JP4279110B2 - Production of lignin polymer - Google Patents

Production of lignin polymer Download PDF

Info

Publication number
JP4279110B2
JP4279110B2 JP2003352215A JP2003352215A JP4279110B2 JP 4279110 B2 JP4279110 B2 JP 4279110B2 JP 2003352215 A JP2003352215 A JP 2003352215A JP 2003352215 A JP2003352215 A JP 2003352215A JP 4279110 B2 JP4279110 B2 JP 4279110B2
Authority
JP
Japan
Prior art keywords
polymer
lignin
solvent
polar solvent
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003352215A
Other languages
Japanese (ja)
Other versions
JP2005113083A5 (en
JP2005113083A (en
Inventor
崇生 岸本
康光 浦木
信 生方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003352215A priority Critical patent/JP4279110B2/en
Publication of JP2005113083A publication Critical patent/JP2005113083A/en
Publication of JP2005113083A5 publication Critical patent/JP2005113083A5/ja
Application granted granted Critical
Publication of JP4279110B2 publication Critical patent/JP4279110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、リグニンのβ-O-4ポリエーテルの製法及び高分子量のグニンのβ-O-4ポリエーテルに関する。 This invention relates to beta-O-4 polyether lignin production method and high molecular weight of beta-O-4 polyether lignin.

リグニンは樹木の細胞壁の主成分の一つであり、その構造は三次元網目状であって、モノマー同士がβ-O-4、β-β、β-1、β-5、5−5等の様々な様式で結合しており、その割合や順番等も様々である。それらのうち最も多い結合様式がβ-O-4構造で50〜60%を占めており、リグニンの樹木内での生合成の後期にはこのβ-O-4構造が多いエンドワイズリグニンとよばれるものが生成する。モノマーを酸化剤やペルオキシダーゼ等の酵素により酸化重合したsynthetic ligninやartificial ligninは、脱水素重合物(Dehydrogenation polymer = DHP)とよばれるもので、天然のリグニンのように様々な結合で結ばれている。
β-O-4構造のみから成るα位がカルボニル型のリグニンのβ-O-4ポリエーテルはすでに報告されており(非特許文献1)、精製されたリグニンモノマーを無水条件のDMF等の非プロトン性溶媒中で炭酸カリウムの存在下で重合させる方法が知られている。しかし得られたポリマーはそのままでは通常の有機溶媒に難溶であり誘導体化も非常に困難で、その後の展開がなされていなかった。
一方、重合度の低い易溶性のリグニンのβ-O-4ポリエーテルのカルボニル基を還元する方法についても報告されている(非特許文献2)。しかし、この方法では不溶性又は難溶性のポリマーを還元することは不可能であり、この方法で高分子量のものを得るのは困難であった。
Lignin is one of the main components of the cell wall of the tree, its structure is a three-dimensional network, and monomers are β-O-4, β-β, β-1, β-5, 5-5, etc. Are combined in various ways, and their proportions and order are also various. Of these, β-O-4 structure accounts for 50 to 60% of the most binding mode, and in the later stage of biosynthesis of lignin in the tree, this β-O-4 structure is often called endwise lignin. What is produced. Synthetic lignin and artificial lignin, in which monomers are oxidatively polymerized with enzymes such as oxidants and peroxidases, are called dehydrogenation polymers (DHP), and are linked by various bonds like natural lignin. .
A β-O-4 polyether having a carbonyl-type lignin having only a β-O-4 structure has already been reported (Non-patent Document 1), and the purified lignin monomer is used in a non-hydrophilic condition such as DMF. A method of polymerizing in the presence of potassium carbonate in a protic solvent is known. However, the obtained polymer as it is is hardly soluble in ordinary organic solvents and derivatization is very difficult, and the subsequent development has not been made.
On the other hand, a method for reducing the carbonyl group of β-O-4 polyether of easily soluble lignin having a low degree of polymerization has also been reported (Non-patent Document 2). However, it is impossible to reduce an insoluble or hardly soluble polymer by this method, and it has been difficult to obtain a polymer having a high molecular weight by this method.

Cellulose Chem. Technol. 12, 713 (1978)Cellulose Chem. Technol. 12, 713 (1978) Acta Chemica Scandinavica 3, 1358-1374, 1949Acta Chemica Scandinavica 3, 1358-1374, 1949

本発明は、カルボニル基が還元された高分子量のリグニンのβ-O-4ポリエーテルを製造することのできる製法を提供する。
従来、合成したα位がカルボニル型のリグニンのβ-O-4ポリエーテルは不溶性・難溶性であり、その後、このポリマーを溶けない固体のまま内部まで反応させることは不可能であった。例えば、生成したリグニンのβ-O-4ポリエーテルはm-クレゾールで90℃、DMFやDMAcの中で120℃にまで加熱してようやく溶けるが、室温にまで冷却しようとすると沈殿してしまうため、その後の展開が全くなされてこなかった(非特許文献1)。
The present invention provides a process by which a β-O-4 polyether of high molecular weight lignin having a reduced carbonyl group can be produced.
Conventionally, a β-O-4 polyether synthesized with a carbonyl-type lignin having an α-position is insoluble and hardly soluble, and it was impossible to react the polymer to the inside as an insoluble solid. For example, the resulting lignin β-O-4 polyether dissolves when heated to 90 ° C in m-cresol and 120 ° C in DMF or DMAc, but precipitates when cooled to room temperature. No further development has been made (Non-Patent Document 1).

本発明においては、生成してくるポリマーを溶解する溶媒中で還元することにより、カルボニル基が還元された高分子量のリグニンのβ-O-4ポリエーテルを製造することができることを見出し、本発明を完成させるに至った。
即ち、本発明は、下記一般式

Figure 0004279110
(式中、R及びRは、それぞれ同じであっても異なってもよく、水素原子又はメトキシ基を表し、Xはハロゲン原子を表す。)で表されるモノマーをアルカリの存在下で無水条件の非プロトン性極性溶媒中で重合させる段階、及び生成したポリマーを極性溶媒であって生成するポリマーを溶解する溶媒中でカルボニル基の還元剤を用いて還元する段階から成るリグニンポリマーの製法である。 In the present invention, it has been found that a β-O-4 polyether of high molecular weight lignin having a reduced carbonyl group can be produced by reducing the produced polymer in a solvent that dissolves the polymer. It came to complete.
That is, the present invention has the following general formula:
Figure 0004279110
(Wherein R 1 and R 2 may be the same or different and each represents a hydrogen atom or a methoxy group, and X represents a halogen atom). A process for polymerizing in an aprotic polar solvent under conditions, and a method for producing a lignin polymer comprising a step of reducing a produced polymer with a reducing agent of a carbonyl group in a solvent that dissolves the produced polymer as a polar solvent. is there.

また、本発明は、下記一般式

Figure 0004279110
(式中、R及びRは、それぞれ同じであっても異なってもよく、水素原子又はメトキシ基を表し、nは正の整数を表す。)で表されるポリマーであって分子量が1000以上であるリグニンポリマーである。 The present invention also includes the following general formula:
Figure 0004279110
(Wherein R 1 and R 2 may be the same or different, each represents a hydrogen atom or a methoxy group, and n represents a positive integer), and has a molecular weight of 1000. That is the lignin polymer.

本発明の方法により得られたポリマーは、リグニンの主要な結合様式であるβ-O-4構造を持つ規則性ポリマーであり、高分子量のものは新規なポリマーである。
このポリマーは、木材やパルプ廃液から得られるリグニンが利用される分野において広く応用できると考えられる。例えば、樹脂、接着剤、炭素繊維などのほか生分解性プラスチックなどの分野で用いることができる。
リグニンの利用開発としては合成ポリマーとのブレンドポリマーに関するものがさかんにおこなわれており、本発明のポリマーも同じように使うことができる。また、様々な官能基を導入することにより、天然のリグニンにはない生体適合性などの新しい機能を付与することができると期待される。
The polymer obtained by the method of the present invention is a regular polymer having a β-O-4 structure, which is the main binding mode of lignin, and a polymer having a high molecular weight is a novel polymer.
This polymer is considered to be widely applicable in the field where lignin obtained from wood and pulp waste liquid is used. For example, it can be used in fields such as resins, adhesives, carbon fibers, and other biodegradable plastics.
As for the utilization development of lignin, a lot of things related to blend polymers with synthetic polymers have been carried out, and the polymers of the present invention can be used in the same manner. In addition, by introducing various functional groups, it is expected that new functions such as biocompatibility that are not found in natural lignin can be imparted.

本発明の方法は2段階から成る。以下順に説明する。
まず、モノマーとして下記一般式

Figure 0004279110
で表されるものを用いる。
この式中、R及びRは、それぞれ同じであっても異なってもよく、水素原子又はメトキシ基を表す。
Xはハロゲン原子、好ましくは臭素原子又は塩素原子、より好ましくは臭素原子を表す。 The method of the present invention consists of two stages. This will be described in order below.
First, the following general formula as a monomer
Figure 0004279110
Is used.
In this formula, R 1 and R 2 may be the same or different and each represents a hydrogen atom or a methoxy group.
X represents a halogen atom, preferably a bromine atom or a chlorine atom, more preferably a bromine atom.

このモノマーをアルカリの存在下で無水条件の非プロトン性極性溶媒中で重合させる。
無水条件とは水分が50ppm以下のものをいい、水分量は脱水を繰り返しできるだけ下げることが好ましい。
アルカリとしてはK2CO3やNa2CO3等が挙げられる。アルカリの量は通常モノマーに対して1.5当量(1.5eq)(150mol%)程度である。
溶媒は非プロトン性極性溶媒を用いる。この溶媒として、例えば、DMF(N,N-ジメチルホルムアミド)、DMAc(N,N-ジメチルアセトアミド)、HMPA(ヘキサメチルリン酸トリアミド)等が挙げられる。
モノマーの濃度は0.4〜1.0Mが好ましい。
触媒は用いなくともよいが、用いる場合にはヨウ化カリウム(KI)、クラウンエーテル(18-Crown-6)、テトラブチルアンモニウムヨージド(n-Bu4NI)等を用いればよく、その触媒量は通常モノマーに対して0.1当量(eq)(10mol%)程度である。
このポリマーの分子量が1000以上となるように、モノマーの純度や無水条件を適宜重合条件を選択することが好ましい。
This monomer is polymerized in an aprotic polar solvent under anhydrous conditions in the presence of alkali.
The anhydrous conditions refer to those having a water content of 50 ppm or less, and the water content is preferably lowered as much as possible after repeated dehydration.
Examples of the alkali include K 2 CO 3 and Na 2 CO 3 . The amount of alkali is usually about 1.5 equivalents (1.5 eq) (150 mol%) based on the monomers.
As the solvent, an aprotic polar solvent is used. Examples of the solvent include DMF (N, N-dimethylformamide), DMAc (N, N-dimethylacetamide), HMPA (hexamethyl phosphate triamide), and the like.
The monomer concentration is preferably 0.4 to 1.0M.
A catalyst need not be used, but when used, potassium iodide (KI), crown ether (18-Crown-6), tetrabutylammonium iodide (n-Bu 4 NI), etc. may be used, and the amount of the catalyst. Is usually about 0.1 equivalent (eq) (10 mol%) relative to the monomer.
It is preferable to appropriately select the polymerization conditions such as the purity of the monomer and anhydrous conditions so that the molecular weight of the polymer is 1000 or more.

次に、上記で得られたポリマーを還元する。
溶媒として、還元によって生成するポリマーを溶解する溶媒を選択する。この点が重要であり、従来のように、高分子量のポリマーを溶解しない溶媒中で還元を行うと、ポリマー内部まで還元することが出来なかったが、溶媒の選択により、還元によって表面部分に生成するポリマーが徐々に溶媒に溶けるため還元反応が完全に進行する。そのため、高分子量のポリマーをすべて還元することが可能になった。
このような溶媒として、例えば、ジメチルスルホキシド(DMSO)、1,4-ジオキサン、メチルセロソルブ(2-メトキシエタノール、CH3CH2CH2OH)、ジメチルアセトアミド(DMAc)、ピリジン、スルホラン、ジエチレングリコールモノメチルエーテル、ヘキサメチルリン酸トリアミド(HMPA、[(CH3)2N]3PO)、好ましくはDMSOを用いることができる。
Next, the polymer obtained above is reduced.
As the solvent, a solvent that dissolves the polymer produced by the reduction is selected. This point is important, and when the reduction was performed in a solvent that does not dissolve the high molecular weight polymer as in the past, it was not possible to reduce the interior of the polymer. Since the polymer to be dissolved gradually dissolves in the solvent, the reduction reaction proceeds completely. As a result, all high molecular weight polymers can be reduced.
Examples of such solvents include dimethyl sulfoxide (DMSO), 1,4-dioxane, methyl cellosolve (2-methoxyethanol, CH 3 CH 2 CH 2 OH), dimethylacetamide (DMAc), pyridine, sulfolane, diethylene glycol monomethyl ether Hexamethylphosphoric triamide (HMPA, [(CH 3 ) 2 N] 3 PO), preferably DMSO can be used.

還元剤としては、例えば、水素化ホウ素ナトリウム(NaBH4)、シアン化水素化ホウ素ナトリウム(NaBH3CN)、水素化ホウ素カリウム(KBH4)などの水素化ホウ素化合物や、水素化アルミニウムリチウム(LiAlH4)、水素化ジイソブチルアルミニウム(i-C4H9)2AlHなどの水素化アルミニウム化合物を用いることができる。これらの中で、水素化ホウ素ナトリウムと水素化アルミニウムリチウム、特に水素化ホウ素ナトリウムが好ましい。還元剤の量は通常モノマーに対して5当量(eq)(500mol%)程度である。
なお、還元剤として水素化ホウ素ナトリウムを用いる場合には溶媒としてジメチルスルホキシドを用いるのが好ましく、水素化アルミニウムリチウムを用いる場合には1,4-ジオキサンを用いるのが好ましい。
このようにして得られたポリマーはカルボニル基が還元された高分子量のリグニンのβ-O-4ポリエーテルであり、本発明の場合その分子量は1000以上、好ましくは1000〜30000、より好ましくは3000〜10000である。
Examples of the reducing agent include borohydride compounds such as sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), potassium borohydride (KBH 4 ), and lithium aluminum hydride (LiAlH 4 ). An aluminum hydride compound such as diisobutylaluminum hydride (iC 4 H 9 ) 2 AlH can be used. Of these, sodium borohydride and lithium aluminum hydride, particularly sodium borohydride are preferred. The amount of the reducing agent is usually about 5 equivalents (eq) (500 mol%) with respect to the monomer.
When sodium borohydride is used as the reducing agent, dimethyl sulfoxide is preferably used as the solvent. When lithium aluminum hydride is used, 1,4-dioxane is preferably used.
The polymer thus obtained is a β-O-4 polyether of high molecular weight lignin in which the carbonyl group is reduced. In the present invention, the molecular weight is 1000 or more, preferably 1000 to 30000, more preferably 3000. ~ 10000.

このカルボニル基が還元された高分子量のリグニンのβ-O-4ポリエーテルの末端及び/又はα位の水酸基をエステル化又はエーテル化等してもよい。このような置換基導入は適宜公知の方法を適用して行うことができる。このような様々な官能基を導入したリグニンポリマーの誘導体は、天然のリグニンにはない新しい機能を有することができる。

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
The terminal of the β-O-4 polyether of high molecular weight lignin with the carbonyl group reduced and / or the α-position hydroxyl group may be esterified or etherified. Such introduction of substituents can be appropriately performed by applying known methods. Such derivatives of lignin polymers into which various functional groups are introduced can have new functions not found in natural lignin.

The following examples illustrate the invention but are not intended to limit the invention.

本実施例の反応を図1に示す。
まずモノマー1,2,3を合成した。この方法は既報(非特許文献1)に準じて合成できる。
アセトバニロン(26g)を無水エーテル400ml(モレキュラーシーブス4Aを用いて脱水したもの)及び無水1,4−ジオキサン300ml(金属Naを用いて蒸留したもの)の混合溶媒に溶解し、アイスバスを用いて0℃に冷却し、窒素気流下で臭素(25g)をゆっくりと2時間かけて滴下した。滴下終了後さらに1時間おき、エーテル500mlを加え氷冷水200mlで3回分液漏斗を用いて洗浄し、有機層を飽和食塩水でさらに洗浄した。有機層をとり、無水硫酸ナトリウムで脱水し、エバポレーターで30℃以下で濃縮した。冷却すると結晶化するが、活性炭で脱色後、さらにエーテルとヘキサンの混合溶媒から再結晶化すると収率76%でモノマー1を得た。重合にはさらにもう一度同じ溶媒で再結晶化を行ったものを用いた。
得られた結晶の融点は82.3〜82.8℃であり、文献(非特許文献1)の81℃より融点が高く、純度が高いことがわかる。
同様の方法によりモノマー2をアセトシリンゴンを出発物質として合成した。得られた結晶の融点は127.0〜127.5℃であった。また、同様にアセトフェノールからモノマー3を得た。得られた結晶の融点は130.3〜130.9℃であり、文献(非特許文献1)の129〜130℃のものより高く、純度が高いといえる。
The reaction of this example is shown in FIG.
First, monomers 1, 2, and 3 were synthesized. This method can be synthesized according to a report (Non-Patent Document 1).
Acetobanilone (26 g) was dissolved in a mixed solvent of 400 ml of anhydrous ether (dehydrated using molecular sieves 4A) and 300 ml of anhydrous 1,4-dioxane (distilled using metal Na), and 0 times using an ice bath. After cooling to 0 ° C., bromine (25 g) was slowly added dropwise over 2 hours under a nitrogen stream. After the completion of the addition, another 1 hour was added, and 500 ml of ether was added and washed with 200 ml of ice-cold water three times using a separatory funnel, and the organic layer was further washed with saturated brine. The organic layer was taken, dehydrated with anhydrous sodium sulfate, and concentrated at 30 ° C. or lower with an evaporator. Although it crystallized when cooled, after decolorization with activated carbon, recrystallization from a mixed solvent of ether and hexane gave monomer 1 in a yield of 76%. For the polymerization, one that was recrystallized once again with the same solvent was used.
The melting point of the obtained crystal is 82.3 to 82.8 ° C., which is higher than the melting point of 81 ° C. in the literature (Non-patent Document 1) and high in purity.
Monomer 2 was synthesized in the same manner starting from acetosyringone. The melting point of the obtained crystal was 127.0 to 127.5 ° C. Similarly, monomer 3 was obtained from acetophenol. The melting point of the obtained crystal is 130.3 to 130.9 ° C., which is higher than that of 129 to 130 ° C. in the literature (Non-patent Document 1), and it can be said that the purity is high.

次に、モノマー1,2,3を重合させポリマー4,5,6を合成した。
重合には水分含量50ppm以下の精製N,N-ジメチルホルムアミド(DMF)(例えばAldrich社製)を用いた。ガラス器具はオーブンで十分に乾燥させたものを用いた。モノマーもP2O5を用いてデシケーター中で真空ポンプを用いて十分に乾燥させたものを用いた。
500mgのモノマー1をDMF2.5mlに溶解し、乳鉢でよく細かくしたK2CO3を422mg加え、50℃で攪拌しながら3時間反応させた。次第に沈殿が生じる。反応終了後、反応液を100mlの氷水に滴下し、沈殿を濾別した。さらに、沈殿をメタノールを用いて洗浄し、乾燥させ、ポリマー4を94%の収率で得た。
同様の方法を用いて、モノマー2からポリマー5を、モノマー3からポリマー6を得た。
Next, monomers 1, 2, and 3 were polymerized to synthesize polymers 4, 5, and 6.
For the polymerization, purified N, N-dimethylformamide (DMF) (for example, manufactured by Aldrich) having a water content of 50 ppm or less was used. The glassware used was thoroughly dried in an oven. As the monomer, P 2 O 5 was used, which was sufficiently dried using a vacuum pump in a desiccator.
500 mg of monomer 1 was dissolved in 2.5 ml of DMF, 422 mg of K 2 CO 3 finely refined in a mortar was added, and the mixture was reacted at 50 ° C. with stirring for 3 hours. Gradually precipitation occurs. After completion of the reaction, the reaction solution was added dropwise to 100 ml of ice water, and the precipitate was separated by filtration. Further, the precipitate was washed with methanol and dried to obtain a polymer 4 in a yield of 94%.
A similar method was used to obtain polymer 5 from monomer 2 and polymer 6 from monomer 3.

次に、ポリマー4,5,6を還元処理してポリマー7,8,9を合成した。
200mgのポリマー4をジメチルスルホキシド(DMSO)10ml中に懸濁し、230mgのNaBH4を加えて50℃で24時間攪拌した。ポリマーは徐々に溶解していき、透明な液体になった。24時間後、氷冷水200mlに滴下した。さらに、2NHClを加え、過剰のNaBH4を分解し、pH3になるまでHClを加え、沈殿を得た。沈殿を濾別し、水で十分洗浄した。得られたポリマーを乾燥後、2mlの1,4−ジオキサンに溶解し、50mlのジエチルエーテルに滴下して再沈殿させることにより精製した。
同様の方法により、ポリマー5からポリマー8をポリマー6からポリマー9を得た。化学構造の確認には13C-NMRを用いた。結果を図2〜4に示す。これらのNMRスペクトルにおいてケトン由来のシグナルが全くないことから、ポリマー鎖の中のすべてのケトンが還元されていることがわかる。
13C-NMR (DMSO-d6): polymer 7: δ: 55.5 (OCH3), 70.7 (α), 74.1 (β), 110.7 (2), 113.1 (5), 118.3 (6), 135.2 (1), 147.1 (3), 148.5 (4); polymer 8: δ: 55.9 (OCH3), 71.6 (α), 78.2 (β), 103.7 (2,6), 135.6 (1), 137.5 (4), 152.1 (3,5); polymer 9: δ: 70.4 (α), 73.1 (β), 113.9 (3,5), 127.4 (2,6), 134.3 (1), 157.7 (4).
Next, the polymers 4, 5, and 6 were subjected to reduction treatment to synthesize polymers 7, 8, and 9.
200 mg of polymer 4 was suspended in 10 ml of dimethyl sulfoxide (DMSO), 230 mg of NaBH 4 was added, and the mixture was stirred at 50 ° C. for 24 hours. The polymer gradually dissolved and became a clear liquid. After 24 hours, the solution was added dropwise to 200 ml of ice-cold water. Further, 2N HCl was added to decompose excess NaBH 4, and HCl was added until pH 3 to obtain a precipitate. The precipitate was filtered off and washed thoroughly with water. The obtained polymer was dried, dissolved in 2 ml of 1,4-dioxane, and purified by dropwise addition to 50 ml of diethyl ether for reprecipitation.
By the same method, Polymer 5 to Polymer 8 and Polymer 6 to Polymer 9 were obtained. 13 C-NMR was used to confirm the chemical structure. The results are shown in FIGS. In these NMR spectra, there is no ketone-derived signal, indicating that all the ketones in the polymer chain have been reduced.
13 C-NMR (DMSO-d 6 ): polymer 7: δ: 55.5 (OCH 3 ), 70.7 (α), 74.1 (β), 110.7 (2), 113.1 (5), 118.3 (6), 135.2 (1 ), 147.1 (3), 148.5 (4); polymer 8: δ: 55.9 (OCH 3 ), 71.6 (α), 78.2 (β), 103.7 (2,6), 135.6 (1), 137.5 (4), 152.1 (3,5); polymer 9: δ: 70.4 (α), 73.1 (β), 113.9 (3,5), 127.4 (2,6), 134.3 (1), 157.7 (4).

本実施例では重合条件を検討した。
表1に重合条件の検討結果を示す。

Figure 0004279110
モノマー濃度、触媒の種類(3種)、反応温度をかえて検討した。反応収率はモノマー1,2,3の重合とその後の還元処理まで含めた合計収率である。数平均分子量、重量平均分子量はポリマー7,8、9をさらにアセテート10,11,12に変換した後、テトラヒドロフランに溶解し、GPCにより解析した。2本のカラム(Shodex
KF803L, KF802)を直列につないで測定し、ポリスチレン換算で求めた。重量平均重合度(DPw)は平均分子量から計算によって求めた。
Exp. No.2,3,4に示すように触媒の使用により、若干重合度を上げることができるが、反応温度を室温にし、反応時間を24時間にしたExp. No.5のほうがより効果的に重合度を上げることができる。また、モノマー濃度を半分にしたExp. No.7によっても、重合度をある程度あげることが可能であった。
In this example, polymerization conditions were examined.
Table 1 shows the results of the investigation of the polymerization conditions.
Figure 0004279110
The monomer concentration, the type of catalyst (3 types), and the reaction temperature were examined. The reaction yield is the total yield including polymerization of monomers 1, 2, and 3 and subsequent reduction treatment. The number average molecular weight and the weight average molecular weight were obtained by further converting the polymers 7 , 8 , and 9 to acetates 10 , 11, and 12 , then dissolving them in tetrahydrofuran and analyzing them by GPC. Two columns (Shodex
KF803L, KF802) were connected in series and measured in terms of polystyrene. The weight average degree of polymerization (DPw) was calculated from the average molecular weight.
As shown in Exp. No. 2, 3, and 4, the degree of polymerization can be slightly increased by using a catalyst, but Exp. No. 5 is more effective when the reaction temperature is set to room temperature and the reaction time is 24 hours. In particular, the degree of polymerization can be increased. In addition, the degree of polymerization could be increased to some extent by Exp. No. 7 in which the monomer concentration was halved.

本実施例ではポリマー10,11,12(化3)を調製した。

Figure 0004279110
30mgのポリマー7を無水酢酸2ml、ピリジン2mlに溶解し、室温で12時間反応させた。反応後、エタノール5mlを加え、エバポレーターで約2mlまで濃縮した。これを水50mlに滴下すると沈殿が生じた。これを濾別し乾燥させるとポリマー10が得られた。同様の方法により、ポリマー8からポリマー11、ポリマー9からポリマー12を得た。 In this example, polymers 10, 11, and 12 (Chemical Formula 3) were prepared.
Figure 0004279110
30 mg of the polymer 7 was dissolved in 2 ml of acetic anhydride and 2 ml of pyridine, and reacted at room temperature for 12 hours. After the reaction, 5 ml of ethanol was added and concentrated to about 2 ml with an evaporator. When this was added dropwise to 50 ml of water, precipitation occurred. This was filtered off and dried to obtain polymer 10. Polymer 8 to polymer 11 and polymer 9 to polymer 12 were obtained in the same manner.

実施例1の反応機構を示す図である。1 is a diagram showing a reaction mechanism of Example 1. FIG. 実施例1で得たリグニンポリマーのNMRスペクトルを示す図である。2 is a diagram showing an NMR spectrum of the lignin polymer obtained in Example 1. FIG. 実施例1で得たリグニンポリマーのNMRスペクトルを示す図である。2 is a diagram showing an NMR spectrum of the lignin polymer obtained in Example 1. FIG. 実施例1で得たリグニンポリマーのNMRスペクトルを示す図である。2 is a diagram showing an NMR spectrum of the lignin polymer obtained in Example 1. FIG.

Claims (4)

下記一般式
Figure 0004279110
(式中、R及びRは、それぞれ同じであっても異なってもよく、水素原子又はメトキシ基を表し、Xはハロゲン原子を表す。)で表されるモノマーをアルカリの存在下で無水条件の非プロトン性極性溶媒中で重合させる段階、及び生成したポリマーを極性溶媒であって生成するポリマーを溶解する溶媒中でカルボニル基の還元剤を用いて還元する段階から成るリグニンポリマーの製法。
The following general formula
Figure 0004279110
(Wherein R 1 and R 2 may be the same or different and each represents a hydrogen atom or a methoxy group, and X represents a halogen atom). A process for producing a lignin polymer comprising: polymerizing in an aprotic polar solvent under conditions, and reducing the produced polymer with a reducing agent for a carbonyl group in a solvent that dissolves the produced polymer in a polar solvent.
前記非プロトン性極性溶媒がDMF、DMAc又はHMPAであり、前記極性溶媒であって生成するポリマーを溶解する溶媒がDMSO、1,4-ジオキサン、メチルセロソルブ、ジメチルアセトアミド、ピリジン、スルホラン、ジエチレングリコールモノメチルエーテル又はヘキサメチルリン酸トリアミドであり、前記還元剤がNaBH又はLiAlHである請求項1に記載の製法。 The aprotic polar solvent is DMF, DMAc, or HMPA, and the solvent that dissolves the polymer that is the polar solvent is DMSO, 1,4-dioxane, methyl cellosolve, dimethylacetamide, pyridine, sulfolane, diethylene glycol monomethyl ether or hexamethyl phosphoric acid triamide a process according to claim 1 wherein the reducing agent is NaBH 4 or LiAlH 4. 下記一般式
Figure 0004279110
(式中、R及びRは、それぞれ同じであっても異なってもよく、水素原子又はメトキシ基を表し、nは正の整数を表す。)で表されるポリマーであって分子量が1000以上であるリグニンポリマー。
The following general formula
Figure 0004279110
(Wherein R 1 and R 2 may be the same or different, each represents a hydrogen atom or a methoxy group, and n represents a positive integer), and has a molecular weight of 1000. This is the lignin polymer.
前記ポリマーが請求項1又は2の製法によって製造される請求項3に記載のリグニンポリマー。 The lignin polymer according to claim 3, wherein the polymer is produced by the production method according to claim 1 or 2.
JP2003352215A 2003-10-10 2003-10-10 Production of lignin polymer Expired - Fee Related JP4279110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003352215A JP4279110B2 (en) 2003-10-10 2003-10-10 Production of lignin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352215A JP4279110B2 (en) 2003-10-10 2003-10-10 Production of lignin polymer

Publications (3)

Publication Number Publication Date
JP2005113083A JP2005113083A (en) 2005-04-28
JP2005113083A5 JP2005113083A5 (en) 2006-11-16
JP4279110B2 true JP4279110B2 (en) 2009-06-17

Family

ID=34543226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352215A Expired - Fee Related JP4279110B2 (en) 2003-10-10 2003-10-10 Production of lignin polymer

Country Status (1)

Country Link
JP (1) JP4279110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092883A1 (en) * 2005-03-02 2006-09-08 National University Corporation Hokkaido University Artificial lignin polymer and process for producing the same

Also Published As

Publication number Publication date
JP2005113083A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
Ren et al. Two-step preparation and thermal characterization of cationic 2-hydroxypropyltrimethylammonium chloride hemicellulose polymers from sugarcane bagasse
Hult et al. Degradable high T g sugar-derived polycarbonates from isosorbide and dihydroxyacetone
El Idrissi et al. Synthesis and characterization of the new cellulose derivative films based on the hydroxyethyl cellulose prepared from esparto “stipa tenacissima” cellulose of Eastern Morocco. II. Esterification with acyl chlorides in a homogeneous medium
Crescenzi et al. New cross‐linked and sulfated derivatives of partially deacetylated hyaluronan: Synthesis and preliminary characterization
CN112239543B (en) Cross-linked comb-shaped polymer electrolyte, and preparation method and application thereof
US4443595A (en) Cellulose ester derivatives and a process for the production thereof
JP4736254B2 (en) Bifunctional phenylene ether oligomer and its production method
Jian et al. Construction of photoresponsive supramolecular micelles based on ethyl cellulose graft copolymer
Xu et al. Ring‐opening graft polymerization of l‐lactide onto starch granules in an ionic liquid
US8901054B2 (en) Cellulose and cellulose ether solutions and use thereof
JP4279110B2 (en) Production of lignin polymer
CN109293921B (en) Rosin-cellulose-based polyester imide polymer and preparation method and application thereof
JP3043461B2 (en) Alkenylmethyl hydroxypropyl cellulose ethers and methods for their production
KR101837634B1 (en) Acetylated cellulose ether, method of preparing the acetylated cellulose ether and articles comprising the same
CN110330667B (en) Simple preparation method of water-soluble polyrotaxane crosslinking agent and product thereof
US4582899A (en) Manufacturing method for cellulose ether having high degree of substitution
CN110330570B (en) Preparation method of 6-amino-6-deoxy cellulose
JPS58176202A (en) Production of alkali salt of highly substituted carboxy- methylcellulose
KR101837635B1 (en) Method of preparing acetylated cellulose ether and acetylated cellulose ether prepared by using the method
Qiao et al. Synthesis and characterization of hyperbranched polyurethane-benzyltetrazole
CN1149225C (en) Process for preparing hydroxy ethyl cellulose
CN112194741A (en) Polyethylene glycol derivative modified beta-cyclodextrin and preparation method and application thereof
JPH085922B2 (en) Sulfinylethyl pullulan and method for producing the same
JP4582286B2 (en) Sulfooxyalkynylthiophene compound and process for producing the same
Koschella et al. 6-Deoxy-6-hydrogenocelluose: Synthesis and characterization of cellulose with reduced functionality

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees