JP4280830B2 - Measurement method of specific heat and thermal conductivity. - Google Patents

Measurement method of specific heat and thermal conductivity. Download PDF

Info

Publication number
JP4280830B2
JP4280830B2 JP2004244302A JP2004244302A JP4280830B2 JP 4280830 B2 JP4280830 B2 JP 4280830B2 JP 2004244302 A JP2004244302 A JP 2004244302A JP 2004244302 A JP2004244302 A JP 2004244302A JP 4280830 B2 JP4280830 B2 JP 4280830B2
Authority
JP
Japan
Prior art keywords
sample
heat
thermal conductivity
measurement
specific heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004244302A
Other languages
Japanese (ja)
Other versions
JP2006064413A (en
Inventor
至誠 西郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University Corp Shimane University
Original Assignee
National University Corp Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corp Shimane University filed Critical National University Corp Shimane University
Priority to JP2004244302A priority Critical patent/JP4280830B2/en
Publication of JP2006064413A publication Critical patent/JP2006064413A/en
Application granted granted Critical
Publication of JP4280830B2 publication Critical patent/JP4280830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、比熱および熱伝導率の測定方法に関し、特に、高圧下における比熱と熱伝導率とを同時に測定する方法に関する。   The present invention relates to a method for measuring specific heat and thermal conductivity, and more particularly to a method for simultaneously measuring specific heat and thermal conductivity under high pressure.

新規な合金やセラミックスなど、固体物質を新たに得た場合には、基本的な物理量ないし物性を調べることからその物質の理解が始まる。また、従来知られた物質であっても、極低温下や超高圧下における性質は、それまで知られていない様相を呈するものもある。実際、CeCuSiは、最初の強相関電子系超伝導体として知られており、2.5GPa下では、超伝導転移温度TcはTc=0.7Kから2Kに急激に上昇する。 When a new solid material such as a new alloy or ceramic is newly obtained, understanding of the material begins by examining basic physical quantities or physical properties. In addition, even conventionally known substances have properties that have not been known so far in terms of properties at extremely low temperatures and ultrahigh pressures. In fact, CeCu 2 Si 2 is known as the first strongly correlated electron superconductor, and the superconducting transition temperature Tc rapidly rises from Tc = 0.7K to 2K under 2.5 GPa.

Tcに限らず、固体物質の物性は電子状態によるところが大きく、逆に、転移点があれば、そこで電子状態が変化していると推察される。従って、電気抵抗率、比熱、熱伝導率、帯磁率、磁化率など、基本的な物理量を様々な雰囲気下(圧力雰囲気下、温度雰囲気下など)で調べることは、物性研究の上で極めて重要である。   In addition to Tc, the physical properties of solid substances are largely dependent on the electronic state. Conversely, if there is a transition point, it is presumed that the electronic state is changing there. Therefore, investigating basic physical quantities, such as electrical resistivity, specific heat, thermal conductivity, magnetic susceptibility, and magnetic susceptibility, under various atmospheres (pressure atmosphere, temperature atmosphere, etc.) is extremely important in researching physical properties. It is.

しかしながら、低温雰囲気下における測定技術は進歩しているものの、ギガパスカル級の超高圧下における基本的な物理量の測定、特に、比熱や熱伝導率の測定はなかなか進歩していない、という実情がある。   However, although the measurement technology in a low-temperature atmosphere has progressed, there is a fact that basic physical quantity measurements under gigapascal-class ultra-high pressure, in particular, specific heat and thermal conductivity measurements have not progressed much. .

例えば、比熱を測定する方法として、断熱法や交流法が知られている。断熱法の測定装置概要を図22に示す。断熱法では、まず、数十mgの試料を圧力伝達媒体と共にテフロンカプセルに入れ、これをピストンシリンダー型圧力セルに封入し、油圧プレスにより高圧雰囲気とする。比熱の測定では、ピストンシリンダー型圧力セルごと断熱状態にし、熱量ΔQを加えたときの温度上昇ΔTからC=ΔQ/ΔTとして熱容量を求める。   For example, a heat insulation method and an alternating current method are known as methods for measuring specific heat. FIG. 22 shows an outline of the measurement apparatus for the heat insulation method. In the heat insulation method, first, a sample of several tens mg is put into a Teflon capsule together with a pressure transmission medium, and this is sealed in a piston cylinder type pressure cell, and a high pressure atmosphere is formed by a hydraulic press. In the measurement of specific heat, the piston cylinder type pressure cell is adiabatic and the heat capacity is obtained as C = ΔQ / ΔT from the temperature rise ΔT when the amount of heat ΔQ is added.

求められた熱容量は、試料、テフロンセル、圧力伝達媒体、ピストンシリンダー型圧力セルの全体の系からなる熱容量なので、テフロンセル、圧力伝達媒体、ピストンシリンダー型圧力セルの熱容量をバックグラウンドとして別途測定して差引き、試料自体の熱容量を求める。   The required heat capacity is the total heat capacity of the sample, Teflon cell, pressure transmission medium, and piston cylinder type pressure cell. Therefore, the heat capacity of the Teflon cell, pressure transmission medium, and piston cylinder type pressure cell is measured separately as a background. And subtract to obtain the heat capacity of the sample itself.

ここで、試料が数十mgであるのに比べ、セル本体は数十gと質量が大きいため、バックグラウンドとして熱容量を差し引くこの測定方法では、自ずと誤差が大きくなる可能性がある。特に、高圧下で測定する場合には、必然的にセルが大きくなり、差し引くべきバックグラウンドの容量も大きくなるのでこの問題はいっそう深刻となる。従って、測定限界が実質上存在し、現在では、せいぜい2GPa未満での測定値しか得られない。   Here, since the mass of the cell main body is as large as several tens of g compared with several tens of mg of the sample, this measurement method of subtracting the heat capacity as the background may naturally increase the error. In particular, when measuring under high pressure, this problem becomes more serious because the cell inevitably becomes larger and the background capacity to be subtracted also becomes larger. Therefore, a measurement limit is practically present, and at present, only a measurement value of less than 2 GPa can be obtained.

一方、交流法では、20GPaの超高圧下における比熱の異常を測定することに成功している。しかしながら、詳細な説明は省略するが、交流法では絶対値を得ることは困難であるため、比熱測定の重要な意義でもあるエントロピーの評価など、定量的な解析ができず、転移温度の圧力依存性を確認する程度の定性的な評価にとどまっているのが現状である。   On the other hand, the AC method has succeeded in measuring the abnormal specific heat under an ultra-high pressure of 20 GPa. However, although detailed explanation is omitted, since it is difficult to obtain an absolute value by the AC method, quantitative analysis such as entropy evaluation, which is also an important significance of specific heat measurement, cannot be performed, and the transition temperature depends on pressure. At present, the qualitative evaluation is limited to confirming sex.

また、比熱測定の他の方法として緩和法が知られている。緩和法の測定概要を図23に示す。図示したように、緩和法は、試料に熱源および温度計を直接接合し、熱浴に対して熱リークをつくることで、一次元熱伝達問題に帰結させ、加熱もしくは冷却にともなう温度上昇もしくは下降を測定して比熱を決定する方法である。緩和法は、加えた熱は総て試料に伝達されるという仮定のもとに成り立つため、系は真空(0気圧)であることが要求され、熱拡散が生じてしまう圧力伝達媒体を介在させる測定(すなわち高圧下における測定は)は原理的に不可能である、という問題点があった。   Moreover, the relaxation method is known as another method of specific heat measurement. The measurement outline of the relaxation method is shown in FIG. As shown in the figure, the relaxation method directly attaches a heat source and thermometer to the sample and creates a heat leak in the heat bath, resulting in a one-dimensional heat transfer problem and an increase or decrease in temperature due to heating or cooling. Is a method for determining the specific heat by measuring. Since the relaxation method is based on the assumption that all applied heat is transferred to the sample, the system is required to be vacuum (0 atm), and a pressure transfer medium that causes thermal diffusion is interposed. There is a problem that measurement (that is, measurement under high pressure) is impossible in principle.

熱伝導率を測定する方法としては、例えば定常法が知られている。定常法の測定装置概要を図24に示す。定常法では、断面積S[cm]の細長い試料の一端を熱浴に固定し、もう一端をヒータによって加熱し、熱流Q[W]を与えたときに、試料の長さ方向にL[cm]だけ離れた2点間に生じる温度差ΔT[K]からκ[W/cmK]=(QS)/(ΔTL) として熱伝導率を求める。定常法は、試料中に均一な熱流が発生しているという仮定のもとに成り立つため、系は真空(0気圧)であることが要求され、熱拡散が生じてしまう圧力伝達媒体を介在させる測定(すなわち高圧下における測定)は原理的に不可能である。また、その他の熱伝導率の測定法によっても、定常法と同様の理由により高圧下での測定方法は未だ確立されていない。 As a method for measuring the thermal conductivity, for example, a steady method is known. FIG. 24 shows an outline of a measurement apparatus for the steady method. In the steady method, one end of an elongated sample having a cross-sectional area S [cm 2 ] is fixed to a heat bath, the other end is heated by a heater, and a heat flow Q [W] is applied. The thermal conductivity is obtained from the temperature difference ΔT [K] generated between two points separated by cm] as κ [W / cmK] = (QS) / (ΔTL). Since the steady-state method is based on the assumption that a uniform heat flow is generated in the sample, the system is required to be vacuum (0 atm), and a pressure transmission medium that causes thermal diffusion is interposed. Measurement (ie measurement under high pressure) is not possible in principle. Also, other measurement methods for thermal conductivity have not yet been established for measurement under high pressure for the same reason as the steady-state method.

本発明はこのような問題点を克服し、高圧下にて比熱のみならず熱伝導率を同時に測定できる方法を提供することを目的とする。   An object of the present invention is to overcome such problems and to provide a method capable of simultaneously measuring not only specific heat but also thermal conductivity under high pressure.

上記の目的を達成するために、請求項1に記載の比熱および熱伝導率の測定方法は、熱浴である圧力容器中に圧力伝達媒体と、熱源を接触させた測定対象試料とを封入し、圧力下における試料の比熱および熱伝導率を同時に測定する測定方法であって、熱源上の1点と試料上の熱伝導上等価でない2点との少なくとも3箇所の測定点の温度の時間変化を、熱源による加熱開始又は加熱終了から定常状態にいたる過程において測定し、この測定系を模した数値解析モデルを、圧力伝達媒体中の熱伝搬も考慮した非定常熱伝導方程式に基づいて構築し、当該モデルを用いて前記測定点に相当する点の温度変化が当該測定点の実際の温度変化と同一の温度変化曲線を描くように、試料の比熱、熱伝導率、および、試料と熱源との間の熱伝導係数を、数値解析をおこなって決定することを特徴とする。   In order to achieve the above object, the specific heat and thermal conductivity measuring method according to claim 1 encloses a pressure transfer medium and a sample to be measured in contact with a heat source in a pressure vessel as a heat bath. , A measurement method for simultaneously measuring the specific heat and thermal conductivity of a sample under pressure, wherein the time change in temperature of at least three measurement points of one point on the heat source and two points not equivalent in terms of heat conduction on the sample Is measured in the process from the start or end of heating by the heat source to the steady state, and a numerical analysis model simulating this measurement system is constructed based on the unsteady heat conduction equation that also considers heat propagation in the pressure transfer medium. Using the model, the specific heat of the sample, the thermal conductivity, and the sample and heat source, so that the temperature change at the point corresponding to the measurement point draws the same temperature change curve as the actual temperature change at the measurement point. The thermal conductivity coefficient between And determining by performing value analysis.

すなわち、請求項1にかかる発明は、圧力伝達媒体が試料の周囲を取り囲んでいることを考慮した、試料や熱源からの圧力伝達媒体への3次元的な熱伝搬を、試料と熱源との接触も勘案した少なくとも3点の測定により、絶対値としての数値解析を可能とする。このとき、定常状態にいたるまでの温度の上昇曲線または温度の下降曲線に基づき試料の比熱解析が可能となり、3点の定常状態から試料の比熱が解析可能となる。   That is, according to the first aspect of the present invention, in consideration of the fact that the pressure transmission medium surrounds the periphery of the sample, the three-dimensional heat propagation from the sample or the heat source to the pressure transmission medium is performed by contacting the sample and the heat source. In addition, numerical analysis as an absolute value is possible by measuring at least three points in consideration of the above. At this time, the specific heat analysis of the sample can be performed based on the temperature rising curve or the temperature falling curve until reaching the steady state, and the specific heat of the sample can be analyzed from the three steady states.

また、請求項2に記載の比熱および熱伝導率の測定方法は、請求項1に記載の比熱および熱伝導率の測定方法において、試料を対称形に成形し、圧力容器中における試料の配置、熱源の試料上における配置、および、測定点の配置を、試料に沿って対称としたことを特徴とする。   The specific heat and thermal conductivity measuring method according to claim 2 is the specific heat and thermal conductivity measuring method according to claim 1, wherein the sample is formed symmetrically, and the sample is placed in a pressure vessel. The arrangement of the heat source on the sample and the arrangement of the measurement points are symmetric along the sample.

すなわち、請求項2にかかる発明は、系を対称とすることにより、非定常熱伝導方程式およびこれに対応した数値解析モデルを単純化でき、ひいては数値解析精度が向上する。   That is, in the invention according to claim 2, by making the system symmetrical, the unsteady heat conduction equation and the numerical analysis model corresponding thereto can be simplified, and the numerical analysis accuracy is improved.

また、請求項3に記載の比熱および熱伝導率の測定方法は、請求項1に記載の比熱および熱伝導率の測定方法において、圧力容器を円筒形として試料も円柱形に加工し、圧力容器の中心軸と試料の中心軸とが一致するように試料を圧力容器中に配置し、試料の底面中心に熱源を接合し、中心軸上に前記測定点を設けたことを特徴とする。   Further, the specific heat and thermal conductivity measuring method according to claim 3 is the specific heat and thermal conductivity measuring method according to claim 1, wherein the pressure vessel is cylindrical and the sample is processed into a cylindrical shape. The sample is disposed in the pressure vessel so that the center axis of the sample and the center axis of the sample coincide with each other, a heat source is joined to the center of the bottom surface of the sample, and the measurement point is provided on the center axis.

すなわち、請求項3にかかる発明は、系を軸対称とすることにより、非定常熱伝導方程式およびこれに対応した数値解析モデルを二次元問題に単純化でき、計算負荷の低減や数値解析精度の向上が可能となる。   That is, the invention according to claim 3 makes it possible to simplify the unsteady heat conduction equation and the numerical analysis model corresponding to this to a two-dimensional problem by making the system axially symmetric. Improvement is possible.

また、請求項4に記載の比熱および熱伝導率の測定方法は、請求項1、2または3に記載の比熱および熱伝導率の測定方法において、数値解析法として、有限要素法、有限差分法または境界要素法を用いることを特徴とする。   Further, the specific heat and thermal conductivity measuring method according to claim 4 is the method of measuring specific heat and thermal conductivity according to claim 1, 2, or 3, wherein the numerical analysis method includes a finite element method and a finite difference method. Alternatively, the boundary element method is used.

すなわち、請求項4にかかる発明は、効率的な数値解析が可能となる。   That is, the invention according to claim 4 enables efficient numerical analysis.

以上説明したように、本発明によれば、測定対象試料から熱拡散が生じる場合であっても、その試料の比熱および熱伝導率を同時に測定できる方法を提供可能となる。このとき、測定対象試料を圧力伝達媒体とすれば、高圧下における試料の比熱および熱伝導率を同時に測定できることとなる。なお、バックグラウンドを差し引くような手法でなく、試料の温度を絶対値として直接測定するので、本発明によれば、基本的に、雰囲気温度(熱浴温度)や雰囲気圧力に制限無く、比熱や熱伝導率を測定可能となる。   As described above, according to the present invention, it is possible to provide a method capable of simultaneously measuring the specific heat and thermal conductivity of a sample even when thermal diffusion occurs from the sample to be measured. At this time, if the sample to be measured is a pressure transmission medium, the specific heat and thermal conductivity of the sample under high pressure can be measured simultaneously. In addition, since the temperature of the sample is directly measured as an absolute value instead of a method of subtracting the background, basically according to the present invention, there is no limitation on the atmospheric temperature (heat bath temperature) or the atmospheric pressure, and the specific heat or The thermal conductivity can be measured.

以下、本発明の実施例を図面を参照しながら詳細に説明する。本実施例では、CeRhSiを用い、まず、実験により温度測定を行い、続いて、得られた温度の変化曲線から、解析により比熱と熱伝導率を求めた。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this example, CeRh 2 Si 2 was used, temperature was first measured by experiment, and then specific heat and thermal conductivity were determined by analysis from the obtained temperature change curve.

(測定試料の準備)
測定試料は原料をアーク融解することにより作製した。作製した試料は、粉末X線回折により、測定したい多結晶CeRhSiであることを確認した。次に、測定試料を、直径3.0×高さ1.0mmの円柱形に整形した。上底面と下底面に、温度計として0.025mmφのアルメル・クロメル熱電対(株式会社Nilaco製)を取付け、下底面にはさらに試料加熱用のヒータ(350Ωの歪ゲージ(株式会社共和電子工業社製))を取り付けた。
(Preparation of measurement sample)
The measurement sample was produced by arc melting of the raw material. The produced sample was confirmed by powder X-ray diffraction to be polycrystalline CeRh 2 Si 2 to be measured. Next, the measurement sample was shaped into a cylindrical shape having a diameter of 3.0 × a height of 1.0 mm. At the top and bottom surfaces, thermometers with a thermometer of 0.025 mmφ (manufactured by Nilaco) are attached as thermometers, and a heater for sample heating (a 350 Ω strain gauge (Kyowa Denshi Kogyo Co., Ltd.) is attached to the bottom surface. Made)).

続いて、外層がCu−Be、内層がNiCrAlの内径5mmφのピストンシリンダー型圧力セル(株式会社R&Dサポート社製)に、圧力伝達媒体としてフロリナート70とフロリナート77(いずれも住友3M株式会社製)とを1:1の割合で混合したものを入れ、この中に試料を封入した。   Subsequently, an outer layer of Cu—Be and an inner layer of NiCrAl having an inner diameter of 5 mmφ, a piston cylinder type pressure cell (made by R & D Support Co., Ltd.), Fluorinert 70 and Fluorinert 77 (both made by Sumitomo 3M Co., Ltd.) as pressure transmission media, Were mixed at a ratio of 1: 1, and a sample was sealed therein.

測定試験の概念図を図1に示す。測定に際しては、ヒータにより直接試料を加熱し、その際の温度変化の曲線を複数の測定点において測定することにより、3次元的な熱の流れを観測し、圧力伝達媒体の比熱および熱伝導率の影響を見積もることにより、試料の比熱および熱伝導率を求めることとした。冷却にはGM冷凍機(株式会社ULVAC製R10 Refrigerator)を用いた。   A conceptual diagram of the measurement test is shown in FIG. In the measurement, the sample is directly heated by a heater, and the temperature change curve at that time is measured at a plurality of measurement points to observe a three-dimensional heat flow, and the specific heat and thermal conductivity of the pressure transfer medium. The specific heat and thermal conductivity of the sample were determined by estimating the effects of A GM refrigerator (R10 Refrigerator manufactured by ULVAC, Inc.) was used for cooling.

(測定手順)
測定に際しては、後述する解析モデルのパラメータ決めをするために、ヒータのみを圧力伝達媒体に浸したブランク測定をまず行った。これは、フロリナートの比熱および熱伝導率の影響が無視できない程度大きいことによる。雰囲気温度(熱浴温度)は約10K前後の測定最低温度から40Kおよび室温、測定圧力範囲は0GPa〜0.45GPaとした。
(Measurement procedure)
At the time of measurement, in order to determine parameters of an analysis model to be described later, blank measurement in which only a heater was immersed in a pressure transmission medium was first performed. This is because the influence of specific heat and thermal conductivity of florinate is so large that it cannot be ignored. The ambient temperature (heat bath temperature) was 40 K to room temperature from the lowest measured temperature of about 10 K, and the measurement pressure range was 0 GPa to 0.45 GPa.

次に、試料の底面にヒータを取付け、ヒータ、試料底面中心(ヒータ側)、試料上面中心(ヒータと反対側)の3つの測定点において熱浴温度からの温度変化を測定した。測定温度範囲は約10K前後の測定最低温度から40Kおよび室温、測定圧力範囲は、0GPa〜0.45GPaとした。   Next, a heater was attached to the bottom surface of the sample, and temperature changes from the heat bath temperature were measured at three measurement points: the heater, the center of the sample bottom surface (on the heater side), and the center of the sample top surface (on the side opposite to the heater). The measurement temperature range was from the lowest measurement temperature of about 10 K to 40 K and room temperature, and the measurement pressure range was 0 GPa to 0.45 GPa.

(測定結果)
図2、図3および図4に、ヒータのみのブランク試験の結果を示す。このうち、図2は、真空中の測定結果を、図3および図4は、圧力伝達媒体を封入した場合の測定結果を示している。真空中で測定した温度の変化曲線(図2参照)と圧力伝達媒体を封入した場合の温度の変化曲線(図3および図4参照)とは、後者では、加熱を始めて数秒後には温度が一定値に落ち着く点が大きく相違する。同様に、加熱を停止した後、熱浴温度まで温度が緩和して戻るまでの時間も真空中と比べてはるかに短い。従って、ヒータから圧力伝達媒体への熱リークがかなり大きいということが確認できた。
(Measurement result)
FIG. 2, FIG. 3 and FIG. 4 show the results of a blank test using only the heater. Among these, FIG. 2 shows the measurement results in vacuum, and FIGS. 3 and 4 show the measurement results when the pressure transmission medium is sealed. The temperature change curve measured in vacuum (see FIG. 2) and the temperature change curve when the pressure transmission medium is sealed (see FIG. 3 and FIG. 4) are the latter. The point that settles to the value is very different. Similarly, after the heating is stopped, the time until the temperature is relaxed and returned to the temperature of the hot bath is much shorter than that in the vacuum. Therefore, it was confirmed that the heat leak from the heater to the pressure transmission medium is quite large.

図5、図6および図7に、試料の温度変化の測定結果を示す。このうち、図5は、真空中の測定結果を、図6および図7は、圧力伝達媒体を封入した場合の測定結果を示している。図中、グレーのプロットはヒータの温度変化ΔT、黒のプロットは試料のヒータ側の温度変化ΔT、白丸のプロットはヒータの反対側の温度変化ΔT、を示している。ΔTに関しては、銅リード線の途中で被覆が剥がれたため一部データが欠落している。 5, 6 and 7 show the measurement results of the temperature change of the sample. Among these, FIG. 5 shows the measurement results in vacuum, and FIGS. 6 and 7 show the measurement results when the pressure transmission medium is sealed. In the figure, the gray plot shows the temperature change ΔT H of the heater, the black plot shows the temperature change ΔT 1 on the heater side of the sample, and the white circle plot shows the temperature change ΔT 2 on the opposite side of the heater. For the [Delta] T H, coated in the middle of the copper leads some data is missing due to peeling.

真空中と異なり圧力伝達媒体を封入した場合の曲線から次のことが分かる。
(1)ΔTとΔTの温度変化には約0.1K程度の温度差が生じている。試料とヒータとは現段階で考えうる最良の熱伝導をもつAg入り接着剤で接着したが、実際には温度差が生じる。従って、熱接触を考慮した解析が不可欠である。
(2)ΔTとΔTにおいて僅かに温度差が生じる。従って、試料の熱伝導率の計算が可能となる。
The following can be seen from the curve when the pressure transmission medium is sealed, unlike in a vacuum.
(1) a temperature difference of about 0.1K to a temperature change of [Delta] T 1 and [Delta] T H occurs. The sample and the heater were bonded with an Ag-containing adhesive having the best possible heat conduction at the present stage, but actually a temperature difference occurs. Therefore, analysis considering thermal contact is indispensable.
(2) A slight temperature difference occurs between ΔT 1 and ΔT 2 . Therefore, the thermal conductivity of the sample can be calculated.

(比熱と熱伝導率の算出)
次に、測定結果に基づいて、比熱と熱伝導率を算出する。ただし、圧力媒体中では、3次元的な熱の流れを考慮し、各測定点における温度変化をシミュレートする必要がある。本実施例では、試料および圧力媒体の比熱と熱伝導率をパラメータとし、測定点における温度の時間変化を有限要素法によってシミュレートした。さらに、実験結果とシミュレーションの結果とが一致するように、パラメータを最適化することとした。
(Calculation of specific heat and thermal conductivity)
Next, specific heat and thermal conductivity are calculated based on the measurement results. However, in a pressure medium, it is necessary to simulate a temperature change at each measurement point in consideration of a three-dimensional heat flow. In this example, the specific heat and thermal conductivity of the sample and the pressure medium were used as parameters, and the temporal change in temperature at the measurement point was simulated by the finite element method. Furthermore, the parameters were optimized so that the experimental results and the simulation results matched.

まず、三次元の微少領域に関して、円筒座標系における非定常熱伝導方程式を概説する。円筒座標系(r、θ、y)における微小領域は近似的にdr、rdθ、dyを三辺にもつ直方体で表せるが、この微小領域の単位時間tにおける温度Tの変化は、領域を占める物質の密度をρ、比熱をC、熱伝導率をκ、この物質が発熱体であったとき単位時間当たりの発熱量をQとして、
C・(dT/dt)・(ρ・dr・rdθ・dy)
=Q+(単位時間あたりに熱伝導によって外部から流入する熱量)−(単位時間あたりに熱伝導によって外部へ流出する熱量)
と表せる。
First, the unsteady heat conduction equation in the cylindrical coordinate system is outlined for the three-dimensional microscopic region. A minute region in the cylindrical coordinate system (r, θ, y) can be approximately represented by a rectangular parallelepiped having dr, rdθ, dy on three sides, and the change in temperature T in unit time t of the minute region is a substance that occupies the region. The density of ρ, the specific heat C, the thermal conductivity κ, and when this substance is a heating element, the calorific value per unit time is Q,
C · (dT / dt) · (ρ · dr · rdθ · dy)
= Q + (amount of heat flowing in from the outside by heat conduction per unit time)-(amount of heat flowing out from the outside by heat conduction per unit time)
It can be expressed.

軸対称の伝熱問題を考えるときはθ方向には熱流が存在しないため、r方向、y方向において単位時間当たりに流入または流出する熱量を考慮すれば良く、結局、円筒座標系非定常熱伝導の支配方程式は、   When considering an axisymmetric heat transfer problem, there is no heat flow in the θ direction, so it is sufficient to consider the amount of heat flowing in or out per unit time in the r and y directions. The governing equation of is

Figure 0004280830

となる。すなわち、対称性の良い軸対称な熱の流れを考える場合には、問題が2次元(r、y)に帰結できる。
Figure 0004280830

It becomes. That is, when considering an axially symmetric heat flow with good symmetry, the problem can result in two dimensions (r, y).

実際に3次元的な熱の流れを考慮して、各座標点での温度を計算するには、系全体を幾つもの微小領域(要素)に分割し、その各要素に対してρ、C、κ、Qを与え、それぞれの要素について式1の解を求めることとなる。解を求める手法として、全要素の方程式を連立させて解析的に計算することは不可能であり、多くの場合は数値解析的手法を用いることとなる。数値解析的手法には、差分法、有限要素法、境界要素法などがあるが、本実施例では有限要素法を使用した。 To actually calculate the temperature at each coordinate point in consideration of the three-dimensional heat flow, the entire system is divided into several minute regions (elements), and ρ, C, κ and Q are given, and the solution of Equation 1 is obtained for each element. As a method for obtaining a solution, it is impossible to calculate analytically by combining equations of all elements, and in many cases, a numerical analysis method is used. Examples of numerical analysis methods include a difference method, a finite element method, and a boundary element method. In this embodiment, the finite element method is used.

(解析モデルの作成)
図8は、本実施例における有限要素法の解析モデルの概略構成図である。このうち、図8aは、円柱形試料底面を軸方向に垂直に配置した3次元系を表し、図8bは、これを、軸対称であることを考慮して2次元問題に帰結させた様子を示した説明図である。解析には、サイバネットシステム株式会社製の有限要素法解析プログラムであるANSYSを用いた。
(Creation of analysis model)
FIG. 8 is a schematic configuration diagram of an analysis model of the finite element method in the present embodiment. Among these, FIG. 8a shows a three-dimensional system in which the cylindrical sample bottom surface is arranged perpendicular to the axial direction, and FIG. 8b shows a state in which this is attributed to a two-dimensional problem in consideration of axial symmetry. It is explanatory drawing shown. For the analysis, ANSYS, a finite element method analysis program manufactured by Cybernet System Co., Ltd., was used.

解析に際しては、試料S、ヒータH、および、圧力伝達媒体(フロリナート)Fのそれぞれの比熱C(C、C、C)、熱伝導率κ(κ、κ、κ)、密度ρ(ρ、ρ、ρ)と、ヒータと試料間の熱接触要素として熱伝導係数Kをパラメータとして与えた。解析の対象となる測定結果は、熱浴温度からの温度の変化分であるため、モデルにおいては雰囲気温度0Kを適用した。メッシングは自動的におこなわせ、全部で200強の節点を設けた。メッシング結果を図9に示す。 In the analysis, the specific heat C (C S , C H , C F ), thermal conductivity κ (κ S , κ H , κ F ) of each of the sample S, the heater H, and the pressure transfer medium (Fluorinert) F, Density ρ (ρ S , ρ H , ρ F ) and a thermal conductivity coefficient K as a thermal contact element between the heater and the sample were given as parameters. Since the measurement result to be analyzed is a change in temperature from the heat bath temperature, an atmospheric temperature of 0K was applied in the model. The meshing was done automatically, with a total of over 200 nodes. The meshing result is shown in FIG.

(シミュレーション)
式1に基づき有限要素法により数値計算した温度変化の様子を図10〜図12に示した。また、図13に、実測の測定点に対応した点における温度変化の時間依存性(ヒータの温度変化ΔT、試料のヒータ側の温度変化ΔT、反対側ΔT)をプロットした様子を示した。図から明らかなように、実測して得られた温度変化の曲線(図6、図7参照)とほぼ同じ形状となることが確認できた。
(simulation)
The state of temperature change numerically calculated by the finite element method based on Equation 1 is shown in FIGS. FIG. 13 shows a plot of the time dependence of the temperature change (heater temperature change ΔT H , temperature change ΔT 1 on the heater side of the sample, and opposite side ΔT 2 ) at the point corresponding to the actually measured measurement point. It was. As is apparent from the figure, it was confirmed that the shape was almost the same as the temperature change curve obtained by actual measurement (see FIGS. 6 and 7).

(試料の比熱および熱伝導係数の算出)
シミュレーションに基づく温度変化を、前述のC、C、C、κ、κ、κ、ρ、ρ、ρ、Kの合計10個パラメータとして実際に各ベース温度で測定した温度変化の曲線へ最適化する作業を行った。最適化にはシンプレックス法を用いた。具体的には、定数として試料の密度ρ、ヒータの密度ρ、フロリナートの密度ρ、ヒータの熱伝導率κをあらかじめ代入し、ヒータの比熱Cについても、真空中であらかじめ測定した値が圧力中でも保持されるものとして用いた。
(Calculation of specific heat and thermal conductivity of sample)
The temperature change based on the simulation is actually measured at each base temperature as a total of 10 parameters of C S , C H , C F , κ S , κ H , κ F , ρ S , ρ H , ρ F , K. Work was done to optimize the temperature change curve. The simplex method was used for optimization. Specifically, the density ρ S of the sample, the density ρ H of the heater, the density ρ F of the fluorinate, and the thermal conductivity κ H of the heater are substituted in advance, and the specific heat C H of the heater is also measured in advance in a vacuum. The measured value was used as being maintained even under pressure.

まず、ヒータのみの温度変化の測定結果からCとκとを解析する。はじめに、温度の変化曲線の”高さ”にシミュレーションの結果を合致させるようにしてκを決定する。続いて、曲線の“カーブ”にシミュレーションの結果を合致させるようにしてCを決定する。 First, C F and κ F are analyzed from the measurement result of the temperature change of only the heater. First, so as to match the results of the simulation in "height" of the temperature change curve to determine the kappa F. Subsequently, C F is determined so that the simulation result matches the “curve” of the curve.

図14は、室温常圧下におけるヒータのみの温度変化の測定結果に、最適化によって得られた温度変化曲線を重ねて描画した図である。図から判るように、両曲線はよく合致することが確認できた。解析によって得られたパラメータは、C=925(mJ/Kg)、κ=0.83(mW/cmK)であった。一方、室温常圧下におけるフロリナートの比熱および熱伝導率のカタログ値は、C=1040(mJ/Kg)(フロリナート70および77)、κ=0.71(mW/cmK)(フロリナート70)、κ=0.63(mW/cmK)(フロリナート77)であった。解析から得られたフロリナートの比熱は僅かにカタログ値より小さく、一方、熱伝導率はカタログ値より大きい結果となった。これは、低温における測定時の圧力伝達媒体の熱収縮を考慮して、室温で0.3GPaを掛けた状態での測定であったため、加圧によって比熱が小さく、また、熱伝導率が大きく得られたと解釈すれば矛盾せず、むしろ、本発明による導出方法が定性的にも、定量的にも実用に耐えうるものであることが確認できた。 FIG. 14 is a diagram in which the temperature change curve obtained by the optimization is superimposed on the measurement result of the temperature change of only the heater at room temperature and normal pressure. As can be seen from the figure, it was confirmed that both curves matched well. The parameters obtained by the analysis were C F = 925 (mJ / Kg) and κ F = 0.83 (mW / cmK). On the other hand, the catalog values of the specific heat and thermal conductivity of florinate under room temperature and normal pressure are C F = 1040 (mJ / Kg) (Florinert 70 and 77), κ F = 0.71 (mW / cmK) (Florinert 70), κ F = 0.63 (mW / cmK) (Fluorinert 77). The specific heat of florinate obtained from the analysis was slightly smaller than the catalog value, while the thermal conductivity was larger than the catalog value. This was measured in a state where 0.3 GPa was applied at room temperature in consideration of thermal contraction of the pressure transmission medium at the time of measurement at a low temperature, so that the specific heat was reduced by pressurization and the thermal conductivity was increased. It was confirmed that the derivation method according to the present invention could withstand practical use both qualitatively and quantitatively.

次に、低温領域の温度変化曲線に対しても、同様の解析を行いC、κの温度依存性を求めた。図15aは、得られたフロリナートの比熱Cの温度依存性を、図15bは、得られた熱伝導率κの温度依存性を示した図である。図16は、断熱法により〜10K、〜0.64GPaの範囲で得られているフロリナートの比熱の温度依存性を示した実験データである(向井仁 平成12年 名古屋大学大学院理学研究科物質理学専攻修士論文より)。また、図17は、図15aと図16を合成した図である。図17に着目し、0kBar(1kBar=0.1GPa)10K付近の断熱法による既知の比熱Cを読み取ると、およそ38(mJ/gK)である。一方、本シミュレーションにより決定された0GPaの10K付近の比熱Cの値は約22(mJ/gK)と数値に若干の違いがある。しかし、断熱法の結果の信頼性およびヒータ形状が完全な円盤形でないなど実施例が理想的な実験状況でないことを勘案すれば、両者は大まかに一致しているといえる。 Next, the same analysis was performed on the temperature change curve in the low temperature region, and the temperature dependence of C F and κ F was obtained. Figure 15a, the temperature dependence of the specific heat C F of the resulting Fluorinert, Figure 15b is a graph showing the temperature dependence of the resulting thermal conductivity kappa F. FIG. 16 is experimental data showing the temperature dependence of the specific heat of florinate obtained by the adiabatic method in the range of ˜10 K and ˜0.64 GPa (Jin Mukai, 2000 Graduate School of Science, Nagoya University) (From master's thesis). FIG. 17 is a diagram in which FIGS. 15a and 16 are combined. When attention is paid to FIG. 17 and the known specific heat C F by the adiabatic method near 0 kBar (1 kBar = 0.1 GPa) 10 K is read, it is about 38 (mJ / gK). On the other hand, the value of the specific heat C F near 10 K of 0 GPa determined by this simulation is slightly different from about 22 (mJ / gK). However, considering that the reliability of the result of the heat insulation method and that the heater shape is not a perfect disk shape, the embodiment is not an ideal experimental situation, it can be said that both are roughly in agreement.

次に、試料の温度変化の測定結果から、ヒータと試料の間の熱伝導係数K、試料の比熱C、試料の熱伝導率κの最適化を行った。このとき、フロリナートの比熱C、熱伝導率κは、ヒータのみの測定によって得られた較正式から必要な温度、圧力における値を計算して使用した。図18に、最適化の例として0.45GPa、熱浴温度20Kの結果を示した。試料の解析に関しても、はじめに、温度の変化曲線の”高さ”に注目し10〜20秒の範囲で3つの測定点における温度測定結果と有限要素法による計算結果とが合致するように熱伝導係数Kと試料の熱伝導率κを最適化した。続いて、温度変化曲線の上昇部、下降部が合致するように試料の比熱Cを最適化した。図から明らかなように、ヒータのみの場合と同様に、このモデルによって決定されたパラメータに基づく温度変化の曲線と、実際に測定された温度変化の曲線は非常に良く合致することが確認できた。 Next, the thermal conductivity coefficient K between the heater and the sample, the specific heat C S of the sample, and the thermal conductivity κ S of the sample were optimized from the measurement result of the temperature change of the sample. At this time, the specific heat C F and the thermal conductivity κ F of Fluorinert were used by calculating the values at the necessary temperature and pressure from the calibration formula obtained by the measurement of only the heater. FIG. 18 shows a result of 0.45 GPa and a heat bath temperature of 20K as an example of optimization. Regarding the analysis of the sample, first, pay attention to the “height” of the temperature change curve, and heat conduction so that the temperature measurement results at the three measurement points coincide with the calculation results by the finite element method in the range of 10 to 20 seconds. The coefficient K and the thermal conductivity κ S of the sample were optimized. Subsequently, increasing of the temperature change curve descending portion is to optimize the specific heat C S of the sample to match. As is clear from the figure, as in the case of only the heater, it was confirmed that the temperature change curve based on the parameters determined by this model and the actually measured temperature change curve matched very well. .

次に、解析で得られた試料CeRhSiの比熱Cの結果を図19に示す。なお、過去に断熱法によって測定された0気圧における比熱Cの絶対値のプロットも併記した。図示したように、CeRhSiの0気圧における36K付近の反強磁性転移温度Tが加圧によって30K付近にまで抑えられる様子がはっきり観測されている。この振る舞いは過去に電気抵抗率測定から得られた温度−圧力相図(図20参照)とよく一致する。絶対値という観点からは、転移による影響のかからない、転移点より上の温度、例えば40Kにおける0.45GPaのデータと断熱法によるデータとを比較すると、非常に良く一致していることが確認できた。従って、ここでも、本発明によれば、物性値の絶対値導出も可能であることが確認できたといえる。 Next, the results of the specific heat C S of the obtained sample CERH 2 Si 2 in the analysis in Figure 19. Incidentally, also shown a plot of the absolute value of the specific heat C S at 0 atm measured by adiabatic method in the past. As shown in the figure, it is clearly observed that the antiferromagnetic transition temperature TN near 36 K at 0 atm of CeRh 2 Si 2 is suppressed to about 30 K by pressurization. This behavior is in good agreement with the temperature-pressure phase diagram (see FIG. 20) obtained from electrical resistivity measurements in the past. From the viewpoint of the absolute value, it was confirmed that the temperature above the transition point, for example, 0.45 GPa at 40 K, which is not affected by the transition, was compared with the data obtained by the adiabatic method, so that they agreed very well. . Therefore, it can be said that the absolute value of the physical property value can also be derived according to the present invention.

また、図21に、CeRhSiの熱伝導率κの解析結果を示した。熱伝導率に関しては、常圧での測定も難しく、この物質に関して比較できるようなデータは存在しない。しかし、絶対値の大きさおよび磁気転移点で僅かに熱伝導率κが増大するなどの特徴は、他のCe系化合物の特徴と一致していることから、結果は十分信頼性があるといえる。 FIG. 21 shows the analysis result of the thermal conductivity κ S of CeRh 2 Si 2 . Regarding thermal conductivity, it is difficult to measure at normal pressure, and there is no comparable data for this material. However, since the features such as the absolute value and the slight increase in thermal conductivity κ S at the magnetic transition point are consistent with those of other Ce compounds, the results are sufficiently reliable. I can say that.

本発明を用いて、例えば、海底などの物質の挙動や、惑星や恒星の物質の解析などが可能となる。   By using the present invention, for example, the behavior of a substance such as the seabed, the analysis of a planetary or stellar substance can be performed.

測定試験の概念図を示した図である。It is the figure which showed the conceptual diagram of the measurement test. ヒータのみのブランク試験の結果を示した図である(真空中)。It is the figure which showed the result of the blank test of only a heater (in a vacuum). ヒータのみのブランク試験の結果を示した図である(0GPa)。It is the figure which showed the result of the blank test of only a heater (0GPa). ヒータのみのブランク試験の結果を示した図である(0.45GPa)。It is the figure which showed the result of the blank test of only a heater (0.45GPa). 試料の温度変化の測定結果を示した図である(真空中)。It is the figure which showed the measurement result of the temperature change of a sample (in a vacuum). 試料の温度変化の測定結果を示した図である(0GPa)。It is the figure which showed the measurement result of the temperature change of a sample (0GPa). 試料の温度変化の測定結果を示した図である(0.45GPa)。It is the figure which showed the measurement result of the temperature change of a sample (0.45GPa). 本実施例の解析モデルの概略構成図である。It is a schematic block diagram of the analysis model of a present Example. メッシング結果を示した図である。It is the figure which showed the meshing result. 式1に基づき有限要素法により数値計算した温度変化の様子を示した図である。It is the figure which showed the mode of the temperature change numerically calculated by the finite element method based on Formula 1. FIG. 式1に基づき有限要素法により数値計算した温度変化の様子を示した図である。It is the figure which showed the mode of the temperature change numerically calculated by the finite element method based on Formula 1. FIG. 式1に基づき有限要素法により数値計算した温度変化の様子を示した図である。It is the figure which showed the mode of the temperature change numerically calculated by the finite element method based on Formula 1. FIG. 実測の測定点に対応した点の温度変化をプロットした様子を示した図である。It is the figure which showed a mode that the temperature change of the point corresponding to the measurement point of measurement was plotted. 室温常圧下におけるヒータのみの温度変化の測定結果(○印)に、最適化によって得られた温度変化曲線を重ねて描画した図である。It is the figure which overlapped and drawn the temperature change curve obtained by optimization on the measurement result (circle mark) of the temperature change of only a heater under room temperature and normal pressure. 解析により得られたフロリナートの比熱Cおよび熱伝導率κの温度依存性を示した図である。It is the figure which showed the temperature dependence of the specific heat CF and the thermal conductivity (kappa) F of the fluorinate obtained by analysis. 断熱法により〜10K、〜0.64GPaの範囲で得られているフロリナートの比熱の温度依存性を示した実験データである。It is the experimental data which showed the temperature dependence of the specific heat of the fluorinate obtained by the heat insulation method in the range of -10K and -0.64GPa. 図15aと図16を合成した図である。It is the figure which synthesize | combined FIG. 15a and FIG. 最適化の例として0.45GPa、ベース温度40Kの結果を示した図である。It is the figure which showed the result of 0.45 GPa and base temperature 40K as an example of optimization. 解析で得られた試料CeRhSiの比熱Cの温度依存性を示した図である。It is a diagram showing temperature dependence of the specific heat C S of the obtained sample CERH 2 Si 2 in the analysis. 電気抵抗率測定から得られた反強磁性転移温度Tの温度−圧力相図である。It is a temperature-pressure phase diagram of the antiferromagnetic transition temperature TN obtained from electrical resistivity measurement. CeRhSiの熱伝導率κの解析結果を示した図である。CeRh is a diagram showing an analysis result of the 2 Si 2 thermal conductivity kappa S. 断熱法の測定装置概要を示した図である。It is the figure which showed the measuring device outline | summary of the heat insulation method. 緩和法の測定概要を示した図である。It is the figure which showed the measurement outline | summary of the relaxation method. 定常法の測定概要を示した図である。It is the figure which showed the measurement outline | summary of the stationary method.

Claims (4)

熱浴である圧力容器中に圧力伝達媒体と、熱源を接触させた測定対象試料とを封入し、圧力下における試料の比熱および熱伝導率を同時に測定する測定方法であって、
熱源上の1点と試料上の熱伝導上等価でない2点との少なくとも3箇所の測定点の温度の時間変化を、熱源による加熱開始又は加熱終了から定常状態にいたる過程において測定し、
この測定系を模した数値解析モデルを、圧力伝達媒体中の熱伝搬も考慮した非定常熱伝導方程式に基づいて構築し、
当該モデルを用いて前記測定点に相当する点の温度変化が当該測定点の実際の温度変化と同一の温度変化曲線を描くように、試料の比熱、熱伝導率、および、試料と熱源との間の熱伝導係数を、数値解析をおこなって決定することを特徴とする比熱および熱伝導率の測定方法。
A measurement method in which a pressure transfer medium and a measurement target sample in contact with a heat source are enclosed in a pressure vessel that is a heat bath, and the specific heat and thermal conductivity of the sample are simultaneously measured under pressure,
Measure the time change in temperature of at least three measurement points, one point on the heat source and two points that are not equivalent in terms of heat conduction on the sample, in the process from the start or end of heating by the heat source to the steady state,
A numerical analysis model simulating this measurement system is constructed based on the unsteady heat conduction equation that takes into account heat propagation in the pressure transfer medium,
Using the model, the specific heat of the sample, the thermal conductivity, and the relationship between the sample and the heat source so that the temperature change at the point corresponding to the measurement point draws the same temperature change curve as the actual temperature change at the measurement point. A method for measuring specific heat and thermal conductivity, characterized in that the thermal conductivity coefficient is determined by numerical analysis.
試料を対称形に成形し、圧力容器中における試料の配置、熱源の試料上における配置、および、測定点の配置を、試料に沿って対称としたことを特徴とする請求項1に記載の比熱および熱伝導率の測定方法。   2. The specific heat according to claim 1, wherein the sample is formed symmetrically, and the arrangement of the sample in the pressure vessel, the arrangement of the heat source on the sample, and the arrangement of the measurement points are symmetric along the sample. And measuring method of thermal conductivity. 圧力容器を円筒形として試料も円柱形に加工し、圧力容器の中心軸と試料の中心軸とが一致するように試料を圧力容器中に配置し、
試料の底面中心に熱源を接合し、
中心軸上に前記測定点を設けたことを特徴とする請求項1に記載の比熱および熱伝導率の測定方法。
The pressure vessel is cylindrical and the sample is processed into a cylindrical shape, and the sample is placed in the pressure vessel so that the central axis of the pressure vessel and the central axis of the sample coincide.
Join the heat source to the center of the bottom of the sample,
The method for measuring specific heat and thermal conductivity according to claim 1, wherein the measurement point is provided on a central axis.
数値解析法として、有限要素法、有限差分法または境界要素法を用いることを特徴とする請求項1、2または3に記載の比熱および熱伝導率の測定方法。

4. The specific heat and thermal conductivity measuring method according to claim 1, 2, or 3, wherein a finite element method, a finite difference method, or a boundary element method is used as the numerical analysis method.

JP2004244302A 2004-08-24 2004-08-24 Measurement method of specific heat and thermal conductivity. Active JP4280830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244302A JP4280830B2 (en) 2004-08-24 2004-08-24 Measurement method of specific heat and thermal conductivity.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244302A JP4280830B2 (en) 2004-08-24 2004-08-24 Measurement method of specific heat and thermal conductivity.

Publications (2)

Publication Number Publication Date
JP2006064413A JP2006064413A (en) 2006-03-09
JP4280830B2 true JP4280830B2 (en) 2009-06-17

Family

ID=36111037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244302A Active JP4280830B2 (en) 2004-08-24 2004-08-24 Measurement method of specific heat and thermal conductivity.

Country Status (1)

Country Link
JP (1) JP4280830B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116748B (en) * 2009-12-31 2013-08-14 艾迪技术创新私人有限公司 Assembly for measuring and comparing heat conduction and heat conductivities of different materials and using method thereof
JP5807876B2 (en) * 2011-11-01 2015-11-10 リンテック株式会社 Unsteady heat conduction analysis program for winding roll and unsteady internal stress analysis program for winding roll
CN105021648B (en) * 2015-07-21 2017-07-21 浙江大学 A kind of self-balancing pressurized liquid specific heat capacity measurement apparatus and method for reducing heat exchange
CN108426914B (en) * 2018-03-20 2024-01-26 长安大学 Measuring instrument for heat conductivity coefficient and specific heat capacity
CN108896606B (en) * 2018-09-25 2024-02-06 国电环境保护研究院有限公司 Device and method for measuring effective heat conductivity coefficient of temperature change by using unsteady cylindrical heat source method
JP7059908B2 (en) * 2018-11-28 2022-04-26 株式会社Sumco Thermal conductivity estimation method, thermal conductivity estimation device, manufacturing method of semiconductor crystal products, thermal conductivity calculation device, thermal conductivity calculation program, and thermal conductivity calculation method
WO2022191199A1 (en) * 2021-03-09 2022-09-15 公立大学法人大阪 Physical constant estimation value acquisition method
CN115616030B (en) * 2022-12-20 2023-05-02 河北宇天材料科技有限公司 Measurement method of heat conductivity coefficient

Also Published As

Publication number Publication date
JP2006064413A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
Solé et al. Review of the T-history method to determine thermophysical properties of phase change materials (PCM)
CN108181016B (en) The measurement method of diamond anvil cell sample temperature
Xiao et al. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage
Cheng et al. A combined experimental-numerical method to evaluate powder thermal properties in laser powder bed fusion
JP4280830B2 (en) Measurement method of specific heat and thermal conductivity.
Kallaher et al. An apparatus for concurrent measurement of thermoelectric material parameters
Jensen et al. Design and validation of a high-temperature comparative thermal-conductivity measurement system
Polvani et al. Measurement of the thermoelectric power of very small samples at ambient and high pressures
Rabin et al. A model for the time response of solid-embedded thermocouples
Strezov et al. Computer aided thermal analysis
CN102778475B (en) Method for measuring solid-solid thermal contact resistance via up-and-down constant temperature parameter identification method
Hay A brief history of the thermal properties metrology
Salmon et al. Experimental characterization of cryogenic contact resistance
MacLeod et al. High-temperature high-pressure calorimeter for studying gram-scale heterogeneous chemical reactions
Zhang et al. Thermal conductivity measurement of the epoxies and composite material for low temperature superconducting magnet design
Murwamadala et al. Advances in thermal contact resistance studies
Jin et al. Observation and analysis of the detachment frequency of coalesced bubbles in pool boiling liquid nitrogen
JP2007178218A (en) Thermal resistance measuring instrument
Jurado et al. An AC calorimeter probe for a closed-cycle cryogenic station
Gao et al. The quantitative study of interfacial contact effects in TEGs by real-topology-based simulations and novel indirect tests
Lewis et al. Measurement of heat conduction through metal spheres
Kavei et al. Tentative design for measurements of absolute value of thermal conductivity of semi-conducting thermoelectric elements
Woodbury et al. Z-meters
Liu et al. Dismountable sample holder apparatus for rapid thermal conductivity measurements based on cryocooler
KR101782832B1 (en) Temperature measuring system and temperature measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150