JP4280561B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4280561B2
JP4280561B2 JP2003165980A JP2003165980A JP4280561B2 JP 4280561 B2 JP4280561 B2 JP 4280561B2 JP 2003165980 A JP2003165980 A JP 2003165980A JP 2003165980 A JP2003165980 A JP 2003165980A JP 4280561 B2 JP4280561 B2 JP 4280561B2
Authority
JP
Japan
Prior art keywords
heat storage
refrigerant
valve
expansion valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003165980A
Other languages
Japanese (ja)
Other versions
JP2005003251A (en
Inventor
明 寺崎
岳志 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Toshiba Carrier Corp
Original Assignee
Sanyo Electric Co Ltd
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Toshiba Carrier Corp filed Critical Sanyo Electric Co Ltd
Priority to JP2003165980A priority Critical patent/JP4280561B2/en
Publication of JP2005003251A publication Critical patent/JP2005003251A/en
Application granted granted Critical
Publication of JP4280561B2 publication Critical patent/JP4280561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、冷房運転、氷蓄熱運転、氷蓄熱利用冷房運転、暖房運転及び温蓄運転等を可能にした空気調和装置に関する。
【0002】
【従来の技術】
一般に、圧縮機、四方弁、室外熱交換器、室外側膨張弁、蓄熱コイル、室内側膨張弁並びに室内熱交換器を冷媒配管で接続し、前記圧縮機の駆動により、冷房運転、氷蓄熱運転、氷蓄熱利用冷房運転、及び暖房運転等を可能にした空気調和装置が知られている(例えば、特許文献1参照)。
【0003】
この種のものでは、例えば、電気料金が安価な深夜に、氷蓄熱運転を行い、この蓄熱エネルギを利用して、昼間に氷蓄熱利用冷房運転を行い、昼間の冷房効率を向上させている。ところで、従来の構成では、冷房運転を行う場合、室外側膨張弁を開いた状態で、室内側膨張弁の弁開度を絞る制御を行い、これとは反対に、暖房運転を行う場合、室内側膨張弁を開いた状態で、室外側膨張弁の弁開度を絞る制御が実行される。また、氷蓄熱運転を行う場合には、室内膨張弁を閉じ、室外膨張弁を開放し、蓄熱用の膨張弁の開度制御により冷媒の絞り制御が行われる。この氷蓄熱運転によって生成された氷を利用した氷蓄熱利用冷房運転を行う場合には、室内膨張弁で主に冷媒の絞り制御が行われ、その他の膨張弁で冷媒の流量調整が行われる。除霜運転時の熱源の一部として温水が利用されるが、この温水を蓄熱槽に生成する温蓄運転時には、室内膨張弁を閉じ、蓄熱用の膨張弁を開放し、室外膨張弁の開度制御によって冷媒の絞り制御が行われる。これら膨張弁の開閉制御の関係は、図15に示す通りであるが、いずれの制御であっても、液管内には余剰の液冷媒が滞留し、これを貯留するため、従来、室内外の膨張弁間の液管に受液器が接続されている。
【0004】
【特許文献1】
特開2002−372325号公報
【0005】
【発明が解決しようとする課題】
しかし、従来の構成では、図15に示すように、各運転時に各種の膨張弁の弁開度を個別に制御することになり、この場合、室内側膨張弁と室外側膨張弁の2つの膨張弁が必ず必要になる。そうなると、製造コストが嵩むと共に、膨張弁接続のための配管接続やその制御が面倒になる等の問題がある。
【0006】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、いわゆる膨張弁の数を減らし、その制御を簡素化し、かつシンプルな構成の空気調和装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、圧縮機、四方弁、室外熱交換器、蓄熱槽に水没状態で配置される蓄熱コイル、室内側膨張弁並びに室内熱交換器を冷媒配管で接続し、前記圧縮機の駆動により、冷房運転、蓄熱槽に氷を生成させる氷蓄熱運転、及び生成した氷を利用した氷蓄熱利用冷房運転を可能にした空気調和装置において、前記室外熱交換器と前記室内熱交換器との間に、少なくとも4つの逆止弁、及びこれら逆止弁の内、2つの逆止弁の組みを連通させるメイン管路を有したブリッジ回路を接続し、このブリッジ回路のメイン管路に受液器とメイン膨張弁とを直列に接続し、冷房運転、氷蓄熱運転、及び氷蓄熱利用冷房運転のいずれの運転中にも、前記メイン管路に接続された受液器、メイン膨張弁の順に冷媒が流れるようにし、前記蓄熱コイルの一端を、解氷弁を介して受液器とメイン膨張弁間のメイン管路に接続し、前記蓄熱コイルの他端を、蓄熱弁を介してブリッジ回路と室内側膨張弁間に接続したことを特徴とする。
【0008】
請求項2記載の発明は、請求項1記載のものにおいて、圧縮機、四方弁、室外熱交換器を室外ユニットに収容し、蓄熱コイル、ブリッジ回路、室内側膨張弁を蓄熱ユニットに収容し、室内熱交換器を室内ユニットに収容し、各ユニット間を冷媒配管で接続したことを特徴とする。
【0009】
請求項3記載の発明は、請求項1又は2記載のものにおいて、前記ブリッジ回路の前記受液器の上部から均圧管を導出し、この均圧管を前記メイン膨張弁の下流に接続したことを特徴とする。
【0011】
請求項記載の発明は、請求項1乃至のいずれか一項記載のものにおいて、空気熱源による暖房運転、四方弁の切り換えによって蓄熱槽に温水を生成させる温蓄運転、この温水を利用した除霜運転を可能にしたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を添付した図面を参照して説明する。
【0013】
図1において、100は本実施形態に係る空気調和装置を示し、この空気調和装置100は、室外ユニット10と、蓄熱ユニット20と、室内ユニット30の3つのユニットを備えて構成されている。室外ユニット10は、圧縮機1と、四方弁2と、室外熱交換器3と、アキュームレータ4とを備えて構成される。蓄熱ユニット20は、室外ユニット10に接続されるブリッジ回路40を含んで構成される。このブリッジ回路40は、第1逆止弁41、第2逆止弁42、第3逆止弁43、第4逆止弁44、並びにこれら逆止弁の内、2つの逆止弁の組み(逆止弁41と43、及び逆止弁42と44)を連通させるメイン管路45を含み、このメイン管路45には、受液器46及びメイン膨張弁47が直列に接続されている。また、受液器46の上部からバイパス管路(均圧管)48が導出され、このバイパス管路48には均圧弁49が接続され、この均圧弁49はメイン膨張弁47の下流のメイン管路45に接続されている。
【0014】
蓄熱ユニット20には、蓄熱槽50が含まれる。この蓄熱槽50の中には、蓄熱コイル51が水没状態で配置され、この蓄熱コイル51の一端は、第1管路52、二方弁54を介してガス管60に接続されている。蓄熱コイル51の他端は、第2管路53、蓄熱弁55を介して液管61、すなわちブリッジ回路40と室内側膨張弁21との間の液管61に接続されている。
【0015】
ブリッジ回路40のメイン管路45であって、受液器46とメイン膨張弁47の間のメイン管路45には、第3管路63が接続され、この第3管路63は、解氷弁56、逆止弁57を介して第1管路52、すなわち二方弁54と蓄熱コイル51との間の第1管路52に接続されている。
【0016】
上述のブリッジ回路40には、液管61を介して、室内側膨張弁21が接続され、この室内側膨張弁21には室内ユニット30の室内熱交換器31が接続され、この室内熱交換器31にはガス管60を介して四方弁2が接続されている。なお、室内側膨張弁21は蓄熱ユニット20に含まれる。
【0017】
次に、本実施形態の動作を説明する。
【0018】
図1では、一般的な冷房運転(氷蓄熱未利用冷房運転)時の冷媒の流れを太線で示す。圧縮機1で圧縮された冷媒は、四方弁2を介して室外熱交換器3に流入し、ここで凝縮する。この凝縮した冷媒はブリッジ回路40に入る。このブリッジ回路40では、第1逆止弁41を経てメイン管路45に入り、メイン管路45に接続された受液器46を介してメイン膨張弁47に入る。
【0019】
そして、メイン膨張弁47を経た後、第3逆止弁43を介して液管61に向かい、ここから、室内側膨張弁21を経て、室内ユニット30の室内熱交換器31に流入する。この室内熱交換器31では、冷媒が蒸発して、周囲から蒸発潜熱を奪い、室内を冷房する。そして、室内熱交換器31を経た冷媒は、ガス管60を通り、四方弁2、アキュームレータ4を経て圧縮機1の吸込管に戻される。
【0020】
本実施形態では、夜間の安価な電気を使用して氷蓄熱運転が行われる。この氷蓄熱運転では、図2に太線で示すように冷媒が流される。すなわち、圧縮機1で圧縮された冷媒は、四方弁2、室外熱交換器3を通り、ブリッジ回路40に流入し、このブリッジ回路40の第1逆止弁41を経てメイン管路45に流入する。メイン管路45に流入した冷媒は、受液器46、メイン膨張弁47を経て第3逆止弁43に至り、ここから液管61に流入する。この液管61に流入した冷媒は、蓄熱弁55、第2管路53を通り蓄熱コイル51に流入し、ここで蒸発し蓄熱槽50内に製氷する。
【0021】
蓄熱槽50内に製氷させた冷媒は、第1管路52、二方弁54を通りガス管60に流入し、更に、四方弁2、アキュームレータ4を経て圧縮機1に戻される。
【0022】
冷房運転には、図1に示す氷蓄熱未利用冷房運転の他に、図2に示す製氷を利用した、氷蓄熱利用冷房運転が含まれる。
【0023】
この利用冷房運転では、図3に示すように、冷媒制御が行われる。すなわち、圧縮機1で圧縮された冷媒は四方弁2、室外熱交換器3を経て、ブリッジ回路40に流入し、このブリッジ回路40の第1逆止弁41、メイン管路45、受液器46を経て、一方は第3管路63に流入し、他方はそのままメイン管路45を流れてメイン膨張弁47に至る。
【0024】
第3管路63に流入した冷媒は、解氷弁56、逆止弁57を経て蓄熱槽50内の蓄熱コイル51に入る。この冷媒は、蓄熱コイル51内で氷により過冷却され、その後に、第2管路53を経て蓄熱弁55を通り液管61に流入する。また、ブリッジ回路40の受液器46を経て、そのままメイン膨張弁47に流入した冷媒は、第3逆止弁43を通り液管61に流入する。
【0025】
この液管61では、蓄熱コイル51を経て過冷却された冷媒と、メイン膨張弁47を経た冷媒とが合流し、この合流した冷媒は、室内側膨張弁21を通り、室内ユニット30の室内熱交換器31に流入する。この室内熱交換器31では、冷媒が蒸発し、これにより室内が冷房される。そして、室内熱交換器31を経た冷媒は、ガス管60を通り、四方弁2、アキュームレータ4を経て、圧縮機1の吸込管に戻される。
【0026】
この場合、本実施形態では、冷媒が蓄熱槽50で過冷却された分だけ、冷房効率を向上させることができる。
【0027】
上記構成では暖房運転が可能である。この暖房運転では、図4に示すように、冷媒の流れが制御される。
【0028】
すなわち、圧縮機1に吐出された冷媒は、四方弁2を通りガス管60に流入し、このガス管60を経て室内ユニット30の室内熱交換器31に流入し、この室内熱交換器31で凝縮し、これにより、室内が暖房される。この室内熱交換器31を経た冷媒は、室内側膨張弁21を通り、液管61に流入し、更にブリッジ回路40に流入する。このブリッジ回路40に入ると、冷媒は、第2逆止弁42を経てメイン管路45に流入し、受液器46、メイン膨張弁47を経て第4逆止弁44に至り、この第4逆止弁44を通過して、室外ユニット10の室外熱交換器3に流入する。この室外熱交換器3では、冷媒が蒸発し、これによりガス化された冷媒が、四方弁2、アキュームレータ4を経て圧縮機1に戻される。
【0029】
この暖房運転が、厳冬期等の著しい低外気温の状態下で行われた場合、室外熱交換器3のフィンに着霜する。この室外熱交換器3の着霜を除去するため、除霜運転が行われる。
【0030】
図5は、空気除霜運転を示す。この除霜運転では、暖房運転を一時的に停止し、四方弁2を冷房位置に切り換え、圧縮機1を駆動する。すると、図5に示すように、圧縮機1で圧縮された冷媒が、四方弁2を経て、室外熱交換器3に直接流入し、ここに直接流入したホットガスにより室外熱交換器3が除霜される。この室外熱交換器3を経た冷媒は、図1に示す冷房運転の場合とほぼ同様の流れを経て圧縮機1に戻される。
【0031】
図6は、蓄熱槽に温水を生成する温蓄運転を示す。この温蓄運転では、蓄熱槽50内の水の温度を上昇させる。この温蓄運転では、圧縮機1で圧縮された冷媒が、四方弁2を通り、ガス管60に流入し、このガス管60から二方弁54、第1管路52を経て、蓄熱コイル51に流入する。冷媒は、この蓄熱コイル51で凝縮し、蓄熱槽50内の水温を上昇させる。この蓄熱コイル51を経た冷媒は、第2管路53、蓄熱弁55を通りブリッジ回路40に流入し、このブリッジ回路40に流入した冷媒は、第2逆止弁42を通りメイン管路45に入り、受液器46、メイン膨張弁47を経て第4逆止弁44に至る。
【0032】
そして、第4逆止弁44を経て室外ユニット10の室外熱交換器3に至り、ここで蒸発し、ガス化した冷媒が、四方弁2、アキュームレータ4を経て圧縮機1に戻される。
【0033】
この温蓄運転によって、蓄熱槽50内に温蓄されたエネルギは、図7に示すように、専ら温水除霜運転に利用される。
【0034】
すなわち、圧縮機1で圧縮された冷媒は、四方弁2を経て、室外熱交換器3に流入し、この室外熱交換器3で凝縮し、この室外熱交換器3のフィンに付着した霜を除去する。室外熱交換器3を経た冷媒は、ブリッジ回路40に入り、このブリッジ回路40の第1逆止弁41、メイン管路45、受液器46、メイン膨張弁47を経て第3逆止弁43に至り、ここから蓄熱弁55、第2管路53を通り、蓄熱コイル51に流入する。
【0035】
この蓄熱コイル51では、冷媒が、蓄熱槽50内の温蓄エネルギから熱を奪い、いわゆる冷媒加熱されて第1管路52を経て二方弁54に至る。そして、二方弁54からガス管60に入り、四方弁2、アキュームレータ4を経て圧縮機1に戻される。
【0036】
この温水利用による除霜運転では、蓄熱槽50内で冷媒が加熱されて圧縮機1に戻されるため、除霜運転の効率が向上し、除霜運転を、図5の除霜運転に比べて短時間のうちに終了させることができる。
【0037】
本実施形態では、図1〜図7に示すように、いかなる運転モードにおいてもブリッジ回路40のメイン管路45を通る冷媒は、まず、受液器46に入り、それを経てからメイン膨張弁47に至る。従って、冷房運転時、或いは暖房運転時において、弁開度を制御すべき膨張弁は、主にこの一つのメイン膨張弁47だけである。なお、氷蓄熱利用冷房運転時には、メイン膨張弁47において、冷媒流量の補助調整が行われる。蓄熱槽50を有した空気調和装置100では、その冷凍サイクル内への冷媒充填量は多い。従って、いずれの運転時であっても、メイン膨張弁47の弁開度を絞ることにより、液管61内には余剰の液冷媒が滞留する。この余剰の冷媒は、メイン膨張弁47の上流に位置する受液器46に貯留される。
【0038】
上記構成では、従来のように、冷房運転を行う場合、室外側膨張弁を開いた状態で、室内側膨張弁の弁開度を絞る制御を行い、これとは反対に、暖房運転を行う場合、室内側膨張弁を開いた状態で、室外側膨張弁の弁開度を絞る制御、等が不要になり、その結果、従来の構成では、少なくとも2個必要であった膨張弁を、1つのメイン膨張弁47で構成することが可能になり、膨張弁の個数を削減でき、コストダウンが図られる。なお、氷蓄熱利用冷房運転時は、2つの膨張弁によって減圧、並びに流量調整が行われる。
【0039】
上記構成では、ブリッジ回路40の受液器46の上部から均圧管48が導出され、この均圧管48がメイン膨張弁47の下流に接続される。一般に、空気調和装置100の運転停止時に、このメイン膨張弁47を境に、その前後に低圧のガス冷媒領域と高圧の液冷媒領域とが形成される。従来、膨張弁を開放して各領域を均圧したが、これだと、圧縮機1の再起動時に、大量の液冷媒が低圧ガス冷媒領域に流入して、圧縮機1への液バックを起こす。従来、アキュームレータ4の容量は大容量(例えば、7.5リットル)としている。
【0040】
圧縮機1への液バックを解消するため、上記構成では、空気調和装置100の運転停止時に、メイン膨張弁47が閉じられ、均圧管48の均圧弁49が開放される。これにより均圧管48を経て、メイン膨張弁47の前後の管が連通し、当該メイン膨張弁47の前後の圧力が均圧される。
【0041】
この場合、受液器46の上部にはガス冷媒が滞留するため、均圧管48の均圧弁49が開放されたとしても、均圧管48を経て移動するのはガス冷媒であり、液冷媒の移動はない。この場合、アキュームレータ4の容量は小容量(例えば、2.5リットル)とすることができ、このアキュームレータ4の容量は、いわゆる汎用室外ユニットのものと同じである。
【0042】
上記構成では、メイン膨張弁47をブリッジ回路40に組み込み、このブリッジ回路40を蓄熱ユニット20に収容すると共に、この蓄熱ユニット20には、室内膨張弁21を収容したため、室外ユニット10、並びに室内ユニット30には、膨張弁を収容する必要がない。また、室外ユニット10内のアキュームレータ4の容量は、上述したように、汎用ユニット同様に小容量(例えば、2.5リットル)である。従って、空気調和装置100の室外ユニット10として、膨張弁を内蔵しない従来の汎用室外ユニットを、空気調和装置100の蓄熱ユニット20と組み合わせて使用することが可能になる。
【0043】
図8〜図14は別の実施形態を示す。図8〜図14は、それぞれ図1〜図7に対応した冷媒回路図である。図8において、図1に示す実施形態と異なる点は、蓄熱槽50周辺における配管系にある。
【0044】
この蓄熱槽50の中に水没した蓄熱コイル51は、その一端が、第1管路52、二方弁54を介してガス管60に接続されると共に、同じく第1管路52、サブクール弁71、逆止弁72を介して液管61に接続される。蓄熱コイル51の他端は、第2管路53、蓄熱弁55を介して液管61、すなわちブリッジ回路40と室内側膨張弁21との間の液管61に接続されている。ブリッジ回路40のメイン管路45であって、受液器46とメイン膨張弁47の間のメイン管路45には、第3管路63が接続され、この第3管路63は、解氷弁56、逆止弁57を介して、上述した蓄熱コイル51の他端に接続されている。その他の構成は、図1に示すものとほぼ同じ構成である。
【0045】
次に、本実施形態の動作を説明する。
【0046】
図8では、一般的な冷房運転(氷蓄熱未利用冷房運転)時の冷媒の流れを太線で示す。圧縮機1で圧縮された冷媒は、四方弁2を介して室外熱交換器3に流入し、ここで凝縮する。この凝縮した冷媒はブリッジ回路40に入る。このブリッジ回路40では、第1逆止弁41を経てメイン管路45に入り、メイン管路45に接続された受液器46を介してメイン膨張弁47に入る。
【0047】
そして、メイン膨張弁47を経た後、第3逆止弁43を介して液管61に向かい、ここから、室内側膨張弁21を経て、室内ユニット30の室内熱交換器31に流入する。この室内熱交換器31では、冷媒が蒸発して、周囲から蒸発潜熱を奪い、室内を冷房する。そして、室内熱交換器31を経た冷媒は、ガス管60を通り、四方弁2、アキュームレータ4を経て圧縮機1の吸込管に戻される。
【0048】
本実施形態では、夜間の安価な電気を使用して氷蓄熱運転が行われる。この氷蓄熱運転では、図9に太線で示すように冷媒が流される。すなわち、圧縮機1で圧縮された冷媒は、四方弁2、室外熱交換器3を通り、ブリッジ回路40に流入し、このブリッジ回路40の第1逆止弁41を経てメイン管路45に流入する。メイン管路45に流入した冷媒は、受液器46、メイン膨張弁47を経て第3逆止弁43に至り、ここから液管61に流入する。
【0049】
この液管61に流入した冷媒は、蓄熱弁55、第2管路53を通り蓄熱コイル51に流入し、ここで蒸発し蓄熱槽50内に製氷する。この場合、サブクール弁71は全閉である。この氷蓄熱運転時における蓄熱コイル51内の冷媒の流れは、矢印X方向である。
【0050】
蓄熱槽50内に製氷させた冷媒は、第1管路52、二方弁54を通りガス管60に流入し、更に、四方弁2、アキュームレータ4を経て圧縮機1に戻される。
【0051】
冷房運転には、図8に示す氷蓄熱未利用冷房運転の他に、図9に示す製氷を利用した、氷蓄熱利用冷房運転が含まれる。
【0052】
この利用冷房運転では、図10に示すように、冷媒制御が行われる。すなわち、圧縮機1で圧縮された冷媒は四方弁2、室外熱交換器3を経て、ブリッジ回路40に流入し、このブリッジ回路40の第1逆止弁41、メイン管路45、受液器46を経て、一方は第3管路63に流入し、他方はそのままメイン管路45を流れてメイン膨張弁47に至る。
【0053】
第3管路63に流入した冷媒は、解氷弁56、逆止弁57を経て蓄熱槽50内の蓄熱コイル51に入る。この氷蓄熱利用冷房運転時における蓄熱コイル51内の冷媒の流れは、矢印X方向である。
【0054】
この冷媒は、蓄熱コイル51内で氷により過冷却され、その後に、第1管路52、サブクール弁71、逆止弁72を通り液管61に流入する。また、ブリッジ回路40の受液器46を経て、そのままメイン膨張弁47に流入した冷媒は、第3逆止弁43を通り液管61に流入する。
【0055】
この液管61では、蓄熱コイル51を経て過冷却された冷媒と、メイン膨張弁47を経た冷媒とが合流し、この合流した冷媒は、室内側膨張弁21を通り、室内ユニット30の室内熱交換器31に流入する。この室内熱交換器31では、冷媒が蒸発し、これにより室内が冷房される。そして、室内熱交換器31を経た冷媒は、ガス管60を通り、四方弁2、アキュームレータ4を経て、圧縮機1の吸込管に戻される。この氷蓄熱利用冷房運転時には室内側膨張弁21で冷媒の膨張作用を行わせ、メイン膨張弁47で冷媒の流れ調整を行う。
【0056】
この場合、本実施形態では、冷媒が蓄熱槽50で過冷却された分だけ、冷房効率を向上させることができる。
【0057】
上記構成では暖房運転が可能である。この暖房運転では、図11に示すように、冷媒の流れが制御される。
【0058】
すなわち、圧縮機1に吐出された冷媒は、四方弁2を通りガス管60に流入し、このガス管60を経て室内ユニット30の室内熱交換器31に流入し、この室内熱交換器31で凝縮し、これにより、室内が暖房される。この室内熱交換器31を経た冷媒は、室内側膨張弁21を通り、液管61に流入し、更にブリッジ回路40に流入する。このブリッジ回路40に入ると、冷媒は、第2逆止弁42を経てメイン管路45に流入し、受液器46、メイン膨張弁47を経て第4逆止弁44に至り、この第4逆止弁44を通過して、室外ユニット10の室外熱交換器3に流入する。この室外熱交換器3では、冷媒が蒸発し、これによりガス化された冷媒が、四方弁2、アキュームレータ4、サブアキュームレータ5を経て圧縮機1に戻される。
【0059】
この暖房運転が、厳冬期等の著しい低外気温の状態下で行われた場合、室外熱交換器3のフィンに着霜する。この室外熱交換器3の着霜を除去するため、除霜運転が行われる。
【0060】
図12は、空気除霜運転を示す。この除霜運転では、暖房運転を一時的に停止し、四方弁2を冷房位置に切り換え、圧縮機1を駆動する。すると、図12に示すように、圧縮機1で圧縮された冷媒が、四方弁2を経て、室外熱交換器3に直接流入し、ここに直接流入したホットガスにより室外熱交換器3が除霜される。この室外熱交換器3を経た冷媒は、図8に示す冷房運転の場合とほぼ同様の流れを経て圧縮機1に戻される。
【0061】
この場合、室内熱交換器31の送風ファンの運転は停止し、冷媒を蒸発させない。本来の要求は暖房運転であり、除霜運転時に室内に冷風が吹き出されないようにするためである。
【0062】
図13は、温蓄運転を示す。この温蓄運転では、蓄熱槽50内の水の温度を上昇させる。この温蓄運転では、圧縮機1で圧縮された冷媒が、四方弁2を通り、ガス管60に流入し、このガス管60から二方弁54、第1管路52を経て、蓄熱コイル51に流入する。冷媒は、この蓄熱コイル51で凝縮し、蓄熱槽50内の水温を上昇させる。この蓄熱コイル51を経た冷媒は、第2管路53、蓄熱弁55を通りブリッジ回路40に流入し、このブリッジ回路40に流入した冷媒は、第2逆止弁42を通りメイン管路45に入り、受液器46、メイン膨張弁47を経て第4逆止弁44に至る。
【0063】
そして、第4逆止弁44を経て室外ユニット10の室外熱交換器3に至り、ここで蒸発し、ガス化した冷媒が、四方弁2、アキュームレータ4を経て圧縮機1に戻される。
【0064】
この温蓄運転によって、蓄熱槽50内に温蓄されたエネルギは、図14に示すように、専ら温水除霜運転に利用される。
【0065】
すなわち、圧縮機1で圧縮された冷媒は、四方弁2を経て、室外熱交換器3に流入し、この室外熱交換器3で凝縮し、この室外熱交換器3のフィンに付着した霜を除去する。室外熱交換器3を経た冷媒は、ブリッジ回路40に入り、このブリッジ回路40の第1逆止弁41、メイン管路45、受液器46、メイン膨張弁47を経て第3逆止弁43に至り、ここから蓄熱弁55、第2管路53を通り、蓄熱コイル51に流入する。
【0066】
この蓄熱コイル51では、冷媒が、蓄熱槽50内の温蓄エネルギから熱を奪い、いわゆる冷媒加熱されて第1管路52を経て二方弁54に至る。そして、二方弁54からガス管60に入り、四方弁2、アキュームレータ4を経て圧縮機1に戻される。
【0067】
この温水利用による除霜運転では、蓄熱槽50内で冷媒が加熱されて圧縮機1に戻されるため、除霜運転の効率が向上し、除霜運転を、図12の除霜運転に比べて短時間のうちに終了させることができる。
【0068】
本実施形態では、図8〜図14に示すように、いかなる運転モードにおいてもブリッジ回路40のメイン管路45を通る冷媒は、まず、受液器46に入り、それを経てからメイン膨張弁47に至る。従って、冷房運転時、或いは暖房運転時において、弁開度を制御すべき膨張弁はこの一つのメイン膨張弁47である。いずれの運転時であっても、メイン膨張弁47の弁開度を絞ることにより、液管61内には余剰の液冷媒が滞留する。この余剰の冷媒は、メイン膨張弁47の上流に位置する受液器46に貯留される。
【0069】
上記構成では、従来のように、冷房運転を行う場合、室外側膨張弁を開いた状態で、室内側膨張弁の弁開度を絞る制御を行い、これとは反対に、暖房運転を行う場合、室内側膨張弁を開いた状態で、室外側膨張弁の弁開度を絞る制御、等が不要になり、その結果、従来の構成では、少なくとも2個必要であった膨張弁を、1つのメイン膨張弁47で構成することが可能になり、膨張弁の個数を削減でき、コストダウンが図られる。
【0070】
上記構成では、ブリッジ回路40の受液器46の上部から均圧管48が導出され、この均圧管48がメイン膨張弁47の下流に接続される。一般に、空気調和装置100の運転停止時に、このメイン膨張弁47を境に、その前後に低圧のガス冷媒領域と高圧の液冷媒領域とが形成される。従来、膨張弁を開放して各領域を均圧したが、これだと、圧縮機1の再起動時に、大量の液冷媒が低圧ガス冷媒領域に流入して、圧縮機1への液バックを起こす。従来、アキュームレータ4の容量は大容量(例えば、7.5リットル)としている。
【0071】
圧縮機1への液バックを解消するため、上記構成では、空気調和装置100の運転停止時に、メイン膨張弁47が閉じられ、均圧管48の均圧弁49が開放される。これにより均圧管48を経て、メイン膨張弁47の前後の管が連通し、当該メイン膨張弁47の前後の圧力が均圧される。
【0072】
この場合、受液器46の上部にはガス冷媒が滞留するため、均圧管48の均圧弁49が開放されたとしても、均圧管48を経て移動するのはガス冷媒であり、液冷媒の移動はない。この場合、アキュームレータ4の容量は小容量(例えば、2.5リットル)とすることができ、このアキュームレータ4の容量は、いわゆる汎用室外ユニットのものと同じである。
【0073】
上記構成では、メイン膨張弁47をブリッジ回路40に組み込み、このブリッジ回路40を蓄熱ユニット20に収容すると共に、この蓄熱ユニット20には、室内膨張弁21を収容したため、室外ユニット10、並びに室内ユニット30には、膨張弁を収容する必要がない。また、室外ユニット10内のアキュームレータ4の容量は、上述したように、汎用ユニット同様に小容量(例えば、2.5リットル)である。従って、空気調和装置100の室外ユニット10として、膨張弁を内蔵しない従来の汎用室外ユニットを、空気調和装置100の蓄熱ユニット20と組み合わせて使用することが可能になる。
【0074】
以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではない。例えば、空気調和装置100を、室外ユニット10、蓄熱ユニット20、及び室内ユニット30の3つのユニットで構成したが、これに限定されるものではなく、室外ユニット10及び蓄熱ユニット20を一体化させることは可能である。
【0075】
【発明の効果】
本発明では、膨張弁の数が減らされ、その制御が簡素化され、かつシンプルな構成の空気調和装置が提供される。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す氷蓄熱未利用冷房運転時の冷媒回路図である。
【図2】本発明の一実施形態を示す氷蓄熱運転時の冷媒回路図である。
【図3】本発明の一実施形態を示す氷蓄熱利用冷房運転時の冷媒回路図である。
【図4】本発明の一実施形態を示す暖房運転時の冷媒回路図である。
【図5】本発明の一実施形態を示す空気除霜運転時の冷媒回路図である。
【図6】本発明の一実施形態を示す温蓄運転時の冷媒回路図である。
【図7】本発明の一実施形態を示す温水除霜運転時の冷媒回路図である。
【図8】本発明の他の実施形態を示す氷蓄熱未利用冷房運転時の冷媒回路図である。
【図9】本発明の他の実施形態を示す氷蓄熱運転時の冷媒回路図である。
【図10】本発明の他の実施形態を示す氷蓄熱利用冷房運転時の冷媒回路図である。
【図11】本発明の他の実施形態を示す暖房運転時の冷媒回路図である。
【図12】本発明の他の実施形態を示す空気除霜運転時の冷媒回路図である。
【図13】本発明の他の実施形態を示す温蓄運転時の冷媒回路図である。
【図14】本発明の他の実施形態を示す温水除霜運転時の冷媒回路図である。
【図15】各弁の開閉状態を示す図である。
【符号の説明】
1 圧縮機
2 四方弁
3 室外熱交換器
10 室外ユニット
20 蓄熱ユニット
30 室内ユニット
31 室内熱交換器
21 室内側膨張弁
40 ブリッジ回路
41〜44 第1〜第4逆止弁
45 メイン管路
46 受液器
47 メイン膨張弁
48 均圧管(バイパス管路)
49 均圧弁
50 蓄熱槽
51 蓄熱コイル
54 二方弁
55 蓄熱弁
56 解氷弁
60 ガス管
61 液管
71 サブクール弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that enables, for example, cooling operation, ice heat storage operation, ice heat storage cooling operation, heating operation, and heat storage operation.
[0002]
[Prior art]
Generally, a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, a heat storage coil, an indoor expansion valve and an indoor heat exchanger are connected by a refrigerant pipe, and cooling operation and ice heat storage operation are performed by driving the compressor. In addition, an air conditioner that enables cooling operation using ice heat storage, heating operation, and the like is known (see, for example, Patent Document 1).
[0003]
In this type, for example, ice storage operation is performed in the middle of the night when the electricity rate is low, and this heat storage energy is used to perform cooling operation using ice storage in the daytime to improve daytime cooling efficiency. By the way, in the conventional configuration, when performing the cooling operation, control is performed to reduce the valve opening degree of the indoor expansion valve while the outdoor expansion valve is opened, and on the contrary, when performing the heating operation, In a state where the inner expansion valve is opened, control for reducing the valve opening degree of the outdoor expansion valve is executed. When performing the ice heat storage operation, the indoor expansion valve is closed, the outdoor expansion valve is opened, and the throttle control of the refrigerant is performed by controlling the opening degree of the heat storage expansion valve. When performing an ice heat storage cooling operation using ice generated by the ice heat storage operation, the refrigerant expansion control is mainly performed by the indoor expansion valve, and the refrigerant flow rate is adjusted by the other expansion valves. Hot water is used as part of the heat source during the defrosting operation. During the heat storage operation that generates this hot water in the heat storage tank, the indoor expansion valve is closed, the heat storage expansion valve is opened, and the outdoor expansion valve is opened. The throttle control of the refrigerant is performed by the degree control. The relationship of the expansion valve opening / closing control is as shown in FIG. 15. However, in any control, excessive liquid refrigerant stays in the liquid pipe and is stored. A liquid receiver is connected to the liquid pipe between the expansion valves.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-372325
[Problems to be solved by the invention]
However, in the conventional configuration, as shown in FIG. 15, the valve openings of various expansion valves are individually controlled during each operation, and in this case, two expansions of the indoor expansion valve and the outdoor expansion valve are performed. A valve is absolutely necessary. If it becomes so, while manufacturing cost will increase, there exist problems, such as piping connection for an expansion valve connection, and the control that become troublesome.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, reduce the number of so-called expansion valves, simplify the control, and provide an air conditioner having a simple configuration.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, a compressor, a four-way valve, an outdoor heat exchanger, a heat storage coil disposed in a submerged state in a heat storage tank, an indoor expansion valve, and an indoor heat exchanger are connected by refrigerant piping, and the compressor The outdoor heat exchanger and the indoor heat exchanger in the air conditioner that enabled cooling operation, ice heat storage operation for generating ice in the heat storage tank, and ice storage heat-use cooling operation using the generated ice A bridge circuit having a main line for communicating at least four check valves and a set of two check valves among the check valves, and connected to the main line of the bridge circuit The liquid receiver and the main expansion valve are connected in series, and the liquid receiver and the main expansion valve are connected to the main pipe line during any of the cooling operation, the ice heat storage operation, and the ice heat storage cooling operation. as the refrigerant flows in the order of, the heat storage carp One end of, and connected to the main conduit between the receiver and the main expansion valve via the Kaikoriben, the other end of the thermal storage coil, connected between the bridge circuit and the indoor expansion valve via the heat storage valve It is characterized by that.
[0008]
The invention according to claim 2 is the one according to claim 1, wherein the compressor, the four-way valve, the outdoor heat exchanger are accommodated in the outdoor unit, the heat storage coil, the bridge circuit, and the indoor expansion valve are accommodated in the heat storage unit, The indoor heat exchanger is housed in an indoor unit, and each unit is connected by a refrigerant pipe.
[0009]
According to a third aspect of the present invention, in the first or second aspect of the invention, a pressure equalizing pipe is led out from an upper part of the liquid receiver of the bridge circuit, and the pressure equalizing pipe is connected downstream of the main expansion valve. Features.
[0011]
The invention of claim 4, wherein, in one of any one of claims 1 to 3, the heating operation by the air heat source, Yutaka蓄operation for producing hot water in the thermal storage tank by switching the four-way valve, utilizing this warm water The defrosting operation is made possible.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0013]
In FIG. 1, reference numeral 100 denotes an air conditioner according to the present embodiment, and the air conditioner 100 includes three units, an outdoor unit 10, a heat storage unit 20, and an indoor unit 30. The outdoor unit 10 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, and an accumulator 4. The heat storage unit 20 includes a bridge circuit 40 connected to the outdoor unit 10. The bridge circuit 40 includes a first check valve 41, a second check valve 42, a third check valve 43, a fourth check valve 44, and a combination of two check valves among these check valves ( The main valve 45 includes a check valve 41 and 43, and a check valve 42 and 44). A liquid receiver 46 and a main expansion valve 47 are connected to the main pipe 45 in series. A bypass pipe (pressure equalizing pipe) 48 is led out from the upper part of the liquid receiver 46, and a pressure equalizing valve 49 is connected to the bypass pipe 48, and the pressure equalizing valve 49 is a main pipe downstream of the main expansion valve 47. 45.
[0014]
The heat storage unit 20 includes a heat storage tank 50. In the heat storage tank 50, a heat storage coil 51 is disposed in a submerged state, and one end of the heat storage coil 51 is connected to the gas pipe 60 via a first conduit 52 and a two-way valve 54. The other end of the heat storage coil 51 is connected to the liquid pipe 61, that is, the liquid pipe 61 between the bridge circuit 40 and the indoor expansion valve 21 via the second pipe 53 and the heat storage valve 55.
[0015]
A third pipe line 63 is connected to the main pipe line 45 of the bridge circuit 40 between the liquid receiver 46 and the main expansion valve 47, and the third pipe line 63 is connected to the deicing line. The first pipe 52, that is, the first pipe 52 between the two-way valve 54 and the heat storage coil 51 is connected via a valve 56 and a check valve 57.
[0016]
The indoor expansion valve 21 is connected to the bridge circuit 40 via the liquid pipe 61, and the indoor heat exchanger 31 of the indoor unit 30 is connected to the indoor expansion valve 21, and this indoor heat exchanger A four-way valve 2 is connected to 31 via a gas pipe 60. The indoor expansion valve 21 is included in the heat storage unit 20.
[0017]
Next, the operation of this embodiment will be described.
[0018]
In FIG. 1, the flow of the refrigerant at the time of general cooling operation (cooling operation not using ice heat storage) is indicated by a thick line. The refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and condenses here. This condensed refrigerant enters the bridge circuit 40. In the bridge circuit 40, the main circuit 45 is entered via the first check valve 41, and the main expansion valve 47 is entered via the liquid receiver 46 connected to the main line 45.
[0019]
Then, after passing through the main expansion valve 47, it goes to the liquid pipe 61 through the third check valve 43, and flows from here through the indoor side expansion valve 21 to the indoor heat exchanger 31 of the indoor unit 30. In the indoor heat exchanger 31, the refrigerant evaporates, takes away latent heat of evaporation from the surroundings, and cools the room. Then, the refrigerant that has passed through the indoor heat exchanger 31 passes through the gas pipe 60 and is returned to the suction pipe of the compressor 1 through the four-way valve 2 and the accumulator 4.
[0020]
In this embodiment, the ice heat storage operation is performed using inexpensive electricity at night. In this ice heat storage operation, the refrigerant flows as shown by a thick line in FIG. That is, the refrigerant compressed by the compressor 1 flows into the bridge circuit 40 through the four-way valve 2 and the outdoor heat exchanger 3, and flows into the main conduit 45 through the first check valve 41 of the bridge circuit 40. To do. The refrigerant flowing into the main pipe 45 reaches the third check valve 43 through the liquid receiver 46 and the main expansion valve 47 and flows into the liquid pipe 61 from here. The refrigerant that has flowed into the liquid pipe 61 passes through the heat storage valve 55 and the second pipe 53 and flows into the heat storage coil 51, where it evaporates and makes ice in the heat storage tank 50.
[0021]
The refrigerant made into ice in the heat storage tank 50 flows into the gas pipe 60 through the first pipe 52 and the two-way valve 54, and is further returned to the compressor 1 through the four-way valve 2 and the accumulator 4.
[0022]
The cooling operation includes an ice storage utilization cooling operation using ice making shown in FIG. 2 in addition to the ice storage non-use cooling operation shown in FIG.
[0023]
In this use cooling operation, refrigerant control is performed as shown in FIG. That is, the refrigerant compressed by the compressor 1 flows into the bridge circuit 40 through the four-way valve 2 and the outdoor heat exchanger 3, and the first check valve 41, the main pipe 45, and the liquid receiver of the bridge circuit 40. After passing through 46, one flows into the third pipe 63 and the other flows through the main pipe 45 as it is to the main expansion valve 47.
[0024]
The refrigerant flowing into the third pipe 63 enters the heat storage coil 51 in the heat storage tank 50 through the ice-melting valve 56 and the check valve 57. The refrigerant is supercooled by ice in the heat storage coil 51, and then flows into the liquid pipe 61 through the heat storage valve 55 through the second pipe 53. In addition, the refrigerant that has directly flowed into the main expansion valve 47 through the liquid receiver 46 of the bridge circuit 40 flows into the liquid pipe 61 through the third check valve 43.
[0025]
In the liquid pipe 61, the refrigerant supercooled via the heat storage coil 51 and the refrigerant passed through the main expansion valve 47 merge, and the merged refrigerant passes through the indoor expansion valve 21 and heats the indoor unit 30. It flows into the exchanger 31. In the indoor heat exchanger 31, the refrigerant evaporates, thereby cooling the room. The refrigerant passing through the indoor heat exchanger 31 passes through the gas pipe 60, passes through the four-way valve 2 and the accumulator 4, and is returned to the suction pipe of the compressor 1.
[0026]
In this case, in this embodiment, the cooling efficiency can be improved by the amount that the refrigerant is supercooled in the heat storage tank 50.
[0027]
In the above configuration, heating operation is possible. In this heating operation, the flow of the refrigerant is controlled as shown in FIG.
[0028]
That is, the refrigerant discharged to the compressor 1 flows into the gas pipe 60 through the four-way valve 2, flows into the indoor heat exchanger 31 of the indoor unit 30 through the gas pipe 60, and in the indoor heat exchanger 31. Condensation causes the room to be heated. The refrigerant that has passed through the indoor heat exchanger 31 passes through the indoor expansion valve 21, flows into the liquid pipe 61, and further flows into the bridge circuit 40. When entering the bridge circuit 40, the refrigerant flows into the main conduit 45 through the second check valve 42, reaches the fourth check valve 44 through the liquid receiver 46 and the main expansion valve 47, and the fourth check valve 44. It passes through the check valve 44 and flows into the outdoor heat exchanger 3 of the outdoor unit 10. In the outdoor heat exchanger 3, the refrigerant evaporates, and the gasified refrigerant is returned to the compressor 1 through the four-way valve 2 and the accumulator 4.
[0029]
When this heating operation is performed under conditions of extremely low outside air temperature such as during the severe winter season, the fins of the outdoor heat exchanger 3 are frosted. In order to remove the frost formation of the outdoor heat exchanger 3, a defrosting operation is performed.
[0030]
FIG. 5 shows the air defrosting operation. In this defrosting operation, the heating operation is temporarily stopped, the four-way valve 2 is switched to the cooling position, and the compressor 1 is driven. Then, as shown in FIG. 5, the refrigerant compressed by the compressor 1 directly flows into the outdoor heat exchanger 3 through the four-way valve 2, and the outdoor heat exchanger 3 is removed by the hot gas directly flowing into the outdoor heat exchanger 3. Frosted. The refrigerant that has passed through the outdoor heat exchanger 3 is returned to the compressor 1 through a flow similar to that in the cooling operation shown in FIG.
[0031]
FIG. 6 shows a heat storage operation for generating hot water in the heat storage tank. In this heat storage operation, the temperature of the water in the heat storage tank 50 is raised. In this heat storage operation, the refrigerant compressed by the compressor 1 passes through the four-way valve 2 and flows into the gas pipe 60, and from the gas pipe 60 through the two-way valve 54 and the first pipe 52, the heat storage coil 51. Flow into. The refrigerant condenses in the heat storage coil 51 and raises the water temperature in the heat storage tank 50. The refrigerant that has passed through the heat storage coil 51 flows into the bridge circuit 40 through the second pipe 53 and the heat storage valve 55, and the refrigerant that has flowed into the bridge circuit 40 passes through the second check valve 42 to the main pipe 45. Into the fourth check valve 44 through the liquid receiver 46 and the main expansion valve 47.
[0032]
Then, the refrigerant reaches the outdoor heat exchanger 3 of the outdoor unit 10 through the fourth check valve 44, and the evaporated and gasified refrigerant is returned to the compressor 1 through the four-way valve 2 and the accumulator 4.
[0033]
The energy stored in the heat storage tank 50 by this heat storage operation is exclusively used for the hot water defrosting operation as shown in FIG.
[0034]
That is, the refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, condenses in the outdoor heat exchanger 3, and removes frost attached to the fins of the outdoor heat exchanger 3. Remove. The refrigerant that has passed through the outdoor heat exchanger 3 enters the bridge circuit 40, passes through the first check valve 41, the main pipe 45, the liquid receiver 46, and the main expansion valve 47 of the bridge circuit 40, and then enters the third check valve 43. From here, it passes through the heat storage valve 55 and the second pipe 53 and flows into the heat storage coil 51.
[0035]
In the heat storage coil 51, the refrigerant takes heat from the heat storage energy in the heat storage tank 50, so-called refrigerant is heated, and reaches the two-way valve 54 via the first pipe 52. Then, the gas pipe 60 enters from the two-way valve 54 and is returned to the compressor 1 through the four-way valve 2 and the accumulator 4.
[0036]
In this defrosting operation using hot water, since the refrigerant is heated in the heat storage tank 50 and returned to the compressor 1, the efficiency of the defrosting operation is improved, and the defrosting operation is compared with the defrosting operation of FIG. It can be completed in a short time.
[0037]
In this embodiment, as shown in FIGS. 1 to 7, the refrigerant passing through the main pipe 45 of the bridge circuit 40 first enters the liquid receiver 46 and passes through the main expansion valve 47 in any operation mode. To. Therefore, the main expansion valve 47 is the only expansion valve whose valve opening should be controlled during cooling operation or heating operation. In addition, during the cooling operation using ice heat storage, auxiliary adjustment of the refrigerant flow rate is performed in the main expansion valve 47. In the air conditioner 100 having the heat storage tank 50, the refrigerant charging amount in the refrigeration cycle is large. Therefore, in any operation, excessive liquid refrigerant stays in the liquid pipe 61 by reducing the opening degree of the main expansion valve 47. This excess refrigerant is stored in a liquid receiver 46 located upstream of the main expansion valve 47.
[0038]
In the above configuration, when performing the cooling operation as in the conventional case, when the outdoor expansion valve is opened, the valve opening degree of the indoor expansion valve is controlled, and on the contrary, the heating operation is performed. In the state where the indoor expansion valve is opened, control for reducing the valve opening degree of the outdoor expansion valve, etc. becomes unnecessary. As a result, in the conventional configuration, at least two expansion valves are required. The main expansion valve 47 can be used, the number of expansion valves can be reduced, and the cost can be reduced. During cooling operation using ice heat storage, pressure reduction and flow rate adjustment are performed by two expansion valves.
[0039]
In the above configuration, the pressure equalizing pipe 48 is led out from the upper part of the liquid receiver 46 of the bridge circuit 40, and the pressure equalizing pipe 48 is connected downstream of the main expansion valve 47. In general, when the operation of the air conditioner 100 is stopped, a low-pressure gas refrigerant region and a high-pressure liquid refrigerant region are formed before and after the main expansion valve 47 as a boundary. Conventionally, the expansion valve is opened to equalize the pressure in each region. When this is done, a large amount of liquid refrigerant flows into the low-pressure gas refrigerant region when the compressor 1 is restarted, and the liquid back to the compressor 1 is reduced. Wake up. Conventionally, the accumulator 4 has a large capacity (for example, 7.5 liters).
[0040]
In order to eliminate the liquid back to the compressor 1, in the above configuration, when the operation of the air conditioner 100 is stopped, the main expansion valve 47 is closed and the pressure equalizing valve 49 of the pressure equalizing pipe 48 is opened. Thereby, the pipes before and after the main expansion valve 47 communicate with each other through the pressure equalizing pipe 48, and the pressure before and after the main expansion valve 47 is equalized.
[0041]
In this case, since the gas refrigerant stays in the upper part of the liquid receiver 46, even if the pressure equalizing valve 49 of the pressure equalizing pipe 48 is opened, it is the gas refrigerant that moves through the pressure equalizing pipe 48, and the liquid refrigerant moves. There is no. In this case, the capacity of the accumulator 4 can be small (for example, 2.5 liters), and the capacity of the accumulator 4 is the same as that of a so-called general-purpose outdoor unit.
[0042]
In the above configuration, the main expansion valve 47 is incorporated in the bridge circuit 40, and the bridge circuit 40 is accommodated in the heat storage unit 20, and since the indoor expansion valve 21 is accommodated in the heat storage unit 20, the outdoor unit 10 and the indoor unit 30 does not need to accommodate an expansion valve. Further, as described above, the capacity of the accumulator 4 in the outdoor unit 10 is a small capacity (for example, 2.5 liters) like the general-purpose unit. Therefore, a conventional general-purpose outdoor unit that does not incorporate an expansion valve can be used in combination with the heat storage unit 20 of the air conditioner 100 as the outdoor unit 10 of the air conditioner 100.
[0043]
8-14 show another embodiment. 8 to 14 are refrigerant circuit diagrams corresponding to FIGS. 1 to 7, respectively. 8 is different from the embodiment shown in FIG. 1 in the piping system around the heat storage tank 50.
[0044]
One end of the heat storage coil 51 submerged in the heat storage tank 50 is connected to the gas pipe 60 via the first pipe line 52 and the two-way valve 54, and also the first pipe line 52 and the subcool valve 71. The liquid pipe 61 is connected via a check valve 72. The other end of the heat storage coil 51 is connected to the liquid pipe 61, that is, the liquid pipe 61 between the bridge circuit 40 and the indoor expansion valve 21 via the second pipe 53 and the heat storage valve 55. A third pipe line 63 is connected to the main pipe line 45 of the bridge circuit 40 between the liquid receiver 46 and the main expansion valve 47, and the third pipe line 63 is connected to the deicing line. The other end of the above-described heat storage coil 51 is connected via a valve 56 and a check valve 57. Other configurations are substantially the same as those shown in FIG.
[0045]
Next, the operation of this embodiment will be described.
[0046]
In FIG. 8, the flow of the refrigerant at the time of general cooling operation (cooling operation not using ice heat storage) is indicated by a thick line. The refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and condenses here. This condensed refrigerant enters the bridge circuit 40. In the bridge circuit 40, the main circuit 45 is entered via the first check valve 41, and the main expansion valve 47 is entered via the liquid receiver 46 connected to the main line 45.
[0047]
Then, after passing through the main expansion valve 47, it goes to the liquid pipe 61 through the third check valve 43, and flows from here through the indoor side expansion valve 21 to the indoor heat exchanger 31 of the indoor unit 30. In the indoor heat exchanger 31, the refrigerant evaporates, takes away latent heat of evaporation from the surroundings, and cools the room. Then, the refrigerant that has passed through the indoor heat exchanger 31 passes through the gas pipe 60 and is returned to the suction pipe of the compressor 1 through the four-way valve 2 and the accumulator 4.
[0048]
In this embodiment, the ice heat storage operation is performed using inexpensive electricity at night. In this ice heat storage operation, the refrigerant flows as shown by the thick line in FIG. That is, the refrigerant compressed by the compressor 1 flows into the bridge circuit 40 through the four-way valve 2 and the outdoor heat exchanger 3, and flows into the main conduit 45 through the first check valve 41 of the bridge circuit 40. To do. The refrigerant flowing into the main pipe 45 reaches the third check valve 43 through the liquid receiver 46 and the main expansion valve 47 and flows into the liquid pipe 61 from here.
[0049]
The refrigerant that has flowed into the liquid pipe 61 passes through the heat storage valve 55 and the second pipe 53 and flows into the heat storage coil 51, where it evaporates and makes ice in the heat storage tank 50. In this case, the subcool valve 71 is fully closed. The refrigerant flow in the heat storage coil 51 during the ice heat storage operation is in the direction of the arrow X.
[0050]
The refrigerant made into ice in the heat storage tank 50 flows into the gas pipe 60 through the first pipe 52 and the two-way valve 54, and is further returned to the compressor 1 through the four-way valve 2 and the accumulator 4.
[0051]
The cooling operation includes an ice storage-use cooling operation using ice making as shown in FIG. 9 in addition to the ice storage non-use cooling operation shown in FIG.
[0052]
In this cooling use operation, refrigerant control is performed as shown in FIG. That is, the refrigerant compressed by the compressor 1 flows into the bridge circuit 40 through the four-way valve 2 and the outdoor heat exchanger 3, and the first check valve 41, the main pipe 45, and the liquid receiver of the bridge circuit 40. After passing through 46, one flows into the third pipe 63 and the other flows through the main pipe 45 as it is to the main expansion valve 47.
[0053]
The refrigerant flowing into the third pipe 63 enters the heat storage coil 51 in the heat storage tank 50 through the ice-melting valve 56 and the check valve 57. The flow of the refrigerant in the heat storage coil 51 during the cooling operation using ice heat storage is in the direction of arrow X.
[0054]
This refrigerant is supercooled by ice in the heat storage coil 51, and then flows into the liquid pipe 61 through the first pipe 52, the subcool valve 71, and the check valve 72. In addition, the refrigerant that has directly flowed into the main expansion valve 47 through the liquid receiver 46 of the bridge circuit 40 flows into the liquid pipe 61 through the third check valve 43.
[0055]
In the liquid pipe 61, the refrigerant supercooled via the heat storage coil 51 and the refrigerant passed through the main expansion valve 47 merge, and the merged refrigerant passes through the indoor expansion valve 21 and heats the indoor unit 30. It flows into the exchanger 31. In the indoor heat exchanger 31, the refrigerant evaporates, thereby cooling the room. The refrigerant passing through the indoor heat exchanger 31 passes through the gas pipe 60, passes through the four-way valve 2 and the accumulator 4, and is returned to the suction pipe of the compressor 1. During the cooling operation using ice heat storage, the indoor expansion valve 21 causes the refrigerant to expand, and the main expansion valve 47 adjusts the refrigerant flow.
[0056]
In this case, in this embodiment, the cooling efficiency can be improved by the amount that the refrigerant is supercooled in the heat storage tank 50.
[0057]
In the above configuration, heating operation is possible. In this heating operation, the flow of the refrigerant is controlled as shown in FIG.
[0058]
That is, the refrigerant discharged to the compressor 1 flows into the gas pipe 60 through the four-way valve 2, flows into the indoor heat exchanger 31 of the indoor unit 30 through the gas pipe 60, and in the indoor heat exchanger 31. Condensation causes the room to be heated. The refrigerant that has passed through the indoor heat exchanger 31 passes through the indoor expansion valve 21, flows into the liquid pipe 61, and further flows into the bridge circuit 40. When entering the bridge circuit 40, the refrigerant flows into the main conduit 45 through the second check valve 42, reaches the fourth check valve 44 through the liquid receiver 46 and the main expansion valve 47, and the fourth check valve 44. It passes through the check valve 44 and flows into the outdoor heat exchanger 3 of the outdoor unit 10. In the outdoor heat exchanger 3, the refrigerant evaporates, and the gasified refrigerant is returned to the compressor 1 through the four-way valve 2, the accumulator 4, and the sub-accumulator 5.
[0059]
When this heating operation is performed under conditions of extremely low outside air temperature such as during the severe winter season, the fins of the outdoor heat exchanger 3 are frosted. In order to remove the frost formation of the outdoor heat exchanger 3, a defrosting operation is performed.
[0060]
FIG. 12 shows the air defrosting operation. In this defrosting operation, the heating operation is temporarily stopped, the four-way valve 2 is switched to the cooling position, and the compressor 1 is driven. Then, as shown in FIG. 12, the refrigerant compressed by the compressor 1 directly flows into the outdoor heat exchanger 3 through the four-way valve 2, and the outdoor heat exchanger 3 is removed by the hot gas directly flowing into the outdoor heat exchanger 3. Frosted. The refrigerant having passed through the outdoor heat exchanger 3 is returned to the compressor 1 through a flow similar to that in the cooling operation shown in FIG.
[0061]
In this case, the operation of the blower fan of the indoor heat exchanger 31 is stopped and the refrigerant is not evaporated. The original requirement is heating operation, so that cold air is not blown into the room during the defrosting operation.
[0062]
FIG. 13 shows a heat storage operation. In this heat storage operation, the temperature of the water in the heat storage tank 50 is raised. In this heat storage operation, the refrigerant compressed by the compressor 1 passes through the four-way valve 2 and flows into the gas pipe 60, and from the gas pipe 60 through the two-way valve 54 and the first pipe 52, the heat storage coil 51. Flow into. The refrigerant condenses in the heat storage coil 51 and raises the water temperature in the heat storage tank 50. The refrigerant that has passed through the heat storage coil 51 flows into the bridge circuit 40 through the second pipe 53 and the heat storage valve 55, and the refrigerant that has flowed into the bridge circuit 40 passes through the second check valve 42 to the main pipe 45. Into the fourth check valve 44 through the liquid receiver 46 and the main expansion valve 47.
[0063]
Then, the refrigerant reaches the outdoor heat exchanger 3 of the outdoor unit 10 through the fourth check valve 44, and the evaporated and gasified refrigerant is returned to the compressor 1 through the four-way valve 2 and the accumulator 4.
[0064]
The energy stored in the heat storage tank 50 by this heat storage operation is exclusively used for the hot water defrosting operation as shown in FIG.
[0065]
That is, the refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, condenses in the outdoor heat exchanger 3, and removes frost attached to the fins of the outdoor heat exchanger 3. Remove. The refrigerant that has passed through the outdoor heat exchanger 3 enters the bridge circuit 40, passes through the first check valve 41, the main pipe 45, the liquid receiver 46, and the main expansion valve 47 of the bridge circuit 40, and then enters the third check valve 43. From here, it passes through the heat storage valve 55 and the second pipe 53 and flows into the heat storage coil 51.
[0066]
In the heat storage coil 51, the refrigerant takes heat from the heat storage energy in the heat storage tank 50, so-called refrigerant is heated, and reaches the two-way valve 54 via the first pipe 52. Then, the gas pipe 60 enters from the two-way valve 54 and is returned to the compressor 1 through the four-way valve 2 and the accumulator 4.
[0067]
In this defrosting operation using hot water, since the refrigerant is heated in the heat storage tank 50 and returned to the compressor 1, the efficiency of the defrosting operation is improved, and the defrosting operation is compared with the defrosting operation of FIG. It can be completed in a short time.
[0068]
In this embodiment, as shown in FIGS. 8 to 14, the refrigerant passing through the main conduit 45 of the bridge circuit 40 first enters the liquid receiver 46 and passes through the main expansion valve 47 in any operation mode. To. Therefore, the expansion valve whose valve opening should be controlled during the cooling operation or the heating operation is the one main expansion valve 47. Even in any operation, excessive liquid refrigerant stays in the liquid pipe 61 by reducing the valve opening of the main expansion valve 47. This excess refrigerant is stored in a liquid receiver 46 located upstream of the main expansion valve 47.
[0069]
In the above configuration, when performing the cooling operation as in the conventional case, when the outdoor expansion valve is opened, the valve opening degree of the indoor expansion valve is controlled, and on the contrary, the heating operation is performed. In the state where the indoor expansion valve is opened, control for reducing the valve opening degree of the outdoor expansion valve, etc. becomes unnecessary. As a result, in the conventional configuration, at least two expansion valves are required. The main expansion valve 47 can be used, the number of expansion valves can be reduced, and the cost can be reduced.
[0070]
In the above configuration, the pressure equalizing pipe 48 is led out from the upper part of the liquid receiver 46 of the bridge circuit 40, and the pressure equalizing pipe 48 is connected downstream of the main expansion valve 47. In general, when the operation of the air conditioner 100 is stopped, a low-pressure gas refrigerant region and a high-pressure liquid refrigerant region are formed before and after the main expansion valve 47 as a boundary. Conventionally, the expansion valve is opened to equalize the pressure in each region. When this is done, a large amount of liquid refrigerant flows into the low-pressure gas refrigerant region when the compressor 1 is restarted, and the liquid back to the compressor 1 is reduced. Wake up. Conventionally, the accumulator 4 has a large capacity (for example, 7.5 liters).
[0071]
In order to eliminate the liquid back to the compressor 1, in the above configuration, when the operation of the air conditioner 100 is stopped, the main expansion valve 47 is closed and the pressure equalizing valve 49 of the pressure equalizing pipe 48 is opened. Thereby, the pipes before and after the main expansion valve 47 communicate with each other through the pressure equalizing pipe 48, and the pressure before and after the main expansion valve 47 is equalized.
[0072]
In this case, since the gas refrigerant stays in the upper part of the liquid receiver 46, even if the pressure equalizing valve 49 of the pressure equalizing pipe 48 is opened, it is the gas refrigerant that moves through the pressure equalizing pipe 48, and the liquid refrigerant moves. There is no. In this case, the capacity of the accumulator 4 can be small (for example, 2.5 liters), and the capacity of the accumulator 4 is the same as that of a so-called general-purpose outdoor unit.
[0073]
In the above configuration, the main expansion valve 47 is incorporated in the bridge circuit 40, and the bridge circuit 40 is accommodated in the heat storage unit 20, and since the indoor expansion valve 21 is accommodated in the heat storage unit 20, the outdoor unit 10 and the indoor unit 30 does not need to accommodate an expansion valve. Further, as described above, the capacity of the accumulator 4 in the outdoor unit 10 is a small capacity (for example, 2.5 liters) like the general-purpose unit. Therefore, a conventional general-purpose outdoor unit that does not incorporate an expansion valve can be used in combination with the heat storage unit 20 of the air conditioner 100 as the outdoor unit 10 of the air conditioner 100.
[0074]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this. For example, although the air conditioning apparatus 100 is configured with three units of the outdoor unit 10, the heat storage unit 20, and the indoor unit 30, the present invention is not limited to this, and the outdoor unit 10 and the heat storage unit 20 are integrated. Is possible.
[0075]
【The invention's effect】
In the present invention, the number of expansion valves is reduced, the control thereof is simplified, and an air conditioner having a simple configuration is provided.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram during an ice storage non-use cooling operation showing an embodiment of the present invention.
FIG. 2 is a refrigerant circuit diagram at the time of ice heat storage operation showing an embodiment of the present invention.
FIG. 3 is a refrigerant circuit diagram at the time of cooling operation using ice heat storage according to an embodiment of the present invention.
FIG. 4 is a refrigerant circuit diagram during heating operation showing an embodiment of the present invention.
FIG. 5 is a refrigerant circuit diagram during an air defrosting operation showing an embodiment of the present invention.
FIG. 6 is a refrigerant circuit diagram during a heat storage operation showing an embodiment of the present invention.
FIG. 7 is a refrigerant circuit diagram at the time of hot water defrosting operation showing an embodiment of the present invention.
FIG. 8 is a refrigerant circuit diagram at the time of cooling operation not using ice storage and showing another embodiment of the present invention.
FIG. 9 is a refrigerant circuit diagram during ice heat storage operation showing another embodiment of the present invention.
FIG. 10 is a refrigerant circuit diagram at the time of cooling operation using ice heat storage according to another embodiment of the present invention.
FIG. 11 is a refrigerant circuit diagram during heating operation showing another embodiment of the present invention.
FIG. 12 is a refrigerant circuit diagram during an air defrosting operation showing another embodiment of the present invention.
FIG. 13 is a refrigerant circuit diagram during a heat storage operation showing another embodiment of the present invention.
FIG. 14 is a refrigerant circuit diagram at the time of hot water defrosting operation showing another embodiment of the present invention.
FIG. 15 is a diagram showing an open / close state of each valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 10 Outdoor unit 20 Thermal storage unit 30 Indoor unit 31 Indoor heat exchanger 21 Indoor expansion valve 40 Bridge circuits 41-44 First to fourth check valves 45 Main pipe 46 Liquid unit 47 Main expansion valve 48 Pressure equalizing pipe (bypass line)
49 Pressure equalizing valve 50 Thermal storage tank 51 Thermal storage coil 54 Two-way valve 55 Thermal storage valve 56 Deicing valve 60 Gas pipe 61 Liquid pipe 71 Subcool valve

Claims (4)

圧縮機、四方弁、室外熱交換器、蓄熱槽に水没状態で配置される蓄熱コイル、室内側膨張弁並びに室内熱交換器を冷媒配管で接続し、前記圧縮機の駆動により、冷房運転、蓄熱槽に氷を生成させる氷蓄熱運転、及び生成した氷を利用した氷蓄熱利用冷房運転を可能にした空気調和装置において、前記室外熱交換器と前記室内熱交換器との間に、少なくとも4つの逆止弁、及びこれら逆止弁の内、2つの逆止弁の組みを連通させるメイン管路を有したブリッジ回路を接続し、このブリッジ回路のメイン管路に受液器とメイン膨張弁とを直列に接続し、冷房運転、氷蓄熱運転、及び氷蓄熱利用冷房運転のいずれの運転中にも、前記メイン管路に接続された受液器、メイン膨張弁の順に冷媒が流れるようにし
前記蓄熱コイルの一端を、解氷弁を介して受液器とメイン膨張弁間のメイン管路に接続し、前記蓄熱コイルの他端を、蓄熱弁を介してブリッジ回路と室内側膨張弁間に接続したことを特徴とする空気調和装置。
A compressor, a four-way valve, an outdoor heat exchanger, a heat storage coil placed in a submerged state in a heat storage tank, an indoor expansion valve, and an indoor heat exchanger are connected by a refrigerant pipe, and cooling operation and heat storage are performed by driving the compressor. In an air conditioner that enables ice heat storage operation for generating ice in a tank and ice heat storage cooling operation using the generated ice, at least four between the outdoor heat exchanger and the indoor heat exchanger A check valve, and a bridge circuit having a main line for communicating a set of two check valves among these check valves are connected, and a receiver and a main expansion valve are connected to the main line of the bridge circuit. Are connected in series so that the refrigerant flows in the order of the liquid receiver connected to the main pipe line and the main expansion valve during any of the cooling operation, the ice heat storage operation, and the ice heat storage cooling operation .
One end of the heat storage coil is connected to a main conduit between the receiver and the main expansion valve via an ice-breaking valve, and the other end of the heat storage coil is connected between the bridge circuit and the indoor expansion valve via the heat storage valve. An air conditioner connected to the air conditioner.
圧縮機、四方弁、室外熱交換器を室外ユニットに収容し、蓄熱コイル、ブリッジ回路、室内側膨張弁を蓄熱ユニットに収容し、室内熱交換器を室内ユニットに収容し、各ユニット間を冷媒配管で接続したことを特徴とする請求項1記載の空気調和装置。  Compressor, four-way valve, outdoor heat exchanger are housed in outdoor unit, heat storage coil, bridge circuit, indoor expansion valve are housed in heat storage unit, indoor heat exchanger is housed in indoor unit, refrigerant between each unit The air conditioner according to claim 1, wherein the air conditioner is connected by piping. 前記ブリッジ回路の前記受液器の上部から均圧管を導出し、この均圧管を前記メイン膨張弁の下流に接続したことを特徴とする請求項1又は2記載の空気調和装置。  The air conditioner according to claim 1 or 2, wherein a pressure equalizing pipe is led out from an upper part of the liquid receiver of the bridge circuit, and the pressure equalizing pipe is connected downstream of the main expansion valve. 空気熱源による暖房運転、四方弁の切り換えによって蓄熱槽に温水を生成させる温蓄運転、この温水を利用した除霜運転を可能にしたことを特徴とする請求項1乃至のいずれか一項記載の空気調和装置。Heating operation by the air heat source, Yutaka蓄operation for producing hot water in the thermal storage tank by switching the four-way valve, according to any one of claims 1 to 3, characterized in that to allow the defrosting operation using the hot water Air conditioner.
JP2003165980A 2003-06-11 2003-06-11 Air conditioner Expired - Fee Related JP4280561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165980A JP4280561B2 (en) 2003-06-11 2003-06-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165980A JP4280561B2 (en) 2003-06-11 2003-06-11 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005003251A JP2005003251A (en) 2005-01-06
JP4280561B2 true JP4280561B2 (en) 2009-06-17

Family

ID=34092267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165980A Expired - Fee Related JP4280561B2 (en) 2003-06-11 2003-06-11 Air conditioner

Country Status (1)

Country Link
JP (1) JP4280561B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445265B2 (en) 2004-10-06 2013-05-21 Universal Bio Research Co., Ltd. Reaction vessel and reaction controller
EP2620778A3 (en) 2004-12-10 2014-08-20 Universal Bio Research Co., Ltd. Biological material fixed carrier enclosing tip, biological material fixed carrier treatment apparatus, and treatment method thereof
WO2015018054A2 (en) * 2013-08-09 2015-02-12 Trane Air Conditioning Systems (China) Co., Ltd. Transitional refrigerant migration control in refrigeration systems
WO2016056078A1 (en) * 2014-10-08 2016-04-14 三菱電機株式会社 Air conditioner
CN110160183A (en) * 2019-05-31 2019-08-23 天普新能源科技有限公司 Gas-supplying enthalpy-increasing air source heat pump

Also Published As

Publication number Publication date
JP2005003251A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US20210016625A1 (en) Thermal management system for vehicle
JP2008224088A (en) Hot water system
CN107782020A (en) A kind of air conditioning for automobiles heat pump
CN209776090U (en) Air conditioning system of electric automobile
US8151586B2 (en) Hot water supply and air conditioning system using CO2 heat pump
JP2003075018A (en) Gas heat pump type air conditioning device
CN111251813B (en) Thermal management system of vehicle and vehicle
CN102059930B (en) Heat-recovery vehicle air conditioner
CN111251814B (en) Thermal management system of vehicle and vehicle
JP4280561B2 (en) Air conditioner
KR20080047242A (en) Air conditioning apparatus
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP4312513B2 (en) Air conditioner
KR20100035314A (en) Heat pump system
JP3851201B2 (en) Air conditioner
JP2006234321A (en) Outdoor unit and air conditioner
JP2001330341A (en) Air conditioner
CN111251816B (en) Vehicle, vehicle-mounted air conditioning system and control method thereof
JPH09119754A (en) Air conditioner
JP3304866B2 (en) Thermal storage type air conditioner
JP3370501B2 (en) Cooling system
JP5572579B2 (en) Thermal storage air conditioner
JP2003065584A (en) Air-conditioning apparatus and its control method
JP4276475B2 (en) Air conditioner and control method of air conditioner
CN111251803B (en) Thermal management system of vehicle and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4280561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees