface of the molten tin. Subsequently, the tin oxide generated and floated was reacted with ammonium chloride to form tin chloride, and gaseous tin chloride was removed.
[0020]
As a result of measuring the oxygen concentration in the molten tin, it was 30 ppm for the sample cooled to 700 ° C., 6 ppm for the sample cooled to 600 ° C., and 0.7 ppm for the sample cooled to 500 ° C. All of these values coincided with the saturation solubility value of oxygen in molten tin at each temperature.
[0021]
The temperature of the molten tin in the float bath manufacturing plant's tin bath is usually lowest at the tin bath outlet and is about 600 ° C. Therefore, by cooling the molten tin to 500 ° C. and removing the resulting tin oxide as tin chloride with ammonium chloride, the oxygen concentration in the molten tin is significantly less than the saturation solubility (6 ppm) at the tin bath outlet. 7 ppm can be achieved.
[0022]
The oxygen concentration in the molten tin was quantified by secondary ion mass spectrometry (SIMS). In the SIMS measurement, a tin sample obtained by rapidly cooling and solidifying molten tin is irradiated with a Cs + primary ion beam, and O ions generated as secondary ions are detected. A standard sample used for quantification was prepared by an ion implantation method.
[0023]
The method B is demonstrated using FIG. 1 and FIG. FIG. 1 is a plan view showing an example of an embodiment of the present invention, and FIG. 2 is an AA cross-sectional view thereof.
The tin bath 1 is provided with a tin circulation facility 2 through which molten tin circulates as indicated by arrows.
[0024]
A molten tin extraction port 8 is provided in the vicinity of the tin bath outlet 10 for drawing out the glass ribbon 11 which is floated on the molten tin in the tin bath 1 and formed into a plate shape. The molten tin is extracted therefrom and melted in the tin oxide removal tank 3. After removing the tin oxide present in the tin or on the surface of the molten tin, it is returned to the tin bath 1 through the molten tin return port 9.
[0025]
The temperature of the molten tin 12 in the tin oxide removing tank 3 is set to be lower than the tin temperature at the molten tin outlet 8 and higher than the melting point of tin by the cooling plate 4 cooled with water. A preferable temperature of the molten tin 12 in the tin oxide removal tank 3 is a temperature that is 50 ° C. lower than the tin temperature in the molten tin extraction port 8. The molten tin that has exited the tin oxide removal tank 3 is heated using an electric heating plate 5 and then reaches the molten tin return port 9.
[0026]
In the tin oxide removal tank 3, ammonium chloride gas is introduced into the nitrogen atmosphere 13 in the upper space of the molten tin 12 through the gas introduction pipe 6 as shown by an arrow, and reacted with tin oxide. The tin chloride gas generated by this reaction is discharged to the outside of the tin oxide removal tank 3 through the exhaust pipe 7 as indicated by an arrow. The ammonium chloride gas is preferably introduced into the tin oxide removal tank 3 while being heated to the same temperature as the molten tin 12.
[0027]
Usually, tin oxide is easily generated at the tin bath outlet 10 which is the lowest temperature portion of the tin bath 1. Therefore, in order to remove tin oxide more efficiently, it is preferable to provide a molten tin outlet 8 at the tin bath outlet 10 as shown in FIG. Further, in order to prevent the molten tin from which the tin oxide has been removed from being immediately extracted again, the molten tin return port 9 is preferably provided at a location away from the molten tin extraction port 8. Specifically, as shown in FIG. 1, the molten tin is preferably extracted from the downstream of the tin bath and returned to the upstream of the tin bath.
[0028]
FIG. 3 is a plot of the oxygen concentration of the molten tin and the number of tin oxide defects (the number of tin oxide defects is 1 when the oxygen concentration is 8.1 ppm) in the float bath manufacturing plant. . The temperature of molten tin at the outlet of the tin bath is 600 ° C., and is usually the lowest temperature in the tin bath. The saturated solubility of oxygen at 600 ° C. is 6 ppm.
[0029]
Therefore, from FIG. 3, by setting the oxygen concentration of the molten tin at the tin bath outlet to be less than the saturation solubility (6 ppm) at the minimum temperature of the molten tin in the tin bath (600 ° C., which is the tin bath outlet temperature), It can be seen that the number of defects decreases rapidly.
[0030]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and apparatus of the float glass which can reduce a tin oxide fault can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a graph showing the relationship between the oxygen concentration of molten tin at the tin bath outlet and the number of defects in tin oxide (the number of defects in tin oxide is 1 when the oxygen concentration is 8.1 ppm).
[Explanation of symbols]
1: Tin bath 2: Tin circulation facility 3: Tin oxide removal tank 4: Cooling plate 5: Heating plate 6: Gas introduction pipe 7: Exhaust pipe 8: Molten tin outlet 9: Molten tin outlet 10: Tin bath outlet 11 : Glass ribbon 12: Molten tin 13: Nitrogen atmosphere

Claims (9)

錫浴内の溶融錫の上に溶融ガラスを浮かせて板ガラスを製造するフロートガラスの製造方法において、
浴内の溶融の一部を浴から抜き出し、
抜き出した溶融浴内の溶融の最低温度未満であり溶融の凝固点よりも高い温度に冷却し、
次に、抜き出した溶融の中または表面に存在する酸化、酸化錫と反応して気化しうる反応生成物を生成する物質と反応させて前記反応生成物を生成させ、
気化した当該反応生成物を抜き出した溶融錫から除去し、
その後、抜き出した溶融錫を錫浴内に戻すことを特徴とするフロートガラスの製造方法。
In the float glass manufacturing method for manufacturing the glass sheet by floating the molten glass on the molten tin in the tin bath,
Extracting a portion of the molten tin in the tin bath from the tin bath,
The extracted molten tin is cooled to a temperature lower than the minimum temperature of the molten tin in the tin bath and higher than the freezing point of the molten tin ,
Next, a tin oxide present in the withdrawn molten tin or surface, is reacted with a substance to produce a reaction product that can be vaporized and reacts with the tin oxide to produce the reaction product,
Removing the vaporized reaction product from the extracted molten tin ;
Its After manufacturing method of float glass, characterized by returning the withdrawn molten tin in the tin bath.
溶融錫を、錫浴の下流から抜き出し、錫浴の上流に戻す、請求項1に記載の製造方法。The production method according to claim 1, wherein the molten tin is extracted from the downstream of the tin bath and returned to the upstream of the tin bath. 前記反応生成物が塩化錫である、請求項1または2に記載の製造方法。The production method according to claim 1, wherein the reaction product is tin chloride. 前記酸化錫と反応して気化しうる反応生成物を生成させる物質が塩化アンモニウムである、請求項1〜3のいずれかに記載の製造方法。The manufacturing method in any one of Claims 1-3 whose substance which produces | generates the reaction product which can be vaporized by reacting with the said tin oxide is ammonium chloride. 錫浴内の溶融錫の上に溶融ガラスを浮かせて板ガラスを製造するフロートガラスの製造装置において、
錫浴内の溶融錫の一部を錫浴から抜き出す溶融錫抜出し口と、抜き出された溶融錫中の酸化錫を除去する酸化錫除去槽と、前記酸化錫除去槽から出た溶融錫を錫浴に戻す溶融錫戻し口とを備えた溶融錫循環設備が設けられ、
前記酸化錫除去槽は、溶融錫の上部空間の窒素雰囲気中に酸化錫と反応して気化しうる反応生成物を生成させる物質を導入する気体導入管と、気化した前記反応生成物を外部に排出する排気管とを有する、
フロートガラスの製造装置。
In a float glass manufacturing apparatus for manufacturing plate glass by floating molten glass on molten tin in a tin bath,
A molten tin outlet for extracting a part of the molten tin in the tin bath from the tin bath, a tin oxide removal tank for removing tin oxide in the extracted molten tin, and the molten tin discharged from the tin oxide removal tank A molten tin circulation facility provided with a molten tin return port for returning to the tin bath is provided,
The tin oxide removal tank includes a gas introduction pipe for introducing a substance that generates a reaction product that can be vaporized by reacting with tin oxide in a nitrogen atmosphere in an upper space of the molten tin, and the vaporized reaction product is externally provided. An exhaust pipe for discharging,
Float glass manufacturing equipment.
前記溶融錫抜出し口と前記酸化錫除去槽との間に、前記錫浴から抜き出した溶融錫を錫浴内の溶融錫の最低温度未満であり溶融錫の凝固点よりも高い温度に冷却する冷却板が設けられた請求項に記載のフロートガラスの製造装置。A cooling plate that cools the molten tin extracted from the tin bath to a temperature lower than the minimum temperature of the molten tin in the tin bath and higher than the freezing point of the molten tin between the molten tin extraction port and the tin oxide removal tank It is provided apparatus for manufacturing a float glass according to claim 5. 前記溶融錫抜出し口が錫浴の下流側に設けられ、前記溶融錫戻し口が錫浴の上流側に設けられている、請求項5または6に記載のフロートガラスの製造装置。The apparatus for producing float glass according to claim 5 or 6, wherein the molten tin outlet is provided on the downstream side of the tin bath, and the molten tin return port is provided on the upstream side of the tin bath. 前記反応生成物が塩化錫である、請求項5〜7のいずれかに記載のフロートガラスの製造装置。The apparatus for producing float glass according to any one of claims 5 to 7, wherein the reaction product is tin chloride. 前記酸化錫と反応して気化しうる反応生成物を生成させる物質が塩化アンモニウムである、請求項5〜8のいずれかに記載のフロートガラスの製造装置。The apparatus for producing float glass according to any one of claims 5 to 8, wherein the substance that reacts with the tin oxide to produce a reaction product that can be vaporized is ammonium chloride.
JP04549899A 1999-02-23 1999-02-23 Float glass manufacturing method and apparatus Expired - Fee Related JP4281141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04549899A JP4281141B2 (en) 1999-02-23 1999-02-23 Float glass manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04549899A JP4281141B2 (en) 1999-02-23 1999-02-23 Float glass manufacturing method and apparatus

Publications (3)

Publication Number Publication Date
JP2000247658A JP2000247658A (en) 2000-09-12
JP2000247658A5 JP2000247658A5 (en) 2005-11-24
JP4281141B2 true JP4281141B2 (en) 2009-06-17

Family

ID=12721078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04549899A Expired - Fee Related JP4281141B2 (en) 1999-02-23 1999-02-23 Float glass manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP4281141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200070283A (en) 2017-11-07 2020-06-17 에이지씨 가부시키가이샤 Float glass manufacturing method and float glass manufacturing apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209742A1 (en) * 2002-03-06 2003-09-18 Schott Glas Production of float glass comprises molding a molten glass on a metal melt between a hot end and a cold end in a metal bath to form a flat glass, and influencing the oxygen concentration of the metal melt
JPWO2004060821A1 (en) * 2003-01-06 2006-05-11 旭硝子株式会社 Glass plate and method for producing the same
FR2866328B1 (en) * 2004-02-16 2006-05-26 Saint Gobain LEAD FLAT GLASS BY FLOATING ON A METAL BATH
WO2005082797A1 (en) * 2004-02-27 2005-09-09 Pilkington Plc Method for removing impurities from molten tin
DE102004045666B4 (en) 2004-09-18 2007-04-19 Schott Ag Special floated glass and process for its production
DE102007022480B9 (en) 2007-05-14 2010-04-29 Schott Ag Method and device for separating contaminants from the bath metal from float glass plants
US8906170B2 (en) * 2008-06-24 2014-12-09 General Electric Company Alloy castings having protective layers and methods of making the same
KR101031711B1 (en) * 2008-10-02 2011-04-29 주식회사 엘지화학 Method for manufacturing float glass and apparatus for manufacturing the same
KR101106415B1 (en) * 2011-02-08 2012-01-17 주식회사 엘지화학 Apparatus for manufacturing float glass
CN117163919B (en) * 2023-11-02 2024-02-23 浙江百能科技有限公司 Hydrogen production system and method based on ammonia

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200070283A (en) 2017-11-07 2020-06-17 에이지씨 가부시키가이샤 Float glass manufacturing method and float glass manufacturing apparatus

Also Published As

Publication number Publication date
JP2000247658A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP4281141B2 (en) Float glass manufacturing method and apparatus
Xi et al. A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon
JP6311877B2 (en) Treatment method for fluorine-containing electrolyte
CN101665253B (en) Polysilicon purification method and crucible and purification device used for polysilicon purification
JP6124001B2 (en) Treatment method for fluorine-containing electrolyte
JP2015092466A (en) Method for processing fluorine-containing electrolyte
Zhang et al. Purification of praseodymium to 4N5+ purity
JP2000247658A5 (en)
CN110203886B (en) Fused salt deoxidation method using nitrogen trifluoride as fluorinating agent
Gerold et al. Towards a sustainable approach using mineral or carboxylic acid to recover lithium from lithium iron phosphate batteries
EP1243000B1 (en) A method of separating uranium from irradiated nuclear fuel
CN107058761A (en) Drop is except the method for nitride in lithium metal or lithium alloy
Shiokawa et al. Preparation of high purity uranium metal from aqueous solutions
JP3909100B2 (en) Method of treating nuclear targets and / or fuels based on metallic aluminum with tetramethylammonium hydroxide solution
KR101180353B1 (en) Refining method of Phosphorus and other impurities from MG-Si by acid leaching
EP0259747B1 (en) Continuous dissolution method and apparatus for spent nuclear fuel
JP5288274B2 (en) Nickel material and nickel material manufacturing method
JPH11248880A (en) Method for treating spent fuel
JP3415273B2 (en) Method and apparatus for etching silicon or silicon oxide and method and apparatus for preparing sample for impurity analysis
NO844966L (en) ADDITIVE FOR METALLURGICAL LIQUIDS, PROCEDURES AND APPARATUS FOR MANUFACTURING THEREOF
JP3117871B2 (en) Method and apparatus for pickling steel
WO2010126016A1 (en) Method for removing impurities from flux
RU2190671C2 (en) Method of processing uranium metal-based nuclear fuel
JPS5644727A (en) Removing method for mercury in smelting gas
Wheeler Jr et al. Reaction of dimethyl ether-boron trifluoride with quaternary alkyl ammonium halides

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees