JP4280947B2 - Molded panel and method for producing and disassembling the same - Google Patents

Molded panel and method for producing and disassembling the same Download PDF

Info

Publication number
JP4280947B2
JP4280947B2 JP04628299A JP4628299A JP4280947B2 JP 4280947 B2 JP4280947 B2 JP 4280947B2 JP 04628299 A JP04628299 A JP 04628299A JP 4628299 A JP4628299 A JP 4628299A JP 4280947 B2 JP4280947 B2 JP 4280947B2
Authority
JP
Japan
Prior art keywords
resin
layer
adhesive
design
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04628299A
Other languages
Japanese (ja)
Other versions
JP2000238159A (en
Inventor
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04628299A priority Critical patent/JP4280947B2/en
Publication of JP2000238159A publication Critical patent/JP2000238159A/en
Application granted granted Critical
Publication of JP4280947B2 publication Critical patent/JP4280947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Laminated Bodies (AREA)
  • Molding Of Porous Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、意匠性を有する成形パネルとその製造方法並びに解体方法に係り、さらに詳しくは発泡樹脂、特に廃棄された断熱材や緩衝材などの粉砕物を断熱層として使用した構造物の形成に関するものである。
【0002】
【従来の技術】
環境保護を目的とした緩衝材、断熱材および構造材など、再利用が困難な使用済みの発泡樹脂成型品の処分量の減量、さらに廃棄または燃焼に供する際に発生する有害物質や有害ガスの発生を無くするため、これら発泡樹脂を有効活用または再利用する用途および技術が求められている。
【0003】
なかでも、発泡ポリスチレンと発泡ウレタンは、軽量で緩衝特性、断熱特性に優れ、目的に応じた任意の密度と幅広い剛性が選択可能である上、安価で優れた成形性を有するなどの利点を備え、多種多様な製品の搬送時における梱包および緩衝材、冷蔵庫や住宅の断熱材、構造材として多く用いられている。
【0004】
これら発泡樹脂のうち、断熱材や構造材を中心とする硬質の発泡体に関しては特開平8−258160号公報において、建材や冷蔵庫などの廃棄物から得た発泡ウレタンを2mmの平均粒径に粉砕したものにイソシアネートなどの接着剤を混合して硬化させることによって得たスラブから任意の成型品を得ることにより、衝撃消音材や断熱材に再利用する方法を提案している。また、特開平10−78192号公報では真空断熱パネルの外殻内にて、大気圧を受けて変形するのを防止してその形状を維持する機能を有する芯材に前記方法によるスラブの切り出し品を用いることが述べられている。
【0005】
【発明が解決しようとする課題】
これに対し、これら発泡樹脂の廃棄物を断熱材として製品に応用することが十分に達成されておらず、現状において、断熱を必要とする部位に成型品を貼り付けるか、または原料を散布して直接的に成形する手段によって成されている。
【0006】
例えば、天井埋込型の空気調和機の意匠パネルの断熱について、特開平2−153730号公報には、意匠面を構成する塩化ビニルの成型品にポリエチレンシートを介してゴム系接着剤によって発泡ウレタンの裁断などによる加工品を貼り付ける方法を示しているが、工数が多くなって製造コストが高くつく上、意匠面を構成する成型品の材料には塩素原子が含まれて成るので、処理に支障を来すという問題点もある。
【0007】
さらに、この問題を改善する為になされた特開平6−328500号公報によれば、図17に示すような空気調和機用パネルが提示されている。この従来の空気調和機用パネルは意匠面を構成する成型品に、ABS樹脂などのスチレン系樹脂を用いた樹脂成型品32を金型33で固定した後に、発泡ポリスチレンなどの発泡樹脂34を投入して発泡させ、前記成型品と一体化させたものであり、ここで用いる一連の材料には塩素原子が含まれず、工数が少なくなって製造コストが安くなるという利点を得ることが出来た反面、廃棄物の活用および製品廃棄の容易性に有効となる配慮が成されておらず、従って、当該部品を用いた製品の廃棄時においては、前記部品の成型品に用いた樹脂と発泡樹脂を分別するには機械的に引き剥がすことになり、単独材料としての回収率低下と過度な労力を必要とする状況を生むことになる。
【0008】
本発明は上記課題を解決するためになされたものであり、廃棄された発泡樹脂などの粉砕品を活用して成型品である部品構造およびその製造方法を得ること、さらに得られた成型品に用いられた材料が再利用が可能な状態に容易に分別できる解体方法を得ることを目的とする。
【0009】
【課題を解決するための手段】
本発明の第1の発明に係る成形パネルは、任意に着色された樹脂を賦形して意匠面を形成する意匠層と、この意匠層の反意匠面上に散布され、前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤と発泡樹脂の粉砕物を混合した樹脂混合物を熱成形により前記意匠層と一体化した断熱層と、を備え、前記断熱層は、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物を配設して剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物を配設して前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すものである。
【0010】
本発明の第2の発明に係る成形パネルは、意匠層と断熱層の間に、繊維を無秩序な配向状態で保持して成る不織布状のシートを備える。
【0011】
本発明の第3の発明に係る成形パネルは、断熱層の意匠層と反対側の表面が、繊維状物質を無秩序な配向状態で保持して成る難燃性のシートと一体化して被われて成るものである。
【0013】
本発明の第の発明に係る成形パネルの製造方法は、意匠面を成す樹脂をシート状に成形する工程と、発泡樹脂の粉砕物を複数の異なる粒径に選別する工程と、選別した各々の前記粉砕物と前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤を混合し、あらかじめ定めた粒径より小さい粉砕物の表面には前記接着剤を過剰に付着させ、前記あらかじめ定めた粒径より大きい粉砕物の表面には、前記接着剤を適度に付着させ、断熱層を構成する樹脂混合物を得る工程と、前記意匠層を成すシート状の成形物上に前記樹脂混合物のうち、前記粒径の小さい樹脂混合物から順次散布する工程と、前記工程で得られた樹脂混合物を散布したシートを熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、を備える。
【0015】
本発明の第の発明に係る成形パネルの製造方法は、意匠面を成す樹脂をシート状に成形する工程と、発泡樹脂の粉砕物を複数の異なる粒径に選別する工程と、選別した各々の前記粉砕物と前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤を混合し、あらかじめ定めた粒径より小さい粉砕物の表面には前記接着剤を過剰に付着させ、前記あらかじめ定めた粒径より大きい粉砕物の表面には、前記接着剤を適度に付着させ、断熱層を構成する樹脂混合物を得る工程と、断熱層を構成する樹脂混合物を得る工程と、繊維を無秩序な配向状態で保持して成る不織布状のシートを成形する工程と、前記意匠層を成すシート状の成形物上に前記不織布状のシートを載置し、前記樹脂混合物のうち、前記粒径の小さい樹脂混合物から順次散布し成形前駆体を形成する工程と、前記成形前駆体を熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、を備える。
【0016】
本発明の第の発明に係る成形パネルの製造方法は、成形前駆体を成形する工程において、断熱層を構成する樹脂混合物を散布した後に、さらに繊維状物質を無秩序な配向状態で保持して成る難燃性のシートを前記樹脂混合物の上に載置するものである。
【0017】
本発明の第の発明に係る成形パネルの製造方法は、意匠層を形成する樹脂をシート状に成形する工程と、前記工程で得られたシートを熱成形して意匠層を成す成型品を得る工程と、前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤と発泡樹脂の粉砕物を混合して断熱層を構成する樹脂混合物を得る工程と、前記工程で得られた前記樹脂混合物と前記樹脂混合物の表面に付着されない過剰な前記接着剤とを前記成型品内に充填する工程と、前記成型品内に充填する工程で得られた前記樹脂混合物を充填した成型品に上下方向の微振動を付与し、前記粉砕物のうち小さい粒径の粉砕物を過剰の接着剤とともに前記意匠層近傍に沈降させ、表面に適度な前記接着剤が付着した粒径の大きな粉砕物を上方向に浮上させる工程と、前記微振動を付与し、前記樹脂混合物を充填した成型品を熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、を備える。
【0018】
本発明の第の発明に係る成形パネルの製造方法は、発泡樹脂の粉砕物が、断熱材を含む製品などから回収したものを粉砕したものを用いたものである。
【0020】
本発明の第の発明に係る成形パネルの解体方法は、請求項1〜3のいずれかに記載の成形パネルまたは、請求項4〜8のいずれかに記載の製造方法によって得た成型パネルを、意匠層を成す熱可塑性樹脂の軟化温度よりも高い温度で加熱した後、前記意匠層の表面に押圧を加えて前記意匠層と前記断熱層との境界面に剪断力を生じさせ、その後、あらかじめ定められた温度まで冷却した後、衝撃的な振動を付与し、解体を行うものである。
【0021】
【発明の実施の形態】
実施の形態1.
以下、図示の実施形態に基づき本発明を説明する。図1は本発明の請求項1に係る成型品である成形パネルを下から見た場合を示す斜視図であり、図2は図1の内部構造を示すA−A断面図、図3は本発明の請求項4、10に係る成形パネルの成形方法を示す製造工程図である。
【0022】
本発明の成形パネル1について説明する。図1に示す態様は天井に吹き出し口を有する空気調和機に用いられるものであり、意匠面は任意に着色されて平滑性を有する面で構成され、反意匠面側には冷気の吹き出しに伴って成型品の温度が下がって意匠面が結露するのを防止する機能を備えた断熱材と、場合によっては機器本体への取り付け金具とが備えられている。
【0023】
断熱材を備えた断熱層2は、図2の断面図で示す内部構造のように、意匠面を構成する成形パネルである意匠層3と接着して一体化し、さらに断熱層2と意匠層3とが接合する部位には、金具などの他の部品を、場合によっては成形パネル1との当接部に接着剤などを補助的に要しながら配することによって保持する機能を有する。
【0024】
しかも、意匠層3上に備えた断熱層2は、意匠層3と一体成形したものであるから、熱の漏洩箇所となる継ぎ目を持つことなしに成形されて断熱の欠陥部がないので、張り合わせによって施工された断熱層2に比較して薄肉であってもよい。
【0025】
次に、本態様に係る成形パネル1の製造方法を図3の製造工程図と図4に示す成形装置の概念図を用いて説明する。まず、未使用で任意に着色したABS樹脂8を第1の押出機6で意匠層3となるABS樹脂シート10を形成する(S−1)。このABS樹脂シート10は、通常、無着色の樹脂重量に対して0.5〜1.5%の顔料を用いて着色に供して成る肉厚が1.4mmであるが、意匠層3との積層に供する断熱層2が一定ではない着色むらや異なった色を呈することから、シートの肉厚をそのままにするか、場合によっては通常より厚くした1.8mmにして隠蔽力を増加させる方法もある。
【0026】
しかし、後の工程で、廃棄された冷蔵庫などから回収した発泡樹脂の粉砕物を含む樹脂混合物を裏打ちして補強効果が得られることから、顔料の濃度を通常より多い2.0〜5.0%を用いて濃い着色を備えたうえで肉厚を0.5mmにまで薄肉化することによって、使用する未使用の樹脂量を削減と成形パネルの軽量化を両立させるとともに、環境保護を含めた種々効果が得られるので、好ましい。
【0027】
一方、意匠層3と積層に供する断熱層2は、使用済みで廃棄に処された冷蔵庫などに含まれる断熱材である発泡樹脂を回収し、回転刃を備えたクラッシャーなどを用いて粉砕を行い、適度な大きさの粉砕物を得た(S−2)後、低融点で接着機能を備えた樹脂との混合物を得る(S−3)。ここで用いる発泡樹脂の粉砕物4は、5mm以下、好ましくは0.5〜2mmの範囲ものを用いる。また、接着に供する樹脂は、意匠層3を形成する着色したABS樹脂よりも低い融点を有することが必要である。もし、ここで融点が断熱層2よりも高い場合には、意匠面を成す意匠層3と積層したシートを熱成形する際に、製品の意匠面を成す樹脂の成形温度が過度に高くなるので、意匠面の光沢を損なわせたり変形させるなどの意匠性の低下を招くか、それらを防止するために熱成形後の冷却時間を長くするなどの不具合を招く。
【0028】
以上のことから、断熱層2に用いる低い融点の樹脂としてはEVA樹脂(樹脂エチレン・酢酸ビニル共重合体樹脂)が好ましく、特に酢酸ビニル含有率が5〜7%のものは、接着性に優れて可とう性を有する性質を有するので、意匠層3と強固に積層して一体化する。しかも、本実施の形態における意匠性形パネルの意匠層3に用いるABS樹脂と比較して20〜40℃の低い軟化点温度であるから、ABS樹脂の熱成形条件を保持すれば、上述した如くの意匠面の光沢損失や変形などの意匠性の低下および成形時間の延長などの不具合を招くことがない。
【0029】
次に、断熱層2に用いる発泡樹脂の粉砕物4と20重量%以下で可能な限り少量のEVA樹脂5を含有する混合樹脂混合物を得るべく、第2の押出機9を用いて加熱下で撹拌混合するとともにシートの成形を行った(S−4)。このとき、押出機を用いた撹拌混合時の温度は、EVA樹脂が溶融する110〜170℃が好ましく、140〜155℃が特に好ましい。もし、発泡樹脂の粉砕物4中の発泡樹脂は熱硬化性樹脂であるウレタン樹脂で形成されており、この温度条件下ではガラス転移温度を超えてゴム状形態を示しているので、第2の押出機9内での混合の際には発泡の気泡が容易に破壊されて内部のガスが排出されるようになるが、混練の過程でこのガスを押出機のガス排気を行うために設けられたベントなどから排出させず、樹脂混合物が発泡したシートとして得るようにすることが肝要である。
【0030】
次に、上記方法によって得られた発泡樹脂の粉砕物4とEVA樹脂5が第2の押出機9によって混練されて発泡状態にある樹脂混合物から成る樹脂混合物のシート7を断熱層2とし、未使用で任意に着色したABS樹脂8を第1の押出機6により成形したABS樹脂シート10を意匠層3とを積層した(S−5)積層シート11を得る。S−4とS−5の両工程は、図4に示す成形機で同時に行なうが、この時、積層のために両シートを接着するロール12による加圧は、前記樹脂混合物に含まれる気泡が独立した状態であるから、厚みを揃えるが如くの軽微なものであることが好ましく、押し出したシート厚さの10〜20%を圧縮する程度に調整した加圧力を付加することが好ましい。一方、第1の押出機6からシート状に押し出したABS樹脂シート10を、第1の冷却ロール13でEVA樹脂を含む樹脂混合物と同等のシート表面温度に調整して前記組成物のシートと一体化することにより、両樹脂材料が十分に密着して積層した積層シート11を得る。その後、さらに積層シート11を第2の冷却ロール14を用いて押圧を付与することによって層間が完全に固化して接着できるとともに、シート表面のうち、少なくとも着色したABS樹脂シート10の表面層が平滑となって優れた意匠性が確保できることになる。
【0031】
このようにして得られた積層シート11は、端辺をナイフおよびシャー15などを用いて切除することによって成形パネルの成形に必要な任意の大きさの積層シート11aを得る(S−6)。
【0032】
前記工程S−6で得られた積層シート11aは、真空および圧空、またはそれらを併用する熱成形方法によって意匠面を金型に押し付ける熱成形によって成型品である成形パネル1を得た(S−7)後、不要な部分を切断して排除を行うトリミングを行えば(S−8)、断熱性に優れた所望の意匠性形パネル1が得られる。
【0033】
熱成形は、図5に示す真空・圧空併用成形機16により行う。図5は真空・圧空併用成形機の断面図である。この真空・圧空併用成形機16により、予備的に積層シート11と金型18の間にある真空箱19内に給気することによって積層シートを予備的に延伸させることにより、肉厚の差異である偏肉が少なくなり、しかも、その後の金型18からの排気とともに圧空箱20への給気を同時に行うので、意匠層3の延伸を伴う成形によって断熱層2との間に剪断力が作用して両層が遊離するのを防止して一体化した状態を保持する上で好ましい。
【0034】
次に、熱成形方法である真空・圧空併用成形について、図6の製造工程図を用いて以下に詳しく説明する。まず、前記積層シートの温度を意匠層3の軟化点をやや上回る温度にまで加熱(S−11)する。このときの温度は140〜170℃であり、断熱層2に含まれるEVA樹脂は融点を超えて特に応力を付与せずとも自由に変形させる状態にあるが、決して流れ落ちることのないように酢酸ビニルの含有量や分子量の調整したものを用いることが肝要である。また、断熱層2が上面となるように真空・圧空併用成形機16内の金型配置を設定しておくことも有効である。
【0035】
次に、軟化点以上に昇温して軟化した積層シート11aに真空箱19を備えた金型18を当接させた後、真空箱19内に排気管41から空気を送り込んで積層シートを金型18と反対方向に膨らませて適度な延伸を与えた後(S−12)に、真空箱19内の空気を排出して系内を減圧真空状態を得ることによって金型18表面に第2層を密接させる(S−13)。この成型品の形状は深い絞り構造でないので、成形(S−13)時に積層したシートが剥離することはほとんどないうえ、積層シート11aの成形を行う前工程(S−13)で加圧ロールを用いた押圧付与が十分であれば、これら一連の工程(S−11、12)にある加熱状態下で層間が剥離することはない。
【0036】
しかし、形状の一部にでも複雑な構造を有したり、開口部が狭いなどして絞りが深くなる部分があったりすると、前記シートの下部にある意匠層3のABS樹脂シートの延びが上部にある断熱層2である樹脂混合物のシートよりも速くなり、剪断力の発生に伴って層間が剥離することもあるので、金型18と反対面の積層シート11a上にある圧空箱20に空気を送り込んで加圧すれば、成形工程(S−13)における層間の剥離を防止する効果が得られる。また、上金型を設けて加圧することも有効であるが、複雑な形状には対応しにくい上にコスト上昇を招く。
【0037】
さらに、金型18に密着して賦形した積層シートは、変形を来すことのない温度にまで樹脂温度を冷却する(S−14)ことによって、取出し時にかかる応力によって変形するのを防止するとともに、金型との離型時に意匠面である意匠層3が円滑に離脱して成型品表面が他の平滑性を転写した艶を確保でき、意匠性に優れた成型品を得る(S−15)ことが出来る。
【0038】
以上のように、廃棄された各種成型品から回収した発泡樹脂の粉砕物を好適に取込んで有効活用できる上、発泡樹脂の粉砕物同志の接触により形成した空隙と発泡樹脂が気泡内に保有するガスの分散によって新たに発泡した状態となり、また、低い軟化点を有する優れた接着性を有する樹脂シートを形成することができ、これを断熱層として意匠面を形成する成型品に積層して断熱機能を保有することができる。
【0039】
また、発泡樹脂の粉砕物を含む樹脂混合物をシート状態にして意匠層を成す樹脂シートとともに一体化した積層シートを形成したので、従来の真空・圧空併用成形機を特別な改造を施すこと無しに用いることが可能である。しかも、積層シートは板状で安定した形態を成すので保管が容易であることから、樹脂混合物を得て積層シートを成形する一連の工程と成形パネルを成形する工程とを必ずしも連動させる必要がないので、材料の仕掛かり調整に関して都合がよい。
【0040】
実施の形態2.
本発明の実施の形態に基づいて得られる意匠性形パネルの外観及び構造は実施の形態1の図1及び図2と各々同じであるので、以下、本発明の請求項5、6および10に係る成形パネルの製造方法を図7に示す工程図及び図8に示す樹脂混合物の散布状態と成形方法の説明図を用いて説明する。
【0041】
まず、包装用の梱包材や冷蔵庫などから回収した断熱材などに用いられている発泡ウレタンを、セルの壁を過度に壊すことなく、0.2〜15mm、好ましくは1〜10mmの大きさの範囲に粉砕した(S−21)後、これを複数の大きさの粒度に分級する(S−22)。本態様では、3mmを境界として微粒と粗粒に分級した。
【0042】
次に、これとは別に接着剤である半硬化状態のエポキシ樹脂を調整しておき、これと前記の分級した発泡ウレタンの粉砕物4と混合する(S−23)。ここで用いるエポキシ樹脂は微粉末状であるから、発泡ウレタンの粉砕物4同志が擦れて発生する静電気によって粉砕物4の粒子表面に均一に付着する状態が得られるとともに、後段の熱成形において賦形させる際の塑性変形に支障を来すことなしに円滑に行える上に、意匠層3に局部的で過度の応力を付与して変形を来すことのない低い融点と短時間の加熱で硬化が進行する高活性なものであることが好ましく、一例として、本実施の形態で用いた接着剤の組成を表1に示す。
【0043】
【表1】

Figure 0004280947
【0044】
以上の原料を用いた接着剤の製造方法を以下に述べると、まず、これらの原料を均一に混合後、例えばポリエチレンテレフタレートやアルミ箔などの耐熱性と柔軟性を有するシート上に薄く散布した後、これを90℃の恒温槽中で10分間の乾燥処理を行ってアセトンの除去と予備反応を進行させる。得られた接着剤である半硬化状態のエポキシ樹脂は非常に脆くて容易に粉砕できる状態にあるから、混合時には微粉末状態を確保できるので、必ずしも事前に粉砕を行う必要が無く、前記シートから剥がしたままの状態で用いることも可能である。
【0045】
また、実施の形態1と同様に、室温状態にて粉末状態のホットメルト型の接着剤を用いてもよく、発泡ウレタンの熱変形温度以上の高温で接着機能を発現して緩衝材の成形に寄与しうるものであるパラフィン系、アミド系などのホットメルト型接着剤を用いることも有効である。しかし、発泡ポリスチレンなどの熱可塑性樹脂を備えた発泡樹脂の粉砕物をこれらホットメルト型の接着剤を用いて接着するには、粉砕物が溶融などの永久的な変形を来すこと無しに十分な接着性を得るうえで、発泡樹脂の熱変形温度よりも相当に低い融点のものしか使用できないという制約を生み、次工程である発泡樹脂粉砕物との混合時に前記発泡樹脂の表面に粉砕物同志の摩擦によって発生する静電気を利用して粉末状態で前記粉砕物表面に付着させる上で、低温状態を維持して行う必要があるなどの課題を残すので、先に述べた半硬化状態のエポキシ樹脂を用いることが好ましい。
【0046】
以上に述べた接着剤である半硬化状態のエポキシ樹脂と工程(S−22)で得られた分級済みの粉砕材とを、混合羽根を備えた混合機や回転ドラムなどを用いて行う。互いの粉砕粒子を接合させる上で、粉砕材の表面に静電付着に供する接着剤である半硬化状態のエポキシ樹脂の量は、ほぼ同重量を添加することで十分な効果が得られる。この混合時に発生する静電気によって粉砕物表面に吸着に付さない余剰の接着剤は、粗粒の粉砕物と混合した(S−23b)ものは排除するが、微粒の粉砕物と混合した(S−23a)ものは意匠層3に当接する断熱層2の空隙を少なくして剛性に優れた層を形成する上で有効に作用するので、そのまま前記散布に供した。
【0047】
次に、未使用で任意に着色したABS樹脂を押出し成形などによってシート状に形成(S−24)した意匠層3を成す樹脂シート21を別途に作成しておき、その反意匠側の面に、図8(a)に示す状態で発泡樹脂粉砕物と半硬化状態のエポキシ樹脂の混合物である樹脂混合物22を、前記発泡樹脂粉砕物を含む発泡ウレタンの粉砕物のうち、分級して小さい粒子微粉を含むもの23を散布した(S−25a)後、大きい粒子粗粉を含むもの24を散布した(S−25b。)次に、これを70℃に加温した成形用の金型上に外周を固定した状態で載置し、予備加熱(S−26)により175℃に昇温して意匠面側の層となる前記シートを図8(b)に示すように、下金型18aにある空気を排気口25から排気して真空成形を行う(S−27)。このとき、樹脂混合物に含まれる半硬化状態のエポキシ樹脂は溶融するが、発泡樹脂の粉砕物の表面に付着しているのみであるから、決して前記シート上に流れ出すことが無い。従って、樹脂混合物は凹状になった前記真空成形によって凹状になった意匠面を成すABS樹脂の意匠層3の上に滑り落ちるようにして留まる。
【0048】
このように、予め分級した発泡ウレタンの粉砕物を含む樹脂混合物を使い分けた分散を行うことによって、下方位置にある意匠層3近傍に微粒粉砕物と過剰の接着剤との混合物を配設し、断熱層2側には粒子間の空隙を保持して断熱層2の密度を低くするように、粗粉粉砕物を適度に接着させる接着剤との混合物を配設できた。
【0049】
このままの状態でエポキシ樹脂が完全硬化するまで保持しても断熱層2の形成を達成することは可能であるが、強度や脆さが不足して以降に行う空気調和機の製品組立工程における取り扱いを困難とする可能性がある。従って、次に、エポキシ樹脂の硬化を促すとともに意匠面に過度な温度上昇を来さないよう、80〜140℃に調整した上、図8(c)に示すように金型26を反意匠面に散布した発泡樹脂粉砕物などの層に当接するまで下降させて、1kg/cm2以下、好ましくは0.2〜0.5kg/cm2の圧力を付与して当該層を圧縮する(S−28)。この状態で15分間の保持することによって、接着剤であるエポキシ樹脂が硬化して発泡樹脂の粉砕物22の粒子同士が接触して形成される適度な空隙に対して、圧縮によって、過度の空隙を減容して互いの粒子を密着できると共にABS樹脂シートにも圧接され、かつ表面の平滑性をも確保して固化して断熱層2を形成する。その後、成型品を取り出した後、図8(d)に示す如く、不要な部分を切断して排除するトリミングを行えば(S−29)、断熱性に優れた所望の意匠性形パネル1を得ることができる。
【0050】
以上のように、半硬化状態のエポキシ樹脂を接着剤として、本来は廃棄物である断熱材などの発泡樹脂を粉砕した粉砕物を意匠面を形成する成型品の裏面に散布して簡易な真空成形によって空気調和機などの成形パネル1を得たので、結露防止の断熱層2の賦形工程が一度で済み、効率よく形成することができる上、熱成型時の熱を用いて接着剤を硬化して断熱層2を固化したので、意匠層2に再度の熱を付与する必要が無くなり、意匠層3の加熱による意匠性を低下させる不具合が生じない。
【0051】
また、シート21上に樹脂混合物22を直接に載置して成形に供したので作業工程が簡素化できて効率化を達成できた。さらに、予め分級した発泡ウレタンの粉砕物を含む樹脂混合物22を使い分けたので、意匠層3の近傍に微粒粉砕物と過剰の接着剤との混合物を配設して意匠層3の裏打ち材として剛直な層が形成して応力の付与によって変形を来し難い成型品を得ることができる。また、断熱層2には粗粉砕物が好適に接着して粒子間の空隙を保持して成るを得たので、密度が低く、断熱性能に優れる断熱層2を得ることができた。
【0052】
なお、ここでは接着剤として半硬化状態のエポキシ樹脂を用いたが、意匠面を形成する樹脂に対して溶解やクレイジングなどの不具合を侵すことのない組成の接着剤であれば、液状のものを用いても良く、同様の効果が得ることができる。また、意匠層3を形成するABS樹脂よりも低い融点の接着に供する樹脂であって、接着性に優れて可とう性を有するEVA樹脂のうち、好ましくは意匠層3に用いるABS樹脂と比較して軟化点が20〜40℃もの低い温度である酢酸ビニル含有率が5〜7%の粉末状のものを接着剤として用いることが好ましい。
【0053】
実施の形態3.
本実施の形態で述べる態様は、本発明の請求項1〜3および5、6、8に係るものであり、図9は本実施の形態を示す成形パネルの構造を示す断面図、図10は製造方法を示す製造工程図である。
【0054】
まず、本発明の成形パネル1について図9を用いて説明する。成形パネル1は反意匠面側にある断熱層2の表面部分および意匠面を成す意匠層3と前記断熱層2との当接面部分にガラス繊維の不織布27を配設して一体化して成り、実施の形態2と比較すれば、発泡樹脂粉砕物と接着剤である半硬化状態のエポキシ樹脂の混合物である樹脂混合物を用いた場合の取り扱いが容易になると共に、断熱層2の表面部分を被うガラス繊維の不織布27によって燃焼に対する耐性が向上するものである。
【0055】
次に、図10の製造工程図及び図11に示す成形品の部材の配設と成形方法の説明図を用いて本発明に係る成形パネルの成形方法について以下に説明する。工程S−31からS−33は実施の形態2と同内容の工程であり、まず、使用済みで廃棄に処された冷蔵庫などに含まれる断熱材である発泡樹脂を回収し、回転刃を備えたクラッシャーなどを用いて粉砕を行い、0.2〜15mmの大きさの範囲の適度な大きさの粉砕物を得た(S−31)。この発泡樹脂粉砕物を実施の形態1と同様に、表1で示す組成のエポキシ樹脂を加熱乾燥処理して得た半硬化状態の粉末とを混合羽根を備えた混合機や回転ドラムなどを用いて混合(S−32)して前記粉砕物と前記接着剤の樹脂混合物を得る。さらに、任意に着色したABS樹脂シートを別途に、押出し成形などによって形成(S−33)した。
【0056】
以降の工程が実施の形態2と異なる工程となる。まず、工程S−33により作成した意匠面を成すABS樹脂シートの反意匠側の面上に、別途に作成していた表1に示す組成の樹脂を含浸した後に乾燥させたガラス繊維の不織布を載置する。このガラス不織布は、表1に示す樹脂液にガラス繊維の不織布を浸漬(S−34)した後、90℃の恒温槽中で10分間の乾燥処理(S−35)を行って得たものなので、得られたシートはガラス繊維に非常に脆い半硬化状態のエポキシ樹脂が付着して成るプリプレグ28であるから、脆くて硬い性状を呈する。
【0057】
さらに、工程S−33にて成形したABSの樹脂シート21に載置したエポキシ樹脂含浸のガラス不織布27を含むプリプレグ28の上には、発泡樹脂粉砕物と半硬化状態エポキシ樹脂との混合物である樹脂混合物22を約5mmの厚さに散布(S−36)した後、別のプリプレグ28を図11(a)に示す如く載置し(S−37)成形前駆体29を形成する。この時、混合時に発生する静電気によって樹脂粉砕物の表面に吸着しない余剰の半硬化状態エポキシ樹脂を前記散布に供する必要はなく、むしろ、使用しないことによって、粒子間の空隙を確保して断熱層2の軽量化に寄与できる上に、本成型品が再度の廃棄物として処理されるときの解体性を損なうことがないので好ましい。
【0058】
この成形前駆体29は、175℃に加温した圧縮成形用の金型18上に外周を固定した状態で載置して意匠面側の層となるABS樹脂のシート21が熱変形温度近傍にまで加温後に、図11(b)に示すように、金型18の排気口25より金型18内の空気を排気して前記前駆体を吸引して賦型するとともに、上金型27を下降させて2kg/cm2以下、好ましくは0.5〜1kg/cm2の圧力を付与して圧縮することによって断熱層2を賦形する(S−38)。15分間の圧力を保持した状態を確保することにより、廃棄された発泡樹脂を含む粉砕物と接着剤であるエポキシ樹脂を混合した樹脂混合物22が硬化して固化する。その後、金型温度を、好ましくはエポキシ樹脂の熱変形温度以下である135℃以下、さらに好ましくは意匠面側の層となるABS樹脂の熱変形温度である95℃以下まで低下させた後に成型品を取り出した後、不要な部分を切断して排除するトリミングを行えば所望する成形パネルが得られる(S−39)。
【0059】
このとき、成型品の周端部にある折り返し形状に相当する領域部分にまで前記樹脂混合物を載置することが望ましいが、作業の精度を踏まえれば、若干量が該領域部分を超える方が好ましい。前記領域部分を超えた樹脂混合物は、意匠層3を成すABS樹脂シートが真空成形によって凹状を成す状態に至る段階で、成型時のABS樹脂シートが曲折して端辺が立ち上がった際に意匠面方向に落下して断熱層2内に収まる。もし、前記領域部分を超えない樹脂混合物の量であれば、端部には相応の未充填部分が発生することになる。
【0060】
この圧縮成形によって、発泡樹脂粉砕物の粒子同士およびガラス不織布と発泡樹脂粉砕物が密着すると共にABS樹脂シートへも圧接されることになる。さらに、発泡樹脂粉砕物との混合およびガラス不織布への含浸に供した半硬化状態のエポキシ樹脂は、その融点である70℃以上の圧縮成形の温度条件下で保持されたので、液状を呈して流動し、発泡樹脂粉砕物およびガラス不織布の密接した部分が適度に加圧された状態を得て硬化が進行するので、優れた接着性を確保できる。しかも、この状態はABS樹脂のシート表面との相関においても同様に挙動するから、意匠面とも同様の優れた接着性を得て一体化して、意匠層表面に優れた補強効果を与えることができる。
【0061】
また、本実施の形態で得られた成型品には、エポキシ樹脂の熱変形温度以下の金型温度で成形品を取り出したので、金型からの取り出しに係る応力を受けたとしても成型品に変形を来すことが無く、さらに、ABS樹脂の熱変形温度以下の金型温度で成形品を取り出した場合には意匠面に優れた光沢を得ることができた。
【0062】
以上のように、意匠面を形成する成型品の裏面に本来は廃棄物である発泡樹脂を有効に活用し、これの粉砕物を固化して形成した断熱層2を備える成形パネル1が意匠面を成す樹脂シート上に載置して真空を応用した成形法によって意匠性を低下させることなく、簡易で効率よく結露防止の断熱層2を形成することができる。また、密度が0.03から0.04g/cc程度の非常に軽量な発泡樹脂の粉砕物を飛散させること無しに取り扱いことができる上に、断熱層2の表面に不燃物であるガラス繊維の不織布27で覆ったことによって難燃性を向上した成型品を得ることができる。
【0063】
なお、ここでは接着剤として半硬化状態のエポキシ樹脂を用いたが、図9の断面図に示す意匠層3に対して溶解やクレイジングなどの不具合を侵すことのない組成の接着剤であれば、液状のものを用いても良く、同様の効果を得ることができる。
【0064】
また、意匠層3を形成するABS樹脂よりも低い融点で接着に供し、しかも、接着性に優れて可とう性を有するEVA樹脂のうち、好ましくは意匠層3に用いるABS樹脂と比較して軟化点が20〜40℃もの低い温度である酢酸ビニル含有率が5〜7%の粉末状のものを接着剤として用いても良い。この場合、断熱層2と意匠層3の当接面および断熱層2の表面部分に配設するガラス繊維の不織布27にはエポキシ樹脂を含浸させたものを用いても良いが、再利用時に残存していても差し支えないように同種の樹脂を用いることが好ましく、EVA樹脂の粉末を付着させるなどして過剰の樹脂を備えた状態で熱成形に供することによって、強固に一体化して成るものようにすることが好ましい。
【0065】
もし、用いたEVA樹脂の熱変形温度が本成形パネル1を用いる、例えば空気調和機において、使用する温度に近いために所望する強度が得にくい場合、EVA樹脂の酢酸ビニル成分量を低下させるなどすれば、高い熱変形温度のものを得ることができ、さらには意匠面に用いる樹脂の耐熱性を向上したものに代替するなどして対応しても良く、ここで使用する樹脂の種類に限定するものではない。
【0066】
また、本実施の形態では剥離に供する層間シートにガラス繊維の不織布を反意匠面側の層を包み込むようにして用いたが、難燃性を要しないものであれば断熱層2を被う難燃性のシートを用いずとも、またガラス繊維を他の繊維に替えたシートを使用してもよい。
【0067】
実施の形態4.
本実施の形態で述べる態様は、本発明の請求項7、8に係るものであり、図12は本実施の形態を示す成形パネルの内部構造を示す断面図、図13は製造工程図である。
【0068】
まず、本発明の成形パネル1の構成を図12を用いて説明する。樹脂の熱成形や鋼板などの金属の絞り加工などによって得た意匠層3を成す成型品30の内部に、発泡樹脂の粉砕物が接着剤を介して固化されて、断熱層2として充填されている。しかも、その発泡樹脂の粉砕物は、意匠層3の表面および下部方向に小さい粒子23が多くの接着剤を含んで気孔の少ない状態にあり、反意匠面である上部方向にある断熱層2には大きな粒子24が互いが接して形成する空隙を保持して最小限の接着剤量と多くの気孔を備えて、保持されている。
【0069】
次に、本発明に基づく成形パネルの製造方法を、図13に示す製造工程図を用いて説明する。まず、冷蔵庫などから回収した断熱材である発泡ウレタンを粉砕する(S−41)。ここで、粉砕して得られた発泡樹脂の粉砕物は、意匠層3を成す成型品の内部に無理なく分散できる大きさの0.5〜10mmの範囲の大きさが好ましく、その粒度分布は、範囲の中心に最も含有率が多い正規分布を有して成ることが特に好ましい。
【0070】
一方、これとは別に接着剤の一例として実施の形態1で用いた表1に示す如くの接着剤の組成を有する半硬化状態のエポキシ樹脂を調整し、これと混合する(S−42)。このエポキシ樹脂粉末は、静電気によって粉砕物4の表面に付着して低温で溶融するとともに短時間の加熱で硬化が進行する高活性を成すように触媒であるイミダゾール・224MZの量を任意に調整したものである。
【0071】
また、本態様にて用いた冷蔵庫の断熱材である発泡ウレタンのような熱硬化性樹脂の発泡樹脂を用いる場合には樹脂の分解に至らない高温での接着が可能であるから、室温状態において粉末状態であるホットメルト型の接着剤を用いてもよく、パラフィン系、アミド系などのホットメルト型接着剤を用いることも有効である。 しかし、発泡ポリスチレンなどの熱可塑性樹脂を備えた発泡樹脂の粉砕物をこれらホットメルト型の接着剤を用いて接着するには、粉砕物が溶融などの永久的な変形を来すこと無しに十分な接着性が得られるよう、発泡樹脂の熱変形温度よりも相当に低い融点のものを用いることが好ましく、先に述べた半硬化状態のエポキシ樹脂のほかにEVA共重合体樹脂等が好ましい。
【0072】
次に、(S−41)で得られた粉砕材とほぼ同重量の上述した接着剤である半硬化状態のエポキシ樹脂を、混合羽根を備えた混合機や回転ドラムなどを用いて混合し、この時に発生する静電気によって発泡樹脂粉砕物表面に吸着しない余剰の半硬化状態エポキシ樹脂も前記散布に供した。
【0073】
これとは別に、未使用で任意に着色したABS樹脂である押出機などを用いてシート状に形成した(S−43)後、これを真空成形などによって、意匠層3を形成すべく、任意の形状に賦形する(S−44)ことにより、意匠層3を成す樹脂成型品29を得た。
【0074】
この時に用いる意匠層3を成すシート用材料は、意匠層3に当接する断熱層2が不定な着色の状態色むらや異なった色を呈するを備えるために隠蔽力を増加させて用いる必要があるが、発泡樹脂の粉砕物を含む樹脂混合物を裏打ちして補強効果が得られることを活用して使用する未使用の樹脂量を削減するとともに成形パネルの軽量化を両立させることを狙いとし、濃い着色を備えるために顔料の添加量を通常よりも多くしたうえで肉厚を薄肉化した。
【0075】
また、意匠層3を成す樹脂成型品30の成形方法は、必ずしも真空成型法を用いる必要が無く、射出成形によってもよく、この場合には工程S−43とS−44をまとめた単一の工程で済むうえに、成形のサイクル時間が短いという利点がある。
【0076】
次に、前記工程で得られた意匠層3を成す樹脂成型品30に、発泡樹脂の粉砕材と接着剤を混合した樹脂混合物を投入した(S−45)。樹脂混合物の充填量は、発泡樹脂の粉砕物を適度に圧縮することにより、均一で平滑な状態が得られるとともに圧縮強度の上昇を醸し出すことが出来ることが好ましく、概ね、次式によって求めることができる。
【0077】
αV=W1/D1+W2/D2 ・・・ (1)
W =W1+W2 ・・・・・・・・ (2)
ここで、 W ;発泡樹脂の粉砕物4と接着剤の混合物の投入量(g)
α ;過剰充填率
V ;断熱壁体の外殻内容積(L)
W1;発泡樹脂粉砕物4の混合物中重量(g)
D1;発泡樹脂の密度(g/L)
W2;接着剤の混合物中重量(g)
D2;接着剤の硬化後の密度(g/L)
【0078】
上記の式によれば、αが1の場合には発泡樹脂が殆ど圧縮されることがないので、軽量ではあるが強度に劣るものしか得られない状態になり、αを1以上にすれば、密度上昇に伴って優れた圧縮強度を醸し出すことが出来る。従って、本実施の形態における断熱層2の場合には、このときのαの値を、1.3〜2.0の範囲に設定することが好ましい。
【0079】
次に、意匠面が下に位置にする金型に対して、上下方向の衝撃的な微振動を付与する(S−46)ことにより、前記粉砕混合物が安定位置に納まるように適度な移動を来たして最密な状態で充填するとともに、比重差によって各々の原料が浮沈して移動する。つまり、過剰の接着剤とともに小さい粒径の発泡樹脂の粉砕材が意匠層3に当接して沈降して強固な層を形成しうる状態が得られ、表面に付着する接着剤を過度に含有しない粒径の大きな粉砕材が上方向に浮上して集積して粒子間に空隙を備えた状態が得られる。
【0080】
このようにして得た前記粉砕組成物が収納された前記嵌合品を、加熱が可能なプレス機などの平板間に保持して加熱圧縮を行うことによって成形パネルのにおける断熱層2を成形する(S−47)。この工程における手順を詳述すると、まず、成形温度である平板の温度を、発泡樹脂が発泡ウレタンなどの熱硬化性樹脂で構成されている本実施の形態の場合、その樹脂の熱変形温度から30℃以内の高い温度で行うことが好ましい。また、別な態様である発泡ポリスチレンなどの熱可塑性樹脂を発泡樹脂の粉砕物とした場合には、前記熱可塑性樹脂の熱変形温度と同等以下に止める。次に、(S−46)で得た適度な粒度と接着剤の含有率に分布を有する樹脂混合物を充填した意匠層3の成型品をこの平板間に挿入し、接着剤が硬化に至らずに流動性を保持する条件である2〜20分間、好ましくは5〜10分間の加温をした。
【0081】
接着剤は前記加温によって溶融状態に至っているので粉砕物の表面に濡れやすくなり、加圧によって粉砕物の粒子形状が変形して大きな接着面積を確保する。このとき、セル内にあったガスが系内に留まることなしに系外に排出するので、前記ガスを円滑に排出できるようなガス抜きを金型に設ければ、得られた断熱層2の内部にボイドなどの表面板の意匠を損なうような空隙を生成することがなく、従って成形パネルに平滑な表面が確保できるので、好ましい。
【0082】
その後、前記嵌合品を0.2〜2kg/cm2、好ましくは過度に発泡樹脂の変形を招くことのない0.5〜1kg/cm2の圧力で加圧する。前記圧力で平板間に保持することによって、発泡樹脂の粉砕物が有する構造上の欠陥部分や最密充填に至らない部分が永久変形を来して、これ以上の変形を難い状態が確保できるので、成形後の冷却や使用中の温度変化によって凹凸などの変形を来すようなことが少なくなる。
【0083】
このとき、粉砕組成物が発泡ポリスチレンなどの熱可塑性樹脂を備えたものであれば、表面板の温度を熱変形温度以上、さらには融点近傍にまで上昇させることによって表面板近傍にあるセルを容易に押し潰すことができるので、上述したような、意匠層3との当接部分により一層の剛直で圧縮変形を来し難い高密度の層を形成するとともに、断熱層2には低密度のままで断熱性能に優れる発泡樹脂を備えた層を備えることができるので有効である。
【0084】
以上の加熱および加圧状態を10〜30分保持した後、発泡樹脂の熱変形温度以下、好ましくは熱変形温度から20℃以上の低い温度にまで冷却した後に製品を取り出し、その後、不要な部分を切断して排除するトリミングを行えば所望する成形パネルが得られる(S−48)。
【0085】
以上に述べたように、粒度分布を有する発泡樹脂の粉砕物と粉状の接着剤からなる樹脂混合物を、意匠層3に相当する成型品内に投入したものに微振動を付与した後に固化して断熱層2を形成したので、粉砕物の大きさと接着剤の含有率に分布を生じて意匠層3に当接する断熱層2には小さい粒子と接着剤を多く含むようにして裏打ちになる断熱層2が補強効果になるので、未使用の樹脂を少なくして薄い意匠層3を備えても優れた強度と意匠性を備えた成形パネルを得ることができる。また、断熱層2には粉砕物同士を接着に供するのみの最小量であるから適度な空隙を保持して断熱性と軽量化に寄与できる。
【0086】
また、接着剤に粉末状の樹脂を用いたので、発泡樹脂の粉砕物との混合時に生じる静電気によって前記粉砕物の表面に吸着されて安定保持されるほか、樹脂混合物の状態にした場合の容易な取り扱いを確保することができる。
【0087】
なお、本実施の形態では樹脂成型品を意匠層3として用いたが、これに替えて鋼板などの金属を折り曲げたり絞るなどして得た加工品を持ちても良い。
【0088】
もし、用いたEVA樹脂の熱変形温度が本成形パネルを用いる、例えば空気調和機において、使用する温度に近いために所望する強度の発現が困難であれば、EVA樹脂の酢酸ビニル成分量を低下させるなどすれば、高い熱変形温度のものを得ることができ、さらには意匠面に用いる樹脂の耐熱性を向上したものに代替するなどして対応しても良く、ここで使用する樹脂の種類に限るものではない。
【0089】
実施の形態5.
本実施の形態で述べる態様は、使用を完了して廃棄物として供される成型品の廃棄方法を示すものであり、実施の形態3の手段によって反意匠面側に発泡樹脂の粉砕物を含む断熱層2を形成した成型品のうち、特に発泡樹脂粉砕物を低融点の樹脂であるEVA樹脂によって固化した断熱層2を備えた使用済みの成形パネルを解体する方法について、以下に説明する。
【0090】
解体は、意匠面を構成する成形樹脂と反意匠面を構成する発泡樹脂混合物の各々が再利用可能な形態に分離することを目的としたものである。まず、実施の形態3にて得た成形パネルを加熱することによってEVA樹脂を軟化させるが、この時の温度はEVA樹脂の軟化点である60〜70℃を上回る温度が好ましく、意匠層3を成すABS樹脂の軟化温度以下にすることが特に好ましく、従って、100℃近傍に調整した。EVA樹脂の軟化によって層間の接着強度が急激に低下するので、容易に引き剥がすことが可能になる。
【0091】
両層の引き剥がしに関してはヘラなどの工具を用いる方法もあるが、図14に示すように、引き剥がしの面が直角以下の適度な角度を成して配設方向から引張るようにして両層間に配設したガラス繊維の不織布27を持ち上げれば、使用済み成型品から発泡樹脂粉砕物とEVA樹脂の樹脂混合物から成る断熱層2を保持した状態でゆっくりと意匠層3を成す成型品から剥離させることができる。この方法によれば、折り返した面にある粉砕された発泡樹脂が圧縮されるとともに剥離に供するガラス繊維の不織布27を備えた面が引っ張られるので、平面状態に戻ろうとする応力が剥離面に対して引っ張り応力として意匠層3と断熱層2の当接部分に付加し、決して、無理に引き剥がすような挙動を有して局部的に集中する過度な応力を付与させることがないので、安定して両層が自然に剥離する挙動を付与できる。
【0092】
しかも、意匠層3と断熱層2の当接部分にはガラス繊維27を介して一体化されて成るので、EVA樹脂が剥離の際に引っ張られても、過度の伸び量を有して剥離を阻害することがないので、長い時間を要して過剰に引っ張るなどする必要が無く、従って熱変形温度に近い温度にまで加温されたABS樹脂から成る意匠面がクリープ的な変形を来たして発生する凹凸が抑制できるので、好ましい。
【0093】
しかも、このときに用いたガラス繊維27は不定形で無配向な状態の不織布状を形成して配設されているので、局部的な引っ張りの応力や方向の違いに対しても容易に追随して移動し、剥離に係る応力を均一化して剥離部分に付与できるので、一層の前記凹凸の発生を抑制できる。
【0094】
以上の方法によって意匠性形パネルの解体をすれば、得られた各層を容易に再度の利用に供することが可能になる。つまり、本方法によって回収した意匠面を形成するABS樹脂の層3には、殆どEVA樹脂やガラス繊維の不織布に含浸したエポキシ樹脂などの反意匠面にある樹脂が付着すること無しに回収することができるので、本成型品をこのまま再度の利用に供したり、さらに破砕して同様な成型品をを再度に得ることも可能である。一方の断熱層2にあった発泡樹脂の粉砕物を含む樹脂混合物については、ガラス不織布27を容易に引き剥がすことができるが、剥離時などにかかる応力によって変形を来しているから、そのままの形状での再利用は困難であるが、適度な大きさに粉砕するなどをすれば、再度の利用に供することが可能である。
【0095】
さらに、この剥離時にガラス繊維などの不織布27を介さずに、しかも機械的応力を用いて強制的に剥離を行うることは、接着力の分布がもたらす剥離応力の差異に対応して一定の速度で剥離することができず、従って、僅かではあるが筋状の凹凸が形成されることもあった。 もし、上述した方法を用いること無しに意匠層3と断熱層2を剥離させるような場合には、端辺をわずかに持上げて剥離したことによって形成した空隙内に圧縮空気を封入して剥離面を拡大していく方法を用いることも有効である。
【0096】
実施の形態6.
本実施の形態は、実施の形態2から実施の形態4にて得た成型品のうち、特に、前記成型品の断熱層2が発泡樹脂粉砕物に半硬化状態のエポキシ樹脂を混合して固化したものを、意匠層3に裏打ちした態様の成形品が使用を完了して廃棄物として供された後に、再度の利用に供することのできる廃棄方法であり、使用材料の分離と分別を行う方法に関するものである。
【0097】
以下に図15の工程図を用いて説明する。まず、実施の形態2から4のいずれかで得た成形パネル1の意匠層3を形成するABS樹脂の軟化を超える130〜150℃まで加熱する(S−51)。この加熱によって、意匠層3は流動に至らずに適度な反発力を有するゴム状態を呈する軟化状態を呈しているのに対して、断熱層2は発泡断熱材の粉砕物とエポキシ樹脂は剛直で、もろい状態を保持したままにある。
【0098】
次いで、熱せられた成形パネル1を図16の概念図に示すように、粉砕した発泡樹脂と接着剤であるエポキシ樹脂との樹脂混合物から成る断熱層2を意匠層3表面からローラ31などを用いて押圧を加えて凹状の変形を与える(S−52)。これによって、熱可塑性樹脂であるABS樹脂との界面に剪断力が加わって、その大半の部分に剥離が生じる。これを、ABS樹脂のガラス転移温度よりも低い60〜80℃にまで冷却後、例えば、表面が柔らかいハンマーで打撃するなどをして衝撃的な振動を付与(S−53)すれば、意匠面を形成するABS樹脂と反意匠面を成す断熱層2である発泡樹脂粉砕物を含む樹脂混合物およびガラス繊維の不織布が完全に剥離する。
【0099】
ここで、意匠面が鋼板の折り曲げなどによって加工された成形品で構成されている成形パネルなどの場合、工程(S−51)で示した成形パネルへの加熱を行わず、鋼板に加える押圧を大きくすることによって凹状の変形を与えることができるので、発泡樹脂を含む樹脂混合物との界面に剪断力が発生して剥離することができる。
【0100】
次に、剥離した発泡樹脂粉砕物を含む樹脂混合物とガラス繊維の不織布に対しては、同様の方法にて表面が柔らかいハンマーで打撃するなどをして衝撃的な振動を付与(S−54)することによって、発泡樹脂粉砕物を含む樹脂混合物とガラス繊維の不織布をも分離できる。さらに、剥離した樹脂混合物については、簡易な羽根状の撹拌機をもちいて剥離物同志を擦り合わせれば(S−55)、エポキシ樹脂を任意に付着した発泡樹脂およびエポキシ樹脂との界面で粉砕物が容易に破砕され、場合によっては発泡体と樹脂の大きな比重差を活用して、例えば風力によって飛散する発泡体の回収をするなどして分別できる(S−56)ので、発泡樹脂の粉砕物として再度の利用も可能である。
【0101】
以上の方法によって意匠性形パネルの解体を行えば、意匠層3と断熱層2の解体が容易にでき、得られた各層を容易に再度の利用に供することが可能になる。また、以上の方法によって分離した意匠層3を成すABS樹脂や鋼板には、接着剤に用いたエポキシ樹脂が殆ど付着していないので、他の用途への転用も容易に行なうことができる。
【0102】
なお、以上のように、本発明の実施の形態では断熱性を備えて意匠層3への結露発生を抑制できる成形パネルおよびその成型方法について説明したが、本発明はこれに限定されるものではなく、例えば、建材や構造材などのパネル、さらに軽量で高剛性の断熱構造体として板材の中間に廃棄樹脂成型品の粉砕物を挟んで用いる手段など、従来のパネル状構造体の用途への代替え使用品への応用も可能であり、その要旨を脱し得ない範囲で種々変形して実施することができる。
【0103】
【発明の効果】
本発明の第1の発明に係る成形パネルは、任意に着色された樹脂を賦形して意匠面を形成する意匠層と、この意匠層の反意匠面上に散布され、前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤と発泡樹脂の粉砕物を混合した樹脂混合物を熱成形により前記意匠層と一体化した断熱層と、を備え、前記断熱層は、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物を配設して剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物を配設して前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すものであるので、異形構造を成した部分に対しても隙間無く施工できるので、断熱層の薄肉化が達成でき、また、意匠層は変形しにくく、断熱層は、密度が低く、断熱性能に優れたものを得ることができる。
【0104】
本発明の第2の発明に係る成形パネルは、意匠層と断熱層の間に、繊維を無秩序な配向状態で保持して成る不織布状のシートを備えたので、成型時に係る応力に対応して繊維の変形や移動を容易にでき、種々の任意な形状変形ができるので、当該成型品で破れるなどの欠陥がなく一体化して、意匠層の補強効果を増すことができる。
【0105】
本発明の第3の発明に係る成形パネルは、断熱層の意匠層と反対側の表面が、繊維状物質を無秩序な配向状態で保持して成る難燃性のシートと一体化して被われて成るので、表面層が燃え難くなり、難燃剤を用いなくとも難燃性を向上できる。
【0107】
本発明の第の発明に係る成形パネルの製造方法は、意匠面を成す樹脂をシート状に成形する工程と、発泡樹脂の粉砕物を複数の異なる粒径に選別する工程と、選別した各々の前記粉砕物と前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤を混合し、あらかじめ定めた粒径より小さい粉砕物の表面には前記接着剤を過剰に付着させ、前記あらかじめ定めた粒径より大きい粉砕物の表面には、前記接着剤を適度に付着させ、断熱層を構成する樹脂混合物を得る工程と、前記意匠層を成すシート状の成形物上に前記樹脂混合物のうち、前記粒径の小さい樹脂混合物から順次散布する工程と、前記工程で得られた樹脂混合物を散布したシートを熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、を備えるので、意匠面を形成する成型品の裏面に本来は廃棄物である発泡樹脂を有効に活用して、これの粉砕物を固化して形成した断熱層を備える成形パネルを得ることができる上に、真空を応用した成形法によって意匠性を低下させることなく、簡易で効率よく結露防止の断熱層を形成することができる。また、意匠層の近傍に微粒粉砕物と過剰の接着剤の混合物を配設して剛直な層を形成できたので応力の付与によって変形を来し難い意匠層を得ることができ、また、断熱層には粗粉砕物が適度に接着して粒子間の空隙を保持して成るを得たので、密度が低く、断熱性能に優れる断熱層を得ることができる。
【0109】
本発明の第の発明に係る成形パネルの製造方法は、意匠面を成す樹脂をシート状に成形する工程と、発泡樹脂の粉砕物を複数の異なる粒径に選別する工程と、選別した各々の前記粉砕物と前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤を混合し、あらかじめ定めた粒径より小さい粉砕物の表面には前記接着剤を過剰に付着させ、前記あらかじめ定めた粒径より大きい粉砕物の表面には、前記接着剤を適度に付着させ、断熱層を構成する樹脂混合物を得る工程と、断熱層を構成する樹脂混合物を得る工程と、繊維を無秩序な配向状態で保持して成る不織布状のシートを成形する工程と、前記意匠層を成すシート状の成形物上に前記不織布状のシートを載置し、前記樹脂混合物のうち、前記粒径の小さい樹脂混合物から順次散布し成形前駆体を形成する工程と、前記成形前駆体を熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、を備えるので、成型時に係る応力に対応して繊維の変形や移動を容易にでき、種々の任意な形状変形ができるので、当該成型品で破れるなどの欠陥がなく一体化して、意匠層の補強効果を増すことができる。
【0110】
本発明の第の発明に係る成形パネルの製造方法は、成形前駆体を成形する工程において、断熱層を構成する樹脂混合物を散布した後に、さらに繊維状物質を無秩序な配向状態で保持して成る難燃性のシートを前記樹脂混合物の上に載置するので、非常に軽量な発泡樹脂の粉砕物を飛散させること無しに取り扱うことができる。
【0111】
本発明の第の発明に係る成形パネルの製造方法は、意匠層を形成する樹脂をシート状に成形する工程と、前記工程で得られたシートを熱成形して意匠層を成す成型品を得る工程と、前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤と発泡樹脂の粉砕物を混合して断熱層を構成する樹脂混合物を得る工程と、前記工程で得られた前記樹脂混合物と前記樹脂混合物の表面に付着されない過剰な前記接着剤とを前記成型品内に充填する工程と、前記成型品内に充填する工程で得られた前記樹脂混合物を充填した成型品に上下方向の微振動を付与し、前記粉砕物のうち小さい粒径の粉砕物を過剰の接着剤とともに前記意匠層近傍に沈降させ、表面に適度な前記接着剤が付着した粒径の大きな粉砕物を上方向に浮上させる工程と、前記微振動を付与し、前記樹脂混合物を充填した成型品を熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、を備えたので、前記粉砕物の大きさと接着剤の含有率に分布を生じて意匠層に当接する断熱層には小さい粒子と接着剤を多く含むように配することができるので意匠層を補強する効果が得られるとともに、断熱層には粉砕物同士を接着に供するのみの最小量の接着剤を保持した態様によって適度な空隙を保持して断熱性と軽量化に優れた特性を確保した成形パネルを得ることができる。
【0112】
本発明の第の発明に係る成形パネルの製造方法は、発泡樹脂の粉砕物が、断熱材を含む製品などから回収したものを粉砕したものを用いたので、廃棄物の有効利用ができる。
【0114】
本発明の第の発明に係る成形パネルの解体方法は、請求項1〜3のいずれかに記載の成形パネルまたは、請求項4〜8のいずれかに記載の製造方法によって得た成型パネルを、意匠層を成す熱可塑性樹脂の軟化温度よりも高い温度で加熱した後、前記意匠層の表面に押圧を加えて前記意匠層と前記断熱層との境界面に剪断力を生じさせ、その後、あらかじめ定められた温度まで冷却した後、衝撃的な振動を付与し、解体を行うので、容易かつ確実に各組成物を剥離できる上、再度の利用が可能な成形部材を回収することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1を示す成形パネルの斜視図である。
【図2】 図1のA−A断面図である。
【図3】 本発明の実施の形態1の成形パネルの製造方法を示す工程図である。
【図4】 本発明の実施の形態1の成形パネルに係る樹脂シートを成形するのに用いる成型機の概念図である。
【図5】 本発明の実施の形態1の成形パネルの製造に係る熱成形を行うための真空・圧空併用成形装置の概念図である。
【図6】 図5の成形装置を用いた意匠性形パネルの成形の工程図である。
【図7】 本発明の実施の形態2の成形パネルの製造方法を示す工程図である。
【図8】 本発明の実施の形態2の成形パネルの製造に係る樹脂混合物の散布状態と成形方法を示す説明図である。
【図9】 本発明の実施の形態3の成形パネルの断面図である。
【図10】 本発明の実施の形態3の成形パネルの製造方法を示す工程図である。
【図11】 本発明の実施の形態2の成形パネルの製造に係る各部材の配設方法と成形方法を示す説明図である。
【図12】 本発明の実施の形態4の成形パネルの断面図である。
【図13】 本発明の実施の形態4の成形パネルの製造方法を示す工程図である。
【図14】 本発明の実施の形態5の成形パネルの解体方法を示す概念図である。
【図15】 本発明の実施の形態6の成形パネルの解体方法を示す工程図である。
【図16】 本発明の実施の形態6の成形パネルの解体方法を示す概念図である。
【図17】 従来の空気調和機用成形パネルの成形方法を示す説明図である。
【符号の説明】
1 成形パネル、2 断熱層、3 意匠層、4 発泡樹脂の粉砕物、16 真空・圧空併用成形機、21 樹脂積層シート、22 樹脂混合物、23 微粉砕物、24 粗粉砕物、27 難燃性ガラス繊維の不織布、31 ローラ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded panel having design properties, a manufacturing method thereof, and a disassembling method. More specifically, the present invention relates to formation of a structure using a foamed resin, particularly a pulverized material such as discarded heat insulating material or cushioning material, as a heat insulating layer. Is.
[0002]
[Prior art]
Reduce the amount of used foamed resin moldings that are difficult to reuse, such as cushioning materials, heat insulating materials and structural materials for the purpose of environmental protection, as well as the generation of harmful substances and gases generated when they are discarded or burned. In order to eliminate the occurrence, applications and techniques for effectively utilizing or reusing these foamed resins are required.
[0003]
Among them, polystyrene foam and urethane foam are lightweight, have excellent buffering properties and heat insulation properties, can be selected from any density and wide rigidity according to the purpose, and have advantages such as low cost and excellent moldability. It is often used as packaging and cushioning materials for transporting a wide variety of products, as heat insulation materials for refrigerators and houses, and as structural materials.
[0004]
Among these foamed resins, regarding hard foams centering on heat insulating materials and structural materials, in Japanese Patent Laid-Open No. 8-258160, urethane foam obtained from waste materials such as building materials and refrigerators is pulverized to an average particle size of 2 mm. We have proposed a method of reusing it as an impact silencer or a heat insulating material by obtaining an arbitrary molded product from a slab obtained by mixing and curing an adhesive such as isocyanate. Further, in Japanese Patent Laid-Open No. 10-78192, a slab cut out by the above method is used in a core material having a function of preventing deformation by receiving atmospheric pressure in the outer shell of a vacuum heat insulating panel and maintaining its shape. Is described.
[0005]
[Problems to be solved by the invention]
On the other hand, it has not been sufficiently achieved to apply these foamed resin wastes to products as heat insulating materials. At present, molded products are pasted on parts that require heat insulation, or raw materials are sprayed. It is made by means of direct molding.
[0006]
For example, regarding heat insulation of a design panel of a ceiling-embedded air conditioner, Japanese Patent Application Laid-Open No. 2-153730 discloses a urethane foam by a rubber adhesive through a polyethylene sheet on a molded product of vinyl chloride constituting a design surface. This shows how to paste the processed product by cutting, etc., but the man-hours are increased and the manufacturing cost is high, and the material of the molded product that constitutes the design surface contains chlorine atoms, so the processing is There is also the problem of causing trouble.
[0007]
Furthermore, according to Japanese Patent Laid-Open No. 6-328500 made to remedy this problem, an air conditioner panel as shown in FIG. 17 is presented. In this conventional panel for an air conditioner, a resin molded product 32 using a styrene resin such as ABS resin is fixed to a molded product constituting a design surface with a mold 33, and then a foamed resin 34 such as expanded polystyrene is introduced. However, the series of materials used here does not contain chlorine atoms, and the man-hours can be reduced and the manufacturing cost can be reduced. Therefore, no consideration is given to the effective use of waste and the ease of product disposal. Therefore, when disposing of a product using the part, the resin and foam resin used for the molded part of the part are not used. For separation, the material is peeled off mechanically, resulting in a situation where the recovery rate as a single material is reduced and excessive labor is required.
[0008]
The present invention has been made in order to solve the above-mentioned problems. By using a pulverized product such as discarded foamed resin, a component structure that is a molded product and a manufacturing method thereof are obtained, and the obtained molded product is further obtained. It is an object of the present invention to obtain a dismantling method in which used materials can be easily separated into a reusable state.
[0009]
[Means for Solving the Problems]
  The molded panel according to the first aspect of the present invention includes a design layer that forms a design surface by shaping an arbitrarily colored resin, and an anti-design surface of the design layer.Sprayed on beforeThe melting point is lower than the melting point of the resin that forms the design layer.A resin mixture obtained by mixing a powdery adhesive and a pulverized foamed resin was integrated with the design layer by thermoforming.An insulation layer;The heat insulating layer is disposed in the vicinity of the design layer to form a rigid layer by disposing a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and a portion separated from the design layer. Then, a resin mixture of the pulverized product having a large particle size and an appropriate adhesive is provided to maintain a space between the particles of the pulverized product, thereby forming a layer having excellent heat insulation properties.Is.
[0010]
The molded panel which concerns on 2nd invention of this invention is equipped with the nonwoven fabric-like sheet | seat formed by hold | maintaining a fiber in a disordered orientation state between a design layer and a heat insulation layer.
[0011]
In the molded panel according to the third aspect of the present invention, the surface of the heat insulating layer opposite to the design layer is integrally covered with a flame-retardant sheet formed by holding the fibrous substance in a disordered orientation state. It consists of.
[0013]
  First of the present invention4The method for producing a molded panel according to the invention includes a step of molding a resin forming a design surface into a sheet,A step of sorting the pulverized foam resin into a plurality of different particle diameters,Powder form having a melting point lower than the melting point of the resin forming the design layerThe adhesive is excessively adhered to the surface of the pulverized product smaller than the predetermined particle size, and the adhesive is appropriately applied to the surface of the pulverized product larger than the predetermined particle size. AttachA step of obtaining a resin mixture constituting the heat insulating layer, and a sheet-like molded article forming the design layer;TreeFat mixtureOut of the resin mixture having a smaller particle sizeThe step of spraying and thermoforming the sheet sprayed with the resin mixture obtained in the above step,In the vicinity of the design layer, the heat-insulating layer forms a rigid layer by a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and the pulverized product having a large particle size in a portion away from the design layer. So that a gap between particles of the pulverized product is retained by a resin mixture of the product and an appropriate amount of the adhesive so as to form a layer having excellent heat insulation propertiesAnd a step of performing.
[0015]
  First of the present invention5The method for producing a molded panel according to the invention includes a step of molding a resin forming a design surface into a sheet,A step of sorting the pulverized foam resin into a plurality of different particle diameters,Powder form having a melting point lower than the melting point of the resin forming the design layerThe adhesive is excessively adhered to the surface of the pulverized product smaller than the predetermined particle size, and the adhesive is appropriately applied to the surface of the pulverized product larger than the predetermined particle size. AttachThe step of obtaining a resin mixture constituting the heat insulation layer, the step of obtaining the resin mixture constituting the heat insulation layer, the step of forming a non-woven sheet comprising fibers in a disordered orientation state, and the design layer are formed. The non-woven sheet is placed on a sheet-shaped molded article, and the frontTreeFat mixtureOut of the resin mixture having a smaller particle sizeSpraying and forming a molding precursor; and thermoforming the molding precursor;In the vicinity of the design layer, the heat-insulating layer forms a rigid layer by a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and the pulverized product having a large particle size in a portion away from the design layer. So that a gap between particles of the pulverized product is retained by a resin mixture of the product and an appropriate amount of the adhesive so as to form a layer having excellent heat insulation propertiesAnd a step of performing.
[0016]
  First of the present invention6In the method for producing a molded panel according to the invention, in the step of molding the molding precursor, after the resin mixture constituting the heat insulating layer is dispersed, the fibrous material is further held in a disordered orientation state. A sheet is placed on the resin mixture.
[0017]
  First of the present invention7The method for producing a molded panel according to the invention includes a step of forming a resin for forming a design layer into a sheet, a step of thermoforming the sheet obtained in the step to obtain a molded product forming a design layer, Powdered powder with a melting point lower than the melting point of the resin that forms the design layeradhesiveAnd pulverized foam resinThe heat insulation layerResin mixtureA step of obtaining, and the excessive amount of the adhesive that is not attached to the surface of the resin mixture and the resin mixture obtained in the stepFilling the molded product;AboveA molded product filled with the resin mixture obtained in the process of filling the molded product.Up and downGives slight vibrationThen, the pulverized product having a small particle size out of the pulverized product is allowed to settle in the vicinity of the design layer together with an excess adhesive, and the pulverized product having a large particle size with the appropriate adhesive attached to the surface is floated upward.And thermoforming a molded article that is provided with the above-mentioned fine vibration and filled with the resin mixture.In the vicinity of the design layer, the heat insulating layer is formed into a rigid layer by a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and the particle size is large in a portion away from the design layer. The resin mixture of the pulverized product and an appropriate amount of the adhesive maintains a space between the particles of the pulverized product so as to form a layer having excellent heat insulation properties.And a step of performing.
[0018]
  First of the present invention8The method for producing a molded panel according to the invention uses a pulverized foam resin obtained by pulverizing a product recovered from a product including a heat insulating material.
[0020]
  First of the present invention9A method for disassembling a molded panel according to the present invention is described in claim 1.Write in any of ~ 3Molded panel,Or claims4-8One ofManufacturing described inAfter heating the molded panel obtained by the method at a temperature higher than the softening temperature of the thermoplastic resin forming the design layer,The surface of the design layer is pressed to generate a shearing force at the interface between the design layer and the heat insulating layer, and then cooled to a predetermined temperature, and then subjected to shock vibration and disassembled.Is to do.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, the present invention will be described based on the illustrated embodiment. 1 is a perspective view showing a case where a molded panel, which is a molded product according to claim 1 of the present invention, is viewed from below, FIG. 2 is a sectional view taken on line AA showing the internal structure of FIG. 1, and FIG. It is a manufacturing process figure which shows the shaping | molding method of the shaping | molding panel which concerns on Claims 4 and 10 of invention.
[0022]
The molded panel 1 of the present invention will be described. The embodiment shown in FIG. 1 is used for an air conditioner having a blowout opening on the ceiling. The design surface is arbitrarily colored and has a smooth surface, and cold air is blown on the anti-design surface side. Thus, a heat insulating material having a function of preventing the design surface from dewing down due to a decrease in temperature of the molded product, and, in some cases, a mounting bracket to the device main body are provided.
[0023]
The heat insulating layer 2 provided with the heat insulating material is bonded and integrated with the design layer 3 which is a molded panel constituting the design surface as in the internal structure shown in the cross-sectional view of FIG. 2, and the heat insulating layer 2 and the design layer 3 are further integrated. At the part where the two are joined, there is a function of holding other parts such as metal fittings by arranging them with an adhesive or the like on the contact part with the molded panel 1 in some cases.
[0024]
Moreover, since the heat insulating layer 2 provided on the design layer 3 is formed integrally with the design layer 3, it is molded without having a seam that becomes a heat leaking portion, and there is no defective portion of heat insulation. It may be thinner than the heat insulating layer 2 constructed by.
[0025]
Next, the manufacturing method of the molded panel 1 according to this embodiment will be described using the manufacturing process diagram of FIG. 3 and the conceptual diagram of the molding apparatus shown in FIG. First, an ABS resin sheet 10 to be the design layer 3 is formed from the unused and arbitrarily colored ABS resin 8 by the first extruder 6 (S-1). The ABS resin sheet 10 has a thickness of 1.4 mm, which is usually used for coloring with a pigment of 0.5 to 1.5% with respect to the weight of the uncolored resin. Since the heat insulating layer 2 to be laminated exhibits uneven coloring unevenness and different colors, there is a method of increasing the hiding power by keeping the thickness of the sheet as it is or by increasing the thickness to 1.8 mm in some cases. is there.
[0026]
However, since a reinforcing effect is obtained by backing a resin mixture containing a pulverized foam resin recovered from a discarded refrigerator or the like in a later step, the pigment concentration is increased from 2.0 to 5.0 higher than usual. In addition to reducing the amount of unused resin to be used and reducing the weight of the molded panel, it also includes environmental protection. It is preferable because various effects can be obtained.
[0027]
On the other hand, the heat insulating layer 2 used for lamination with the design layer 3 collects the foamed resin, which is a heat insulating material contained in a used refrigerator and the like, and pulverizes it using a crusher equipped with a rotary blade. After obtaining a moderately pulverized product (S-2), a mixture with a resin having a low melting point and an adhesive function is obtained (S-3). The foamed resin pulverized material 4 used here is 5 mm or less, preferably 0.5 to 2 mm. In addition, the resin used for adhesion needs to have a lower melting point than the colored ABS resin that forms the design layer 3. If the melting point is higher than that of the heat insulating layer 2, the molding temperature of the resin forming the design surface of the product becomes excessively high when the sheet laminated with the design layer 3 forming the design surface is thermoformed. In addition, the design properties such as the gloss of the design surface are impaired or deformed, or the cooling time after thermoforming is increased to prevent them.
[0028]
From the above, as the low melting point resin used for the heat insulation layer 2, EVA resin (resin ethylene / vinyl acetate copolymer resin) is preferable, and those having a vinyl acetate content of 5 to 7% are particularly excellent in adhesiveness. Therefore, it is firmly laminated and integrated with the design layer 3. And since it is a softening point temperature of 20-40 degreeC lower than the ABS resin used for the design layer 3 of the designable shape panel in this Embodiment, if the thermoforming conditions of ABS resin are maintained, as above-mentioned. The design surface does not suffer from problems such as loss of design properties such as gloss loss and deformation, and extended molding time.
[0029]
Next, in order to obtain a mixed resin mixture containing the pulverized product 4 of the foamed resin used for the heat-insulating layer 2 and the EVA resin 5 as small as possible in an amount of 20% by weight or less, using a second extruder 9 under heating. While stirring and mixing, the sheet was formed (S-4). At this time, the temperature at the time of stirring and mixing using the extruder is preferably 110 to 170 ° C., particularly 140 to 155 ° C., at which the EVA resin melts. If the foamed resin in the pulverized product 4 of the foamed resin is formed of a urethane resin that is a thermosetting resin, and exhibits a rubber-like form exceeding the glass transition temperature under this temperature condition, the second resin During mixing in the extruder 9, the foamed bubbles are easily destroyed and the internal gas is discharged. This gas is provided to exhaust the gas from the extruder during the kneading process. It is important to obtain the resin mixture as a foamed sheet without discharging it from the vent.
[0030]
Next, the foamed resin pulverized product 4 and the EVA resin 5 obtained by the above method are kneaded by the second extruder 9 and the resin mixture sheet 7 made of the resin mixture in the foamed state is used as the heat insulating layer 2. A laminated sheet 11 obtained by laminating the design layer 3 and the ABS resin sheet 10 formed by molding the ABS resin 8 arbitrarily colored by use with the first extruder 6 is obtained. Both steps S-4 and S-5 are performed simultaneously with the molding machine shown in FIG. 4. At this time, the pressure applied by the roll 12 that bonds the two sheets for lamination causes bubbles contained in the resin mixture. Since it is an independent state, it is preferable that the thickness is as light as possible, and it is preferable to apply a pressure adjusted so as to compress 10 to 20% of the extruded sheet thickness. On the other hand, the ABS resin sheet 10 extruded in a sheet form from the first extruder 6 is adjusted to a sheet surface temperature equivalent to the resin mixture containing EVA resin by the first cooling roll 13 and integrated with the sheet of the composition. Thus, the laminated sheet 11 in which both resin materials are sufficiently adhered and laminated is obtained. Thereafter, the laminate sheet 11 is further pressed by using the second cooling roll 14 so that the layers can be completely solidified and bonded, and at least the surface layer of the colored ABS resin sheet 10 on the sheet surface is smooth. Thus, excellent design properties can be secured.
[0031]
The laminated sheet 11 obtained in this way is cut off at the end using a knife and a shear 15 to obtain a laminated sheet 11a having an arbitrary size necessary for forming a molded panel (S-6).
[0032]
The laminated sheet 11a obtained in the step S-6 obtained a molded panel 1 which is a molded product by thermoforming the design surface against a mold by vacuum and compressed air or a thermoforming method using both in combination (S- 7) After that, if trimming is performed by removing unnecessary portions by cutting (S-8), the desired designable panel 1 having excellent heat insulation can be obtained.
[0033]
Thermoforming is performed by a vacuum / pressure combination molding machine 16 shown in FIG. FIG. 5 is a cross-sectional view of a vacuum / compressed air molding machine. With this vacuum / compressed air and pressure forming machine 16, the laminated sheet is preliminarily stretched by supplying air into the vacuum box 19 between the laminated sheet 11 and the mold 18, so that the difference in thickness can be obtained. A certain uneven thickness is reduced, and the air supply to the compressed air box 20 is performed simultaneously with the subsequent exhaust from the mold 18, so that a shearing force acts between the heat insulating layer 2 by the molding accompanied with the stretching of the design layer 3. Therefore, it is preferable for preventing the two layers from being separated and maintaining an integrated state.
[0034]
Next, vacuum / compressed air combination molding, which is a thermoforming method, will be described in detail below using the manufacturing process diagram of FIG. First, the temperature of the laminated sheet is heated to a temperature slightly higher than the softening point of the design layer 3 (S-11). The temperature at this time is 140 to 170 ° C., and the EVA resin contained in the heat insulating layer 2 is in a state of being freely deformed without applying any stress exceeding the melting point, but vinyl acetate so that it never flows down. It is important to use a product whose content and molecular weight are adjusted. It is also effective to set the mold arrangement in the vacuum / pressure combination molding machine 16 so that the heat insulating layer 2 is on the upper surface.
[0035]
Next, the mold 18 provided with the vacuum box 19 is brought into contact with the laminated sheet 11a heated to a temperature higher than the softening point, and then air is fed into the vacuum box 19 from the exhaust pipe 41 so that the laminated sheet is made of gold. After inflating in the opposite direction to the mold 18 and giving appropriate stretching (S-12), the air in the vacuum box 19 is discharged to obtain a vacuum state in the system, thereby obtaining a second layer on the surface of the mold 18. (S-13). Since the shape of this molded product is not a deep drawing structure, the laminated sheets are hardly peeled off during molding (S-13), and a pressure roll is used in the previous step (S-13) for molding the laminated sheet 11a. If the applied pressure is sufficient, the layers do not peel off under the heating state in these series of steps (S-11, 12).
[0036]
However, if a part of the shape has a complicated structure or there is a portion where the aperture is deep due to a narrow opening, the ABS resin sheet of the design layer 3 at the bottom of the sheet extends upward. The insulating layer 2 is faster than the resin mixture sheet, and the layers may be peeled off as the shearing force is generated. Therefore, air is supplied to the compressed air box 20 on the laminated sheet 11a opposite to the mold 18. If pressure is supplied and pressurized, the effect of preventing delamination between layers in the molding step (S-13) can be obtained. It is also effective to provide an upper mold and pressurize, but it is difficult to cope with a complicated shape and causes an increase in cost.
[0037]
Further, the laminated sheet formed in close contact with the mold 18 is prevented from being deformed by the stress applied at the time of taking out by cooling the resin temperature to a temperature that does not cause deformation (S-14). At the same time, the design layer 3 as the design surface can be smoothly separated when released from the mold, and the surface of the molded product can be transferred to another smoothness to obtain a glossy product with excellent design properties (S- 15) I can do it.
[0038]
As described above, the foamed resin pulverized product recovered from various discarded molded products can be taken in and effectively used, and the void formed by the contact between the foamed resin pulverized product and the foamed resin are held in the bubbles. It becomes a newly foamed state due to the dispersion of gas, and can form a resin sheet having excellent adhesiveness with a low softening point, which is laminated on a molded product that forms a design surface as a heat insulating layer Insulation function can be retained.
[0039]
In addition, since a laminated sheet was formed by integrating the resin mixture containing the pulverized foam resin into a sheet and the resin sheet forming the design layer, the conventional vacuum / compressed air pressure molding machine can be used without any special modifications. It is possible to use. Moreover, since the laminated sheet is plate-like and has a stable form and can be easily stored, it is not always necessary to link the series of processes for obtaining the resin mixture and forming the laminated sheet and the process for forming the molded panel. Therefore, it is convenient for the adjustment of the in-process material.
[0040]
Embodiment 2. FIG.
Since the external appearance and structure of the design-shaped panel obtained based on the embodiment of the present invention are the same as those in FIGS. 1 and 2 of the first embodiment, respectively, in claims 5, 6 and 10 of the present invention, hereinafter. The manufacturing method of the molded panel will be described with reference to the process diagram shown in FIG. 7 and the explanatory view of the dispersion state of the resin mixture and the molding method shown in FIG.
[0041]
First, the urethane foam used for the insulating material collected from the packaging material or refrigerator for packaging is 0.2 to 15 mm, preferably 1 to 10 mm without excessively breaking the cell walls. After pulverizing to a range (S-21), it is classified into a plurality of particle sizes (S-22). In this embodiment, the particles were classified into fine particles and coarse particles with a boundary of 3 mm.
[0042]
Next, separately from this, a semi-cured epoxy resin as an adhesive is prepared and mixed with the classified urethane foam pulverized product 4 (S-23). Since the epoxy resin used here is in the form of fine powder, it is possible to obtain a state in which the pulverized urethane foam 4 adheres uniformly to the particle surface of the pulverized material 4 due to static electricity generated by rubbing, and is applied in the subsequent thermoforming. It can be done smoothly without hindering plastic deformation when forming, and it can be cured with a low melting point and short heating that does not cause deformation by applying excessive stress to the design layer 3 locally. As shown in Table 1, the composition of the adhesive used in this embodiment is shown as an example.
[0043]
[Table 1]
Figure 0004280947
[0044]
The manufacturing method of the adhesive using the above raw materials is described below. First, after these raw materials are uniformly mixed, for example, after thinly spraying on a sheet having heat resistance and flexibility such as polyethylene terephthalate and aluminum foil Then, this is subjected to a drying treatment for 10 minutes in a constant temperature bath at 90 ° C. to advance the removal of acetone and the preliminary reaction. The semi-cured epoxy resin that is the obtained adhesive is very brittle and can be easily pulverized, so that a fine powder state can be secured at the time of mixing, so it is not always necessary to pulverize in advance. It is also possible to use it in a peeled state.
[0045]
In addition, as in Embodiment 1, a hot-melt type adhesive in a powder state at room temperature may be used, and an adhesive function is exhibited at a temperature higher than the thermal deformation temperature of urethane foam to form a buffer material. It is also effective to use a hot melt adhesive such as paraffin or amide that can contribute. However, in order to bond a pulverized foamed resin product with a thermoplastic resin such as polystyrene foam using these hot melt adhesives, the pulverized material is sufficient without causing permanent deformation such as melting. In order to obtain a good adhesive property, only a material having a melting point considerably lower than the thermal deformation temperature of the foamed resin can be used. The above-mentioned semi-cured epoxy is left untouched by the need to maintain the low-temperature state when adhering to the surface of the pulverized product in the powder state using static electricity generated by the friction between the two people. It is preferable to use a resin.
[0046]
The semi-cured epoxy resin as the adhesive described above and the classified pulverized material obtained in the step (S-22) are performed using a mixer, a rotating drum or the like equipped with mixing blades. In joining the pulverized particles to each other, a sufficient effect can be obtained by adding substantially the same amount of the epoxy resin in a semi-cured state, which is an adhesive used for electrostatic adhesion to the surface of the pulverized material. Excess adhesive that does not adhere to the surface of the pulverized product due to static electricity generated during mixing is excluded from the mixture with the coarse pulverized product (S-23b), but mixed with the fine pulverized product (S Since -23a) effectively acts in forming a layer having excellent rigidity by reducing the voids of the heat insulating layer 2 in contact with the design layer 3, it was subjected to the spraying as it is.
[0047]
Next, the resin sheet 21 which comprises the design layer 3 which formed unused and arbitrarily colored ABS resin in the sheet form by extrusion molding etc. (S-24) was created separately, and the surface on the opposite design side was prepared. In the state shown in FIG. 8 (a), the resin mixture 22 which is a mixture of the foamed resin pulverized product and the semi-cured epoxy resin is classified into small particles by classifying the pulverized urethane foam containing the foamed resin pulverized product. After the thing 23 containing fine powder was sprayed (S-25a), the thing 24 containing large coarse particle powder was sprayed (S-25b). Next, this was heated on a molding die heated to 70 ° C. As shown in FIG. 8B, the sheet that is placed with the outer periphery fixed and heated to 175 ° C. by preheating (S-26) to be a layer on the design surface side is placed on the lower mold 18a. A certain air is exhausted from the exhaust port 25 to perform vacuum forming (S-27). . At this time, the semi-cured epoxy resin contained in the resin mixture is melted, but is only attached to the surface of the foamed resin pulverized product, and thus never flows out onto the sheet. Therefore, the resin mixture remains to slide down on the ABS resin design layer 3 which forms the concave design surface by the vacuum forming.
[0048]
In this way, by performing dispersion using a resin mixture containing a pre-classified foamed urethane pulverized product, a mixture of fine pulverized product and excess adhesive is disposed in the vicinity of the design layer 3 at the lower position, On the heat insulating layer 2 side, a mixture with an adhesive that appropriately adheres the coarsely pulverized powder could be disposed so as to keep the voids between the particles and lower the density of the heat insulating layer 2.
[0049]
Although it is possible to achieve the formation of the heat insulating layer 2 even if the epoxy resin is kept until it is completely cured in this state, the handling in the product assembly process of the air conditioner performed after the strength and brittleness are insufficient. May be difficult. Therefore, the mold 26 is adjusted to 80 to 140 ° C. so as to promote the curing of the epoxy resin and the design surface is not excessively heated, and the mold 26 is placed on the anti-design surface as shown in FIG. 1kg / cm by lowering until it comes into contact with the layer of foamed resin crushed material, etc.2Or less, preferably 0.2 to 0.5 kg / cm2The layer is compressed by applying a pressure of (S-28). By holding in this state for 15 minutes, the epoxy resin as the adhesive is cured and the foamed resin pulverized product 22 particles are brought into contact with each other. Thus, the particles can be brought into close contact with each other, pressed against the ABS resin sheet, and solidified while ensuring the smoothness of the surface to form the heat insulating layer 2. Then, after taking out the molded product, as shown in FIG. 8 (d), if trimming is performed to cut and eliminate unnecessary portions (S-29), the desired design-shaped panel 1 excellent in heat insulation is obtained. Obtainable.
[0050]
As described above, using a semi-cured epoxy resin as an adhesive, a pulverized product obtained by pulverizing foam resin such as heat insulating material, which is originally waste, is sprayed on the back of the molded product that forms the design surface. Since the molded panel 1 such as an air conditioner was obtained by molding, the forming process of the heat insulating layer 2 for preventing dew condensation can be performed once and can be efficiently formed, and the adhesive is used by using heat at the time of thermoforming. Since it hardened and solidified the heat insulation layer 2, it becomes unnecessary to give the design layer 2 a heat again, and the malfunction which the design property by the heating of the design layer 3 falls does not arise.
[0051]
Further, since the resin mixture 22 was directly placed on the sheet 21 and used for molding, the work process could be simplified and efficiency could be achieved. Further, since the resin mixture 22 containing the pre-classified foamed urethane pulverized material is properly used, a mixture of the finely pulverized product and excess adhesive is disposed in the vicinity of the design layer 3 to provide a rigid backing material for the design layer 3. It is possible to obtain a molded product that is difficult to be deformed by the formation of a simple layer and the application of stress. Further, since the coarsely pulverized material was suitably bonded to the heat insulating layer 2 to maintain the voids between the particles, the heat insulating layer 2 having a low density and excellent heat insulating performance could be obtained.
[0052]
In this case, a semi-cured epoxy resin was used as the adhesive. However, if the adhesive has a composition that does not infringe on the resin forming the design surface such as dissolution and crazing, it is liquid. The same effect can be obtained. Further, among the EVA resins having a melting point lower than that of the ABS resin forming the design layer 3 and having excellent adhesiveness and flexibility, it is preferably compared with the ABS resin used for the design layer 3. It is preferable to use a powdery material having a vinyl acetate content of 5 to 7%, which is a temperature as low as 20 to 40 ° C., as the adhesive.
[0053]
Embodiment 3 FIG.
  The aspect described in the present embodiment is the first to third aspects of the present invention.5, 6, 8FIG. 9 is a sectional view showing the structure of the molded panel showing the present embodiment, and FIG. 10 is a manufacturing process diagram showing the manufacturing method.
[0054]
First, the molded panel 1 of the present invention will be described with reference to FIG. The molded panel 1 is formed by disposing a glass fiber nonwoven fabric 27 on the surface portion of the heat insulating layer 2 on the counter-design surface side and the contact surface portion between the heat insulating layer 2 and the design layer 3 forming the design surface. Compared with the second embodiment, the handling of the resin mixture, which is a mixture of the foamed resin pulverized product and the semi-cured epoxy resin as the adhesive, is facilitated, and the surface portion of the heat insulating layer 2 is The resistance against combustion is improved by the covering nonwoven fabric 27 of glass fiber.
[0055]
Next, the molding method of the molded panel according to the present invention will be described below using the manufacturing process diagram of FIG. 10 and the explanatory view of the arrangement of the molded product members and the molding method shown in FIG. Steps S-31 to S-33 are steps having the same contents as those in the second embodiment. First, the foamed resin, which is a heat insulating material contained in a used refrigerator that has been disposed of, is collected and provided with a rotary blade. By using a crusher or the like, pulverization was performed to obtain a pulverized product having an appropriate size in the range of 0.2 to 15 mm (S-31). As in Embodiment 1, this foamed resin pulverized product was mixed with a semi-cured powder obtained by heat-drying an epoxy resin having the composition shown in Table 1, using a mixer or a rotating drum equipped with mixing blades. And mixing (S-32) to obtain a resin mixture of the pulverized product and the adhesive. Furthermore, an arbitrarily colored ABS resin sheet was separately formed by extrusion molding (S-33).
[0056]
The subsequent steps are different from those of the second embodiment. First, a nonwoven fabric of glass fibers dried after impregnating a resin having the composition shown in Table 1 separately prepared on the surface on the counter-design side of the ABS resin sheet forming the design surface prepared in Step S-33. Place. This glass nonwoven fabric was obtained by immersing a glass fiber nonwoven fabric in the resin liquid shown in Table 1 (S-34) and then performing a drying process (S-35) for 10 minutes in a thermostatic bath at 90 ° C. The obtained sheet is a prepreg 28 formed by adhering a very brittle and semi-cured epoxy resin to the glass fiber, and thus exhibits a brittle and hard property.
[0057]
  Further, a prepreg 28 including an epoxy resin-impregnated glass nonwoven fabric 27 placed on the ABS resin sheet 21 formed in step S-33.aThe resin mixture 22, which is a mixture of the foamed resin pulverized product and the semi-cured epoxy resin, is sprayed to a thickness of about 5 mm (S-36), and then another prepreg 28.bIs placed as shown in FIG. 11A (S-37) to form a molding precursor 29. At this time, it is not necessary to use an excessive semi-cured epoxy resin that is not adsorbed on the surface of the resin pulverized product due to static electricity generated during mixing, but rather, by not using it, a space between the particles is secured to ensure a heat insulating layer. In addition to being able to contribute to the weight reduction of No. 2, it is preferable because the molded product does not impair the dismantling property when it is treated as waste again.
[0058]
This molding precursor 29 is placed in a state where the outer periphery is fixed on the compression molding die 18 heated to 175 ° C., and the ABS resin sheet 21 which becomes a layer on the design surface side is brought close to the thermal deformation temperature. 11 (b), the air in the mold 18 is exhausted from the exhaust port 25 of the mold 18 and the precursor is sucked and molded, and the upper mold 27 is Lower 2kg / cm2Below, preferably 0.5-1 kg / cm2The heat insulation layer 2 is shaped by applying and compressing the pressure (S-38). By ensuring the state of maintaining the pressure for 15 minutes, the resin mixture 22 in which the crushed material including the discarded foamed resin and the epoxy resin as the adhesive are mixed is cured and solidified. Thereafter, the mold temperature is preferably lowered to 135 ° C. or lower, which is lower than the thermal deformation temperature of the epoxy resin, more preferably to 95 ° C. or lower, which is the thermal deformation temperature of the ABS resin to be a layer on the design side, and then the molded product After trimming, trimming is performed to cut and eliminate unnecessary portions to obtain a desired molded panel (S-39).
[0059]
At this time, it is desirable to place the resin mixture up to the region corresponding to the folded shape at the peripheral end of the molded product, but it is preferable that the amount slightly exceeds the region portion in view of the accuracy of the work. . The resin mixture exceeding the region part is a design surface when the ABS resin sheet forming the design layer 3 reaches a state of forming a concave shape by vacuum forming, and the ABS resin sheet at the time of molding is bent and the edges rise. It falls in the direction and fits in the heat insulating layer 2. If the amount of the resin mixture does not exceed the region portion, a corresponding unfilled portion is generated at the end portion.
[0060]
By this compression molding, the particles of the foamed resin pulverized product and the glass nonwoven fabric and the foamed resin pulverized product are brought into close contact with each other and pressed against the ABS resin sheet. Furthermore, the semi-cured epoxy resin used for mixing with the foamed resin pulverized product and impregnation into the glass nonwoven fabric was held under compression molding temperature conditions of 70 ° C. or higher, which is the melting point thereof, and thus exhibited a liquid state. Since the fluid flows and obtains a state in which the intimate portions of the foamed resin pulverized product and the glass nonwoven fabric are appropriately pressurized, and the curing proceeds, excellent adhesiveness can be ensured. Moreover, since this state behaves similarly in the correlation with the sheet surface of the ABS resin, the same excellent adhesion can be obtained and integrated with the design surface, and an excellent reinforcing effect can be given to the design layer surface. .
[0061]
In addition, the molded product obtained in the present embodiment was taken out at a mold temperature that is lower than the thermal deformation temperature of the epoxy resin, so even if it is subjected to stress related to removal from the mold, When the molded product was taken out at a mold temperature not higher than the heat deformation temperature of the ABS resin without causing deformation, an excellent gloss on the design surface could be obtained.
[0062]
As described above, the molded panel 1 having the heat insulation layer 2 formed by effectively using the foamed resin, which is originally waste, on the back surface of the molded product that forms the design surface is solidified. It is possible to easily and efficiently form the heat-insulating layer 2 that prevents condensation without deteriorating the design properties by a molding method that applies a vacuum and is placed on a resin sheet that forms a layer. In addition, it can be handled without scattering a very lightweight pulverized foam resin having a density of about 0.03 to 0.04 g / cc, and the surface of the heat insulating layer 2 is made of incombustible glass fiber. By covering with the nonwoven fabric 27, a molded product with improved flame retardancy can be obtained.
[0063]
In addition, although the epoxy resin of the semi-hardened state was used as an adhesive here, if it is an adhesive of the composition which does not invade troubles, such as melt | dissolution and crazing, with respect to the design layer 3 shown in sectional drawing of FIG. A liquid material may be used, and the same effect can be obtained.
[0064]
Further, among EVA resins having a melting point lower than that of the ABS resin forming the design layer 3 and having excellent adhesion and flexibility, it is preferably softened as compared with the ABS resin used for the design layer 3 A powdery material having a vinyl acetate content of 5 to 7%, which is a temperature as low as 20 to 40 ° C., may be used as an adhesive. In this case, the non-woven fabric 27 of glass fiber disposed on the contact surface of the heat insulating layer 2 and the design layer 3 and the surface portion of the heat insulating layer 2 may be impregnated with an epoxy resin, but remains when reused. However, it is preferable to use the same type of resin so that it does not matter, and it may be firmly integrated by subjecting it to thermoforming with an excess resin, for example, by attaching EVA resin powder. It is preferable to make it.
[0065]
If the thermal deformation temperature of the EVA resin used is the main panel 1 and, for example, it is difficult to obtain the desired strength because it is close to the temperature used in an air conditioner, the vinyl acetate component amount of the EVA resin is reduced. If it is possible to obtain a material having a high heat distortion temperature, it may be replaced with a resin having improved heat resistance of the resin used for the design surface, and limited to the type of resin used here. Not what you want.
[0066]
Further, in this embodiment, a non-woven fabric of glass fiber is used to wrap the layer on the anti-design side in the interlayer sheet to be peeled, but it is difficult to cover the heat insulating layer 2 if flame retardancy is not required. Even if a flammable sheet is not used, a sheet in which glass fibers are replaced with other fibers may be used.
[0067]
Embodiment 4 FIG.
  The aspects described in this embodiment are claimed in the present invention.7, 8FIG. 12 is a cross-sectional view showing the internal structure of the molded panel showing the present embodiment, and FIG. 13 is a manufacturing process diagram.
[0068]
First, the structure of the molded panel 1 of this invention is demonstrated using FIG. A foamed resin pulverized product is solidified through an adhesive and filled as a heat insulating layer 2 in a molded product 30 that forms a design layer 3 obtained by thermoforming a resin or drawing a metal such as a steel plate. Yes. Moreover, the pulverized product of the foamed resin is in a state in which the small particles 23 on the surface of the design layer 3 and the lower direction contain a large amount of adhesive and have fewer pores, and the heat insulating layer 2 in the upper direction which is the anti-design surface. Is held with a minimum amount of adhesive and a large number of pores, holding the voids formed by the large particles 24 in contact with each other.
[0069]
Next, the manufacturing method of the molded panel based on this invention is demonstrated using the manufacturing-process figure shown in FIG. First, urethane foam, which is a heat insulating material recovered from a refrigerator or the like, is pulverized (S-41). Here, the pulverized foamed resin obtained by pulverization preferably has a size in the range of 0.5 to 10 mm which can be reasonably dispersed in the molded product forming the design layer 3, and its particle size distribution is It is particularly preferable to have a normal distribution with the largest content at the center of the range.
[0070]
On the other hand, a semi-cured epoxy resin having an adhesive composition as shown in Table 1 used in Embodiment 1 as an example of an adhesive is prepared and mixed (S-42). This epoxy resin powder was arbitrarily adjusted in the amount of imidazole / 224MZ as a catalyst so that it adhered to the surface of the pulverized material 4 due to static electricity and melted at a low temperature, and also achieved high activity in which curing progressed by heating for a short time. Is.
[0071]
In addition, in the case of using a thermosetting resin foamed resin such as urethane foam which is a heat insulating material of the refrigerator used in this aspect, it is possible to bond at a high temperature that does not lead to decomposition of the resin. A hot-melt type adhesive in a powder state may be used, and it is also effective to use a hot-melt type adhesive such as a paraffin type or an amide type. However, in order to bond a pulverized foamed resin product with a thermoplastic resin such as polystyrene foam using these hot melt adhesives, the pulverized material is sufficient without causing permanent deformation such as melting. It is preferable to use a resin having a melting point considerably lower than the thermal deformation temperature of the foamed resin so that good adhesiveness can be obtained. In addition to the semi-cured epoxy resin described above, an EVA copolymer resin or the like is preferable.
[0072]
Next, the semi-cured epoxy resin, which is the above-mentioned adhesive having substantially the same weight as the pulverized material obtained in (S-41), is mixed using a mixer or a rotating drum equipped with mixing blades, Excess semi-cured epoxy resin that was not adsorbed on the surface of the foamed resin pulverized product due to static electricity generated at this time was also used for the spraying.
[0073]
Separately from this, after forming into a sheet using an extruder or the like which is an ABS resin that is unused and arbitrarily colored (S-43), it is optional to form the design layer 3 by vacuum forming or the like. (S-44), the resin molded product 29 forming the design layer 3 was obtained.
[0074]
The sheet material forming the design layer 3 used at this time needs to be used with an increased hiding power in order to provide the heat insulating layer 2 in contact with the design layer 3 to exhibit an indefinitely colored state unevenness or a different color. However, the aim is to reduce the amount of unused resin to be used by making use of the fact that a reinforcing effect can be obtained by backing a resin mixture containing a pulverized product of foamed resin. In order to provide coloring, the amount of pigment was increased more than usual and the thickness was reduced.
[0075]
In addition, the molding method of the resin molded product 30 forming the design layer 3 does not necessarily need to use the vacuum molding method, and may be injection molding. In this case, a single step S-43 and S-44 are combined. In addition to the process, there is an advantage that the molding cycle time is short.
[0076]
Next, a resin mixture in which a foamed resin pulverized material and an adhesive were mixed was charged into the resin molded product 30 forming the design layer 3 obtained in the above step (S-45). The filling amount of the resin mixture is preferably obtained by appropriately compressing the pulverized product of the foamed resin so that a uniform and smooth state can be obtained and an increase in compressive strength can be brought about. it can.
[0077]
αV = W1 / D1 + W2 / D2 (1)
W = W1 + W2 (2)
W: input amount of the mixture of the foamed resin pulverized product 4 and the adhesive (g)
α: Overfill rate
V: inner shell volume of the heat insulating wall (L)
W1: Weight (g) in the mixture of the foamed resin pulverized product 4
D1; density of foamed resin (g / L)
W2: Weight in adhesive mixture (g)
D2: density after curing of the adhesive (g / L)
[0078]
According to the above formula, when α is 1, the foamed resin is hardly compressed, so that only light weight but inferior strength can be obtained. If α is 1 or more, Excellent compressive strength can be produced with increasing density. Therefore, in the case of the heat insulation layer 2 in this Embodiment, it is preferable to set the value of (alpha) at this time in the range of 1.3-2.0.
[0079]
Next, a moderate movement is performed so that the pulverized mixture is placed in a stable position by applying a shocking fine vibration in the vertical direction to the mold with the design surface positioned below (S-46). It comes and is packed in the most dense state, and each raw material floats and sinks due to the difference in specific gravity. That is, a state in which a foamed resin pulverized material having a small particle size abuts against the design layer 3 and settles to form a strong layer together with an excess adhesive, and does not contain an excessive amount of adhesive adhering to the surface. A pulverized material having a large particle size floats upward and accumulates to obtain a state in which voids are provided between the particles.
[0080]
The fitting product containing the pulverized composition thus obtained is held between flat plates of a heatable press or the like and heated and compressed to form the heat insulating layer 2 in the molded panel. (S-47). The procedure in this step will be described in detail. First, the temperature of the flat plate, which is the molding temperature, is determined from the thermal deformation temperature of the resin in the case of the present embodiment where the foamed resin is composed of a thermosetting resin such as urethane foam. It is preferable to carry out at a high temperature within 30 ° C. Further, when a thermoplastic resin such as expanded polystyrene which is another embodiment is used as a pulverized product of the expanded resin, the temperature is kept equal to or lower than the thermal deformation temperature of the thermoplastic resin. Next, the molded product of the design layer 3 filled with the resin mixture having a distribution in the appropriate particle size and adhesive content obtained in (S-46) is inserted between the flat plates, and the adhesive does not cure. For 2 to 20 minutes, preferably 5 to 10 minutes, which is a condition for maintaining fluidity.
[0081]
Since the adhesive is in a molten state by the heating, it becomes easy to get wet on the surface of the pulverized product, and the particle shape of the pulverized product is deformed by pressurization to ensure a large adhesion area. At this time, the gas in the cell is discharged out of the system without staying in the system. Therefore, if the mold is provided with a gas vent that can smoothly discharge the gas, It is preferable because voids that impair the design of the surface plate such as voids are not generated inside, and therefore a smooth surface can be secured on the molded panel.
[0082]
Thereafter, the fitting product is 0.2 to 2 kg / cm.2Preferably, 0.5 to 1 kg / cm without excessively causing deformation of the foamed resin2Pressurize at a pressure of. By holding between the flat plates with the pressure, structural defects of the foamed resin pulverized product and parts that do not reach the closest packing cause permanent deformation, and it is possible to secure a state in which further deformation is difficult. In addition, deformation such as unevenness due to cooling after molding and temperature change during use is reduced.
[0083]
At this time, if the pulverized composition is provided with a thermoplastic resin such as expanded polystyrene, cells in the vicinity of the surface plate can be easily formed by raising the temperature of the surface plate to a temperature equal to or higher than the thermal deformation temperature and further to the vicinity of the melting point. As described above, the contact portion with the design layer 3 forms a high-density layer that is more rigid and hardly undergoes compressive deformation, and the heat insulating layer 2 remains low in density. It is effective because it can be provided with a layer comprising a foamed resin having excellent heat insulation performance.
[0084]
After holding the above heating and pressurizing state for 10 to 30 minutes, the product is taken out after cooling to a temperature lower than the heat deformation temperature of the foamed resin, preferably from the heat deformation temperature to 20 ° C. or higher, and then unnecessary parts If trimming is performed to cut and eliminate the desired shape, a desired molded panel is obtained (S-48).
[0085]
As described above, a resin mixture composed of a pulverized foam resin having a particle size distribution and a powdery adhesive is put into a molded product corresponding to the design layer 3 and then solidified after giving a slight vibration. As a result, the heat insulating layer 2 has a distribution in the size of the pulverized product and the content of the adhesive, and the heat insulating layer 2 that comes into contact with the design layer 3 contains a large amount of small particles and an adhesive to be lined. Therefore, even if the unused resin is reduced and the thin design layer 3 is provided, a molded panel having excellent strength and design can be obtained. Further, since the heat insulating layer 2 is the minimum amount for only bonding the pulverized materials to each other, an appropriate gap can be maintained to contribute to heat insulation and weight reduction.
[0086]
In addition, since a powdered resin is used for the adhesive, it is adsorbed to the surface of the pulverized product by static electricity generated during mixing with the pulverized product of the foamed resin, and is easily retained in the resin mixture state. Can be ensured.
[0087]
In the present embodiment, a resin molded product is used as the design layer 3. However, instead of this, a processed product obtained by bending or squeezing a metal such as a steel plate may be provided.
[0088]
If the heat distortion temperature of the EVA resin used is close to the temperature used, for example, in an air conditioner using this molded panel, and it is difficult to achieve the desired strength, the amount of vinyl acetate component in the EVA resin is reduced. If this is the case, it is possible to obtain a material with a high heat distortion temperature. Further, the resin used for the design surface may be replaced with one having improved heat resistance. It is not limited to.
[0089]
Embodiment 5 FIG.
  The aspect described in this embodiment isMessengerOf a molded product that is used as waste after completion of use, and is a molded product in which a heat insulating layer 2 containing a pulverized product of foamed resin is formed on the counter-design surface by means of the third embodiment. Of these, a method for disassembling a used molded panel provided with a heat insulating layer 2 obtained by solidifying a foamed resin pulverized product with EVA resin, which is a low melting point resin, will be described below.
[0090]
Dismantling is intended to separate each of the molded resin constituting the design surface and the foamed resin mixture constituting the counter-design surface into a reusable form. First, the EVA resin is softened by heating the molded panel obtained in the third embodiment, and the temperature at this time is preferably higher than 60 to 70 ° C., which is the softening point of the EVA resin. It is particularly preferable to set the temperature to be equal to or lower than the softening temperature of the ABS resin to be formed. Since the adhesive strength between layers sharply decreases due to softening of the EVA resin, it can be easily peeled off.
[0091]
There is a method of using a tool such as a spatula for peeling off both layers. However, as shown in FIG. 14, the peeling surface forms an appropriate angle not more than a right angle and is pulled from the arrangement direction. If the glass fiber non-woven fabric 27 disposed on the substrate is lifted, it is slowly peeled off from the molded product forming the design layer 3 while holding the heat insulating layer 2 made of a resin mixture of foamed resin and EVA resin from the used molded product. Can be made. According to this method, since the pulverized foamed resin on the folded surface is compressed and the surface provided with the non-woven fabric 27 of glass fiber used for peeling is pulled, the stress to return to the planar state is applied to the peeling surface. It is added to the contact part of the design layer 3 and the heat insulation layer 2 as a tensile stress, and it never has an excessive stress that has a behavior of forcibly peeling off and concentrates locally. Thus, it is possible to impart a behavior in which both layers naturally peel.
[0092]
In addition, since the contact portion between the design layer 3 and the heat insulating layer 2 is integrated through the glass fiber 27, even if the EVA resin is pulled at the time of peeling, it has an excessive amount of peeling. Since there is no hindrance, it is not necessary to pull it excessively over a long period of time. Therefore, a design surface made of ABS resin heated to a temperature close to the heat deformation temperature causes creep-like deformation. Since the unevenness | corrugation to suppress can be suppressed, it is preferable.
[0093]
In addition, since the glass fiber 27 used at this time is arranged in an irregular and non-oriented non-woven fabric, it easily follows the local tensile stress and the difference in direction. Since the stress relating to the peeling can be made uniform and applied to the peeling portion, it is possible to suppress the occurrence of one layer of the unevenness.
[0094]
If the designable panel is disassembled by the above method, each of the obtained layers can be easily used again. In other words, the ABS resin layer 3 that forms the design surface collected by this method is collected without adhesion of the resin on the counter-design surface such as an epoxy resin impregnated with EVA resin or a glass fiber nonwoven fabric. Therefore, the molded product can be reused as it is, or it can be further crushed to obtain a similar molded product again. About the resin mixture containing the pulverized product of the foamed resin in one heat insulating layer 2, the glass nonwoven fabric 27 can be easily peeled off. Although it is difficult to reuse the shape, it can be reused if it is pulverized to an appropriate size.
[0095]
Further, forcibly peeling using mechanical stress without using the nonwoven fabric 27 such as glass fiber at the time of peeling is a constant speed corresponding to the difference in peeling stress caused by the distribution of adhesive force. It was not possible to peel off, and therefore, a slight streak was sometimes formed. If the design layer 3 and the heat-insulating layer 2 are peeled off without using the above-described method, the peeled surface is formed by enclosing compressed air in the gap formed by slightly lifting the edge and peeling off. It is also effective to use a method of expanding
[0096]
Embodiment 6 FIG.
  This embodimentIsAmong the molded products obtained in the second to fourth embodiments, in particular, the heat insulating layer 2 of the molded product is obtained by mixing a foamed resin pulverized product with a semi-cured epoxy resin and solidifying the design layer. 3 is a disposal method that can be used again after the molded article of the aspect backed by 3 has been used and provided as waste, and relates to a method for separating and separating used materials.
[0097]
This will be described below with reference to the process diagram of FIG. First, it heats to 130-150 degreeC exceeding the softening of the ABS resin which forms the design layer 3 of the shaping | molding panel 1 obtained in any of Embodiment 2-4 (S-51). By this heating, the design layer 3 is in a softened state that exhibits a rubber state having an appropriate repulsive force without reaching flow, whereas the heat insulating layer 2 is made of a foamed heat insulating material crushed material and an epoxy resin are rigid. , Remain fragile.
[0098]
Next, as shown in the conceptual diagram of FIG. 16, the heated molded panel 1 is formed by using a roller 31 or the like from the surface of the design layer 3 with the heat insulating layer 2 made of a resin mixture of crushed foam resin and epoxy resin as an adhesive. To apply concave deformation (S-52). As a result, a shearing force is applied to the interface with the ABS resin, which is a thermoplastic resin, and peeling occurs in the most part. After cooling this to 60-80 ° C., which is lower than the glass transition temperature of the ABS resin, for example, by hitting with a hammer with a soft surface and applying shocking vibration (S-53), the design surface The resin mixture containing the pulverized foamed resin that is the heat insulating layer 2 that forms the anti-design surface and the ABS resin forming the glass fiber and the nonwoven fabric of glass fiber are completely peeled off.
[0099]
Here, in the case of a molded panel or the like whose design surface is formed of a molded product processed by bending the steel sheet, the pressing applied to the steel sheet is not performed without heating the molded panel shown in the step (S-51). Since the concave deformation can be given by increasing the thickness, a shearing force is generated at the interface with the resin mixture containing the foamed resin, and the separation can be achieved.
[0100]
Next, impact vibration is imparted to the resin mixture containing the pulverized foamed resin resin and the nonwoven fabric of glass fiber by hitting with a hammer with a soft surface in the same manner (S-54). By doing so, the resin mixture containing the pulverized foamed resin and the nonwoven fabric of glass fiber can be separated. Further, for the peeled resin mixture, if the peeled materials are rubbed together using a simple blade-shaped stirrer (S-55), the crushed material at the interface between the foamed resin and the epoxy resin to which the epoxy resin is arbitrarily attached Is easily crushed, and in some cases, by utilizing a large difference in specific gravity between the foam and the resin, for example, the foam scattered by the wind force can be collected (S-56). It can be used again.
[0101]
If the designable panel is disassembled by the above method, the design layer 3 and the heat insulating layer 2 can be easily disassembled, and the obtained layers can be easily reused. Moreover, since the epoxy resin used for the adhesive hardly adheres to the ABS resin or the steel plate forming the design layer 3 separated by the above method, it can be easily transferred to other uses.
[0102]
As described above, in the embodiment of the present invention, the molded panel that has heat insulation and can suppress the occurrence of dew condensation on the design layer 3 and the molding method thereof have been described. However, the present invention is not limited to this. For example, panels such as building materials and structural materials, as well as means for sandwiching pulverized waste resin molded products in the middle of a plate material as a lightweight and highly rigid heat insulating structure, etc. Application to alternative products is also possible, and various modifications can be made without departing from the spirit of the invention.
[0103]
【The invention's effect】
  The molded panel according to the first aspect of the present invention includes a design layer that forms a design surface by shaping an arbitrarily colored resin, and an anti-design surface of the design layer.Sprayed on beforeThe melting point is lower than the melting point of the resin that forms the design layer.A resin mixture obtained by mixing a powdery adhesive and a pulverized foamed resin was integrated with the design layer by thermoforming.An insulation layer;The heat insulating layer is disposed in the vicinity of the design layer to form a rigid layer by disposing a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and a portion separated from the design layer. Then, a resin mixture of the pulverized product having a large particle size and an appropriate adhesive is provided to maintain a space between the particles of the pulverized product, thereby forming a layer having excellent heat insulation properties.Therefore, it can be applied to the part with a deformed structure without any gaps, so the insulation layer can be made thinner.In addition, the design layer is difficult to be deformed, and the heat insulating layer has a low density and can be obtained with excellent heat insulating performance.it can.
[0104]
Since the molded panel according to the second invention of the present invention includes a nonwoven sheet formed by holding fibers in a disordered orientation state between the design layer and the heat insulating layer, it corresponds to the stress involved in molding. The deformation and movement of the fibers can be facilitated and various arbitrary shape deformations can be made. Therefore, the fibers can be integrated without any defects such as tearing, and the reinforcing effect of the design layer can be increased.
[0105]
In the molded panel according to the third aspect of the present invention, the surface of the heat insulating layer opposite to the design layer is integrally covered with a flame-retardant sheet formed by holding the fibrous substance in a disordered orientation state. As a result, the surface layer becomes difficult to burn, and the flame retardancy can be improved without using a flame retardant.
[0107]
  First of the present invention4The method for producing a molded panel according to the invention includes a step of molding a resin forming a design surface into a sheet,A step of sorting the pulverized foam resin into a plurality of different particle diameters,Powder form having a melting point lower than the melting point of the resin forming the design layerThe adhesive is excessively adhered to the surface of the pulverized product smaller than the predetermined particle size, and the adhesive is appropriately applied to the surface of the pulverized product larger than the predetermined particle size. AttachA step of obtaining a resin mixture constituting the heat insulating layer, and a sheet-like molded article forming the design layer;TreeFat mixtureOut of the resin mixture having a smaller particle sizeThe step of spraying and thermoforming the sheet sprayed with the resin mixture obtained in the above step,In the vicinity of the design layer, the heat-insulating layer forms a rigid layer by a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and the pulverized product having a large particle size in a portion away from the design layer. So that a gap between particles of the pulverized product is retained by a resin mixture of the product and an appropriate amount of the adhesive so as to form a layer having excellent heat insulation propertiesA molded panel provided with a heat insulating layer formed by solidifying the pulverized product by effectively using foam resin, which is essentially waste, on the back surface of the molded product forming the design surface. In addition, it is possible to easily and efficiently form a heat insulating layer for preventing condensation without deteriorating the design by a molding method using vacuum.In addition, since a mixture of finely pulverized product and excess adhesive can be formed in the vicinity of the design layer to form a rigid layer, it is possible to obtain a design layer that is not easily deformed by the application of stress. Since the coarsely pulverized material was appropriately adhered to the layer to maintain the voids between the particles, a heat insulating layer having a low density and excellent heat insulating performance can be obtained.
[0109]
  First of the present invention5The method for producing a molded panel according to the invention includes a step of molding a resin forming a design surface into a sheet,A step of sorting the pulverized foam resin into a plurality of different particle diameters,Powder form having a melting point lower than the melting point of the resin forming the design layerThe adhesive is excessively adhered to the surface of the pulverized product smaller than the predetermined particle size, and the adhesive is appropriately applied to the surface of the pulverized product larger than the predetermined particle size. AttachThe step of obtaining a resin mixture constituting the heat insulation layer, the step of obtaining the resin mixture constituting the heat insulation layer, the step of forming a non-woven sheet comprising fibers in a disordered orientation state, and the design layer are formed. The non-woven sheet is placed on a sheet-shaped molded article, and the frontTreeFat mixtureOut of the resin mixture having a smaller particle sizeSpraying and forming a molding precursor; and thermoforming the molding precursor;In the vicinity of the design layer, the heat-insulating layer forms a rigid layer by a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and the pulverized product having a large particle size in a portion away from the design layer. So that a gap between particles of the pulverized product is retained by a resin mixture of the product and an appropriate amount of the adhesive so as to form a layer having excellent heat insulation propertiesAnd the process to be performed, so that the deformation and movement of the fiber can be facilitated in response to the stress involved in the molding, and various arbitrary shape deformation can be performed, so there is no defect such as tearing in the molded product, The reinforcing effect of the design layer can be increased.
[0110]
  First of the present invention6In the method for producing a molded panel according to the invention, in the step of molding the molding precursor, after the resin mixture constituting the heat insulating layer is dispersed, the fibrous material is further held in a disordered orientation state. Since a sheet | seat is mounted on the said resin mixture, it can handle without scattering the pulverized material of a very lightweight foamed resin.
[0111]
  First of the present invention7The method for producing a molded panel according to the invention includes a step of forming a resin for forming a design layer into a sheet, a step of thermoforming the sheet obtained in the step to obtain a molded product forming a design layer, Powdered powder with a melting point lower than the melting point of the resin that forms the design layeradhesiveAnd pulverized foam resinThe heat insulation layerResin mixtureA step of obtaining, and the excessive amount of the adhesive that is not attached to the surface of the resin mixture and the resin mixture obtained in the stepFilling the molded product;AboveA molded product filled with the resin mixture obtained in the process of filling the molded product.Up and downGives slight vibrationThen, the pulverized product having a small particle size out of the pulverized product is allowed to settle in the vicinity of the design layer together with an excess adhesive, and the pulverized product having a large particle size with the appropriate adhesive attached to the surface is floated upward.And thermoforming a molded article that is provided with the above-mentioned fine vibration and filled with the resin mixture.In the vicinity of the design layer, the heat insulating layer is formed into a rigid layer by a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and the particle size is large in a portion away from the design layer. The resin mixture of the pulverized product and an appropriate amount of the adhesive maintains a space between the particles of the pulverized product so as to form a layer having excellent heat insulation properties.Since the heat-insulating layer contacting the design layer with a distribution in the size of the pulverized product and the content of the adhesive can be arranged so as to contain a lot of small particles and adhesive. The effect to reinforce the design layer is obtained, and the heat insulating layer has a suitable space for maintaining heat and reducing the weight by maintaining the minimum amount of adhesive that only provides the crushed material for bonding. Can be obtained.
[0112]
  First of the present invention8In the method for manufacturing a molded panel according to the invention, since the pulverized foam resin is obtained by pulverizing a product recovered from a product including a heat insulating material, waste can be effectively used.
[0114]
  First of the present invention9A method for disassembling a molded panel according to the present invention is described in claim 1.Write in any of ~ 3Molded panel,Or claims4-8One ofManufacturing described inAfter heating the molded panel obtained by the method at a temperature higher than the softening temperature of the thermoplastic resin forming the design layer,The surface of the design layer is pressed to generate a shearing force at the interface between the design layer and the heat insulating layer, and then cooled to a predetermined temperature, and then subjected to shock vibration and disassembled.Therefore, each composition can be easily and reliably peeled off, and a molded member that can be reused can be collected.
[Brief description of the drawings]
FIG. 1 is a perspective view of a molded panel showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 is a process diagram showing a method for manufacturing a molded panel according to Embodiment 1 of the present invention.
FIG. 4 is a conceptual diagram of a molding machine used to mold a resin sheet according to the molded panel of Embodiment 1 of the present invention.
FIG. 5 is a conceptual diagram of a vacuum / pressure combination molding apparatus for performing thermoforming according to the production of the molded panel of Embodiment 1 of the present invention.
FIG. 6 is a process chart of molding a designable panel using the molding apparatus of FIG.
FIG. 7 is a process diagram showing a method for manufacturing a molded panel according to Embodiment 2 of the present invention.
FIG. 8 is an explanatory diagram showing a sprayed state of a resin mixture and a molding method according to manufacture of a molded panel according to Embodiment 2 of the present invention.
FIG. 9 is a cross-sectional view of a molded panel according to Embodiment 3 of the present invention.
FIG. 10 is a process diagram showing a method for manufacturing a molded panel according to Embodiment 3 of the present invention.
FIG. 11 is an explanatory view showing an arrangement method and a forming method for each member according to the manufacture of the molded panel according to the second embodiment of the present invention.
FIG. 12 is a cross-sectional view of a molded panel according to a fourth embodiment of the present invention.
FIG. 13 is a process diagram showing a method for manufacturing a molded panel according to Embodiment 4 of the present invention.
FIG. 14 is a conceptual diagram showing a method for disassembling a molded panel according to Embodiment 5 of the present invention.
FIG. 15 is a process diagram showing a method for disassembling a molded panel according to Embodiment 6 of the present invention.
FIG. 16 is a conceptual diagram showing a method for disassembling a molded panel according to Embodiment 6 of the present invention.
FIG. 17 is an explanatory view showing a conventional method for forming a molded panel for an air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molding panel, 2 Thermal insulation layer, 3 Design layer, 4 Foamed resin pulverized material, 16 Vacuum / pressure combination molding machine, 21 Resin laminated sheet, 22 Resin mixture, 23 Finely pulverized material, 24 Coarse pulverized material, 27 Flame retardant Glass fiber nonwoven, 31 rollers.

Claims (9)

任意に着色された樹脂を賦形して意匠面を形成する意匠層と、
この意匠層の反意匠面上に散布され、前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤と発泡樹脂の粉砕物を混合した樹脂混合物を熱成形により前記意匠層と一体化した断熱層と、
を備え、
前記断熱層は、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物を配設して剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物を配設して前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すことを特徴とする成形パネル。
A design layer that forms a design surface by shaping an arbitrarily colored resin;
This is sprayed onto the anti-design surface of the design layer, the design layer pre Symbol resin mixture pulverized was mixed with the design layer foamed resin with low melting point powdered adhesive than the melting point of the resin forming the thermoforming A heat insulating layer integrated with
With
The heat insulating layer is arranged in the vicinity of the design layer to form a rigid layer by disposing a resin mixture of the pulverized product having a small particle size and an excess of the adhesive, and the particle size at a portion away from the design layer. A molded panel characterized in that a resin mixture of the pulverized product having a large size and an appropriate adhesive is disposed to maintain a gap between particles of the pulverized product, thereby forming a layer having excellent heat insulation .
意匠層と断熱層の間に、繊維を無秩序な配向状態で保持して成る不織布状のシートを備えることを特徴とする請求項1に記載の成形パネル。  The molded panel according to claim 1, further comprising a non-woven sheet formed by holding fibers in a disordered orientation state between the design layer and the heat insulating layer. 断熱層の意匠層と反対側の表面が、繊維状物質を無秩序な配向状態で保持して成る難燃性のシートと一体化して被われて成ることを特徴とする請求項1に記載の成形パネル。  2. The molding according to claim 1, wherein the surface of the heat insulating layer opposite to the design layer is covered with a flame retardant sheet formed by holding the fibrous material in a disordered orientation state. panel. 意匠面を成す樹脂をシート状に成形する工程と、
発泡樹脂の粉砕物を複数の異なる粒径に選別する工程と、
選別した各々の前記粉砕物と前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤を混合し、あらかじめ定めた粒径より小さい粉砕物の表面には前記接着剤を過剰に付着させ、前記あらかじめ定めた粒径より大きい粉砕物の表面には、前記接着剤を適度に付着させ、断熱層を構成する樹脂混合物を得る工程と、
前記意匠層を成すシート状の成形物上に前記樹脂混合物のうち、前記粒径の小さい樹脂混合物から順次散布する工程と、
前記工程で得られた樹脂混合物を散布したシートを熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、
を備えた成形パネルの製造方法。
A step of molding the resin forming the design surface into a sheet,
Selecting the pulverized foam resin into a plurality of different particle sizes;
The powdered adhesive having a melting point lower than the melting point of the resin that forms the design layer is mixed with each of the selected pulverized products, and the adhesive is excessively applied to the surface of the pulverized product having a particle size smaller than a predetermined particle size. Adhering and adhering the adhesive appropriately on the surface of the pulverized product larger than the predetermined particle size to obtain a resin mixture constituting a heat insulating layer; and
Among pre Bark fat mixture onto a sheet-shaped molded product forming the design layer, a step of sequentially spraying a small resin mixture of the particle size,
The sheet sprinkled with the resin mixture obtained in the step is thermoformed, and the heat insulating layer is formed in the vicinity of the design layer with a rigid layer by the resin mixture of the pulverized product having a small particle size and an excess of the adhesive. The gap between the particles of the pulverized product is retained by a resin mixture of the pulverized product having a large particle size and an appropriate adhesive at a portion away from the design layer so as to form a layer having excellent heat insulating properties. And the process of
The manufacturing method of the molded panel provided with.
意匠面を成す樹脂をシート状に成形する工程と、
発泡樹脂の粉砕物を複数の異なる粒径に選別する工程と、
選別した各々の前記粉砕物と前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤を混合し、あらかじめ定めた粒径より小さい粉砕物の表面には前記接着剤を過剰に付着させ、前記あらかじめ定めた粒径より大きい粉砕物の表面には、前記接着剤を適度に付着させ、断熱層を構成する樹脂混合物を得る工程と、
断熱層を構成する樹脂混合物を得る工程と、
繊維を無秩序な配向状態で保持して成る不織布状のシートを成形する工程と、
前記意匠層を成すシート状の成形物上に前記不織布状のシートを載置し、前記樹脂混合物のうち、前記粒径の小さい樹脂混合物から順次散布し成形前駆体を形成する工程と、
前記成形前駆体を熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、
を備えた成形パネルの製造方法。
A step of molding the resin forming the design surface into a sheet,
Selecting the pulverized foam resin into a plurality of different particle sizes;
The powdered adhesive having a melting point lower than the melting point of the resin that forms the design layer is mixed with each of the selected pulverized products, and the adhesive is excessively applied to the surface of the pulverized product having a particle size smaller than a predetermined particle size. Adhering and adhering the adhesive appropriately on the surface of the pulverized product larger than the predetermined particle size to obtain a resin mixture constituting a heat insulating layer; and
Obtaining a resin mixture constituting the heat insulation layer;
Forming a non-woven sheet comprising fibers in a disordered orientation state;
Placing the nonwoven sheet on a sheet-shaped molded product forming the design layer, among the pre Bark fat mixture, forming a successively sprayed molded precursor from a small resin mixture of the particle size,
The molding precursor is thermoformed, and the heat insulation layer is separated from the design layer by forming a rigid layer with a resin mixture of the pulverized product having a small particle size and an excess of the adhesive in the vicinity of the design layer. In the part, a step of maintaining a gap between the particles of the pulverized product by a resin mixture of the pulverized product having a large particle size and an appropriate adhesive to form a layer having excellent heat insulation ,
The manufacturing method of the molded panel provided with.
成形前駆体を成形する工程において、断熱層を構成する樹脂混合物を散布した後に、さらに繊維状物質を無秩序な配向状態で保持して成る難燃性のシートを前記樹脂混合物の上に載置することを特徴とする請求項5に記載の成形パネルの製造方法。  In the step of molding the molding precursor, after spraying the resin mixture constituting the heat insulating layer, a flame retardant sheet further holding the fibrous substance in a disordered orientation state is placed on the resin mixture. The method for producing a molded panel according to claim 5. 意匠層を形成する樹脂をシート状に成形する工程と、
前記工程で得られたシートを熱成形して意匠層を成す成型品を得る工程と、
前記意匠層を形成する樹脂の融点よりも低い融点の粉末状の接着剤と発泡樹脂の粉砕物を混合して断熱層を構成する樹脂混合物を得る工程と、
前記工程で得られた前記樹脂混合物と前記樹脂混合物の表面に付着されない過剰な前記接着剤とを前記成型品内に充填する工程と、
前記成型品内に充填する工程で得られた前記樹脂混合物を充填した成型品に上下方向の微振動を付与し、前記粉砕物のうち小さい粒径の粉砕物を過剰の接着剤とともに前記意匠層近傍に沈降させ、表面に適度な前記接着剤が付着した粒径の大きな粉砕物を上方向に浮上させる工程と、
前記微振動を付与し、前記樹脂混合物を充填した成型品を熱成形し、前記断熱層を、前記意匠層の近傍では粒径の小さい前記粉砕物と過剰の前記接着剤との樹脂混合物により剛直な層を成し、前記意匠層から離れた部分では粒径の大きい前記粉砕物と適度の前記接着剤との樹脂混合物により前記粉砕物の粒子間の空隙を保持し、断熱性の優れた層を成すようにする工程と、
を備えことを特徴とする成形パネルの製造方法。
Forming a resin for forming the design layer into a sheet;
A step of thermoforming the sheet obtained in the step to obtain a molded product forming a design layer;
Mixing a powdery adhesive having a melting point lower than the melting point of the resin forming the design layer and a pulverized foam resin to obtain a resin mixture constituting the heat insulating layer ;
Filling the molded product with the resin mixture obtained in the step and an excessive amount of the adhesive not attached to the surface of the resin mixture ;
The grant the resin mixture obtained in the step of filling in the molding in the filled molding the minute vibration in the vertical direction, the design layer with an excess of adhesive pulverized small particle size of the pulverized product and allowed to settle in the vicinity, Ru floated upward large pulverized particle sizes appropriate the adhesive surface adheres step,
The molded article filled with the resin mixture is thermoformed by applying the micro-vibration, and the heat insulating layer is made rigid by a resin mixture of the pulverized product having a small particle size and an excess of the adhesive in the vicinity of the design layer. A layer having an excellent heat insulation property, in which a gap between the particles of the pulverized product is retained by a resin mixture of the pulverized product having a large particle size and an appropriate adhesive at a portion away from the design layer. and a step to form an,
Method for producing a molded panel comprising the.
発泡樹脂の粉砕物が、断熱材を含む製品などから回収したものを粉砕したものを用いたことを特徴とする請求項4〜7のいずれかに記載の成形パネルの製造方法。The method for producing a molded panel according to any one of claims 4 to 7, wherein the pulverized product of the foamed resin is a pulverized product recovered from a product including a heat insulating material. 請求項1〜3のいずれかに記載の成形パネルまたは、請求項4〜8のいずれかに記載の製造方法によって得た成型パネルを、意匠層を成す熱可塑性樹脂の軟化温度よりも高い温度で加熱した後、前記意匠層の表面に押圧を加えて前記意匠層と前記断熱層との境界面に剪断力を生じさせ、その後、あらかじめ定められた温度まで冷却した後、衝撃的な振動を付与し、解体を行う成形パネルの解体方法。Claim 1-3 molded panel mounting serial to either, or a molded panel produced by the process of any of claims 4-8, higher than the softening temperature of the thermoplastic resin forming the design layer After heating at a temperature, pressure is applied to the surface of the design layer to generate a shearing force at the interface between the design layer and the heat insulating layer, and then cooling to a predetermined temperature, followed by shock vibration A method for dismantling a molded panel that is subjected to dismantling.
JP04628299A 1999-02-24 1999-02-24 Molded panel and method for producing and disassembling the same Expired - Fee Related JP4280947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04628299A JP4280947B2 (en) 1999-02-24 1999-02-24 Molded panel and method for producing and disassembling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04628299A JP4280947B2 (en) 1999-02-24 1999-02-24 Molded panel and method for producing and disassembling the same

Publications (2)

Publication Number Publication Date
JP2000238159A JP2000238159A (en) 2000-09-05
JP4280947B2 true JP4280947B2 (en) 2009-06-17

Family

ID=12742882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04628299A Expired - Fee Related JP4280947B2 (en) 1999-02-24 1999-02-24 Molded panel and method for producing and disassembling the same

Country Status (1)

Country Link
JP (1) JP4280947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406489B2 (en) * 2008-03-29 2014-02-05 盟和産業株式会社 Panel and method for manufacturing the panel
JP5406498B2 (en) * 2008-09-30 2014-02-05 盟和産業株式会社 Panel and method for manufacturing the panel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379975A (en) * 1976-12-23 1978-07-14 Toppan Printing Co Ltd Method for recovering plastics
JPS55113537A (en) * 1979-02-23 1980-09-02 Sekisui Plastics Co Ltd Production of panel
JPS5734926A (en) * 1980-08-11 1982-02-25 Inoue Mtp Co Ltd Manufacture of heat insulating material utilizing waste material of hard polyurethane foam
JPH0761649B2 (en) * 1988-11-14 1995-07-05 出光石油化学株式会社 Scrap recovery method for multi-layer plastic sheet or film
JP3381240B2 (en) * 1992-08-10 2003-02-24 旭化成株式会社 How to collect foam particles
JPH06346581A (en) * 1993-06-10 1994-12-20 Toyo Tire & Rubber Co Ltd Flooring excellent in sound insulation and durability
JPH0961049A (en) * 1995-08-22 1997-03-07 Asahi Chem Ind Co Ltd Manufacturing method of refrigerator door and exterior plate using it
JPH09250866A (en) * 1996-03-19 1997-09-22 Mitsubishi Electric Corp Monolithic heat insulating structure
JP4410867B2 (en) * 1999-02-12 2010-02-03 三菱電機株式会社 Manufacturing method of molded panel

Also Published As

Publication number Publication date
JP2000238159A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
CN112677580A (en) Fireproof heat insulation plate and preparation method thereof
US7318499B2 (en) Noise suppression structure and method of making the same
US20210023830A1 (en) High-strength low-heat release composites
JPH06259082A (en) Panel of foamed material
JP3844499B2 (en) Thermoplastic resin foam
JP4280947B2 (en) Molded panel and method for producing and disassembling the same
JPH08174732A (en) Honeycomb composite molded article and production thereof
JP2008302595A (en) Manufacturing method of composite sheet
US4980102A (en) Method of manufacturing polyimide foam shapes having improved density and cell size uniformity
US4923651A (en) Method of manufacturing polyimide foam shapes having improved density and cell size uniformity
JP4410867B2 (en) Manufacturing method of molded panel
JPH08276441A (en) Light-weight composite molding strengthened at peripheral edge and manufacture thereof
JP2004090532A (en) Sound isolation material and its manufacturing method
JP4217994B2 (en) Panel-like structure and manufacturing method thereof
JP3067513B2 (en) Phenolic resin laminate and method for producing phenolic resin molded product using this laminate
JPH08276524A (en) Manufacture of composite molded article with porous core
CN106739355B (en) Composite Hollow sound-absorbing material structural damping plate and preparation method thereof
JPH06218859A (en) Laminate and production thereof
JP4198231B2 (en) Insulating material and manufacturing method thereof
JPH08174731A (en) Honeycomb composite molded article and production thereof
JP3254409B2 (en) Manufacturing method of molded interior material for automobile
JP3854410B2 (en) Laminate manufacturing method
JPH1110821A (en) Manufacture of light-weight fiber-reinforced resin composite
JPH0261150A (en) Thermally formable composite material and production thereof
JPS6147714B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees